空间大地测量学
大地测量学
![大地测量学](https://img.taocdn.com/s3/m/02fb136fa45177232f60a2d3.png)
大地测量学大地测量学是地球学科的重要分支,是测绘科学的基础学科,在测绘专业的课程设置中占有重要的地位和作用。
其主要测定地球大小;研究地球形状;测定地面点的几何位置,将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。
这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。
就其本质来说,他是一门地球信息学,即为人类的活动提供地球空间信息的学科。
大地测量学的的内容包括几何大地测量学、物理大地测量学、空间大地测量学。
几何大地测量学主要是研究确定地球形状、大小和确定地面点三维空间的理论及技术、因此有关精密的角度、距离测量、水准测量,地球椭圆球体的参数及模型,椭圆面上测量成果的计算、平差、投影变换以及大地控制网建立的原理和技术方法等,是几何大地测量学的基本内容。
物理大地测量学研究用武力方法(重力测量)确定地球的形状及外部重力场。
它的主要内容是重力测量及其归化、地球及外部重力场模型、大地测量边值问题、重力为理论、球谐函数、利用重力测量研究地球形状及椭圆球体参数等。
空间大地测量学是研究以卫星及其它空间探测器实施大地测量的理论和技术。
主要内容包括卫星多普勒技术,海洋卫星雷达测高,激光卫星测距以及卫星定位系统(GPS)和GLONASS,我国的“北斗”卫星定位导航系统,卫星定位定轨理论以及应用卫星及空间探测器在全国性大地测量控制网,全球性的地球动态参数求定和重力场模型的精华、地壳形变、板块运功的、海空导航、导弹制导等方面的研究。
因此较确切地讲。
空间大地测量学的开创。
使大地测量学迈入了以可变地球为研究对象,实施全球动态就对测量的现代大地测量新时期。
学科发展史——萌芽阶段在17世纪以前,大地测量只是处于萌芽状态。
公元前 3世纪,亚历山大的埃拉托斯特尼首先应用几何学中圆周上一段弧AB的长度S、对应的中心角r同圆半径R的关系,估计了地球的半径长度,由于圆弧的两端A和B大致位于同一子午圈上,以后在此基础上发展为子午弧度测量。
山东交通学院大地测量学基础重点(1)
![山东交通学院大地测量学基础重点(1)](https://img.taocdn.com/s3/m/5a290a76bf1e650e52ea551810a6f524ccbfcb30.png)
大地测量学基础1、大地测量学的定义与作用定义:在一定的时间与空间参考系统中,测量和描绘地球形状及其重力场并监测其变化,研究近地空间定位技术并为人类活动提供关于地球的空间信息的一门学科作用:大地测量学为地球科学研究提供时空坐标基础;大地测量学在防灾及环境监测中发挥着特殊作用;大地测量学是发展空间技术和国防建设的重要保障;建立大地控制网为测绘工程提供大地参考框架。
2、大地测量学的基本体系和内容基本体系:几何大地测量学物理大地测量学空间大地测量学内容:确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系;研究月球及太阳系行星的形状及重力场;建立和维持国家天文大地水平控制网和精密水准网;研究高精度观测技术和方法;研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。
3、大地测量学的发展简史及展望(以上三个课本第一章内容)发展简史:地球圆球阶段地球椭球阶段大地水准面阶段现代大地测量新时期展望:全球卫星导航定位系统(GNSS),激光测卫(SLR)以及甚长基线干涉测量(VLBI)是主导本学科发展的主要的空间大地测量技术;空间大地网在地球科学研究中发挥重要作用;精化地球重力场模型是大地测量学的重要发展目标;深空大地测量为空间探测提供定位技术保障,深空网的建设将是空间大地测量的重要内容。
4、岁差:地球绕地轴旋转,由于日月等天体的影响,地球的旋转轴在空间围绕黄极发生缓慢旋转,形成一个倒圆椎体,这种运动叫做岁差。
5、章动:地球受日月引力的影响,瞬时北天极将绕瞬时平北天极产生旋转,大致形成椭圆形轨迹,这种现象叫章动6、极移:地球自转轴处了章动、岁差的变化外,还存在着相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化,这种现象叫极移。
7、国际协议原点:国际上采用的5个纬度服务站以1900-1905年的平均纬度所确定的平级作为基准点8、恒星时:以春分点作为基本参考点,由春分点周日视运动确定的时间叫恒星时。
大地测量学的定义、作用、基本体系和基本内容
![大地测量学的定义、作用、基本体系和基本内容](https://img.taocdn.com/s3/m/0f80f1ab162ded630b1c59eef8c75fbfc77d94d9.png)
大地测量学的定义、作用、基本体系和基本内容
(1)大地测量学的定义:大地测量学是地球科学的一个分支学科,是研究和测定地球的形状、大小、重力场、整体与局部运动和测定地面点的几何位置以及它们的变化的理论和技术的学科。
(2)大地测量学作用主要有四方面:
A.大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。
B.大地测量学在防灾,减灾,救灾及环境监测、评价与保护中发挥着独具风格的特殊作用。
C.大地测量是发展空间技术和国防建设的重要保障。
D.大地测量在当代地球科学研究中的地位显得越来越重要。
(3)大地测量学的基本体系由三个基本分支构成:几何大地测量学、物理大地测量学、空间大地测量学。
(4)基本内容:
1.几何大地测量学也就是天文大地测量学。
其基本任务是确定地球的形状和大小及确定地面点的几何位置。
2.物理大地测量学也有称为理论大地测量学。
其基本任务是用物理的方法(重力测量)确定地球形状及其外部重力场。
3.空间大地测量学主要研究以人造卫星及其它空间探测器为代表的空间大地测量学的理论、技术和方法。
大地测量学基础
![大地测量学基础](https://img.taocdn.com/s3/m/d6d2e7558762caaedc33d42b.png)
大地水准面
地球自然表面
大地测量学基础
基本概念:参考椭球面①
参考椭球面:一个以椭圆的短轴为旋转轴的 旋转椭球体的表面。 椭球体的大小和大地体十分接近。参考椭球 面可用数学模型表示。
1、代表地球的数学表面; 2、大地测量计算的基准面; 3、研究大地水准面的参考面; 4、地图投影的参考面。
大地测量学基础
大地测量学基础
地球自然表面
地球的形状和大小
水准面 大地水准面 参考椭球面
地球的形状是一个南北极稍扁的,类似于一个 椭圆绕其短轴旋转的椭球体。
测量工作的基准面是大地水准面,基准线是铅垂线
测量计算的基准面是参考椭球面,基准线是法线
大地测量学基础
基本概念:坐标系
坐标系指的是描述空间位置的表达形式,即采 用什么方法来表示空间位置。 人们为了描述空间位置,采用了多种方法,从 而也产生了不同的坐标系,如直角坐标系、极 坐标系等。 一个坐标系是由原点位置、轴的指向和定义在 坐标系下点位的参数(坐标分量)所确定的。 地面坐标系的指向可以用它们的极、平面和轴 来描述。
大地测量学基础
基本概念:水准面
水准面: 任何静止的液体表面称为水准面,是
一个处处与重力方向垂直的连续曲面。铅垂线和
水准面是测量工作所依据的线和面。随着高度的
不同,水准面有无数个。平均海水面是其中的一
个。
离心力
P
铅
垂
线
重
垂球
力
大地测量学基础
基本概念:大地水准面
大地水准面:平均海水面向陆地、岛屿延伸而形成的封 闭曲面。它所包围的形体叫大地体。 由于地球内部质量分布不均匀,使得地面上各点的铅垂 线方向产生不规则的变化,因而大地水准面实际上是一 个连续的封闭的但有微小起伏的不规则曲面,无法用数 学模型来表示。
(完整word版)大地测量学基础
![(完整word版)大地测量学基础](https://img.taocdn.com/s3/m/41a794a02e3f5727a4e9627b.png)
大地测量学基础一、大地测量的基本概念1、大地测量学的定义它是一门量测和描绘地球表面的科学。
它也包括确定地球重力场和海底地形。
也就是研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。
测绘学的一个分支。
主要任务是测量和描绘地球并监测其变化,为人类活动提供关于地球的空间信息。
是一门地球信息学科。
是一切测绘科学技术的基础.测绘学的一个分支。
研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科.大地测量学中测定地球的大小,是指测定地球椭球的大小;研究地球形状,是指研究大地水准面的形状;测定地面点的几何位置,是指测定以地球椭球面为参考的地面点的位置。
将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。
这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。
大地测量工作为大规模测制地形图提供地面的水平位置控制网和高程控制网,为用重力勘探地下矿藏提供重力控制点,同时也为发射人造地球卫星、导弹和各种航天器提供地面站的精确坐标和地球重力场资料. 内容和分支学科解决大地测量学所提出的任务,传统上有两种方法:几何法和物理法。
随着20世纪50年代末人造地球卫星的出现,又产生了卫星法。
所以现代大地测量学包括几何大地测量学、物理大地测量学和卫星大地测量学3个主要部分。
几何法是用一个同地球外形最为接近的几何体(即旋转椭球,称为参考椭球)代表地球形状,用天文大地测量方法测定这个椭球的形状和大小,并以它的表面为基础推算地面点的几何位置。
物理法是从物理学观点出发研究地球形状的理论。
用一个同全球平均海水面位能相等的重力等位面(大地水准面)代表地球的实际形状,用地面重力测量数据研究大地水准面相对于地球椭球面的起伏。
卫星法是利用卫星在地球引力场中的轨道运动,从尽可能均匀分布在整个地球表面上的十几个至几十个跟踪站,观测至卫星瞬间位置的方向、距离或距离差。
应用大地测量学第二章_大地测量基础知识
![应用大地测量学第二章_大地测量基础知识](https://img.taocdn.com/s3/m/8aef69c8ff00bed5b8f31d03.png)
应用大地测量学
§2.2ቤተ መጻሕፍቲ ባይዱ常用大地测量坐标系统
本节重点研究下列几个坐标系统:
➢天球坐标系 ➢地球坐标系
天文坐标系 大地坐标系 空间大地直角坐标系 地心坐标系
➢站心坐标系 ➢高斯平面直角坐标系
应用大地测量学
§2.2 常用大地测量坐标系统
§2.2.1 天球与天球坐标系 §2.2.2 地球坐标系(重点) §2.2.3 站心坐标系 §2.2.4 高斯平面直角坐标系(重点)
第二章 大地测量基础知识
第一节 大地测量的基准面和基准线 第二节 常用大地测量坐标系统(重点) 第三节 时间系统 第四节 地球重力场基本理论 第五节 高程系统(重点) 第六节 测定垂线偏差和大地水准面差距的基本 方法 第七节 关于确定地球形状的基本方法 第八节 空间大地测量简介
应用大地测量学
§2.1 大地测量的基准面和基准线
大地水准面所包围的形体—大地体,则是多年来大地测 量工作者研究的对象,认为它能代表地球的实际形状。
应用大地测量学
§2.1 大地测量的基准面和基准线
§2.1.1 水准面和大地水准面 §2.1.2 地球椭球与参考椭球面 §2.1.3 垂线偏差
应用大地测量学
§2.1.2 地球椭球与参考椭球面
1、地球椭球 大地体接近于一个具有极小扁率的旋转椭球。椭球面是 一个规则的数学曲面。一般用长半径a和扁率α(或长、短半 径a、b)表示椭球的形状和大小。 关系: α= (a – b )/ a
§2.2.2 地球坐标系
(二)大地坐标系 地面点在参考椭球面上的位置用大地经度L和大地纬度
B表示。若地面点不在椭球面上,它沿法线到椭球面的距 离称为大地高H大。
大地坐标系规定以椭球的赤道 为基圈,以起始子午线(过格 林尼治的子午线)为主圈。对 于任意一点P其大地坐标为 (L,B,H)
空间大地测量(二)
![空间大地测量(二)](https://img.taocdn.com/s3/m/f664fffaba0d4a7302763a9d.png)
历书时系统(2)
• 这样定义的时间测量系统称为历书时(简写ET) • 1960年起,测量时间的标准是历书时秒 • 纽康给出的太阳几何平黄经的表达式为:
L 27941 48.04 129602768.13T 1.089T 2 dL / dT 129602768.13 1.089T
UT 2 UT 1 T 0 s.022sin 2 t 0 s.012 cos 2 t 0 s.006sin 4 t 0 s.007 cos 4 t
• T以年为单位,从贝赛尔年岁首起算。
世界时系统(7)
• 长期来,人们将地球自转看成是均匀的,包括哥 白尼。 • 1695年,哈雷在计算古代和中世纪的交食时发现 月球运动长期加速现象。 • 1754年,康德提出海洋潮汐摩擦会使地球自转速 度减慢的假说,可以解释哈雷发现的月球运动长 期加速现象,后续发现太阳、水星、金星也有类 似现象。
世界时系统(3)
• 由于真太阳时的不均匀性,1820年,法国科学院 提出秒长定义为:全年中所有真太阳日平均长度的 1/86400为1s,实际工作中无法实时得到秒长。 • 19世纪末。美国天文学家纽康(S.Newcomb)提出 用假想的太阳代替真太阳,简称平太阳。 • 1886年,在法国巴黎召开的国际讨论会同意采用 纽康方法定义平太阳日,从而产生了真正科学意义 上的平太阳时秒长。
原子时历史回顾(2)
• 普朗克建立了量子理论基础 • 爱因斯坦引进了光子受激发射概念 • 波尔运用光子理论解释原子结构并提出能级概念 • 赫兹奠定了无线电频率检测基础 • 布鲁格利、海森堡和薛定谔创立并发展了波动力学 • 施特恩和格拉赫发现了原子磁性和它的空间量子化 • 二次大战后,无线电技术蓬勃发展,频率测量可以达 到30GHz
大地测量学基础复习资料
![大地测量学基础复习资料](https://img.taocdn.com/s3/m/a99db643852458fb770b5653.png)
1. 什么是大地测量学,现代大地测量学由哪几部分组成?谈谈其基本任务和作用?答:大地测量学----是测绘学科的分支,是测绘学科的各学科的基础科学,是研究地球的形状、大小及地球重力场的理论、技术和方法的学科。
大地测量学的主要任务:测量和描述地球并监测其变化,为人类活动提供关于地球的空间信息。
具体表现在(1)、建立与维护国家及全球的地面三维大地控制网。
(2)、测量并描述地球动力现象。
(3)、测定地球重力及随时空的变化。
大地测量学由以下三个分支构成:几何大地测量学,物理大地测量学及空间大地测量学。
几何大地测量学的基本任务是确定地球的形状和大小及确定地面点的几何位置。
作用:可以用来精密的测量角度,距离,水准测量,地球椭球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几何参数的数学模型物理大地测量学的基本任务是用物理方法确定地球形状及其外部重力场。
主要内容包括位理论,地球重力场,重力测量及其归算,推求地球形状及外部重力场的理论与方法等。
空间大地测量学主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量的理论、技术与方法。
2. 什么是重力、引力、离心力、引力位、离心力位、重力位、地球重力场、正常重力、正常重力位、扰动位等概念,简述其相应关系。
答: 地球引力及由于质点饶地球自转轴旋转而产生的离心力的合力称为地球重力。
引力F 是由于地球形状及其内部质量分布决定的 , 其方向指向地心、大小2r m M G F ••= 离心力P 指向质点所在平行圈半径的外方向,其计算公式为ρω2m P = 引力位:将rM G V ⋅=式表示的位能称物质M 的引力位或位函数,引力位就是将单位质点从无穷远处移动到该点引力所做的功。
离心力位:()2222y x Q +=ω式称为离心力位函数 重力位:引力位V 和离心力位Q 之和,或把重力位写成+⋅=⎰rdm G W ()2222y x +ω 地球重力场:地球重力场是地球的种物理属性。
大地测量学
![大地测量学](https://img.taocdn.com/s3/m/c207179b7e192279168884868762caaedd33ba0e.png)
大地测量学简介大地测量学是一门研究地球形状、大小以及地球表面上各点的空间坐标相互关系的学科。
它是土地测量学的一个分支,涉及测量地球形状、地球重力场、地球表面的高程变化等内容。
大地测量学在地理信息系统(GIS)、地图制图、航空航天等领域有着广泛的应用。
地球形状与地球坐标系统地球形状地球并非完全理想的球体,而是一个略为扁平的椭球体。
为了描述地球的形状,人们提出了多种地球模型,例如椭球模型、基准椭球模型等。
其中,最为常用的是基准椭球模型,常见的基准椭球模型有WGS84、GRS80等。
地球坐标系统地球坐标系统用于描述地球上各点的空间位置,常见的地球坐标系统有经纬度坐标系统和平面坐标系统。
经纬度坐标系统使用经度和纬度来表示位置。
经度是指地球上某点位于东西方向的角度,取值范围为180°到+180°,以本初子午线(通常是伦敦的格林威治子午线)为基准。
纬度是指地球上某点位于南北方向的角度,取值范围为90°到+90°,以赤道为基准。
平面坐标系统使用直角坐标系表示地球上的位置。
常见的平面坐标系统有UTM坐标系统和国家网格坐标系统。
UTM坐标系统将地球表面划分为60个纵向的投影带和相应的横向带号,便于对地球表面进行分区管理和测量。
国家网格坐标系统是各国根据自身特点而制订的具有自主知识产权的坐标系统。
大地测量技术大地测量技术主要包括测量地球形状和测定地球表面上各点的位置和坐标。
常用的大地测量技术包括三角测量、重力测量、高程测量等。
三角测量三角测量是测量地球上任意两点之间的距离和角度的方法。
它基于三角形的性质,通过测量三角形的边长和角度来计算未知点的位置。
三角测量在大地测量学中有着广泛的应用,例如地图测绘、导航定位等。
重力测量重力测量是测量地球表面上各点重力场强度的方法。
地球的重力场是由地球本身的质量和形状所决定的,通过测量重力场的变化可以推断地球表面上各点的高程变化。
重力测量常用于大地水准测量、地壳运动研究等领域。
大地测量学
![大地测量学](https://img.taocdn.com/s3/m/a0b6ce16a300a6c30c229fec.png)
第一章绪论1、大地测量学:在一定时间、空间参考系统中,测量和描绘地球及其他行星体的一门学科。
最基本任务:测量和描绘地球并检测其变化,为人类活动提供关于地球等行星体的空间信息经典测量学是把地球假设为刚体不变,均匀旋转的球体或椭球体,并一定范围内测绘地和研究其形状、大小及外部重力场。
2、大地测量学地位及作用:(1)大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。
(2)大地测量学在防灾减灾救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用。
(3)大地测量学是发展空间技术和国防建设的重要保障。
(4)大地测量学在当代地球科学研究中的地位显得越来越重要。
(5)大地测量学是测绘学科的各类分支学科(大地测量、工程测量、海洋测量、矿山测量、航空摄影测量与遥感、地图学与地理信息系统等)的基础学科。
3、大地测量学的三个基本分支:几何大地测量学、物理大地测量学及空间大地测量学。
4、现代大地测量学同传统大地测量学之间没有严格界限,但是现代大地测量学确实具有许多新的特征(测量范围大,动态方式,周期短,精度高)。
5、大地测量学的基本内容:(1)确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水平面地形及其变化等。
(2)研究月球及太阳系行星的形状及重力场。
(3)建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要.(4)研究为获得告警的测量成果的仪器和方法等。
(5)研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。
(6)研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。
第二章坐标系统与时间系统1、地球的运转可分为四类:(1)与银河系一起在宇宙中运动。
(2)在银河系内与太阳系一起旋转。
(3)与其他行星一起绕太阳旋转(公转或周年视运动)(4)绕其瞬时旋转轴旋转(自转或周日视运动)。
1大地测量学的定义和作用.ppt
![1大地测量学的定义和作用.ppt](https://img.taocdn.com/s3/m/8da05d8f25c52cc58ad6bec1.png)
• 物理大地测量在这阶段的进展:
1.大地测量边值问题理论的提出: 英国学者斯托克司(G.G.Stokes)把真正的地球重
力位分为正常重力位和扰动位两部分,实际的重力分 为正常重力和重力异常两部分,在某些假定条件下进 行简化,通过重力异常的积分,提出了以大地水准面 为边界面的扰动位计算公式和大地水准面起伏公式。 后来,荷兰学者维宁·曼尼兹(F.A.Vening Meinesz)根据 斯托克司公式推出了以大地水准面为参考面的垂线偏 差公式。 2.提出了新的椭球参数:
现代大地测量的特征:
⑴ 研究范围大(全球:如地球两极、海洋) ⑵ 从静态到动态,从地球内部结构到动力过程。 ⑶ 观测精度越高,相对精度达到10-8~10-9,绝对精度
可到达毫米。 ⑷ 测量与数据处理周期短,但数据处理越来越复杂。
6
§3大地测量学发展简史及展望 3.1大地测量学的发展简史 ❖ 第一阶段:地球圆球阶段
量法; • 行星运动定律:1619年德国的开普勒(J.Kepler)发表了行
星运动三大定律; • 重力测量:1673年荷兰的惠更斯(C.Huygens)提出用摆进
行重力测量的原理; • 英国物理学家牛顿(L.Newton)提出地球特征:1)是两极
扁平的旋转椭球,其扁率等于1/230;2)重力加速度由 赤道向两极与sin2φ(φ——地理纬度)成比例地增加。
从远古至17世纪,人们用天文方法得到地面上同一子 午线上两点的纬度差,用大地法得到对应的子午圈弧 长,从而推得地球半径(弧度测量 )
❖ 第二阶段:地球椭球阶段
从17世纪至19世纪下半叶,在这将近200年期间,人 们把地球作为圆球的认识推进到向两极略扁的椭球。
7
• 大地测量仪器:望远镜,游标尺,十字丝,测微器; • 大地测量方法:1615年荷兰斯涅耳(W.Snell)首创三角测
空间大地测量理论基础
![空间大地测量理论基础](https://img.taocdn.com/s3/m/8b663d43af1ffc4ffe47ac83.png)
卫星导航定位系统
• 用户用接收机测定至导航卫星的距离或距离变率 并依据观测瞬间卫星在空间的位置采用距离交会 法或距离差交会法来确定自己的位置及运动速度 等要素的无线电导航定位系统称为卫星导航定位 系统。
• 空间大地测量中经常采用的各种坐标实际上是通 过岁差、章动、极移和地球自转而相互联系起来 的。因此掌握岁差、章动、极移和地球自转的知 识就成为正确进行各种坐标系转换的基础。
3.时间系统和坐标系统
• 在空间大地测量中经常要涉及各种时间坐 标(如世界时,原子时,协调世界时,动 力学时及GPS时等)和各种坐标系统(如 天球坐标系,地球坐标系及轨道坐标系 等)。
• 由于这种方法的精度较低,观测受气候条件限制, 资料处理又相当繁杂,故目前在大地定位及测定 重力场等领域已很少使用。
2.卫星激光测距
• 用安置在地面测站上的激光测距仪向专用的激光卫星发射 激光脉冲信号,该信号经安置在卫星表面的反射棱镜反射 后返回测站,精确测定信号往返传播的时间并进而求出从 仪器至卫星的距离的方法和技术称为卫星激光测距。
(二)卫星大地测量
• 利用人造地球卫星来精确确定点的位置; 测定地球的形状、大小及外部重力场;以 及它们的变化状况的理论、方法和技术称 为卫星大地测量。
• 卫星大地测量在空间大地测量中占有极其 重要的作用。它主要包括:卫星摄影测量, 卫星激光测距,卫星导航定位,卫星测高, 卫星跟踪卫星,卫星梯度测量等技术。
1.卫星摄影观测
• 在晴朗的夜晚以恒星为背景用人卫摄影仪对卫皇 进行摄影观测,根据已知的恒星坐标,,以及 相片上恒星与卫星间的相对位置来确定从人卫摄 影仪至该卫星的方向的方法和技术称为卫星摄影 观测。
绝密-空间大地测量学复习
![绝密-空间大地测量学复习](https://img.taocdn.com/s3/m/4c00c8d7b04e852458fb770bf78a6529647d3587.png)
第一章概论1.大地测量学的基本体系:几何大地测量学、物理大地测量学、空间大地测量学空间大地测量学主要研究利用自然天体或人造天体来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法。
2。
国家平面坐标系统实现过程主要工作(1)国家平面控制网布设(2)建立大地基准、确定全网起算数据(3)控制网的起始方位角的求定(4)控制网的起始边长的测定(5)其它工作3.传统大地测量常规方法的局限性(1)测站间需保持通视:采用光电仪器,必须通视;需花费大量人力物力修建觇标;边长受限制;工作难度大、效率低。
(2)无法同时精确确定点的三维坐标:平面控制网和高程控制网是分别布设的;并且增加了工作量.(3)观测受气候条件影响:雨天、黑夜、大雾、大风、能见度低时不宜测量。
(4)难以避免某些系统误差的影响:光学仪器的测量值会因为大气密度不同而受到不同的弯曲影响,地球引力由两极到赤道减小,大气密度变化也逐渐减小。
(5)难以建立地心坐标系:海洋区域无法布设大地控制网,陆地只能区域测量,建立区域参考椭球与区域大地水准面吻合;无法建立全球参考椭球。
4. 时代对大地测量提出的新要求(1)要求提供更精确的地心坐标:空间技术和远程武器迅猛发展,要求地心坐标;(2)要求提供全球统一的坐标:全球化的航空、航海导航要求全球统一的坐标系统(3)要求在长距离上进行高精度的测量:如研究全球性的地质构造运动、建立和维持全球的参考框架、不同坐标系间的联测等;(4)要求提供精确的(似)大地水准面差距:GNSS等空间定位技术逐步取代传统的经典大地测量技术成为布设全球性或区域性的大地控制网的主要手段;人们对高精度的、高分辨率的大地水准面差距N或高程异常的要求越来越迫切。
(5)要求高精度的高分辨率的地球重力场模型:精密定轨和轨道预报(尤其是低轨卫星)需要高精度的高分辨率的地球重力场模型来予以支持。
(6)要求出现一种全天候,更为快捷的、精确、简便的全新的大地测量方法.5. 空间大地测量产生的可能性(1)空间技术的发展:按需要设计卫星,并能精确控制姿态,精确测定卫星轨道并进行预报,为卫星定位技术的产生奠定了基础.(2)计算机技术的发展:为大量资料的极其复杂的数学处理提供了可能性。
2020年智慧树知道网课《空间大地测量学》课后章节测试满分答案
![2020年智慧树知道网课《空间大地测量学》课后章节测试满分答案](https://img.taocdn.com/s3/m/3c6d1cea783e0912a2162ad7.png)
第一章测试1【判断题】(10分)传统大地测量方法可以建立地心坐标系A.错B.对2【判断题】(10分)传统大地测量无法建立全球统一的坐标框架A.错B.对3【判断题】(10分)传统大地测量方法可以同时测定点的三维坐标A.对B.错4【判断题】(10分)采用日夜对称观测的方法可以消除旁遮光的影响A.错B.对5【单选题】(10分)下面反映地球自转轴在本体内的运动状况的是A.岁差B.章动C.格林尼治真恒星时角D.极移值6【多选题】(10分)下面属于空间大地测量范畴的是A.VLBIB.卫星测高C.GNSSD.遥感成像7【判断题】(10分)卫星测高不属于空间大地测量范畴A.错B.对8【判断题】(10分)利用空间大地测量技术不能确定精确的大地水准面差距A.错B.对9【判断题】(10分)空间大地测量技术能够确定地心坐标A.错B.对10【单选题】(10分)利用下面卫星数据解算重力场模型解算精度最低的是A.GRACEB.测高卫星C.CHAMPD.GOCE第二章测试1【判断题】(10分)地球自转是建立世界时的时间基准A.对B.错2【判断题】(10分)在常用的时间系统中,原子时最精确A.对B.错3【单选题】(10分)在常用的时间系统中,最精确的时间系统为A.历书时B.原子时C.太阳时D.世界时4【判断题】(10分)频率准确度反映时钟的系统性误差A.错B.对5【判断题】(10分)频率稳定度反映了钟的系统误差A.对B.错6【多选题】(10分)下列属于太阳时的时间系统包括A.平太阳时B.真太阳时C.民用时D.世界时7【判断题】(10分)协调世界时与世界时之间时刻差需要保持在0.9s以内,否则将采取闰秒进行调整A.对B.错8【判断题】(10分)GLONASS时属于原子时,不需要闰秒A.错B.9【多选题】(10分)下面不需要闰秒的时间系统为A.TALB.UTCC.GLONASSD.GPS时10【多选题】(10分)各国使用的历法主要包括A.阴历B.阴阳历C.儒略日D.阳历第三章测试1【判断题】(10分)赤道岁差可以使春分点的位置西移A.错B.对2【判断题】(10分)固定平纬由于采用了周期为6天的数据来计算点的纬度,因此要比历元平纬稳定A.错B.对3【判断题】(10分)固定平极由于采用了固定平纬来计算极移位置,因此要比历元平极稳定A.错B.对4【判断题】(10分)瞬时天球赤道坐标系的三个坐标轴都是固定的A.对B.错5【判断题】(10分)协议天球坐标系现有两个,分别是J1950.0和J2000.0A.错B.对6【判断题】(10分)J2000.0为现在用的空固系,将来也有可能被淘汰A.错B.对7【单选题】(10分)在进行卫星轨道积分时所采用的坐标系统为A.地心天球坐标系B.国际地球坐标系C.参心坐标系D.站心天球坐标系8【判断题】(10分)CGCS2000是一个基于GPS定位技术建立起来的全球性的地心坐标系A.错B.对9【多选题】(10分)下列属于地心坐标系的是A.WGS84B.BJ54C.ICRSD.CGCS200010【单选题】(10分)从观测瞬间的真地球坐标系转换到观测瞬间的真天球坐标系,需要进行的转换是A.极移矩阵B.旋转GST角C.岁差矩阵D.章动矩阵第四章测试1【判断题】(10分)射电望远镜进行天体测量时的角分辨率和射电望远镜的口径成正比A.错B.对2【判断题】(10分)射电望远镜进行天体测量时的角分辨率和无线电信号的波长成正比A.对B.错3【单选题】(10分)下面需要将射电望远镜用电缆连接起来的是A.空间甚长基线干涉测量B.联线干涉测量C.e-VLBID.甚长基线干涉测量4【判断题】(10分)甚长基线干涉测量不需要电缆将两望远镜连接起来A.错B.对5【判断题】(10分)VLBI观测所需的时间和频率信号由各自独立的氢原子钟提供A.对B.错6【判断题】(10分)延迟量和延迟率的观测精度与系统的信噪比成正比A.错B.对7【判断题】(10分)目前世界上最大的单口径射电望远镜在中国贵州A.对B.错8【判断题】(10分)馈源质量的好坏影响天线的噪声A.错B.对9【单选题】(10分)VLBI系统的接收机的混频器的主要作用是将射频信号转换为A.低频信号B.高频信号C.中频信号D.基频信号10【判断题】(10分)VLBI不能用来进行人造飞行器定轨A.对B.错第五章测试1【判断题】(10分)目前部分SLR跟踪站可以在白天工作A.错B.对2【多选题】(10分)专门用于地球动力学应用和大地测量的专用卫星包括A.Etalon-2B.Lageos-1C.Etalon-1D.Lageos-23【单选题】(10分)我国的SLR数据处理中心在A.长春B.上海C.武汉D.北京4【判断题】(10分)SLR跟踪站在全球的分布相对于GPS较均匀A.错B.对5【判断题】(10分)在IERS官网不能查到SLR跟踪站的坐标A.错B.6【判断题】(10分)在利用SLR进行卫星定轨时,太阳辐射压也是一重要摄动因素,辐射压的大小和卫星的面质比成正比A.错B.对7【判断题】(10分)在利用SLR进行卫星定轨时,大气阻力的大小和卫星的面质比成正比A.对B.错8【判断题】(10分)人卫激光测距不能用来测定地球质心的位置A.B.对9【判断题】(10分)用于测月的激光测距仪的指向精度要比用于测卫星的激光测距仪的指向精度要低A.错B.对10【单选题】(10分)下面月球表面放置的SLR激光反射器不能工作的是A.Apollo15B.Lunakhod1C.Apollo14D.Lunakhod2第六章测试1【多选题】(10分)在卫星轨道误差中,需要考虑的误差源主要包括A.大气传播延迟B.跟踪站坐标误差C.海洋潮汐D.太阳光压E.固体潮汐F.重力场模型2【判断题】(10分)在进行测高数据误差改正时,卫星质心改正不用考虑A.对B.错3【判断题】(10分)在进行海面高的框架转换时,需要有四个参数A.对B.错4【判断题】(10分)在进行海面高的框架转换时,三个平移参数和一个偏差因子可以通过最小二乘的方法求得A.错B.对5【判断题】(10分)卫星从南半球向北半球运行在地面的投影轨迹称为降弧A.错B.对6【判断题】(10分)测高卫星每一周期相对应的弧的地面轨迹严格吻合A.对B.错7【判断题】(10分)利用测高数据可以计算垂线偏差A.对B.错8【判断题】(10分)利用测高数据不能反演海洋重力异常A.对B.错9【判断题】(10分)测高数据不能用来建立海洋大地水准面的数学模型A.对B.错10【单选题】(10分)一般把其他测高卫星的海面高都转换到下面哪颗卫星的框架下来A.T/PB.HY-2AC.Jason-3D.Jason-1第七章测试1【多选题】(10分)下面属于卫星重力探测任务的是A.GOCEB.GRACEA和GRACEBC.CHAMPD.GRACEFollow-on2【判断题】(10分)利用动力法测定地面点的重力属于重力力学反演问题A.错B.对3【判断题】(10分)利用卫星技术确定地球重力场属于重力力学正演问题A.错B.对4【判断题】(10分)解算的重力场模型的最高阶次与卫星的轨道高度没有关系A.对B.错5【多选题】(10分)卫星能量守恒法确定地球重力场包括A.基于单星的能量守恒法B.利用动力学法C.重力梯度测量D.基于双星的能量守恒法6【判断题】(10分)对于GRACE低-低卫星跟踪卫星任务,两颗卫星间的瞬时位差是恢复地球重力场的重要观测数据A.错B.对7【判断题】(10分)GOCE卫星不是采用重力梯度测量方式来确定地球重力场A.错B.对8【判断题】(10分)重力梯度测量不能利用差分加速度计测出重力位的二阶导数A.对B.错9【判断题】(10分)短波分量是重力场谱结构的主分量,精确确定重力场模型中的短波分量,就是为模型提供牢固和精密的框架A.对B.错10【判断题】(10分)GRACE双星计划能够反演重力场,但是由于其数据量稀少,因此不能提供短期至一天的时变重力场信息A.错B.对第八章测试1【单选题】(10分)下面不属于多普勒方式进行定位或定轨的系统为A.DORIS系统B.子午卫星C.GPSD.CICADA2【判断题】(10分)当信号源与信号接收器之间作背向运动时,接收的信号频率减小A.错B.对【判断题】(10分)当信号源与信号接收器之间作相向运动时,接收的信号波长压缩A.错B.对4【判断题】(10分)多普勒测量又称距离差测量A.错B.对5【判断题】(10分)利用多普勒计数不能确定两时刻的接收机与信标机之间的距离差A.对B.错6【判断题】(10分)DORIS系统的信标机在地面上,发射的信号由安装在卫星上的接收机接收。
大地测量名词解释
![大地测量名词解释](https://img.taocdn.com/s3/m/e089469427284b73f342508c.png)
大地测量学基础复习题一、概念题参考椭球:具有确定参数(长半轴a和扁率α),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球。
乘常数:当频率偏离其标准值时而引起的一个计算改正数的乘系数。
垂线偏差:地面上一点的重力向量g和相应椭球面上的法线向量n之间的夹角。
垂线偏差改正:以垂线为依据的地面观测的水平方向值归算到以法线为依据的方向值而应加的改正。
垂线站心坐标系:以测站为原点,测站上的垂线为Z轴方向的坐标系。
大地测量学:是测量和描绘地球并监测其变化,为人类活动提供关于地球的空间信息。
大地高:地面点沿椭球法线至椭球面的距离。
大地基准:能够最佳拟合地球形状的地球椭球的参数及椭球的定位和定向。
大地经度:过地面点的椭球子午面与格林尼治的大地子午面之间的夹角。
大地水准面:是假想海洋处于完全静止的平衡状态时的海水面,并延伸到大陆地面以下所形成的闭合曲面。
大地纬度:过地面点的椭球法线与椭球赤道面的夹角。
大地线:椭球面上两点间最短程的曲线。
大地坐标系:是建立在一定的大地基准上的用于表达地球表面空间位置及其相对关系的数学参照系。
地图数学投影:是将椭球面上元素按一定的数学法则投影到平面上。
法截面:过椭球面上任意一点可作一条垂直于椭球面的法线,包含这条法线的平面。
法线站心坐标系:以测站为原点,测站上的法线为Z轴方向的坐标系。
高斯投影正算:已知椭球面上某点的大地坐标,求该点的在高斯平面上的直角坐标。
几何大地测量学:确定地球的形状和大小及确定地面点的几何位置。
加常数改正:因测距仪、反光镜的安置中心与测距中心不一致而产生的距离改正。
角度变形:投影前的角度与投影后对应的角度之差。
空间大地测量学:研究以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、技术与方法。
卯酉圈:过椭球面上一点的法线,可作无限个法截面,其中一个与该点子午面相垂直的法截面同椭球面相截形成的闭合圈。
欧勒角:两个直角坐标系进行相互变换的旋转角。
平均曲率半径:过椭球面上一点的一切法截弧,当其数目趋于无穷时,它们的曲率半径的算术平均值的极限。
第7章 - 空间大地测量技术DORIS
![第7章 - 空间大地测量技术DORIS](https://img.taocdn.com/s3/m/622876097fd5360cbb1adb07.png)
DORIS技术的应用
国际DORIS服务
TRANSIT空间星座
TRANSIT卫星及星座参数:
6颗卫星位于6个轨道面 相邻轨道平面夹角30 ° 轨道高度:1075km 运行周期107min 倾角i≈90° 两种载波频率:f1=150MHz,
f2=400MHz
TRANSIT地面跟踪网
• OPNET网 (三角形)用于外推广播星历,TRANET网 (实心圆)用于确定卫星精密轨道。
f r :received frequency
f s : reference frequency on board
bias
f r f s , f r 2GHz+Doppler shift
fs d1
satellite d2
So Doppler count will be always positive. Accuracy of DORIS positioning
空间大地测量技术 DORIS
2020/ 1/21
中南大学测绘与国土信息工程系
2
内容要点
多普勒效应 TRANSIT DORIS系统
2020/ 1/21
中南大学测绘与国土信息工程系
3
多普勒效应
A source of waves moving to the left. The frequency is higher on the left, and lower on the right.
– The transmitted frequency from the satellite is received as a higher frequency at receiver when satellite approaches receiver.
空间大地测量学的原理和实际应用
![空间大地测量学的原理和实际应用](https://img.taocdn.com/s3/m/2cdeb1622e60ddccda38376baf1ffc4ffe47e280.png)
空间大地测量学的原理和实际应用1. 空间大地测量学的基本原理空间大地测量学是研究地球形状、尺度和其它地理现象的科学。
其基本原理包括以下几个方面:1.1 大地测量学基本概念•地球椭球体和大地水准面的概念•海拔和正常高程的定义•大地测量学的基本测量要素1.2 大地测量学的参考系统•大地水准面的建立和使用•大地水准面高程系统1.3 大地测量学基准与坐标系统•大地水准面参考基准•大地测量学的坐标系统和坐标参考系统2. 空间大地测量学的实际应用空间大地测量学在许多领域都有广泛的应用。
以下是其中一些实际应用的列举:2.1 地图制作与绘图•地图制图中的高程测量与等高线生成•地图制图中的地理标注与坐标定位2.2 地理信息系统(GIS)•GIS数据的采集与处理•GIS中的空间分析与模型建立2.3 工程测量与建筑•地质勘察与地基测量•建筑工程中的测量控制与竖井测量2.4 交通运输与导航•铁路、公路和航道工程中的道路线型设计和控制•全球定位系统(GPS)与导航系统的控制2.5 土地管理与资源调查•土地所有权与界址的测量与划分•农田规划与资源管理2.6 海洋测量与航海导航•海洋水文测量与水道设计•航海导航系统的建立和维护2.7 大地测量学在科学研究中的应用•地壳形变与地震研究•极地测量与环境变化监测结论空间大地测量学作为一门重要的地学学科,在各个领域都有广泛应用。
了解空间大地测量学的原理和实际应用可以帮助我们更好地理解地球和地球上的各种地理现象,同时也为各个领域的工程和科学研究提供有力的支持。
空间大地测量学
![空间大地测量学](https://img.taocdn.com/s3/m/a477992e17fc700abb68a98271fe910ef12dae2b.png)
空间大地测量学空间大地测量学是人类在建造空间结构,解决空间问题,测量空间距离、地形起伏等等方面所必需的是学科。
更精确的说,它的范围是指运用物理几何、光学、机械仪器、信息技术等手段,在测量学思想和理论指导下,实现地球表面物体在空间或者地表体系中运动、位置、形状和尺寸的测量。
空间大地测量学是建筑、土木工程、测绘、地理信息系统、百度地图、GPS等多个学科的重要基础学科,它主要研究和解决从对大地物体进行测量到其在空间中的位置、形状、大小和运动变化的问题。
空间大地测量学涉及的有:坐标系统的建立,测量系统的建立,大地测量理论,测量技术,视觉测量,电子测量,机械测量,动测量,遥感测量,数字地球建模,数字地形建模,数字地图编辑,地形测量等。
空间大地测量学在解决实际问题时,首先要以测量学思想为指导,确定控制网络的理论基础和技术手段,然后使用测量技术对地表物体进行测量,建立控制网络,绘制物体的地表形态特征。
随后,应用计算机图形处理、计算机技术、空间数据建模、遥感技术等技术,就可以构建出空间结构,完成一幅地形地貌图或者实现特定空间设计方案。
空间大地测量学也是涉及地球测量学学科,可以应用到测绘方面,用于测定物体在空间中的位置,形状,大小及运动变量,以及解决地球表面物体运动及变换,提供地面测量成果。
空间大地测量学得到了广泛的应用,它们既可以被用于地图的制作,也可以用于地理信息系统(GIS)的建立,甚至可以用来构建三维空间结构。
例如,在建筑工程方面,人们通过空间大地测量学建立的三维空间模型,可以对建筑物进行定位、精确控制形状和大小,总之,非常有利于促进基础设施建设。
由于空间大地测量学是多学科综合学科,研究者往往要综合运用物理几何,力学,机械,光学,信息技术,自动测量仪器,数据处理等学科的知识,结合实际应用,力争推广和发展空间大地测量学,从而帮助人们更好、更快地解决现实问题,促进科技发展和社会进步。
综上所述,空间大地测量学是一门涉及诸多学科,具有多方面作用的重要科学学科,在解决实际问题方面具有十分重要的作用,值得研究者们深入研究、发展和推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么,怎样提高射电望远镜的分辨率呢? 对单天线射电望远镜来说,天线的直径越大分辨率越高 。但是天线的直径难于作得很大,目前单天线的最大直径 小于300米,对于波长较长的射电波段分辨率仍然很低, 因此就提出了使用两架射电望远镜构成的射电干涉仪。对 射电干涉仪来说,两个天线的最大间距越大分辨率越高。 另外,在天线的直径或者两天线的间距一定时,接收的无 线电波长越短分辨率越高。
NIST Chip-Scale Atomic Clock
• On Aug. 30, 2004 • about the size of a grain of rice (1.5 millimeters on a side and 4 millimeters high), consume less than 75 thousandths of a watt (enabling the clock to be operated on batteries) and are stable to one part in 10 -10, equivalent to gaining or losing just one second every 300 years.
• the physics package will be integrated with an external oscillator and control circuitry into a finished clock about 1 cm3 in size.
Part 2. VLBI
-Very Long Baseline Interferometry
• Definition of Atomic Second :
地面状态的铯133原子对应于两个超精细能级跃迁 9 192 631 770个辐射周期的持续时间。
• 科学家当前正在研制更高精度的原子钟: 1 second in 10 billion years
Atomic Fountains(原子喷泉钟)
1968 -- NBS-4, the world’s most stable cesium clock, is completed. This clock was used into the 1990s as part of the NIST time system.
1972 -- NBS-5, an advanced cesium beam device, is completed and serves as the primary standard
The uncertainty of NIST-F1 is continually improving. In 2000 the uncertainty was about 1 x 10-15, but as of the summer of 2005, the uncertainty has been reduced to about 5 x 10-16, which means it would neither gain nor lose a second in more than 60 million years! It is now approximately ten times more accurate than NIST-7, a cesium beam atomic clock that served as the United State's primary time and frequency standard from 1993-1999.
分辨率
指区分两个彼此靠近射电源的能力,分辨率越高就 能将越近的两个射电源分开。利用射电望远镜进行 观测时其角分辨率可用下列公式来估算:
D
(2-1)
式中 为角分辨率, 为射电望远镜所接收的 无线电信号的波长,通常为13cm和3.6cm, D 为射 电望远镜接收天线的口径刘万科 博士
武汉大学测绘学院 卫星应用工程研究所 2008年09月
空间大地测量学
内 容 提 要
1. 原子钟(Atomic Clock) 2. 甚长基线干涉测量(VLBI) 3. 激光测卫(SLR) 4. 卫星测高(Satellite Altimetry)
5. 多普勒技术(Doppler Technique)
1993 -- NIST-7 comes on line; eventually, it achieves an uncertainty of 5 x 10-15, or 20 times more accurate than NBS-6.
1999 ---- NIST-F1 begins operation with an uncertainty of 1.7 x 1015, or accuracy to about one second in 20 million years, making it one of the most accurate clocks ever made (a distinction shared with similar standards in France and Germany).
NBS-1
1954 -- NBS-1 is moved to NIST’s new laboratories in Boulder, Colorado. 1955 --The National Physical Laboratory in England builds the first cesium-beam(铯原子束)clock used as a calibration source. 1958 -- Commercial cesium clocks become available, costing $20,000 each. 1959 -- NBS-1 goes into regular service as NIST's primary frequency standard. 1960 -- NBS-2 is inaugurated in Boulder; it can run for long periods unattended and is used to calibrate secondary standards.
/cesium/atomichistory.htm
1945 -- Isidor Rabi, a physics professor at Columbia University, suggests a clock could be made from a technique he developed in the 1930's called atomic beam magnetic resonance. 1949 -- Using Rabi’s technique, NIST (National Institute of Standards and Technology) announces the world’s first atomic clock using the ammonia molecule as the source of vibrations. 1952 -- NIST completes the first accurate measurement of the frequency of the cesium clock resonance. The apparatus for this measurement is named NBS-1.
6. 卫星跟踪卫星(SST)
Part 1. Atomic Clock
• The National Physics Laboratory in England developed the first accurate caesium atomic clock in 1955 • In 1967 the International Bureau of Weights and Measures (BIPM) adopted the atomic definition for an SI second
NBS-5
1975 -- NBS-6 begins operation; an outgrowth of NBS-5, it is one of the world’s most accurate atomic clocks, neither gaining nor losing one second in 300,000 years.
喷 泉 原 子 钟 内 部 构 造 图
Video Demonstration of How a Cesium Fountain Works
(喷泉钟的动画演示,请用鼠标点击上述画面)
NIST-F1 Cesium Fountain Atomic Clock
The Primary Time and Frequency Standard for the United States
Rubidium clock Hydrogen maser clock
Office of Naval Research ---'matchbox' atomic clock
• one second every 10,000 years
• Ultra-miniature Rubidium (Rb) Atomic Clock, 40 cm3
Galileo atomic clocks
Galileo satellites : rubidium atomic frequency standards and passive hydrogen masers. The stability of the rubidium clock is so good that it would lose only three seconds in one million years, while the passive hydrogen maser is even more stable and it would lose only one second in three million years.