试论环状化合物_芳香性_的判断方法
芳香性判断技巧
芳香性判断技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合 4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位 2,2,6,6,符合 4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为 10 和 14,符合 Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用 Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用 Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合 Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,。
有机化学基础知识点整理芳香性和芳香化合物的性质
有机化学基础知识点整理芳香性和芳香化合物的性质芳香性和芳香化合物的性质有机化学是化学领域中的一个重要分支,研究有机物的结构、性质和合成方法等。
芳香性和芳香化合物是有机化学中的重要概念和研究内容之一。
本文将对芳香性和芳香化合物的基础知识点进行整理。
一、芳香性的概念芳香性是指含有芳香环结构的化合物所特有的性质或现象。
它是由芳香环中的π电子云形成的高度共轭体系所决定的。
具备芳香环结构的化合物表现出一系列独特的性质,包括稳定性高、反应活性低、呈现特殊的气味等。
二、芳香性的规则和条件1. 符合Hückel规则Hückel规则是判断一个化合物是否具备芳香性的一个重要准则。
根据Hückel规则,一个环状分子具备芳香性必须满足:- 分子是平面的;- 分子中含有 4n+2 个π电子,其中 n 是非负整数。
2. 产生高度共轭体系芳香性是由共轭体系中的π电子云形成的,因此产生芳香性的分子通常具有大范围的共轭结构。
对于苯环来说,由于其电子云在整个环上共轭,因此苯是最简单的芳香化合物。
3. 具备极性芳香化合物中的芳香环带有电负性较大的原子团,如氧、氮等,因此具备一定的极性。
然而,芳香化合物整体上常表现出较弱的极性,主要由于π电子在环上的扩散。
三、芳香化合物的性质1. 化学稳定性芳香化合物的共轭结构使其更加稳定。
对于具有芳香性的化合物,由于能量更低,其化学稳定性也相对较高。
这也是为什么芳香化合物常用作药物、染料和香料等方面的原料。
2. 同位素标记由于芳香化合物的稳定性,可以通过同位素标记来追踪其在化学反应中的转化过程。
同位素标记技术在有机化学的研究和应用中扮演着重要的角色,有助于揭示化学反应的机理和动力学。
3. 气味和香味芳香化合物常常具有独特的气味和香味,广泛应用于香水、香料和食品添加剂等方面。
因为芳香化合物形成的芳香环结构能够与嗅觉受体结合,产生特殊的感官效应。
4. 光谱特性芳香化合物在红外光谱、紫外光谱和核磁共振光谱等光谱中表现出特殊的峰值和吸收特性,这对于准确鉴定和表征芳香化合物具有重要意义。
有机化学基础知识点整理芳香性的定义与判断
有机化学基础知识点整理芳香性的定义与判断芳香性的定义与判断有机化学是研究碳元素化合物的化学性质和反应机理的学科。
在有机化学中,芳香性是一个重要的概念,指的是具有芳香性质的化合物。
芳香性的定义与判断是有机化学基础知识点中的一部分。
本文将从芳香性的定义、芳香性的判断以及具有芳香性的常见化合物等方面进行整理。
一、芳香性的定义芳香性是指具有芳香环结构的化合物所具有的一种特殊性质。
芳香环是由6个碳原子构成的六元环结构,其中的每个碳原子通过σ键相连,同时具有3个π电子。
芳香性是由芳香环上的π电子形成的共轭体系所决定的。
具有芳香性的化合物通常表现出稳定性高、反应性低的特点。
二、芳香性的判断判断一个化合物是否具有芳香性,需要考虑以下几个方面:1. 符合芳香环结构:化合物中存在由6个碳原子构成的六元环结构,其中的每个碳原子通过σ键相连,同时具有3个π电子。
这个结构通常被称为芳香环或芳香骨架。
2. 共轭体系存在:对于具有芳香性的化合物,芳香环上的π电子会形成一个共轭体系,即π电子在整个芳香环内进行共享。
这种共轭体系的存在是芳香性的重要特征。
3. Huckel规则的满足:Huckel规则是判断一个分子体系是否具有芳香性的经验规则。
根据Huckel规则,化合物中的π电子数必须满足4n+2的形式,其中n为任意正整数。
根据以上条件进行判断,如果化合物符合芳香性的定义,即具有芳香环结构、共轭体系存在以及满足Huckel规则,则可以判定该化合物具有芳香性质。
三、具有芳香性的常见化合物1. 苯:苯是最简单的芳香化合物,化学式为C6H6。
苯的芳香环结构由6个碳原子组成,每个碳原子上还连接有一个氢原子。
苯是一种无色液体,具有特殊的香味。
2. 甲苯:甲苯是另一种常见的芳香化合物,化学式为C7H8。
甲苯的芳香环结构由一个苯环和一个甲基基团组成。
甲苯是一种无色液体,具有特殊的香气。
3. 香兰素:香兰素是一种常见的天然芳香化合物,化学式为C8H6O3。
芳香性判定
(个人感悟详细版)芳香性:环状闭合共轭体系,π电子高度离域,具有离域能,体系能量低,较稳定.在化学性质上表现为易进行亲电取代反应,不易进行加成反应和氧化反应,这种物理,化学性质称为芳香性. 一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为10 和14,符合Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有10 个,相当于[10]轮烯,符合Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.(成环的四个碳原子和一个杂原子都是sp2杂化,所以你看的图中 N还要再连接一个H. N总共5个电子,连接了三个达到八电子饱和故其还有一对电子对未画出,所以是两个双键4个再加N的一对孤电子对2个总共六个)吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.(貌似是一个原子提供一个π电子既然已经双键提供过一次就只算一次跟三键有点类似)两个N都与双键相连,孤对电子也都不算,还是6个π电子(跟刚才上面解释差不多相当于3个双键)有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子(上面三个题的组合即没有双键的N提供电子对有双键的按提供一个所以是两个双键加一个电子对的2个π电子共六个)这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.(遇到这种没双键的但是有正负电子的我一般是先数双键然后数几个折角即连接处然后是正的话减去减去正的个数是负的话加上负的个数理论依据是正电荷的话使其sp杂化而负电荷的话使其sp2杂化)这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.(理由同上)图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.(遇到这种先拆开难理解的双键然后再分成若干小原子团)因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,(貌似是无机的知识三键算一个双键)。
芳香性判断
(3)轮烯内部通过单键相连,且单键碳与轮烯共用,单键忽略后,下列物质萘、蒽、菲均有芳香性:
(4)轮烯外部通过单键相连,且单键碳与轮烯共用,单键忽略后,分别计算单键所连的轮烯的芳香性,下列物质均有芳香性:
二、 芳香性具备的一些特点:
1. 较高的C/H比
芳香性化合物多数都有较高的C/H比,而脂肪族化合物绝大多 数的C/H比都较低。
2. 键长趋于平均化
如:X-衍射测定苯的6个C—C键长相等,均为0.139nm,没有单键(0.154nm)和双键(0.134nm)之分。
3. 分子共平面性
组成芳香环的原子都在一个平面或接近一个平面。
(2)环丙烯正离子,环丙烯体系有一个成键轨道和一对反键轨道,环丙烯正离子的2个电子占据成键轨道,其碳-碳键长都是0.140nm,π电子及正电荷离域于三元环共轭体系中。
(3)环丁二烯双正离子, 按照Hückel规则,环丁二烯双正离子应具有芳香性。如下列化合物:
和 R=CH3或C6H5
已被合成。二茂铁[Fe(C5H5)2]是芳香性的环戊二烯负离子的另一特例。二茂铁是π络合物类的金属有机化合物,由两个环戊二烯负离子与亚铁离子构成一种夹心结构,桔红色,熔点173℃。可以用环戊二烯钠与氯化亚铁在四氢呋喃中反应或用环戊二烯在二乙胺存在下直接与亚铁盐反应制备。
对于一些稠环烃也可将之看成轮烯,画经典结构式时,应使尽量多的双键处在轮烯上,处在轮烯内外的双键写成其共振的正负电荷形式,将出现在轮烯内外的单键忽略后,再用Hückel-Platt规则判断。
(1)双键碳处在不与轮烯共用的内部,计算电子时,只计算轮烯上的电子,内部的不记。下面的化合物A和D周边分别有双键6个和5个,如此时判断他们的芳香性就会造成错误。而它们的B和E式分别有双键7个和6个,将内部的双键写成其共振的正负电荷形式C和F后,将出现在轮烯内外的单键忽略后,用Hückel-Platt规则判断得A为芳香性物质,而D不是芳香性物质。
烷烃烯烃环烷烃芳香烃的鉴别
烷烃烯烃环烷烃芳香烃的鉴别1.引言1.1 概述烷烃、烯烃、环烷烃和芳香烃是有机化合物中常见的四类化合物。
它们在化学性质、物理性质和化学反应等方面有着很大的差异,因此,对它们进行准确的鉴别至关重要。
烷烃是一类由碳和氢组成的直链或支链链状化合物。
它们具有饱和的碳-碳单键,因此相对稳定。
在室温下,大多数烷烃是无色、无味、无毒的液体或气体,不溶于水,但溶于有机溶剂。
烷烃的物理性质主要取决于它们的分子量和分子结构。
烯烃是一类含有一个或多个碳-碳双键的化合物。
由于双键的存在,烯烃具有一定的不饱和性,对于化学反应来说更加活泼。
烯烃的物理性质与烷烃类似,但由于不饱和性的存在,烯烃容易发生加成反应。
环烷烃是一类由碳组成的环状化合物。
环烷烃分子内的碳原子通过碳-碳单键相连接,这种结构使得环烷烃更加稳定。
环烷烃的物理性质通常与烷烃相似,但由于环结构的存在,环烷烃在一些化学反应中表现出特殊性质。
芳香烃是一类含有苯环结构的化合物。
苯环由六个碳原子构成,每个碳原子通过一个碳-碳单键和一个碳-氢单键相互连接。
芳香烃通常具有特殊的香气,因此得名。
芳香烃的物理性质与烷烃有所不同,化学反应也更具特异性。
本篇文章旨在介绍烷烃、烯烃、环烷烃和芳香烃的主要特征和鉴别方法,以帮助读者准确判断和区分这些有机化合物。
通过了解它们的物理性质和化学反应,我们可以更好地理解它们在实验室和工业中的应用,为相关领域的研究和应用提供指导。
1.2文章结构文章结构部分的内容可以描述文章的整体框架和各个部分的内容安排,以及每个部分的主题和目标。
文章结构部分的内容示例:1.2 文章结构本文共分为三个主要部分,具体结构如下:第一部分为引言部分,旨在介绍本文的背景和主题,并说明文章的目的和意义。
第一小节对烷烃、烯烃、环烷烃和芳香烃进行简要概述,以帮助读者对这些化合物有一个整体的了解。
第二小节是文章的主要部分,介绍了烷烃、烯烃、环烷烃和芳香烃的鉴别方法。
第三小节是结论部分,对文章的主要内容进行总结和归纳,并就烷烃、烯烃、环烷烃和芳香烃的鉴别提出一些结论和建议。
芳香性判断
芳香性:环状闭合共轭体系,π电子高度离域,具有离域能,体系能量低,较稳定.在化学性质上表现为易进行亲电取代反应,不易进行加成反应和氧化反应,这种物理,化学性质称为芳香性. 一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把 n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π电子数是否符合 4n+2.[18]轮烯环上碳原子基本上在一个平面内,π电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π电子数分别位 2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π电子数分别为 10 和 14,符合 Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用 Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π电子,也可用 Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π电子有 10 个,相当于[10]轮烯,符合 Hückel 规则(n=2),也具有芳香性.三.π电子数的计算也许你在做题目的时候对于π电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性. 两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,http://206.108.48.51/forumdisplay.php?fid=63。
芳香性判断——精选推荐
芳香性判断13144233周楠乳品2班摘要 :探讨了几类环状化合物“芳香性”的判断方法 ,阐述了解决这类问题的基本思路.关键词:环状化合物 ;芳香性 ;判断方法。
正文:关于“芳香性”的早期定义是考虑动力学稳定性 ,即化合物的取代反应比加成反应更容易发生. 后来定义则依靠化学的稳定性 ,以共振能的大小来量度. 最近的定义提供用光谱及核磁的标准 ,磁有向性在平面π电子体系中能受感应 ,并可用质子磁共振 (Pmr)光谱中位移到较低的场来检定或借反磁性的灵敏度上升的测定 ,π电子流也产生电子光谱 ,和简单的共轭烯类所显示的光谱有重大的不同.关于“芳香性”的另一种物理标准 ,为整个芳香体系具有相同键长和共平面的特性 ,这种分析需要 X光结晶学、微波光谱或电子衍射技术。
一.关于芳香性概念芳香性是化学中使用频率最高且最重要的概念之一。
“芳香性”研究真正始于1825年,因为当年Michael Faraday 成功分离出具有特殊芳香气味的苯。
此后人们把具有类似气味的化合物统称为芳香化合物。
最初芳香性内涵特指像苯及其衍生物之类的有机分子的化学反应性质的总称,认为芳香分子,如苯、萘、蒽,是平面环状的、共轭的、含有4n+2个π电子,并且具有容易进行亲电取代反应,但不易发生加成、氧化等特殊的化学性质。
然而环丁二烯和环辛四烯化学性质活泼,分别具有4、8个π电子,则具有反芳香性。
容易看出,早期芳香性定义实际上是一个特别强调化学反应性能的“化学定义”。
随着研究的深入,当前芳香化合物已经先后扩展到杂原子分子、有机金属、全金属化合物。
在范畴上,已经成功地实现了从有机物到无机物、由非金属化合物到全金属化合物的过渡;在几何结构上,也从最初的二维平面分子延展到准平面分子,甚至三维封闭式笼状分子;类型上,由早期单纯的π型芳香性扩展到σ芳香性甚至δ芳香性。
二.常见芳香性判据及讨论芳香性的判据和定义是密切相关的。
所谓判据就是判断是否具有芳香性的依据或标准。
多环化合物的芳香性
多环化合物的芳香性摘要介绍了简单判断多环化合物的芳香性、非芳香性、反芳香性、同芳香性及反同芳香性的方法及其在有机化学中的应用。
关键词多环化合物芳香性反芳香性同芳香性1芳香性、非芳香性、反芳香性、同芳香性及反同芳香性的判断芳烃一般具有苯环结构,它们是环状闭合共轭体系,π电子高度离域,体系能量低,较稳定。
在化学性质上表现为易进行亲电取代反应,不易进行加成和氧化反应,即具有不同程度的芳香性。
是不是具有芳香性的化合物一定具有苯环?1931年德国化学家休克尔(Hückel)从分子轨道理论的角度,对环状多烯烃(亦称轮烯)的芳香性提出了如下规则,即Hückel规则。
其要点是:化合物是轮烯,共平面,它的π电子数为4n+2(n为0,1,2,3…,n整数),共面的原子均为sp2或sp杂化。
1954年伯朗特(Platt)提出了周边修正法,认为可以忽略中间的桥键而直接计算外围的电子数,对Hückel规则进行了完善和补充。
(1)芳香性(轮烯,共平面,π电子数为4n+2,共面的原子均为sp2或sp 杂化),一些稠环烃也可将之看成轮烯。
画经典结构式时,应使尽量多的双键处在轮烯上,处在轮烯内外的双键写成其共振的正负电荷形式,将出现在轮烯内外的单键忽略后,再用Hückel-Platt规则判断。
下面的化合物A和D周边分别有双键6个和5个,此时直接判断他们的芳香性就会造成错误。
所以首先应将他们改写成尽量多的双键处在轮烯上的B和E 式,B和E分别有双键7个和6个,将内部的双键写成其共振的正负电荷形式C 和F后,将出现在轮烯内外的单键忽略,用Hückel-Platt规则判断得A,G为芳香性物质,D不是芳香性物质。
①双键与轮烯直接相连,计算电子数时,将双键写成其共振的电荷结构,负电荷按2个电子计,正电荷按0计,内部不计。
如下面物质均有芳香性。
②轮烯内部通过单键相连,且单键碳与轮烯共用,单键忽略后,下列物质萘、蒽、菲均有芳香性。
芳香性判断技巧
芳香性判断技巧The final revision was on November 23, 2020一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn?)又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合 4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位 2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为 10 和 14,符合 Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用 Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用 Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合 Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,。
芳香性判断
(3)轮烯内部通过单键相连,且单键碳与轮烯共用,单键忽略后,下列物质萘、蒽、菲均有芳香性:
(4)轮烯外部通过单键相连,且单键碳与轮烯共用,单键忽略后,分别计算单键所连的轮烯的芳香性,下列物质均有芳香性:
三、 芳香性的判断:
1.环多烯烃:(通式CnHn )又称作轮烯(也有人把 n≥10 的环多烯烃称为轮烯).环丁烯①苯,环辛四烯②和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯,[10]轮烯③,[12]轮烯④,[14]轮烯⑤和[18]轮烯⑥.它们是否具有芳香性,可按Hückel规则⑦判断,首先看环上的碳原子是否均处于一个平面内,其次看 π 电子数⑧是否符合 4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.
4. 化学活性
不饱和化合物的特征之一就是易发生加成反应,但芳香性化合物不易发生加成反应,而倾向于发生取代反应,尤其是亲电取代反应。
5. 共轭能
氢化热和燃烧热的测定表明芳香化合化合物稳定性和体系的共轭能(或称为离域能)密切相关。如,苯的氢化热是 -208.5kJ/mol, 环已烯的氢化热是 -119.7kJ/mol。假定环已三烯为苯的定域化模型,比较1mol苯和3mol环已烯的氢化热,计算得苯的共轭能约为150.7kJ/mol(3×119.7-208.5)。
(6)环辛四烯双负离子, 环辛四烯与金属钠作用形成环辛四烯双负离子,有10个π电子,符合Hückel规则,有芳香性。
试论环状化合物_芳香性_的判断方法
第25卷 第4期高师理科学刊Vol .25 No .42005年 11月Journal of Science of Teachers ′College and University Nov . 2005 收稿日期:2005-06-12 作者简介:夏新泉(1965-),男,湖北浠水人,高级讲师. 文章编号:1007-9831(2005)04-0041-03试论环状化合物“芳香性”的判断方法夏新泉(湖北师范学院化学与环境工程系,湖北黄石435002)摘要:探讨了几类环状化合物“芳香性”的判断方法,阐述了解决这类问题的基本思路.关键词:环状化合物;芳香性;判断方法中图分类号:O625 文献标识码:A 学习有机化学,我们经常会碰到“芳香性”这一概念,如何确定一个化合物是否有“芳香性”呢?关于“芳香性”的早期定义是考虑动力学稳定性,即化合物的取代反应比加成反应更容易发生.后来定义则依靠化学的稳定性,以共振能的大小来量度.最近的定义提供用光谱及核磁的标准,磁有向性在平面π电子体系中能受感应,并可用质子磁共振(P m r )光谱中位移到较低的场来检定或借反磁性的灵敏度上升的测定,π电子流也产生电子光谱,和简单的共轭烯类所显示的光谱有重大的不同.关于“芳香性”的另一种物理标准,为整个芳香体系具有相同键长和共平面的特性,这种分析需要X 光结晶学、微波光谱或电子衍射技术[1].1 “芳香性”及休克耳规则分子轨道计算提出了关于“芳香性”的另一标准,轨道的占据比非定域能的大小具有更为基础的意义.关于芳香化合物的π能量的能级图解显示成键轨道完全充满,非键轨道或全空或完全充满,形成了一个“封闭壳”或“充满壳”体系(因为在平面单环体系中,只有1个能量最低轨道,而有1对或几对能量较高的轨道).由s p 2杂化原子组成的平面单环体系的分子轨道通常是有一个能量最低的成键轨道,然后是能量较高的2个能量相等的轨道(即简并轨道),一直到能量最高的轨道.如:环丁二烯、苯的π能量的能级图解如下[2]. 图1 环丁二烯π能量的能级图解 图2 苯的π能量的能级图解 所以,若要充满一定能级的轨道,在这种π体系中就要有2,2+4,2+4+4,2+4+4+4.即2,6,10,14,…个电子.Huckel 认为,分子若要显示芳香性,则在π体系中其电子数必须符合4n +2这个数字,这里的n 是整数,可以是0,1,2,3,…,换言之,凡是含有4n +2个π电子的平面单环化合物应具有芳香性.这就是Huckel 规则.2 π电子的计算利用“4n +2”规则判断单环共平面化合物的“芳香性”简洁明了,现在的问题是如何计算共平面环状 化合物的π电子数,这方面内容在一般教材中是一笔带过,或直接给出结果,如何推导?学生无从知晓,面对课后的习题也感到无从下手.所以,笔者认为教师在讲述这部分内容时,既要简要讲明Hukcel 规则的由来,更重要的是教会学生如何求算环状化合物的π电子数.2.1 碳原子组成的平面单环化合物π电子的计算及芳香性判断平面碳环化合物中,碳原子一般以s p 2杂化形式出现,其轨道表示式为: 2p ↑ s p 2 ↑↑↑其中3个s p 2轨道依次与2个碳原子和1个氢原子形成如下三角形平面结构:C 3原子以3个s p 2电子分别与2个碳原子1个氢原子,形成3个共价键,余下1个电子居2p轨道,2p 轨道与左边三角形平面垂直,所以每一个以s p 2杂化的碳原子必有一个垂直该杂化碳原子所在的三角形平面的p 轨道,p 轨道中占据1个电子,而形成环π键的正是由多个垂直环平面的p 轨道侧面重叠而形成,即形成π键的电子数等于s p 2杂化的碳原子数.如:C 4H 4环丁二烯有4个s p 2杂化碳原子,所以π电子数为“4”,C 6H 6苯有6个s p 2杂化碳原子,π电子数为“6”.若环状化合物带电荷时,则π电子数等于环中s p 2杂化碳原子数减去环所带正电荷数或加上环所带数负电荷数.如:环丙烯基正碳离子,π电子数=3(3个s p 2杂化碳原子)-1(带1个正电荷)=2.环戊二烯负离子:π电子数=5+1=6.如碳环环外含有较强吸电子基团时,例:2,4,6———环庚三烯酮,由于C =O 键的吸电子作用,C =O 中碳的电子云偏向氧,呈正电性,即该碳原子2p 轨道上的电子数为零,则构成碳环大π键的电子个数为3个双键π电子数之和,等于6,说明以上碳环化合物有芳香性.2.2 稠环碳环化合物π电子数的计算及芳香性判断[3]若把Hukcel 规则用于稠环化合物,则主要考虑稠环化合物外围(及周边)的π电子数.如果电子数符合4n +2数目,该化合物就有芳香性.萘、薁、蒽、菲都是平面型分子,其外围π电子数分别是10,10,14和14,在芘这种平面型分子中,虽然有16个π电子,但外围只有14个π电子,因而芘也有芳香性.2.3 环化合物π电子数计算及“芳香性”的判断常见的单杂环有呋喃、噻吩、吡咯、吡啶等.其结构如下:若要化合物中几个原子共平面,则每个成环原子均须采用s p 2杂化,其中每个杂化碳原子可提供1个p 电子形成大π键,故呋喃中4个碳原子均给出1个π电子,氧原子s p 2杂化轨道表示式为: 2p ↑↓ s p 2 ↑↓↑↑ 或许有人要问,为什么氧原子的s p 2杂化轨道只有1个轨道充满?原因在于氧原子还需与另外2个碳原子分别形成C -O 单键,所以氧原子s p 2杂化轨道须有2个s p 2孤电子与相临2个碳原子形成C -O 键.那么与环平面垂直的2p 轨道上就有2个p 电子,氧原子可给出2个π电子,故呋喃的π电子由4个碳原子提供4个p 电子和氧原子提供的2个p 电子构成,一共有6个π电子,符合Huckel 规则,有芳香性.噻吩与呋喃结构类似,故一样有芳香性.吡咯分子中,4个碳原子如前例,可推得它们共提供4个电子,氮原子因与2个碳原子和一个氢原子成单键,即2C -N ,1N -H 键,24高师理科学刊第25卷 因此氮原子的s p 2杂化轨道表示式应写为: 2p ↑↓ s p2 ↑↑↑则吡咯分子中氮原子给出2个π电子,那么吡咯环的π电子数为4个碳原子给出的4个p 电子和氮原子提供的2个p 电子构成,共计6个π电子,符合4n +2规则,有芳香性.实验证明,吡咯无碱性却有一定弱酸性,这也从一个方面说明氮原子2p 轨道上的2个电子(即孤电子对)参与了大π键.而吡啶环中5个碳原子共提供5个π电子,氮原子因只与2个碳原子成键,所以氮原子须与2个碳原子形成2个σ键,氮原子的s p 2杂化轨道表示式可写为: 2p ↑ s p2 ↑↓↑↑ 即氮原子只提供1个2p 电子参与形成π键,其π电子数为5个碳原子给出的5个π电子和氮原子给出的1个π电子组成,符合4n +2规则,有芳香性.吡啶的化学性质表明它有弱碱性,这说明吡啶分子中氮原子的孤电子对未参与形成大π键,与理论推导的结果相吻合.同理,稠杂环化合物π电子的计算也可参照以上方法依次类推.总之,有杂原子参与构环时,判断它提供几个π电子,可先看该杂原子与几个相临原子键合,从而确定杂原子的s p 2杂化轨道表示式,从中可求出余下的p 电子数,即为该原子提供的π电子数.综上所述,化合物的“芳香性”判断,首先要从解剖该化合物的结构入手,对每一个构环原子的成键方式要仔细分析,抓住有芳香性的化合物其结构一定是平面的特点,既然是平面结构,那么构环原子一定采用s p 2杂化,再由该原子与相临原子的结合方式,即可写出该原子杂化状态下的价电子轨道表示式,从没有参与杂化的p 轨道电子数就可以求出该原子给出的π电子数,将成环原子给出的π电子数加在一起,若总数符合Huckel 规则,则所分析对象有芳香性.参考文献:[1]杜诗初,斯久敏,李长轩.高等有机化学选论[M ].郑州:河南大学出版社,1990.[2]邢其毅,徐瑞秋,周正.基础有机化学(上)[M ].北京:高等教育出版社,1980.[3]钱旭红.有机化学[M ].北京:化学工业出版社,2000.[4]胡宏纹.有机化学[M ].北京:高等教育出版社,1991.[5]徐积功.有机化学基础[M ].北京:高等教育出版社,1988.[6]恽宏魁.有机化学[M ].北京:高等教育出版社,1990.On the exp l orati on of esti m ating ar omaticity in cyclic compoundX I A Xin -quan(School of Che m istry and Envir onment Engineering,Hubei Nor mal College,Huangshi 435002,China )Abstract:The methods about identifing ar o maticity of s o me kinds of cyclic compounds was exp l orated,and have found out the way of res olving this p r oblem.Keywords:cyclic compound;ar omaticity;judge method34 第4期夏新泉:试论环状化合物“芳香性”的判断方法。
芳香性判断技巧
一,芳香性判据——Hu ckel规则H u ckel规则:一个单环化合物只要具有平面离域体系,它的n电子数为4n+2(n=0,1,3, ••整数),就有芳香性(当n>7时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了•非苯芳烃:凡符合Huckel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等•二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n》10的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Huckei规则判断,首先看环上的碳原子是否均处于一个平面内,其次看n 电子数是否符合4n+2.[18]轮烯环上碳原子基本上在一个平面内,n电子数为4n+2(n=4),因此具有芳香性.又如[10]轮烯,n电子数符合4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性•如环戊二烯无芳香性,但形成负离子后,不仅组成环的5个碳原子在同一个平面上,且有6个n电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性•因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有10个n电子(n二2),故有芳香性环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(I),环丁二烯两价正离子(n)和两价负离子(川),环庚三烯正离子(W ).因为它们都具有平面结构,且n电子数分别位2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蔥,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且n电子数分别为10和14,符合Huckel规则,具有芳香性. 虽然萘,蔥,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用Huckel规则来判断其芳香性.与萘,蔥,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围n 电子,也可用Huckel规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围n电子有10个,相当于[10]轮烯,符合Huckel规则(n=2),也具有芳香性.三• n电子数的计算也许你在做题目的时候对于n电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢•我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个n电子, 有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个n电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个n电子这种结构的也具有芳香性, 看起来这个七元环没有达到共轭结构, 我的也是经验两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算n电子数,也是 6 个. 注意: 若隔的是碳负离子就不能这样了, 一定要是碳正离子才可以这样算.这个和上面那个有点相似, 但隔的是碳负离子, 一个碳负离子算2个电子, 图中有2个碳负离子,还有3个双键,有10个n电子.图中左边, 一双键连接两个环, 可以写出它的共振体, 当然尽量往有芳香性的写, 而且芳香性的环稳定,贡献大.这样下面的五元环有6 n电子,上面的三元环有2n 电子. 都有芳香性.因为三键中两n键互相垂直,孤只有一个能与其他双键共轭,。
芳香性的判断
芳香性的判断芳香性是指化合物分子结构中的一种特殊性质,它使分子带有一种特殊的气味。
芳香烃化合物是一类具有芳香性的有机化合物,它们的分子结构中至少含有一个或多个苯环或取代苯环,这使它们具有强烈的芳香性。
芳香性可以通过一系列实验方法进行判断与测试。
一般来说,芳香性的判断有以下几种方法:一、气味判断法比较直观的方法,即通过嗅觉感受样品产生的气味,若有强烈或特殊的气味,则可以认为该样品具有芳香性。
这种方法对于浓度较高、气味较强的样品比较适用,但也存在一定的主观因素。
因此,对于对气味较为敏感的人群,应该采用其他方法。
二、物理化学性质法芳香性与分子的物理化学性质有关,可以通过它们的熔点、沸点、密度等物理量的大小,来初步判断分子是否具有芳香性。
一般来说,芳香烃的熔点与沸点较高,密度较大,分子中含有许多π电子共轭结构,因此具有较强的解离极性,易被溶剂包络。
这种方法虽然具有一定的准确性,但对于含有多种不同基团的化合物,判断会更加困难。
三、光谱分析法光谱分析技术是一种非常有效的分析方法,其中红外光谱和紫外光谱常用于检测芳香性。
在红外光谱中,如果存在苯环的C-H伸缩振动谱线的位置,可以判断分子是否含有芳香性,同样的,在紫外光谱中,芳香烃的吸收带也比较容易区分。
四、化学反应法芳香性化合物与其他化合物之间会发生特定的化学反应,根据这些反应也可以判断芳香性。
例如,苯环经过氧化将会形成苯酚,氧化还原也会产生具有特殊芳香性的二苯乙烷等。
此方法对化学成分学习较好的人或化学专业的人较为适用。
综上所述,判断芳香性的方法有很多种,每一种方法都有其局限性和优势,因此,需要在实际应用过程中根据具体情况选择合适的方法。
杂环化合物芳香性的判断
杂环化合物芳香性的判断
芳香性是指有机物受热时会发生特殊的分子间相互作用,从而产生具有Yeah香味的一类特性。
芳香族环化合物拥有较强的芳香性,具有把化学反应物从原子级发展成分子结构的特性。
首先,在确定芳香性的过程中,需要将化合物的化学式表示出来,找出环化结构中各元素的官能团,并根据环的大小和结构特性来判断其是否具有芳香性。
此外,还可以根据分子的点群对环化合物的芳香性进行分析,如果环分子具有对称性,而且点群对称计算结果非常接近,则可以判断该环分子具有芳香性。
另外,环分子的键长也可以通过FT-IR等波谱分析仪来测定,如果分子的键长很短,则可以判断其具有芳香性。
最后,还可以利用一种叫做Hartrees-Fock(赫而斯-福克)的理论来表征芳香性。
该理论主要是根据环化分子的结构特征及其量子性质来对环分子进行描述,通过改变环分子的几何结构模型,可以分析其芳香性。
因此,通过以上几种分析方法,可以对环化合物的芳香性有更细致的判断和了解。
它们可以帮助我们芳香族环化合物更好地了解,并更加方便地研究它们的化学特性和分子属性。
芳香性判断技巧
一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环xx,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环xx的碳原子是否均处于一个平面内,其次看π 电子数是否符合 4n+2.[18]轮烯环xx碳原子基本xx在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环xx碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面xx,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环xx两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π电子数分别位 2,2,6,6,符合 4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面xx,且π 电子数分别为 10 和14,符合Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环xx,可看成是单环共轭多烯,故可用Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子xx的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键xx的4个电子,共有6电子,有芳香性.吡啶xxN原子xx连有双键,Nxx孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以xx的思路,与双键相连的Nxx的孤对电子不算进去,而右边的N原子xx的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键xx间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和xx面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图xx有2个碳负离子,还有3个双键,有10个π电子.图xx左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,xx面的三元环有2π电子.都有芳香性.因为三键xx两π键互相垂直,孤只有一个能与其他双键共轭,。
复杂多环化合物芳香性的简单判定方法_袁履冰
第4期
大学化学
2004 年 8 月
师生笔谈
复杂多环化合物芳香性的简单判定方法
袁履冰 郝明
大连 116012) ( 大连理工大学化工学院
摘要
阐述有机化学中芳香性判断问题 , 用 简单方法说明判断复杂多环化合物的芳香性。
自上世纪 30 年代以来, 芳香性问题一直是理论有机化学领域研究的热点和难点, 至今尚 缺乏一个覆盖面广的芳香性判据。本文从 H ckel 提出的 4 n + 2 规则出发, 具体阐述对于复杂 多环化合物用 H ckel 理论修正的一些简单判定方法。 1 芳香性的历史发展 一般地, 芳香性化合物具有几个重要特征 : 碳碳键平均化, 键长小于碳碳单键, 但大于碳碳 双键 ; 具有平面或者接近平面的环状结构, 并且具有全封闭的离域电子层; 性质比较稳定 , 不易 发生氧化或还原反应 ; 具有较高的共振能等等。但是就某一个特征来说都可以找到例外 , 所以 说芳香性的判定并没有一个完备的定义来概括[ 1] 。 1931 年, H ckel 提出了著名的 4 n + 2 规则, 这个理论一直沿用至今 , 现在仍然是判定芳香 性的主要依据。但是 , H ckel 理论只适用于 n 物并不适用, 例如( 修正方法。
因此, 可以得出结论 , 当稠环的中间双键不对体系的离域共轭
电子系有影响时, 即其只
为保持整个化合物的平面结构时, 这样的双键才可以被忽略 , 这时才可以正确地应用周边修正 法。 2. 2 双键修正法 这是 H ckel 理论的另一修正方法, 这种修正法就是忽略某些双键在芳环体系中的影响 , 即可以忽略其中间的双键 , 直接考虑其芳香性问题。 这种方法的实际应用并不如周边修正法的应用那样广泛 , 但是同样可以应用其解决复杂 稠环芳烃的芳香性判定问题。 例如化合物 ( ) , 既无法应用周边修正法来说明其是否具有芳香性, 其 电子数目也不符 合 4 n + 2 规则, 但此化合物却具有芳香性。用什么方法能作为其芳香性的判据呢? 这里可以 使用双键修正法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25卷 第4期
高师理科学刊Vol .25 No .42005年 11月Journal of Science of Teachers ′College and University Nov . 2005
收稿日期:2005-06-12
作者简介:夏新泉(1965-),男,湖北浠水人,高级讲师.
文章编号:1007-9831(2005)04-0041-03
试论环状化合物“芳香性”的判断方法
夏新泉
(湖北师范学院化学与环境工程系,湖北黄石435002)
摘要:探讨了几类环状化合物“芳香性”的判断方法,阐述了解决这类问题的基本思路.
关键词:环状化合物;芳香性;判断方法
中图分类号:O625 文献标识码:A
学习有机化学,我们经常会碰到“芳香性”这一概念,如何确定一个化合物是否有“芳香性”呢?
关于“芳香性”的早期定义是考虑动力学稳定性,即化合物的取代反应比加成反应更容易发生.后来定义则依靠化学的稳定性,以共振能的大小来量度.最近的定义提供用光谱及核磁的标准,磁有向性在平面π电子体系中能受感应,并可用质子磁共振(P m r )光谱中位移到较低的场来检定或借反磁性的灵敏度上升的测定,π电子流也产生电子光谱,和简单的共轭烯类所显示的光谱有重大的不同.关于“芳香性”的另一种物理标准,为整个芳香体系具有相同键长和共平面的特性,这种分析需要X 光结晶学、微波光谱或
电子衍射技术[1].
1 “芳香性”及休克耳规则
分子轨道计算提出了关于“芳香性”的另一标准,轨道的占据比非定域能的大小具有更为基础的意义.关于芳香化合物的π能量的能级图解显示成键轨道完全充满,非键轨道或全空或完全充满,形成了一个“封闭壳”或“充满壳”体系(因为在平面单环体系中,只有1个能量最低轨道,而有1对或几对能量较高的轨道).
由s p 2
杂化原子组成的平面单环体系的分子轨道通常是有一个能量最低的成键轨道,然后是能量较高的2个能量相等的轨道(即简并轨道),一直到能量最高的轨道.
如:环丁二烯、苯的π能量的能级图解如下[2]
. 图1 环丁二烯π能量的能级图解 图2 苯的π能量的能级图解
所以,若要充满一定能级的轨道,在这种π体系中就要有2,2+4,2+4+4,2+4+4+4.即2,6,10,14,…个电子.Huckel 认为,分子若要显示芳香性,则在π体系中其电子数必须符合4n +2这个数字,这里的n 是整数,可以是0,1,2,3,…,换言之,凡是含有4n +2个π电子的平面单环化合物应具有芳香性.这就是Huckel 规则.
2
π电子的计算利用“4n +2”规则判断单环共平面化合物的“芳香性”简洁明了,现在的问题是如何计算共平面环状
化合物的π电子数,
这方面内容在一般教材中是一笔带过,或直接给出结果,如何推导?学生无从知晓,面对课后的习题也感到无从下手.所以,笔者认为教师在讲述这部分内容时,既要简要讲明Hukcel 规则的由来,更重要的是教会学生如何求算环状化合物的π电子数.
2.1 碳原子组成的平面单环化合物π电子的计算及芳香性判断
平面碳环化合物中,碳原子一般以s p 2
杂化形式出现,其轨道表示式为:
2p ↑ s p 2 ↑↑↑
其中3个s p 2轨道依次与2个碳原子和1个氢原子形成如下三角形平面结构:C 3
原
子以3个s p 2电子分别与2个碳原子1个氢原子,形成3个共价键,余下1个电子居2p
轨道,2p 轨道与左边三角形平面垂直,所以每一个以s p 2杂化的碳原子必有一个垂直该
杂化碳原子所在的三角形平面的p 轨道,p 轨道中占据1个电子,而形成环π键的正是由
多个垂直环平面的p 轨道侧面重叠而形成,即形成π键的电子数等于s p 2杂化的碳原子数.
如:C 4H 4环丁二烯有4个s p 2杂化碳原子,所以π电子数为“4”,C 6H 6苯有6个s p 2杂化碳原子,π电
子数为“6”.
若环状化合物带电荷时,则π电子数等于环中s p 2杂化碳原子数减去环所带正电荷数或加上环所带
数负电荷数.如:环丙烯基正碳离子,π电子数=3(3个s p 2杂化碳原子)-1(带1个正电荷)=2.环戊二
烯负离子:π电子数=5+
1=6.
如碳环环外含有较强吸电子基团时,例:2,4,6———环庚三烯酮,由于C =O 键的吸电
子作用,C =O 中碳的电子云偏向氧,呈正电性,即该碳原子2p 轨道上的电子数为零,则
构成碳环大π键的电子个数为3个双键π电子数之和,等于6,说明以上碳环化合物有芳
香性.
2.2 稠环碳环化合物π
电子数的计算及芳香性判断
[3]若把Hukcel 规则用于稠环化合物,则主要考虑稠环化合
物外围(及周边)的π电子数.如果电子数符合4n +2数目,
该化合物就有芳香性.萘、薁、蒽、菲都是平面型分子,其外围
π电子数分别是10,10,14和14,在芘这种平面型分子中,虽
然有16个π电子,但外围只有14个π电子,因而芘也有芳
香性.
2.3 环化合物π电子数计算及“芳香性”的判断
常见的单杂环有呋喃、噻吩、吡咯、吡啶等.其结构如下:
若要化合物中几个原子共平面,则每个成环原子均须采
用s p 2杂化,其中每个杂化碳原子可提供1个p 电子形成大π
键,故呋喃中4个碳原子均给出1个π电子,氧原子s p 2杂化
轨道表示式为:
2p
↑↓ s p 2 ↑↓↑↑
或许有人要问,为什么氧原子的s p 2
杂化轨道只有1个
轨道充满?原因在于氧原子还需与另外2个碳原子分别形成C -O 单键,所以氧原子s p 2杂化轨道须有2
个s p 2孤电子与相临2个碳原子形成C -O 键.那么与环平面垂直的2p 轨道上就有2个p 电子,氧原子可给出2个π电子,故呋喃的π电子由4个碳原子提供4个p 电子和氧原子提供的2个p 电子构成,一共有6个π电子,符合Huckel 规则,有芳香性.噻吩与呋喃结构类似,故一样有芳香性.吡咯分子中,4个碳原子如前例,可推得它们共提供4个电子,氮原子因与2个碳原子和一个氢原子成单键,即2C -N ,1N -H 键,
24高师理科学刊第25卷
因此氮原子的s p 2杂化轨道表示式应写为: 2p ↑↓ s p
2 ↑↑↑
则吡咯分子中氮原子给出2个π电子,那么吡咯环的π电子数为4个碳原子给出的4个p 电子和氮原子提供的2个p 电子构成,共计6个π电子,符合4n +2规则,有芳香性.实验证明,吡咯无碱性却有一定弱酸性,这也从一个方面说明氮原子2p 轨道上的2个电子(即孤电子对)参与了大π键.而吡啶环中5个碳原子共提供5个π电子,氮原子因只与2个碳原子成键,所以氮原子须与2个碳原子形成2个σ键,氮原
子的s p 2杂化轨道表示式可写为:
2p
↑ s p
2 ↑↓↑↑
即氮原子只提供1个2p 电子参与形成π键,其π电子数为5个碳原子给出的5个π电子和氮原子给出的1个π电子组成,符合4n +2规则,有芳香性.吡啶的化学性质表明它有弱碱性,这说明吡啶分子中氮原子的孤电子对未参与形成大π键,与理论推导的结果相吻合.
同理,稠杂环化合物π电子的计算也可参照以上方法依次类推.总之,有杂原子参与构环时,判断它
提供几个π电子,可先看该杂原子与几个相临原子键合,从而确定杂原子的s p 2杂化轨道表示式,从中可
求出余下的p 电子数,即为该原子提供的π电子数.
综上所述,化合物的“芳香性”判断,首先要从解剖该化合物的结构入手,对每一个构环原子的成键方式要仔细分析,抓住有芳香性的化合物其结构一定是平面的特点,既然是平面结构,那么构环原子一定采用s p 2
杂化,再由该原子与相临原子的结合方式,即可写出该原子杂化状态下的价电子轨道表示式,从没有参与杂化的p 轨道电子数就可以求出该原子给出的π电子数,将成环原子给出的π电子数加在一起,若总数符合Huckel 规则,则所分析对象有芳香性.
参考文献:
[1]杜诗初,斯久敏,李长轩.高等有机化学选论[M ].郑州:河南大学出版社,1990.
[2]邢其毅,徐瑞秋,周正.基础有机化学(上)[M ].北京:高等教育出版社,1980.
[3]钱旭红.有机化学[M ].北京:化学工业出版社,2000.
[4]胡宏纹.有机化学[M ].北京:高等教育出版社,1991.
[5]徐积功.有机化学基础[M ].北京:高等教育出版社,1988.
[6]恽宏魁.有机化学[M ].北京:高等教育出版社,1990.On the exp l orati on of esti m ating ar omaticity in cyclic compound
X I A Xin -quan
(School of Che m istry and Envir onment Engineering,Hubei Nor mal College,Huangshi 435002,China )
Abstract:The methods about identifing ar o maticity of s o me kinds of cyclic compounds was exp l orated,and have found out the way of res olving this p r oblem.
Keywords:cyclic compound;ar omaticity;judge method
34
第4期夏新泉:试论环状化合物“芳香性”的判断方法。