液压伺服工作原理
伺服压力机机械原理
![伺服压力机机械原理](https://img.taocdn.com/s3/m/c6b7f4ae0875f46527d3240c844769eae009a334.png)
伺服压力机机械原理伺服压力机是一种利用液压技术来产生高压力的机械设备,它具有精度高、性能稳定等特点,广泛应用于工业生产中的压力加工、冲压成型等工艺过程。
伺服压力机的机械原理是通过控制液压系统中的液压液来达到产生高压力的目的,下面详细介绍其机械原理。
伺服压力机的机械原理包括液压系统原理和机械传动原理两个方面。
液压系统原理:伺服压力机的液压系统由液压泵、液压缸、液压阀等组成。
整个系统的工作过程可以分为四个阶段:压力上升、保压、松开压力和回程。
液压系统的压力上升阶段:当液压泵启动时,液压泵会不断地将低压液体吸入并通过高压油管送至液压缸中。
液压泵的工作会产生液压能,将液压油压缩后输出,从而实现压力的上升。
液压系统的保压阶段:当压力达到设定值时,液压阀会自动关闭,使液压泵的输出液体无法再进入液压缸。
此时,液压系统在保持压力的同时,保持液压油的体积不发生变化。
通过保压阀和压力传感器的调节,确保在加工过程中保持所需压力。
液压系统的松开压力阶段:当加工完成后,松开压力的操作由液压阀实现。
液压阀打开后,液压系统的压力会迅速降低,使液压缸内的压力释放。
这样,压力机的加工件就可以从工作台上移除,为下一道工序做准备。
液压系统的回程阶段:在松开压力后,液压泵会将液体重新吸入并通过高压油管送回至液压泵中,完成一个回程过程。
这样,液压系统就进入了一个新的循环,并为下一次工件的加工做好准备。
机械传动原理:伺服压力机的机械传动原理主要是通过电机、减速器和传动杆等部件来实现的。
电机通过驱动减速器,使减速器将电机的高速旋转转换为低速高扭矩的输出,然后将功率传递给液压泵和传动杆。
传动杆是伺服压力机的关键机械部件之一,其作用是将电机输出的转矩和速度转化为伺服压力机的运动力。
传动杆通常由连杆、齿轮和连轴器等组成,其结构可以根据不同的加工需求进行调整。
在伺服压力机的工作过程中,电机通过减速器驱动传动杆的运动,并带动齿轮的旋转。
齿轮的旋转会导致连杆的摆动,从而引起液压泵的工作。
伺服油缸原理
![伺服油缸原理](https://img.taocdn.com/s3/m/9f3da338f342336c1eb91a37f111f18583d00c30.png)
伺服油缸原理
伺服油缸是一种常见的液压元件,它在工业生产中起着非常重
要的作用。
了解伺服油缸的原理对于液压系统的工程师和操作人员
来说是至关重要的。
本文将从伺服油缸的工作原理、结构特点、应
用范围等方面进行详细介绍,希望能够对大家有所帮助。
伺服油缸的工作原理是利用液压力将活塞推动,从而实现对工
作负载的控制。
当液压油进入油缸内腔时,活塞受到液压力的作用
而产生位移,从而驱动负载进行线性运动。
在液压系统中,通过控
制液压阀的开启和关闭,可以实现对伺服油缸的精准控制,从而实
现对工作负载的精准位置和力的控制。
伺服油缸的结构特点主要包括油缸本体、活塞、密封件、阀芯
等部件。
油缸本体通常由铝合金、钢材等材料制成,具有较高的强
度和刚性。
活塞则是油缸内部的关键部件,其质量和密封性能直接
影响着油缸的工作效果。
密封件则起着密封作用,防止液压油泄漏。
阀芯则是控制液压油进出的关键部件,通过对阀芯的控制可以实现
对油缸的精准控制。
伺服油缸的应用范围非常广泛,主要包括机床、冶金设备、塑
料机械、冲压设备、注塑机械等领域。
在这些领域中,伺服油缸可
以实现对工作负载的精准控制,提高生产效率,降低能耗,改善产
品质量,具有非常重要的意义。
总的来说,伺服油缸作为液压系统中的重要元件,其工作原理、结构特点和应用范围都具有非常重要的意义。
了解伺服油缸的原理
对于液压系统的工程师和操作人员来说是非常重要的,希望本文能
够对大家有所帮助。
液控伺服阀结构组成及工作原理
![液控伺服阀结构组成及工作原理](https://img.taocdn.com/s3/m/75cb33d38662caaedd3383c4bb4cf7ec4afeb6c8.png)
液控伺服阀结构组成及工作原理液控伺服阀是一种接受模拟电信号后,相应输出调制流量和压力的液压控制阀,液控伺服阀通常由力矩马达、液压放大器和反馈机构组成。
下面给大家带来液控伺服阀结构组成、工作原理及安装注意事项。
1、液控伺服阀结构组成液控伺服阀是一种接受模拟电信号后,相应输出调制的流量和压力的液压控制阀,液控伺服阀通常由力矩马达、液压放大器和反馈机构组成。
1)力矩马达:将电气信号转换为力矩或力。
2)液压放大器:控制流向液压执行机构的流量或压力。
3)反馈机构:也称平衡机构,使输出的流量或压力与输入的电气控制信号成比例。
2、液控伺服阀的工作原理当没有控制信号时,力矩马达的衔铁处于平衡位置,挡板固定在两喷嘴中间。
高压油从油口流入,经过滤器后分四路流出,其中两路经左、右节流孔,到阀芯左、右两端,再经左、右喷嘴喷出至溢流腔,最后经回油节流孔从回油口流出。
另外两路高压油分别流到阀套上被阀芯左、右两凸肩盖住的窗孔处,而不能流入负载油路(与作动筒相通的油路)。
当有控制信号时,衔铁带动挡板偏转一定角度,使阀芯偏离中间位置(如向左移动),阀芯的左凸肩处窗孔打开,使高压油与作动筒进油管路接通,阀芯中间凸肩右端处回油窗孔打开,使之与作动筒的回油接通,这样,伺服阀便可控制作动筒运动。
电磁阀是用来控制流体的自动化基础元件,属于执行器,并不限于液压、气动。
不同的电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀、安全阀、方向控制阀、速度调节阀等。
3、安装液控伺服阀的注意事项1)特别留意油路的过滤和清洁疑问,进入伺服阀前有必要安装有过滤精度在5um一下的精细过滤器。
2)在全部液压伺服体系安装完毕后,伺服阀装入体系前有必要对油路停止完全清洁,一同调查滤芯净化情况,体系冲洗24-36h后卸下过滤器,清洁或换掉滤芯。
3)液压管路不允许选用焊接式衔接件,主张选用卡套式24度锥结构方式的衔接件。
4)在安装伺服阀前,不得随意拨动调整安装。
5)安装伺服阀的安装面应光滑平直、清洁。
液压伺服系统工作原理
![液压伺服系统工作原理](https://img.taocdn.com/s3/m/2d3ec9c131126edb6e1a102c.png)
液压伺服体系工作道理1.1 液压伺服体系工作道理液压伺服体系以其响应速度快.负载刚度大.控制功率大等奇特的长处在工业控制中得到了广泛的应用.电液伺服体系经由过程应用电液伺服阀,将小功率的电旌旗灯号转换为大功率的液压动力,从而实现了一些重型机械装备的伺服控制.液压伺服体系是使体系的输出量,如位移.速度或力等,能主动地.快速而精确地追随输入量的变更而变更,与此同时,输出功率被大幅度地放大.液压伺服体系的工作道理可由图1来解释.图1所示为一个对管道流量进行中断控制的电液伺服体系.在大口径流体管道1中,阀板2的转角θ变更会产生撙节感化而起到调撙节量qT的感化.阀板迁移转变由液压缸带动齿轮.齿条来实现.这个体系的输入量是电位器5的给定值x i.对应给定值x i,有必定的电压输给放大器7,放大器将电压旌旗灯号转换为电流旌旗灯号加到伺服阀的电磁线圈上,使阀芯响应地产生必定的启齿量x v.阀启齿x v使液压油进入液压缸上腔,推进液压缸向下移动.液压缸下腔的油液则经伺服阀流回油箱.液压缸的向下移动,使齿轮.齿条带动阀板产生偏转.同时,液压缸活塞杆也带动电位器6的触点下移x p.当x p所对应的电压与x i所对应的电压相等时,两电压之差为零.这时,放大器的输出电流亦为零,伺服阀封闭,液压缸带动的阀板停在响应的qT地位.图1 管道流量(或静压力)的电液伺服体系1—流体管道;2—阀板;3—齿轮.齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制体系中,将被控制对象的输出旌旗灯号回输到体系的输入端,并与给定值进行比较而形成误差旌旗灯号以产生对被控对象的控制造用,这种控制情势称之为反馈控制.反馈旌旗灯号与给定旌旗灯号符号相反,即老是形成差值,这种反馈称之为负反馈.用负反馈产生的误差旌旗灯号进行调节,是反馈控制的根本特点.而对图1所示的实例中,电位器6就是反馈装配,误差旌旗灯号就是给定旌旗灯号电压与反馈旌旗灯号电压在放大器输入端产生的△u.图2 给出对应图1实例的方框图.控制体系经常应用方框图暗示体系各元件之间的接洽.上图方框顶用文字暗示了各元件,后面将介绍方框图采取数学公式的表达情势.图2 伺服体系实例的方框图液压伺服体系的构成液压伺服体系的构成由上面举例可见,液压伺服体系是由以下一些根本元件构成;输入元件——将给定值加于体系的输入端的元件.该元件可所以机械的.电气的.液压的或者是其它的组合情势.反馈测量元件——测量体系的输出量并转换成反馈旌旗灯号的元件.各类类形的传感器经常应用作反馈测量元件.比较元件——将输入旌旗灯号与反馈旌旗灯号比拟较,得出误差旌旗灯号的元件.放大.能量转换元件——将误差旌旗灯号放大,并将各类情势的旌旗灯号转换成大功率的液压能量的元件.电气伺服放大器.电液伺服阀均属于此类元件;履行元件——将产生调节动作的液压能量加于控制对象上的元件,如液压缸或液压马达.控制对象——各类临盆装备,如机械工作台.刀架等.液压伺服数学模子2.1 数学模子为了对伺服体系进行定量研讨,应找出体系中各变量(物理量)之间的关系.不单要搞清晰其静态关系,还要知道其动态特点,即各物理量随时光而变更的进程.描写这些变量之间关系的数学表达式称之为数学模子.2.1.1 微分方程伺服体系的动态行动可用各变量及其各阶导数所构成的微分方程来描写.当微分方程各阶导数为零时,则变成暗示各变量间静态关系的代数方程.有了体系活动的微分方程就可知道体系各变量的静态和动态行动.该微分方程就是体系的数学模子.2.1.2 拉氏变换与传递函数拉氏变换全称为拉普拉斯变换.它是将时光域的原函数f(t)变换成复变量s域的象函数F(s),将时光域的微分方程变换成s域的代数方程.再经由过程代数运算求出变量为s的代数方程解.最后经由过程拉氏反变换得到变量为t的原函数的解.数学大将时域原函数f(t)的拉氏变换界说为如下积分:而拉氏逆变换则记为现实应用中其实不须要对原函数一一作积分运算,与查对数表类似,查拉氏变换表(表1)即可求得.拉氏变换在解微分方程进程中有如下几共性质或定理:(1)线性性质设则有式中 B——随意率性常数.(2)迭加道理这一性质极为重要,它使我们可以不作拉氏逆变换就能预感体系的稳态行动.(6)初值定理微分方程表征了体系的动态特点,它在经由拉氏变换后生成了代数方程,仍然表征了体系的动态特点.假如所有肇端前提为零,设体系(或元件)输出y(t)的拉氏变换为Y(s)和输入x(t)的拉氏变换为X(s),则经由代数运算得(1)G(s)为一个以s为变量的函数,我们称这个函数为体系(或元件)的传递函数.故体系(或元件)的动态特点也可用其传递函数来暗示.传递函数是经典控制理论中一个重要的概念.用常系数线性微分方程暗示的体系(或元件),在初始前提为零的前提下,经拉氏变换后,微分方程中n阶的导数项响应地变换为s n项,而系数不变.即拉氏变换后所得代数方程为一系数与原微分方程雷同,以s n代替n阶导数的多项式,移项后就是其传递函数.故一个体系(或元件)的传递函数极易求得.表1 拉氏变换表(部分)原函数ƒ(t)拉氏变换函数F(s)原函数图形(t≥0)1 单位脉冲函数δ(t)= 1单位阶跃函数=1(t>0) 2=0(t≤0)3 t4 t n56 (1-)7 sinωt8 cosωt9 sin(ωt+θ)10 cos(ωt+θ)11 cosbt12131415 sinhωt16 coshωt例如图3所示为一个质量-弹性-油阻尼体系,该体系的力均衡微分方程为(2)式中 M——质量;x——质量的位移;B C——阻尼系数;k——弹簧刚度.图3 质量-弹性-油阻尼体系经拉氏变换得(3)写成传递函数为(4)方框图及其等效变换图4 所示是一种文字情势的方框图,它暗示体系构造中各元件的功用及它们之间的互相贯穿连接和旌旗灯号传递线路.这种方框图又称作构造方框图.另一种方框图即“函数方块图”,就是将元件或环节的传递函数写在响应的方框中,用箭头线将这些方框衔接起来,如图4所示.指向方框图的箭头暗示对其输入旌旗灯号;从方框图出来的箭头暗示输出.图中圆圈暗示比较点,亦称加减点,它对二个以上旌旗灯号根据其正.负进行代数运算.同一旌旗灯号线上的各引出旌旗灯号,数值与性质完整雷同.方框图输出旌旗灯号的因次,等于输入旌旗灯号的因次与方程中传递函数因次的乘积.图4 体系方框图1—输入旌旗灯号;2—比较点;3—引出旌旗灯号;4—输出旌旗灯号方框图等效变换.简化轨则见表2.表2 方块图变换轨则序号原方块图等效方块图1234567891011121314电液伺服阀电液伺服阀电液伺服阀既是电液转换元件,又是功率放大元件,它可以或许把渺小的电气旌旗灯号转换成大功率的液压能(流量和压力)输出.它的机能的好坏对体系的影响很大.是以,它是电液控制体系的焦点和症结.为了可以或许精确设计和应用电液控制体系,必须控制不合类型和机能的电液伺服阀.伺服阀输入旌旗灯号是由电气元件来完成的.电气元件在传输.运算和参量的转换等方面既快速又轻便,并且可以把各类物理量转换成为电量.所以在主动控制体系中广泛应用电气装配作为电旌旗灯号的比较.放大.反馈检测等元件;而液压元件具有体积小,构造紧凑.功率放大倍率高,线性度好,逝世区小,敏锐度高,动态机能好,响应速度快等长处,可作为电液转换功率放大的元件.是以,在一控制体系中常以电气为“神经”,以机械为“骨架”,以液压控制为“肌肉”最大限度地施展机电.液的长处.因为电液伺服阀的种类许多,但各类伺服阀的工作道理又基底细似,其剖析研讨的办法也大体雷同,故今以经常应用的力反馈两级电液伺服阀和地位反馈的双级滑阀式伺服阀为重点,评论辩论它的根本方程.传递函数.方块图及其特点剖析.其它伺服阀只介绍其工作道理,同时也介绍伺服阀的机能参数及其测试办法电液伺服阀的构成电液伺服阀在电液控制体系中的地位如图27所示.电液伺服阀包含电力转换器.力位移转换器.前置级放大器和功率放大器等四部分.3.1.1 电力转换器包含力矩马达(迁移转变)或力马达(直线活动),可把电气旌旗灯号转换为力旌旗灯号.3.1.2 力位移转换器包含钮簧.弹簧管或弹簧,可把力旌旗灯号变成位移旌旗灯号而输出.3.1.3 前置级放大器包含滑阀放大器.喷嘴挡板放大器.射流管放大器.3.1.4 功率放大器——滑阀放大器由功率放大器输出的液体流量则具有必定的压力,驱动履行元件进行工作.图27 电液控制体系方块图电液伺服阀的分类电液伺服阀的分类电液伺服阀的种类许多,根据它的构造和机能可作如下分类:1)按液压放大级数,可分为单级伺服阀.两级伺服阀和三级伺服阀,个中两级伺服阀应用较广.2)按液压前置级的构造情势,可分为单喷嘴挡板式.双喷嘴挡板式.滑阀式.射流管式和偏转板射流式.3)按反馈情势可分为地位反馈.流量反馈和压力反馈.4)按电-机械转换装配可分为动铁式和动圈式.5)按输出量情势可分为流量伺服阀和压力控制伺服阀.6)按输入旌旗灯号情势可分为中断控制式和脉宽调制式.伺服阀的工作道理伺服阀的工作道理下面介绍两种重要的伺服阀工作道理.力反馈式电液伺服阀的构造和道理如图28所示,无旌旗灯号电流输入时,衔铁和挡板处于中央地位.这时喷嘴4二腔的压力p a=p b,滑阀7二端压力相等,滑阀处于零位.输入电流后,电磁力矩使衔铁2连同挡板偏转θ角.设θ为顺时针偏转,则因为挡板的偏移使p a>p b,滑阀向右移动.滑阀的移动,经由过程反馈弹簧片又带动挡板和衔铁反偏向扭转(逆时针),二喷嘴压力差又减小.在衔铁的原始均衡地位(无旌旗灯号时的地位)邻近,力矩马达的电磁力矩.滑阀二端压差经由过程弹簧片感化于衔铁的力矩以及喷嘴压力感化于挡板的力矩三者取得均衡,衔铁就不再活动.同时感化于滑阀上的油压力与反馈弹簧变形力互相均衡,滑阀在分开零位一段距离的地位上定位.这种依附力矩均衡来决议滑阀地位的方法称为力反馈式.假如疏忽喷嘴感化于挡板上的力,则马达电磁力矩与滑阀二端不服衡压力所产生的力矩均衡,弹簧片也只是受到电磁力矩的感化.是以其变形,也就是滑阀分开零位的距离和电磁力矩成正比.同时因为力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是经由过程滑阀的流量与输入电流成正比,并且电流的极性决议液流的偏向,如许便知足了对电液伺服阀的功效请求.图28 力反馈式伺服阀的工作道理1—永远磁铁;2—衔铁;3—扭轴;4—喷嘴;5—弹簧片;6—过滤器;7—滑阀;8—线圈;9—轭铁因为采取了力反馈,力矩马达根本上在零位邻近工作,只请求其输出电磁力矩与输入电流成正比(不象地位反馈中请求力矩马达衔铁位移和输入电流成正比),是以线性度易于达到.别的滑阀的位移量在电磁力矩必定的情形下,决议于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了便利.采取了衔铁式力矩马达和喷嘴挡板使伺服阀构造极为紧凑,并且动特点好.但这种伺服阀工艺请求高,造价高,对于油的过滤精度的请求也较高.所以这种伺服阀实用于请求构造紧凑,动特点好的场合.力反馈式电液伺服阀的方框图如图29.图29 力反馈式伺服阀方框图3.3.2 地位反馈式伺服阀图30为二级滑阀式地位反馈伺服阀构造.该类型电液伺服阀由电磁部分,控制滑阀和主滑阀构成.电磁部分是一只力马达,道理如前所述.动圈靠弹簧定位.前置放大器采取滑阀式(一级滑阀).如图所示,在均衡地位(零位)时,压力油从P腔进入,分别经由过程P腔槽,阀套窗口,固定撙节孔3.5到达上.下控制窗口,然后再经由过程主阀(二级阀芯)的回油口回油箱.输入正向旌旗灯号电流时,动圈向下移动,一级阀芯随之下移.这时,上控制窗口的过流面积减小,下控制窗口的过流面积增大.所以上控制腔压力升高而下控制腔的压力下降,使感化在主阀芯(二级阀芯)两头的液压力掉去均衡.主阀芯在这一液压力感化下向下移动.主阀芯下移,使上控制窗口的过流面积逐渐增大,下控制窗口的过流面积逐渐缩小.当主阀芯移动到上.下控制窗口过流面积从新相等的地位时,感化于主阀芯两头的液压力从新均衡.主阀芯就逗留在新的均衡地位上,形成必定的启齿.这时,压力油由P腔经由过程主阀芯的工作边到A腔而供应负载.回油则经由过程B腔,主阀芯的工作边到T腔回油箱.输入旌旗灯号电流反向时,阀的动作进程与此相反.油流反向为P→B,A→T.上述工作进程中,动圈的位移量,一级阀芯(先导阀芯)的位移量与主阀芯的位移量均相等.因动圈的位移量与输入旌旗灯号电流成正比,所以输出的流量和输入旌旗灯号电流成正比.图30 地位反馈伺服阀构造1—阀体;2—阀套;3—固定撙节口;4—二级阀芯;5—固定撙节口;6—一级阀芯;7—线圈;8—下弹簧;9—上弹簧;10—磁钢二级滑阀型地位反馈式伺服阀的方框图如图31所示.该型电液伺服阀具有构造简略,工作靠得住,轻易保护,可在现场进行调剂,对油液干净度请求不太高.图31 地位反馈式电液伺服阀方框图电液伺服阀的根本特点空载时输出流量和输入旌旗灯号电流之间的关系,经常应用空载流量特点曲线来暗示(图32).由这一曲线可得到该阀的额定值.线性度.滞环.流量增益等特点.额定电流I R——在这一电流规模内,阀的输出流量与输入旌旗灯号电流成正比.额定空载流量——在额定压力与额定电流下阀的空载流量.线性度——q-I曲线直线性的器量.图32 空载流量特点曲线I R——额定电流;q0——最大空载流量;tanθ——流量增益滞环——重要用来标明旌旗灯号电流转变偏向时,由摩擦力.磁滞等原因使I-q曲线不重合的程度.常以曲线上同一流量下电流最大差值△I max与阀的额定电流I R之比来暗示.流量增益——q L与I之比值,即q-I曲线的平均斜率.3.4.2 压力增益特点在必定供油压力下,在输入电流I和负载压力p L=p1-p2曲线上,比值△p L/△I称为压力增益.当负载流量保持为零时,在零位(中央均衡地位)邻近的压力增益称为零位压力增益.零位压力增益与主滑阀的启齿情势有关,以零启齿情势最高.进步供油压力p s也可进步零位压力增益.但这一特点重要与阀的制造质量有关.进步零位压力增益,对于减小不敏锐区.进步精度有感化,但对稳固性起相反的感化.图33是零启齿伺服阀的零位压力增益特点曲线.图33 零位压力增益特点曲线3.4.3 负载压力.流量特点这一特点往往是选用伺服阀的重要根据.图34即为负载压力-流量特点曲线.3.4.4 对数频率特点它暗示电液伺服阀的动态特点.幅频曲线中一3dB时频率为该阀的频宽.其值越大则该阀的工作频率规模越大.对数频率特点也是剖析伺服体系动特点以及设计.分解电液伺服体系的根据.图35即为阀的对数频率特点曲线.3.4.5 零飘与零偏伺服阀因为供油压力的变更和工作油温度的变更而引起的零位(Q L=p L=0的几何地位)变更称为零飘.零飘一般用使其恢复位所需加的电流值与额定电流值之比来权衡.这一比值越小越好.别的,因为制造.调剂.装配的不同,控制线圈中不加电流时,滑阀不必定位于中位.有时必须加必定的电流才干使其恢复中位(零位).这一现象称为零偏.零偏以使阀恢复零位所需加之电流值与额定电流值之比来权衡.图34 负载压力-流量特点曲线图35 对数频率特点曲线3.4.6 不敏锐度因为不敏锐区的消失,伺服阀只有在输入旌旗灯号电流达必定值时才会转变状况.使伺服阀产生状况变更的最小电流与额定电流之比称为不敏锐度.其值愈小愈好.液压伺服体系设计液压伺服体系设计在液压伺服体系中采取液压伺服阀作为输入旌旗灯号的转换与放大元件.液压伺服体系能以小功率的电旌旗灯号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度.地位控制.速度控制.力控制三类液压伺服系同一般的设计步调如下:1)明白设计请求:充分懂得设计义务提出的工艺.构造实时体系各项机能的请求,并应具体剖析负载前提.2)拟定控制计划,画出体系道理图.3)静态盘算:肯定动力元件参数,选择反馈元件及其它电气元件.4)动态盘算:肯定体系的传递函数,绘制开环波德图,剖析稳固性,盘算动态机能指标.5)校核精度和机能指标,选择校订方法和设计校订元件.6)选择液压能源及响应的从属元件.7)完成履行元件及液压能源施工设计.本章的内容主如果按照上述设计步调,进一步解释液压伺服体系的设计原则和介绍具体设计盘算办法.因为地位控制体系是最根本和应用最广的体系,所以介绍将以阀控液压缸地位体系为主.4.1 周全懂得设计请求4.1.1 周全懂得被控对象液压伺服控制体系是被控对象—主机的一个构成部分,它必须知足主机在工艺上和构造上对其提出的请求.例如轧钢机液压压下地位控制体系,除了应可以或许推却最大轧制负载,知足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等请求外,履行机构—压下液压缸在外形尺寸上还受轧钢机牌楼窗口尺寸的束缚,构造上还必须包管知足改换轧辊便利等请求.要设计一个好的控制体系,必须充分看重这些问题的解决.所以设计师应周全懂得被控对象的工况,并分解应用电气.机械.液压.工艺等方面的理论常识,使设计的控制体系知足被控对象的各项请求.4.1.2 明角设计体系的机能请求1)被控对象的物理量:地位.速度或是力.2)静态极限:最大行程.最大速度.最大力或力矩.最大功率.3)请求的控制精度:由给定旌旗灯号.负载力.干扰旌旗灯号.伺服阀及电控体系零飘.非线性环节(如摩擦力.逝世区等)以及传感器引起的体系误差,定位精度,分辩率以及许可的飘移量等.4)动态特点:相对稳固性可用相位裕量和增益裕量.谐振峰值和超调量等来划定,响应的快速性可用载止频率或阶跃响应的上升时光和调剂时光来划定;5)工作情形:主机的工作温度.工作介质的冷却.振动与冲击.电气的噪声干扰以及响应的耐高温.防水防腐化.防振等请求;6)特别请求;装备重量.安然呵护.工作的靠得住性以及其它工艺请求.4.1.3 负载特点剖析精确肯定体系的外负载是设计控制体系的一个根本问题.它直接影响体系的构成和动力元件参数的选择,所以剖析负载特点应尽量反应客不雅现实.液压伺服体系的负载类型有惯性负载.弹性负载.粘性负载.各类摩擦负载(如静摩擦.动摩擦等)以及重力和其它不随时光.地位等参数变更的恒值负载等.4.2 拟定控制计划.绘制体系道理图在周全懂得设计请求之后,可根据不合的控制对象,按表6所列的根本类型选定控制计划并拟定控制体系的方块图.如对直线地位控制系同一般采取阀控液压缸的计划,方块图如图36所示.图36 阀控液压缸地位控制体系方块图表6 液压伺服体系控制方法的根本类型伺服体系控制旌旗灯号控制参数活动类型元件构成机液电液气液电气液模仿量数字量位移量地位.速度.加快度.力.力矩.压力直线活动摆动活动扭转活动1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达4.3 动力元件参数选择动力元件是伺服体系的症结元件.它的一个重要感化是在全部工作轮回中使负载按请求的速度活动.其次,它的重要机能参数能知足全部体系所请求的动态特点.此外,动力元件参数的选择还必须斟酌与负载参数的最佳匹配,以包管体系的功耗最小,效力高.动力元件的重要参数包含体系的供油压力.液压缸的有用面积(或液压马达排量).伺服阀的流量.当选定液压马达作履行元件时,还应包含齿轮的传动比.4.3.1 供油压力的选择选用较高的供油压力,在雷同输出功率前提下,可减小履行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,装备构造紧凑,同时油腔的容积减小,容积弹性模数增大,有利于进步体系的响应速度.但是随供油压力增长,因为受材料强度的限制,液压元件的尺寸和重量也有增长的趋向,元件的加工精度也请求进步,体系的造价也随之进步.同时,高压时,泄露大,发烧高,体系功率损掉增长,噪声加大,元件寿命下降,保护也较艰苦.所以前提许可时,平日照样选用较低的供油压力.经常应用的供油压力等级为7MPa到28MPa,可根据体系的要乞降构造限制前提选择恰当的供油压力.4.3.2 伺服阀流量与履行元件尺寸的肯定如上所述,动力元件参数选择除应知足拖动负载和体系机能两方面的请求外,还应斟酌与负载的最佳匹配.下面侧重介绍与负载最佳匹配问题.(1)动力元件的输出特点将伺服阀的流量——压力曲线经坐标变换绘于υ-F L平面上,所得的抛物线即为动力元件稳态时的输出特点,见图37.图37 参数变更对动力机构输出特点的影响a)供油压力变更;b)伺服阀容量变更;c)液压缸面积变更。
液压伺服系统工作原理及实例
![液压伺服系统工作原理及实例](https://img.taocdn.com/s3/m/cbe2595833d4b14e852468f1.png)
电气-机械
+
转换器 位移力 -
前置放大级
功率放大级 (滑阀)
输出 流量 压力
反馈机构
电液伺服阀的基本构成
A
8
3、电液伺服阀
电液伺服阀的类型和结构很多,但是,都是由电气机械转换器 和液压放大器所构成。
电气机械转换器也成“力马达”或“力矩马达”,它将输入的 电信号(电流或电压)转换成力或力矩输出,去操纵阀芯的位移。
电气机械转换器的输出力或力矩很小,在流量比较大的情况下, 无法直接驱动阀芯,此时要增加前置放大级,将输出力或力矩 放大。前置放大级是喷嘴挡板阀,功率放大级是滑阀。
A
9
4、液压伺服控制系统举例
(1) 液 压 仿 形 刀 架
A
该 系 统 的 反 馈 是 机 械 反 馈
10
4、液压伺服控制系统举例
执行结构是液压缸或液压马达。
输入 元件
比较元件 +
-
转换放大装置将偏
转换放 大装置
液压执 行元件
控制 对象
差信号的能量形式进 行变换并加以放大。
反馈测 量元件
液压伺A 服系统的构成
5
3、电液伺服阀
电液伺服阀既是电液的转换元件也是功率放大元件,它 将小功率的电信号输入转换成大功率的液压能输出。
由电液伺服阀构成的伺服系统叫电液伺服系统。 电液伺服阀已标准化、系列化。 我国70年代开始批量生产QDY系列和DY系列电液伺 服阀。
液压伺服系统的原理及实例
A
1
伺服系统(又叫随动系统或跟踪系统)是一中自动控制系统, 在这种系统中执行机构能以一定的精度自动地按照输入信号 的变化规律动作。
液压伺服系统:凡是采用液压控制元件和液压执行元件,根 据液压传动原理建立起来的伺服系统,都称为液压伺服系统。
伺服油泵的工作原理
![伺服油泵的工作原理](https://img.taocdn.com/s3/m/b8cb8d504531b90d6c85ec3a87c24028905f8543.png)
伺服油泵的工作原理伺服油泵是一种常用于工业自动化系统中的液压元件,它主要用于控制液压系统的压力和流量。
伺服油泵的工作原理是通过电动机驱动泵体旋转,从而产生液压能量,并将液压能量转化为机械能,从而实现对液压系统的控制。
伺服油泵的工作原理可以分为以下几个步骤:1. 电动机驱动:伺服油泵通常由电动机驱动,电动机通过连接轴将旋转运动转化为泵体的旋转运动。
电动机的转速和功率会直接影响到泵的工作效率和输出能力。
2. 泵体旋转:伺服油泵的泵体内部有一对齿轮或叶片,当电动机驱动泵体旋转时,液体被吸入泵体并被压缩,形成高压液体。
3. 液体输送:高压液体通过出口管道输送到液压系统中的执行器或液压缸。
液体的流量和压力可以通过调整泵的转速和泵的内部结构来控制。
4. 压力控制:伺服油泵通常配备有压力控制装置,可以通过调整控制阀来控制输出液压系统的压力。
当液压系统的压力达到设定值时,控制阀会自动关闭,防止压力过高。
5. 流量控制:伺服油泵还可以通过调整泵的转速和泵的内部结构来控制输出液压系统的流量。
流量的大小直接影响到液压系统的工作速度和效率。
伺服油泵的工作原理可以通过以上步骤简单描述,但实际应用中还会有更多的细节和技术参数需要考虑。
例如,伺服油泵的工作效率、压力范围、流量范围、噪音水平、可靠性等都是选择和设计伺服油泵时需要考虑的因素。
总结起来,伺服油泵是一种通过电动机驱动泵体旋转,将液压能量转化为机械能,控制液压系统压力和流量的液压元件。
它在工业自动化系统中起着重要的作用,广泛应用于各个领域,如机床、冶金、航空、船舶等。
通过合理选择和设计伺服油泵,可以提高液压系统的工作效率和可靠性,满足不同应用场景的需求。
液压伺服系统简介
![液压伺服系统简介](https://img.taocdn.com/s3/m/5bd71ecc0508763231121267.png)
二、伺服系统的工作原理 如图是一个机液位置伺 服系统的原理图。液 压缸的运动(输出量) 自动而准确地复现了 阀芯的运动(输入量) 变化规律。
三、伺服系统的特点
(1)位置跟随(随动) (2)力(或功率)放大 (3)具有反馈作用 (4)依靠偏差工作
四、液压伺服系统的优缺点
液压伺服系统与电气伺服系统相比有三个优点﹕ 液压伺服系统与电气伺服系统相比有三个优点﹕ (1)体积小﹐重量轻﹐惯性小﹐可靠性好﹐输出功率大﹔ )体积小﹐重量轻﹐惯性小﹐可靠性好﹐输出功率大﹔ (2)快速性好﹔ )快速性好﹔ (3)刚度大(即输出位移受外负载影响小)﹐定位准确。 )刚度大(即输出位移受外负载影响小) 缺点是加工难度高﹐抗污染能力差﹐维护不易﹐ 缺点是加工难度高﹐抗污染能力差﹐维护不易﹐成本较高。
3 数控伺服机构 电液步进马达具有惯性小、反应快、输出力 矩大、工作精度高等优点。目前在数控机床中得 到广泛应用。
液压伺服系统实例
1 车床仿形刀架 仿形刀架是由位 置控制机构(液压伺 服系统)驱动,按照 样件(靠模) 样件(靠模)的轮廓形 状,对工件进行仿形 车削加工的装置。用 这种方法对工件进行 加工时,可先用普通 方法加工出一个样件 来,然后用这个样件 就可以复制出一批零 件。
试用一个先导型溢流阀、 试用一个先导型溢流阀、两个远程调压阀组成一个三 级调压且能卸载的多级调压回路, 级调压且能卸载的多级调压回路,绘出回路图并简述 工作原理。(换向阀任选) 。(换向阀任选 工作原理。(换向阀任选)
绘出汽车起重机液压支腿的锁紧回路, 绘出汽车起重机液压支腿的锁紧回路,并说明该回路 对换向阀中位机能的要求。 对换向阀中位机能的要求。
3 机械手伸缩运动伺服系统 机器手包括四个伺服系统,分别控制机械手的伸缩、 机器手包括四个伺服系统,分别控制机械手的伸缩、 回转、升降和手腕的动作。以伸缩伺服系统为例, 回转、升降和手腕的动作。以伸缩伺服系统为例,介绍其 工作原理。 工作原理。 组成 它主要由电液伺服阀1 液压缸2 它主要由电液伺服阀1、液压缸2、活塞杆带动的机械手 齿轮齿条机构4 臂3、齿轮齿条机构4、 电位器5 电位器5、步进电动 和放大器7 机6和放大器7等元 件组成。 件组成。
伺服阀工作原理
![伺服阀工作原理](https://img.taocdn.com/s3/m/544fad57640e52ea551810a6f524ccbff121ca09.png)
伺服阀工作原理
伺服阀是一种能够控制液压系统中液压流量的重要元件,它的工作原理对于液
压系统的稳定运行起着至关重要的作用。
伺服阀的工作原理可以简单地概括为通过电磁力控制阀芯的运动,从而改变液压系统中的液压流量。
下面我们将详细介绍伺服阀的工作原理。
首先,伺服阀内部包含一个电磁铁和阀芯。
当电磁铁通电时,会产生一个磁场,这个磁场会对阀芯产生作用,使得阀芯的位置发生变化。
通过控制电磁铁的通电电流,可以精确地控制阀芯的位置,从而实现对液压系统中液压流量的精准调节。
其次,伺服阀的工作原理还涉及到压力和流量的平衡。
在液压系统中,液压油
通过伺服阀流动时会受到阀芯和阀座的限制,从而产生一定的阻力。
当电磁铁通电,使得阀芯打开时,液压油的流动通道变大,流量增加,压力下降;当电磁铁断电,使得阀芯关闭时,液压油的流动通道变小,流量减小,压力上升。
通过这种方式,可以实现对液压系统中液压流量的精确控制。
最后,伺服阀的工作原理还涉及到反馈控制。
在液压系统中,通常会设置传感
器来监测液压流量和压力的变化,并将这些信息反馈给控制系统。
控制系统根据反馈信息调节电磁铁的通电电流,从而实现对液压系统的闭环控制。
这种反馈控制可以使液压系统更加稳定和可靠。
总的来说,伺服阀的工作原理是通过电磁力控制阀芯的位置,从而改变液压系
统中的液压流量,同时通过压力和流量的平衡以及反馈控制实现对液压系统的精确控制。
了解伺服阀的工作原理对于液压系统的设计、安装和维护都具有重要意义,只有深入理解伺服阀的工作原理,才能更好地发挥液压系统的性能,确保其稳定运行。
液压伺服系统
![液压伺服系统](https://img.taocdn.com/s3/m/719fd77c763231126edb11c0.png)
控制元件-电液伺服阀
挡板 先导控制油腔
喷嘴
挡板一方面与力 矩马达衔铁连接, 另一方面,其穿过 两个喷嘴,与主阀 芯连接。
主阀芯
压缸停止运动。
喷嘴挡板阀的优点是结构简单、
加工方便、运动部件惯性小、反应快、
精度和灵敏度高;缺点是能量损耗大、
抗污染能力差。喷嘴挡板阀常用作多
级放大伺服控制元件中的前置级。
图7.11 喷嘴挡板阀的工作原理 1-挡板;2、3-喷嘴;4、5-
节流小孔
§7.3 电液伺服阀
电液伺服阀是电液联合控制的多 级伺服元件,它能将微弱的电气输入 信号放大成大功率的液压能量输出。 电液伺服阀具有控制精度高和放大倍 数大等优点,在液压控制系统中得到 了广泛的应用。
图7.4 速度伺服系统职能方框图
实际上,任何一个伺服系统都是由这些元件(环节) 组成的,如图7.5所示。
图7.5 控制系统的组成环节
下面对图中各元件做一些说明:
(1)输入(给定)元件。通过输入元件,给出必要的 输入信号。如上例中由给定电位计给出一定电压,作为系 统的控制信号。
(2)检测、反馈信号。它随时测量输出量(被控量) 的大小,并将其转换成相应的反馈信号送回到比较元件。 上例中由测速发电机测得液压缸的运动速度,并将其转换 成相应的电压作为反馈信号。
(5)执行元件(机构)。直接带动控制对象动作 的元件或机构。如上例中的液压缸。
(6)控制对象。如机器的工作台、刀架等。
3.液压伺服系统的分类
伺服系统可以从下面不同的角度加以分类。
(1)按输入的信号变化规律分类:有定值控制系统、程 序控制系统和伺服系统三类。
当系统输入信号为定值时,称为定值控制系统,其基本 任务是提高系统的抗干扰能力。当系统的输入信号按预先给 定的规律变化时,称为程序控制系统。伺服系统也称为随动 系统,其输入信号是时间的未知函数,输出量能够准确、迅 速地复现输入量的变化规律。
伺服压力机的工作原理
![伺服压力机的工作原理](https://img.taocdn.com/s3/m/58c9abe4ac51f01dc281e53a580216fc700a53bd.png)
伺服压力机的工作原理
伺服压力机的工作原理是通过伺服系统控制液压系统的工作来实现对压力的精确控制。
具体工作原理如下:
1. 伺服系统:伺服系统由伺服电机和伺服控制器组成。
伺服电机是一种精密的电动机,能够根据控制信号精确地控制运动。
伺服控制器负责接收控制信号,并根据反馈信号调整伺服电机的输出。
2. 液压系统:液压系统由液压泵、液压缸和液压阀组成。
液压泵负责将油液从油箱吸入,并通过液压阀控制油液的流向和流量。
液压缸是伺服压力机的执行机构,根据液压系统的控制压力进行运动。
3. 控制方式:伺服控制器根据预设的压力值生成控制信号,并通过控制阀控制液压泵的流量,使液压系统的压力达到预设的压力值。
当设定值和反馈值有偏差时,伺服控制器会根据反馈信号进行修正,调整控制信号的输出,使压力保持在设定值附近。
4. 压力调节:伺服压力机的压力可以通过调整伺服控制器中的参数来实现。
通常可以通过设定比例增益、积分增益和微分增益等参数来调节压力的稳定性和响应速度。
总的来说,伺服压力机通过伺服系统控制液压系统的工作,使得压力能够精确地
控制,并能根据需求进行调节,从而实现各种材料的成型和加工。
液压伺服系统
![液压伺服系统](https://img.taocdn.com/s3/m/b7e495db8bd63186bcebbc45.png)
图10-10 电液伺服阀
二、电液伺服阀工作原理
1.力矩马达工作原理
磁铁把导磁体磁化成N、S极, 形成磁场。 线圈无电流时,力矩马达无力 矩输出,挡板处于两喷嘴中间;当 输入电流通过线圈使衔铁3左端被 图10-10 电液伺服阀 磁化为N极,右端为S极,衔铁逆时 针偏转。弹簧管弯曲产生反力,使衔铁转过θ 角。电流越大 θ 角就越大,力矩马达把输入电信号转换为力矩信号输出。
二、射流管阀
射流管阀由射流管1和接收板2组成。射流管可绕O 轴左右摆动一个不大的角度,接收板上有两个并列的接 收孔a、b,分别与液压缸两腔 相通。压力油从管道进入射流 管后从锥形喷嘴射出,经接收 孔进入液压缸两腔。 射流管偏向哪个接收孔, 油缸相应的工作腔压力提高, 缸体就向那个方向运动。
图10-8 射流Βιβλιοθήκη 阀图10-6 四边节流滑阀结构示意图
4、三种节流边的对零状态
1)负开口 (xs<0)有较大的不灵敏区,较少采用(图10-7a)
2)正开口
(xs>0)工作精度较负开口高,但功率损耗大,稳 定性也较差。(图10-7b) 3)零开口 (xs=0)其工作 精度最高,制造 工艺性差。(图10-7c)
图10-7 滑阀的不同开口形式
图10-3 液压伺服控制系统流程图
三、液压伺服系统分类
按输出物理量分类:位置、速度、力伺服系统
按信号分类:机液、电液、气液伺服系统
按元件分类:阀控系统、泵控系统
液压伺服系统与电气伺服系统相比优点﹕
1)体积小﹐重量轻﹐惯性小﹐可靠性好﹔
2)快速性好﹔
3)刚度大(即输出位移受外负载影响小)﹐定位准确。
跟随缸体移动到挡板两边对称位 置时,缸运动停止。
图10-9 喷嘴挡板阀
液压伺服系统.
![液压伺服系统.](https://img.taocdn.com/s3/m/46fd844658fafab068dc020e.png)
第11章
§11.1 概述
液压伺服系统
§11.2 典型的液压伺服控制元件 §11.3 电液伺服阀
3.液压伺服系统的分类 伺服系统可以从下面不同的角度加以分类。 (1)按输入的信号变化规律分类:有定值控制系统、程 序控制系统和伺服系统三类。 当系统输入信号为定值时,称为定值控制系统,其基本 任务是提高系统的抗干扰能力。当系统的输入信号按预先给 定的规律变化时,称为程序控制系统。伺服系统也称为随动 系统,其输入信号是时间的未知函数,输出量能够准确、迅 速地复现输入量的变化规律。 ( 2 )按输入信号的不同分类:有机液伺服系统、电液伺 服系统、气液伺服系统等。 ( 3 )按输出的物理量分类:有位置伺服系统、速度伺服 系统、力(或压力)伺服系统等。 (4)按控制元件分类:有阀控系统和泵控系统。 在机械设备中,阀控系统应用较多,故本章重点介绍阀 控系统。
4.液压伺服系统的优缺点 液压伺服系统除具有液压传动系统所固有的一系 列优点外,还具有控制精度高、响应速度快、自动化程 度高等优点。 但是,液压伺服元件加工精度高,因此价格较贵; 对油液污染比较敏感,因此可靠性受到影响;在小功率 系统中,液压伺服控制不如电器控制灵活。随着科学技 术的发展,液压伺服系统的缺点将不断得到克服。在自 动化技术领域中,液压伺服控制有着广泛的应用前景。
图11.2 液压缸速度调节过程示意图
液压伺服系统的工作原理和特点(3/5)
由图 11.2 中可以看出,输出量(液 压缸速度)通过操作者的眼、脑和手来 影响输入量(节流阀的开口量)。这种 反作用被称为反馈。在实际系统中,为 了实现自动控制,必须以电器、机械装 置来代替人,这就是反馈装置。由于反 馈的存在,控制作用形成了一个闭合回 路,这种带有反馈装置的自动控制系统, 被称为闭环控制系统。图 11.3 为采用电 液伺服阀控制的液压缸速度闭环自动控 制系统。这一系统不仅使液压缸速度能 任意调节,而且在外界干扰很大(如负 图 11.3 阀控油缸闭环控制系 载突变)的工况下,仍能使系统的实际 统原理图 -齿条; 2 -齿轮; 3 -测速 输出速度与设定速度十分接近,即具有 1 发电机;4-给定电位计;5- 很高的控制精度和很快的响应性能。 放大器;形式
液压伺服系统概述
![液压伺服系统概述](https://img.taocdn.com/s3/m/9a00d1649b6648d7c1c746d5.png)
第11章液压伺服系统概述液压伺服控制技术是液压技术中的一个分支,又是控制领域中的一个重要组成部分。
一、液压伺服系统的发展历史在第一次世界大战前,液压伺服系统作为海军舰船的操舵装置已开始应用。
在第二次世界大战期间及以后,由于军事需要,特别是武器和飞行器控制系统的需要,以及液压伺服系统本身具有响应快、精度高、功率一重量比大等优点,液压伺服系统的理论研究和实际应用取得了很大的进展,40年代开始了滑阀特性和液压伺服理论的研究,1940年底,首先在飞机上出现了电液伺服系统。
但该系统中的滑阀由伺服电机驱动,只作为电液转换器。
由于伺服电机惯量大,使电液转换器成为系统中耗时最大的环节,限制了电液伺服系统的响应速度。
到50年代初,出现了快速响应的永磁力矩马达,形成了电液伺服阀的雏形。
到50年代末,又出现了以喷嘴挡板阀作为第一级的电液伺服阀,进一步提高了伺服阀的快速性。
60年代,各种结构的电液伺服阀相继出现,特别是干式力矩马达的出现,使得电液伺服阀的性能日趋完善。
由于电液伺服阀和电子技术的发展,使电液伺服系统得到了迅速的发展。
随着加工能力的提高和液压伺服阀工艺性的改善,使液压伺服阀性能提高、价格降低。
使液压伺服系统由军事向一般工业领域推广。
目前,液压伺服控制系统,特别是电液伺服系统已成了武器自动化和工业自动化的一个重要方面。
二、液压伺服系统的工作原理液压伺服控制系统是以液压伺服阀和液压执行元件为主要元件组成的控制系统,是一种高精度的自动控制系统。
如图所示,系统由滑阀1和液压缸2组成,阀体与缸体固定,液压泵以恒定的压力P向系统供油。
当阀心处于中间时,阀口关闭,缸不动,系统静止。
当阀心右移x,则a、b处有开口x v=x,压力油进入缸右腔,左腔回油,缸体右移。
由于缸体与阀体刚性固连,阀体也随缸体一起右移,结果使阀的开口x v减小。
当缸体位移y等于阀心位移x时,缸不动。
如果阀心不断右移,缸拖动负载不停右移。
如果阀心反向运动,液压缸也反向运动。
液压伺服工作原理
![液压伺服工作原理](https://img.taocdn.com/s3/m/e657d8a3e109581b6bd97f19227916888486b90b.png)
液压伺服工作原理
液压伺服系统是通过液压原理实现精确控制的一种机电装置。
其工作原理如下:
1. 液压伺服系统由液压泵、液压缸、控制阀和传感器等组成。
液压泵通过机械能输入,将机械能转化为流体能。
2. 液压泵将流体送入控制阀,控制阀通过调节液压流量和压力来控制流体的输出。
控制阀是系统的核心部件,它根据传感器信号和预设的控制要求,将流量和压力分配到液压缸上。
3. 传感器用于感知被控对象的实际状态,并将状态信息反馈给控制阀。
控制阀根据传感器的反馈信号,调整液压流量和压力,使得被控对象达到期望的位置、速度或力。
4. 液压流体进入液压缸,通过液压缸的活塞运动,产生线性位移或输出力。
液压缸的活塞由流体推动,通过活塞杆连接到被控对象,将控制信号转化为机械运动。
5. 当被控对象达到期望状态时,传感器感知到的状态信息与控制阀预设的控制要求相符,控制阀停止调节。
通过以上原理,液压伺服系统实现了对机械运动的精确控制。
其优点包括高承载能力、动态响应快、可靠性高、结构简单等。
在工业自动化领域广泛应用,例如数控机床、起重设备、注塑机等。
伺服液压缸工作原理
![伺服液压缸工作原理](https://img.taocdn.com/s3/m/0432de4fcd7931b765ce0508763231126edb77f8.png)
伺服液压缸工作原理嘿,咱今儿来聊聊伺服液压缸这玩意儿的工作原理哈!你说这伺服液压缸啊,就好比是一个大力士,不过呢,它可不是那种光有蛮力的家伙,人家可是有脑子的大力士呢!伺服液压缸是咋工作的呢?其实啊,就跟咱人跑步差不多。
它得先有个目标,也就是我们给它设定的任务。
然后呢,就开始发力啦!它里面的油液就像是大力士身体里的能量,通过各种管道啊、阀门啊这些通道,源源不断地输送力量。
你想想看,这油液在里面跑来跑去的,一会儿这边多一点,一会儿那边少一点,这不就推动着液压缸的活塞动起来了嘛!就好像咱跑步的时候,腿一迈一迈的,带着咱往前跑。
这活塞呢,就是那个带着机器往前走的“腿”。
而且啊,这伺服液压缸还特别聪明呢!它能根据实际情况随时调整自己的力量和速度。
比如说吧,要是遇到点小阻碍,它就加把劲,使点更大的力气冲过去。
要是一切都很顺利,它就稳稳地保持着速度,不紧不慢地干活。
你说这像不像咱人啊,遇到困难了就咬咬牙,加把劲克服,顺风顺水的时候就享受一下,保持好状态。
这伺服液压缸可真是个机灵鬼!它在很多地方都大显身手呢!像那些大型的机械设备,没有它可不行。
它就像是一个默默无闻的英雄,在背后默默地付出,让一切都能顺利运转。
咱再打个比方,这伺服液压缸就像是一个优秀的舞者。
它的动作要精准、有力,还要和音乐完美配合。
油液就是那跳动的音符,而液压缸就是那个随着音符翩翩起舞的舞者。
只有它们配合得好,才能跳出一场精彩的舞蹈,才能让机器高效地工作呀!你说这伺服液压缸神奇不神奇?它虽然看起来就是个铁疙瘩,但里面蕴含的奥秘可多了去了。
咱可别小瞧了它,没有它,好多大工程都没法完成呢!所以啊,咱得好好了解了解这个厉害的家伙,知道它是怎么工作的,这样以后遇到和它相关的问题,咱也能心里有底,知道该怎么解决啦!这伺服液压缸,真的是工业领域里的一个宝贝啊,咱可得好好珍惜它、利用好它!原创不易,请尊重原创,谢谢!。
液压伺服系统工作原理
![液压伺服系统工作原理](https://img.taocdn.com/s3/m/c614924b1ed9ad51f01df255.png)
液压伺服系统工作原理1.1 液压伺服系统工作原理液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。
液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服系统的工作原理可由图1来说明。
图1所示为一个对管道流量进行连续控制的电液伺服系统。
在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。
阀板转动由液压缸带动齿轮、齿条来实现。
这个系统的输入量是电位器5的给定值x i。
对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。
阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。
液压缸下腔的油液则经伺服阀流回油箱。
液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。
同时,液压缸活塞杆也带动电位器6的触点下移x p。
当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。
这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。
图1 管道流量(或静压力)的电液伺服系统1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。
反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。
用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。
而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。
液压伺服工作原理
![液压伺服工作原理](https://img.taocdn.com/s3/m/2833022da55177232f60ddccda38376baf1fe00d.png)
液压伺服工作原理
液压伺服是一种通过液压力来控制机械运动的系统。
它的工作原理是利用液压装置将流体压力转换成力或运动,通过传递流体压力来实现机械部件的控制和运动。
液压伺服系统主要由三个基本组成部分组成:能源部分、传动部分和执行部分。
能源部分包括液压泵或压力源,它提供高压液体供应;传动部分包括液压油路、阀门和管道等,它们用于传递液体压力和控制流量;执行部分包括液压缸、活塞和活塞杆等,它们通过接收流体能量来执行力或运动。
在液压伺服系统中,液压泵将机械能转化成液压能,产生高压液体。
液体经过控制阀调节流量和压力,然后通过管道传输到执行部件。
执行部件接收到液体能量后,将其转化为力或运动。
这样,就可以控制机械部件的位置、速度和力量。
液压伺服系统的工作原理可以简单地描述为:当控制阀打开时,液体从液压泵流出,并通过管道传输到液压缸。
液压缸接收到压力后,活塞向前推动,产生力或运动。
反之,当控制阀关闭时,液体停止流动,液压缸的活塞停止运动。
液压伺服系统具有许多优点,如传动比高、精度高、反应速度快、承载能力大等。
它广泛应用于各种工业领域,如机床、冶金、矿山等,实现精密控制和高效能量转换。
伺服阀工作原理
![伺服阀工作原理](https://img.taocdn.com/s3/m/2615d16ea4e9856a561252d380eb6294dd882222.png)
伺服阀工作原理
伺服阀是一种用于控制液压系统中液压流量和压力的装置。
它由一个电动机、阀芯和弹簧组成。
伺服阀的工作原理是通过电动机的驱动,控制阀芯的位置,从而改变阀口的开启程度,调节液压流量。
当电动机工作时,它会转动一个螺杆,该螺杆与阀芯相连。
当螺杆转动时,阀芯也会随之移动。
阀芯的移动距离决定了阀口的开度。
阀芯内部通常有几个小孔,当阀芯移动时,这些小孔会与阀体上的相应通道对齐或闭合。
当小孔与通道对齐时,液压流体可以通过阀体进入或释放,从而改变液压系统中的流量和压力。
当小孔与通道闭合时,液压流体无法流动,从而保持所需的压力。
伺服阀还包括一个弹簧。
弹簧的作用是提供一个恢复力,当电动机停止工作时,阀芯会受到弹簧的作用,返回到原位,从而关闭阀口。
通过调节电动机的转速和方向,可以控制阀芯的位置和移动速度,从而实现对液压流量和压力的精确控制。
这使得伺服阀在自动控制系统中广泛应用,如工业机械、冶金设备和航空航天等领域。
飞机舵面控制机液伺服系统工作原理
![飞机舵面控制机液伺服系统工作原理](https://img.taocdn.com/s3/m/8449e161bc64783e0912a21614791711cd797965.png)
飞机舵面控制机液伺服系统工作原理
飞机舵面控制机液伺服系统是飞机操纵的重要部件,它通过液压和伺服技术来实现飞机舵面的运动控制。
这个系统的工作原理如下:在飞机起飞前,飞行员通过操纵杆或脚踏板输入操纵信号,这些信号会被送往飞机舵面控制机液伺服系统。
接下来,液压系统开始工作。
液压系统由液压泵、液压油箱、液压管路和液压执行器组成。
液压泵会将液压油从油箱中抽取出来,通过液压管路输送到液压执行器。
液压执行器是整个系统的核心部件。
它由液压缸和伺服阀组成。
液压油进入液压缸后,通过伺服阀的控制来控制液压缸的运动。
伺服阀会根据飞行员输入的操纵信号,调整液压油的流量和压力,从而改变液压缸的位置和速度。
液压缸的运动会导致飞机舵面的位移,进而改变飞机的姿态和航向。
液压执行器的工作过程是一个反馈控制过程。
液压执行器内部有传感器,可以感知液压缸的位置和速度。
这些传感器会将实际位置和速度的信息反馈给伺服阀,伺服阀根据反馈信息来调整液压油的流量和压力,使液压缸的运动与飞行员输入的操纵信号保持一致。
飞机舵面通过液压执行器的控制达到预期的位移和速度,从而实现飞机的操纵。
总的来说,飞机舵面控制机液伺服系统通过液压和伺服技术实现飞机舵面的运动控制。
液压系统提供动力和能量,而伺服技术通过反馈控制实现精确的运动控制。
这个系统的工作原理使飞行员可以准确、灵活地操纵飞机,确保飞机的安全和稳定飞行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压伺服工作原理
1.1
液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。
液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服系统的工作原理可由图1来说明。
图1所示为一个对管道流量进行连续控制的电液伺服系统。
在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。
阀板转动由液压缸带动齿轮、齿条来实现。
这个系统的输入量是电位器5的给定值
x i 。
对应给定值x
i
,有一定的电压输给放大器7,放大器将电压信号转换为电流
信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x
v 。
阀开口x
v
使液压油进入液压缸上腔,推动液压缸向下移动。
液压缸下腔的油液则经伺服阀流回油箱。
液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。
同时,液压缸
活塞杆也带动电位器6的触点下移x
p 。
当x
p
所对应的电压与x
i
所对应的电压相
等时,两电压之差为零。
这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。
图1 管道流量(或静压力)的电液伺服系统
1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀
在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反
馈控制。
反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。
用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。
而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。
图2 给出对应图1实例的方框图。
控制系统常用方框图表示系统各元件之间的联系。
上图方框中用文字表示了各元件,后面将介绍方框图采用数学公式的表达形式。
图2 伺服系统实例的方框图。