旋转测试题及答案

合集下载

旋转单元测试试题及答案

旋转单元测试试题及答案
答案:B.
第13题.如图,已知四边形 ,是关于点 成中心对称图形,试判定四边形 的形状.并说明理由.
答案:解:是平行四边形,理由如下:
四边形 是关于点 成中心对称图形.

四边形 是平行四边形.
第14题. 在等边三角形、平行四边形、矩形和圆这四个图形中,即是轴对称图形,又是中心对称图形的有( )
A.1个B.2个C.3个D.4个
A.矩形、菱形、正方形都是中心对称图形,对角线的交点是对称中心
B.中心对称的对称中心只有一个,而轴对称图形的对称轴可能不只一条
C.中心对称图形一定是轴对称图形
D.正方形有4条对称轴,一个对称中心
答案:C.
第20题.把图中的各三角形绕 边中点 ,旋转 ,画出得到的图形,并说明拼成了一个什么图形?分析它的对称性.
答案:B.
第32题. 下列文字中属于中心对称图形的有( )
A.干B.中C.我D.甲
答案:B.
第33题. 下图中是中心对称图形的是( )
A.A和BB.B和CC.C和DD.都是
答案:B.
第34题.如图 与 关于 点成中心对称.则 _______ , ______, ________.
答案:=, , .
第35题.已知四边形 和点 ,作四边形 使四边形 和四边形 交于点 成中心对称.
A.只能作一个B.能作三个C.能作无数个D.不存在
答案:A.
第24题. 已知 及边 上一点 ,画出 以点 为对称中心的对称图形.
答案:略.
第25题. 等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有( )
A.1个B.2个C.3个D.4个
答案:B.
第26题. 下列各图中,不是中心对称图形的是( )

旋转单元测试题及答案

旋转单元测试题及答案

旋转单元测试题及答案一、选择题1. 旋转的定义是什么?A. 绕某一点转动B. 沿直线平移C. 缩放D. 反射2. 旋转变换不改变图形的哪些性质?A. 形状B. 大小C. 面积D. 所有选项3. 旋转对称图形在旋转多少度后能与自身重合?A. 90度B. 180度C. 360度D. 任意角度二、填空题4. 一个图形绕着某一点旋转____度后,与原图形重合,这个点称为图形的______。

5. 在平面直角坐标系中,若将点P(x, y)绕原点O(0, 0)逆时针旋转θ度,旋转后的坐标为______。

三、简答题6. 请简述旋转的性质,并给出一个生活中的例子。

7. 解释什么是旋转对称图形,并给出一个例子。

四、计算题8. 在平面直角坐标系中,点A(3, 4)绕原点O(0, 0)顺时针旋转90度,求旋转后点A的新坐标。

9. 若一个图形在旋转对称变换下,其旋转中心为点P(1, 2),旋转角度为120度,请画出旋转后的图形。

五、论述题10. 论述旋转在几何证明中的应用,并给出一个具体的几何证明例子。

答案:一、1. A2. D3. C二、4. 180,旋转中心5. (-y, x)三、6. 旋转的性质包括保持图形的形状和大小不变,旋转中心到图形上任意两点的距离相等。

生活中的例子包括门的开关,地球的自转等。

7. 旋转对称图形是指在旋转一定角度后能与自身重合的图形,例如等边三角形。

四、8. 点A的新坐标为(4, -3)。

9. 根据旋转对称图形的定义,旋转后的图形与原图形形状相同,位置不同,具体图形需根据题目要求绘制。

五、10. 旋转在几何证明中常用于证明图形的全等或相似,例如利用旋转证明两个三角形全等。

具体例子需根据题目要求给出。

小学旋转测试题及答案

小学旋转测试题及答案

小学旋转测试题及答案一、选择题(每题2分,共10分)1. 一个正方形旋转90度后,它的形状会改变吗?A. 会B. 不会C. 不确定答案:B2. 一个圆在平面内旋转360度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B3. 一个等边三角形绕着它的一个顶点旋转120度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B4. 一个矩形绕着它的中心点旋转180度后,它的形状和位置会改变吗?A. 形状和位置都会改变B. 形状不会改变,位置会改变C. 形状和位置都不会改变答案:C5. 如果一个图形绕着一个点旋转了360度,那么这个图形的位置会回到原来的位置吗?A. 会B. 不会C. 不确定答案:A二、填空题(每题2分,共10分)1. 一个图形绕着一个点旋转____度后,会回到原来的位置。

答案:3602. 一个图形旋转后,它的形状____改变。

答案:不会3. 一个图形绕着它的中心点旋转,它的形状和位置____改变。

答案:不会4. 一个图形旋转180度后,它的位置____改变。

答案:会5. 一个图形绕着一个点旋转90度后,它的位置____改变。

答案:会三、判断题(每题2分,共10分)1. 一个正方形旋转180度后,它的形状和位置都会改变。

()答案:×2. 一个圆在平面内旋转任意角度后,它的形状都不会改变。

()答案:√3. 一个矩形绕着它的一个顶点旋转90度后,它的形状不会改变。

()答案:√4. 一个等边三角形绕着它的中心点旋转120度后,它的位置不会改变。

()答案:√5. 一个图形旋转360度后,它的位置一定会回到原来的位置。

()答案:√四、简答题(每题5分,共20分)1. 请简述旋转对称图形的特点。

答案:旋转对称图形是指一个图形绕着一个点旋转一定角度后,能够与自身重合的图形。

这样的图形在旋转过程中,其形状和大小不会发生改变,只是位置发生了变化。

2. 为什么一个圆在平面内旋转任意角度后,它的形状不会改变?答案:一个圆在平面内旋转任意角度后,它的形状不会改变,因为圆是所有点到圆心距离相等的点的集合,无论旋转多少角度,这些点到圆心的距离都保持不变,因此圆的形状不会发生改变。

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图 1,已知△ABC,AC=BC,△C=90△,顶点C 在直线 l 上。

(完整版)图形的旋转测试题(含答案)

(完整版)图形的旋转测试题(含答案)

MB' A'C A B 图5 图4 《图形的旋转》测试题一、选择题:1、在右边四个图形中,既是轴对称图形又是中心对称图形的是( )DA .①②③④B .①②③C .①③D .③2、如图1为旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为( )度. CA 、30 oB 、45 oC 、60 oD 、90 o图1 图2 图33、如图2,边有两个边长为4cm 的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( ).A(A)4cm2 (B)8cm2 (C)16cm2 (D)无法确定4、如图4, △DEF 是由△ABC 绕着某点旋转得到的, 则这点的坐标是( B )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)二、填空题5、点a 4(,)与3b (,)关于原点对称,则a b += .-76、如图3,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。

5507、如图5, △ABC 中, (ACB = 90(, (B = 30(, BC = 6, 三角板绕C 逆时针旋转, 当点A的对应点A' 落在AB 边上时即停止转动, 则BM 的长为 3 .8、如图6,△ABC 中, 已知∠C=90°, ∠B=50°, 点D 在边BC 上, BD=2CD. 把△ABC 绕着点D逆时针旋转m (0(<m<180()度后, 如果点B 恰好落在初始Rt △ABC 的边上, 那么m = _______. 80(或.O A B C D E F x y2 3图6 A C BD三、解答题9、作图题(1)如图7,画出△ABC 绕点O 顺时针旋转60°所得到的图形.图7 图8(2)如图8,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段OP ′,(1)在图中画出线段OP ′;(2)P ′的坐标为 ______. (-4,3)1、如图,在△ABC 中,∠B=900,∠C=300,AB=1,将△ABC 绕顶点 A 旋转1800,点C 落在C1处,则C C1的长为( )A .24B .4C .32D .522、如图,△ABC 中,∠ACB=1200,将它绕着点C 旋转300 后得到△DCE ,则∠ACE=∠A+∠E=3、如图,在Rt △ABC 中,∠ACB=90°,∠A=35°,以直角顶点C•为旋转中心,将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,求∠BDC 的度数.E DC BA B A C O ABC B C4,如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45°,•△DEC 按顺时针方向转动一个角度后成为△DGA .(1)图中哪一个点是旋转中心?(2)旋转了多少度?(3)指出图中的对应点,对应线段和对应角;(4)求∠GDF 的度数.5、已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 边上一点,CE=CF:(1)EBC FDC ∠∠与相等吗?(2)△DCF 能与△BCE 重合吗?(3)试判断BE 与DF 的位置关系并说明理由,6.如图所示,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm ,求四边形ABCD 的面积.7,如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L ,M ,D 在AK 的同旁,连结BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系. C FEDB A,8,.如图所示,等边△ABC中,D是AB边上的动点(不与A、B重合),以CD为一边,向上作等边△EDC。

中考数学总复习《旋转》专项测试题-附参考答案

中考数学总复习《旋转》专项测试题-附参考答案

中考数学总复习《旋转》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )A.菱形B.等边三角形C.平行四边形D.直角三角形2.如图,将△ABC绕顶点A顺时针旋转60∘后,得到△ABʹCʹ,且Cʹ为BC的中点,则CʹD:DBʹ=( )A.1:2B.1:2√2C.1:√3D.1:33.如图所示,将一个含30∘角的直角三角板ABC绕点A逆时针旋转,点B的对应点是点Bʹ,若点Bʹ,A,C在同一条直线上,则三角板ABC旋转的度数是( )A.60∘B.90∘C.120∘D.150∘4.如图,在Rt△ABC中∠ACB=90∘,∠ABC=30∘,将△ABC绕点C顺时针旋转至△AʹBʹC,使得点Aʹ恰好落在AB上,则旋转角度为( )A.30∘B.60∘C.90∘D.150∘5.如图,将Rt△ABC绕直角顶点C顺时针旋转90∘,得到△AʹBʹC,连接AAʹ,若∠1=25∘,则∠BAAʹ的度数是( )A.55∘B.60∘C.65∘D.70∘6.如图,O是正△ABC内一点OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60∘得到线段BOʹ,下列结论:①△BOʹA可以由△BOC绕点B逆时针旋转60∘得到;②点O与Oʹ的距离为4;③∠AOB=150∘;=6+3√3;④S四边形AOBOʹ√3.⑤S△AOC+S△AOB=6+94其中正确的结论是( )A.①②③B.①②③④C.①②③⑤D.①②③④⑤7.如图,边长为8a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60∘得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )a A.4a B.2a C.a D.138.如图,在Rt△ABC中AC=BC=2,将△ABC绕点A逆时针旋转60∘,连接BD,则图中阴影部分的面积是( )A.2√3−2B.2√3C.√3−1D.4√3二、填空题(共5题,共15分)9.如图所示,△ABC中∠BAC=33∘,将△ABC绕点A按顺时针方向旋转50∘,对应得到△ABʹCʹ,则∠BʹAC的度数为.10.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30∘后,得到正方形EFCG,EF交AD于点H.则DH=.11.如图,将边长为2的正方形ABCD绕点A按逆时针方向旋转,得到正方形ABʹCʹDʹ,连接BBʹ,BCʹ,在旋转角从0∘到180∘的整个旋转过程中,当BBʹ=BCʹ时,△BBʹCʹ的面积为.12.如图,在等腰△ABC中AB=AC,∠B=30∘.以点B为旋转中心,旋转30∘,点A,C分别落在点Aʹ,Cʹ处,直线AC,AʹCʹ交于点D,那么AD的值为.AC13.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180∘得到△AʹOBʹ,则点Bʹ的坐标是.三、解答题(共3题,共45分)14.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按照顺时针方向旋转m度后得到△DEC,点D刚好落在AB边上,求m的值.15.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′,并求BA边旋转到BA′位置时所扫过图形的面积;(2)请在网格中画出一个格点△A″B″C″,使△A″B″C″∽△ABC,且相似比不为1.16.如图是10×8的网格,网格中每个小正方形的边长均为1,A、B、C三点在小正方形的顶点上,请在图①、②中各画一个凸四边形,使其满足以下要求:(1)请在图①中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是中心对称图形,但不是轴对称图形;(2)请在图形②中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是轴对称图形,但不是中心对称图形.参考答案1. 【答案】A2. 【答案】D3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】C7. 【答案】B8. 【答案】C9. 【答案】17°10. 【答案】√311. 【答案】2+√3或2−√312. 【答案】√3−1或2−√313. 【答案】(−2,−2√3)14.【答案】解:∵∠ACB=90°,∠B=30°∴AB=2AC;∠A=60°;由题意得:AC=DC∴△DAC 为等边三角形∴∠ACD=60°∴m=60°.15.【答案】解;(1)如图所示:△A ′BC ′即为所求 ∵AB=√32+22=√13∴BA 边旋转到BA ″位置时所扫过图形的面积为:90π×(√13)2360=13π4(2)如图所示:△A ″B ″C ″∽△ABC ,且相似比为2.16.【答案】解:(1)如图所示:四边形ABCD 即为所求;(2)如图所示:四边形ABCD 即为所求.。

九年级上册数学《旋转》单元检测题(含答案)

九年级上册数学《旋转》单元检测题(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A...B...C...D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A...B...C...D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A...B...C...D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A...B...C...D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A...B...C...D.6.已知点是点关于原点的对称点,则的值为( )A...B.-..C...D.±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A...B...C...D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A.①②..B.①②..C.②③..D.①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A.1..B.1..C.4+5..D.4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A...B...C...D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A...B...C...D.【答案】D【解析】试题分析: 根据图形,由规律可循. 从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A...B...C...D.【答案】B【解析】试题分析: 根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点: 1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A...B...C...D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度. 点A 在第二象限的角平分线上,且OA= ,正好旋转到y轴正半轴. 则A点的对应点A1的坐标是(0, ).【详解】∵A的坐标是(-1,1),∴OA= ,且A1在y轴正半轴上,∴A1点的坐标是(0, ).【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A...B...C...D.【答案】A【解析】【分析】设A( ,1),过A作AB⊥x轴于B,于是得到AB=1,OB= ,根据边角关系得到∠AOB=30°,由于点( ,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A( ,1),过A作AB⊥x轴于B,则AB=1,OB= ,∴tan∠AOB= == ,∴∠AOB=30°,∵点( ,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点( ,1)绕原点顺时针旋转60°后得到点是( ,-1),故选: A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A...B...C...D.【答案】A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A.B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选: A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A...B.-..C...D.±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'【答案】B【解析】【分析】根据中心对称的定义: 把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选: B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义. 也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条【答案】C【解析】试题分析: 直接利用轴对称图形的性质分别得出符合题意的答案.解: 如图所示: 能满足条件的线段有4条.故选:C.考点: 利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A...B...C...D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项: 最小旋转角度= =120°;B.最小旋转角度= =90°;C.最小旋转角度= =72°;D.最小旋转角度= =60°;综上可得: 旋转的角度最大的是A.故选: A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种【答案】C【解析】试题分析: 利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解: 如图所示: 组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评: 此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A.①②..B.①②..C.②③..D.①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是: ①②④是中心对称图形;而③不是中心对称图形.故选: B.【点睛】考查了中心对称图形的概念. 在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A.1..B.1..C.4+5..D.4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选: D.【点睛】考查图形的平移变换和弧长公式的运用. 在平面直角坐标系中,图形的平移与图形上某点的平移相同. 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)【答案】B【解析】【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选: B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A...B...C...D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得: 图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等. 要注意旋转的三要素: ①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案.. (1).中心对.. (2).对称中心【解析】【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心. 故答案是: 中心对称,对称中心.【点睛】考查了中心对称图形的概念: 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为: 4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题的关键.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是: 四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是: ①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是: 60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是: (-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示. 答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题. 关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解: 根据图形可知: , , ,各点关于原点对称的点的坐标分别是: , , ,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标. 关键是掌握关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2) .【解析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B.∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补. 理由如下:由旋转的性质知: ,∴,∵,∴,因此与互补;线段. 理由如下:由旋转知: , , ,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示: ,即为所求,点的坐标为: ;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。

数学旋转测试题附答案

数学旋转测试题附答案

第3题图ED C BA 第4题图O D CBA 第5题AB 旋转测试题一、 选择题:1.一个图形经过旋转变化后,发生改变的是.A.旋转中心B.旋转角度C.图形的形状D.图形的位置 2.下列图形中绕某个旋转180°后能与自身重合的有.①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形 A. 5个 B. 2个 C. 3个 D. 4个3.如图所示,△ABC 中,AC =5,中线AD =7,△EDC 是由△ADB 旋转180°所得,则AB 边的取值范围是.A. 1<AB <29B. 4<AB <24C. 5<AB <19D. 9<AB <194.如图,已知△OAB 绕点O 沿逆时针方向旋转80°到△OCD 的位置,且∠A =110°,∠D =40°,则∠AOD 的度数为.A. 30°B. 40°C. 50°D. 60° 5.将方格纸中的图形(如图所示)绕点O 沿顺时针方向旋转90°后,得到的图形是6.下列图形中,是中心对称图形而不是轴对称图形的是. A.等边三角形 B.矩形 C.平行四边形 D.菱形7.点A (-3,2)关于x 轴的对称点为点B ,点B 关于原点的对称点为C ,则点C 的坐标是.A.(3,2)B.(-3,2)C.(3,-2)D.(-2,3) 8.已知点A 的坐标为(a ,b ),O 为原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得OA 1,则点A 1的坐标为.A.(-a ,b )B.(a ,-b )C.(-b ,a )D.(b ,-a ) 9.如图,△ABC 为等腰三角形,AB =AC ,∠A =38°,现将△ABC 绕点旋转,使BC 的对应边落在AC 上,则其旋转角为.A. 38°B. 52°C. 71°D. 81° 10.如图所示,在直角三角形ABC 中,∠C =90°,AC =6,BC =8,将△ABC 绕点B 旋第9题图EDCB A 第10题图CB A 第16题图C /B /()A /C B A 第17题图B /A /C B A转90°,得到关于点A 的对称点D ,则AD 的长是.A. 20B. 10√2C. 10D. 20√211.平面直角坐标系中有一图案,如果将图案中各点的横、纵坐标都乘以-1,所得图案与原图案相比.A.向下平移了一个单位长度B.向左平移了一个单位长度C.关于坐标轴成轴对称D.关于坐标原点成中心对称12.在正方形ABCD 中,E 是CD 上一点,F 是BC 上一点,且EF =BF +DE ,则∠EAF 的度数是.A. 30°B. 60°C. 45°D. 小于60° 二、填空题:13.线段的对称中心是,平行四边形的对称中心是,圆的对称中心是.14.已知A 、B 、O 三点不在同一直线上,A 、A /关于点O 对称,B 、B /关于点O 对称,那么线段AB 与A /B /的关系是.16.如图在Rt △ABC 中,∠C =90°,∠A =60°,AC =3cm ,将△ABC 绕B 点旋转到△A /B /C /的位置且使A 、B 、C /三点在同一直线上,则A 点经过的最短路线长是cm.17.如图,将Rt △ABC 绕C 点逆时针旋转得到△A /B /,若∠A /CB =160°,则此图形旋转角是度.18.若矩形ABCD 的对称中心恰为原点O ,且点B 坐标为(-2,-3), 则点D 坐标为.19.点(1,-3)绕原点顺时针旋转90°得到的点的坐标是;直线y =-3x 绕原点顺时针旋转90°得到的直线的解析式为. 20.阅读课题学习:“如果一个图形绕着某点O 旋转α后所得的图形与原图形重合,则称此图形关于点O 有角α的旋转对称。

初三旋转测试题卷子及答案

初三旋转测试题卷子及答案

初三旋转测试题卷子及答案一、选择题(每题3分,共15分)1. 一个点绕原点旋转90度后,其坐标变为原来的什么?A. 相反数B. 倒数C. 两倍D. 四倍2. 一个图形绕某点旋转180度后,与原图形的关系是?A. 完全重合B. 完全相反C. 部分重合D. 没有关系3. 一个图形绕某点旋转60度后,其面积和周长会如何变化?A. 面积不变,周长不变B. 面积变小,周长变小C. 面积不变,周长变长D. 面积变小,周长变大4. 一个图形绕其对称轴旋转180度后,图形的位置会如何变化?A. 完全重合B. 完全相反C. 部分重合D. 没有变化5. 如果一个图形绕某点旋转了θ度,那么它的旋转矩阵是什么?A. [cosθ -sinθ; sinθ cosθ]B. [cosθ sinθ; -sinθ cosθ]C. [sinθ cosθ; cosθ -sinθ]D. [sinθ -sinθ; cosθ cosθ]二、填空题(每题2分,共10分)6. 一个点P(x, y)绕原点旋转θ度后,其新坐标为_________。

7. 若一个图形绕点(a, b)旋转θ度,其旋转后的图形与原图形的对应点坐标变化关系为_________。

8. 一个正方形绕其中心点旋转45度后,其四个顶点的坐标变化情况是_________。

9. 一个圆绕其圆心旋转任意角度,其形状和大小_________。

10. 旋转矩阵可以表示为_________,其中θ为旋转角度。

三、解答题(每题5分,共20分)11. 给定一个点P(1, 2),求该点绕原点旋转120度后的坐标。

12. 一个矩形ABCD,其中A(-1, 1),B(1, 1),C(1, -1),D(-1, -1),求该矩形绕点A旋转90度后的顶点坐标。

13. 描述一个正方形绕其对称轴旋转90度后,四个顶点的坐标变化情况。

14. 解释旋转矩阵在图形旋转变换中的作用。

四、综合题(每题5分,共10分)15. 一个正六边形绕其中心点旋转60度后,求其顶点坐标的变化。

图形旋转测试题及答案

图形旋转测试题及答案

图形旋转测试题及答案一、选择题1. 一个图形绕某点旋转了90°,下列说法正确的是:A. 图形的大小不变B. 图形的形状不变C. 图形的位置不变D. 以上说法都不正确答案:A、B2. 下列哪个图形旋转180°后与原图形完全重合?A. 正方形B. 圆形C. 长方形D. 三角形答案:B二、填空题3. 若一个图形绕中心点O旋转____度,可以得到与原图形关于点O对称的图形。

答案:1804. 一个等腰三角形绕底边的中点旋转____度,可以得到与原图形完全重合的图形。

答案:180三、简答题5. 描述一个正方形绕其一个顶点旋转90°后,图形的位置变化情况。

答案:正方形绕其一个顶点旋转90°后,其四个顶点的位置将分别移动到原来对角线的顶点位置。

具体来说,如果原正方形的顶点分别为A、B、C、D,且A为旋转中心,则旋转后,A点位置不变,B点移动到C点位置,C点移动到D点位置,D点移动到B点位置。

四、计算题6. 已知一个正六边形绕其中心点O旋转60°后,求旋转后顶点的新位置。

答案:正六边形的每个顶点绕中心点O旋转60°后,每个顶点的新位置将沿着正六边形的外接圆的圆周上移动,每个顶点相对于原来的位置旋转了60°的弧度。

五、论述题7. 论述图形旋转的性质及其在几何学中的应用。

答案:图形旋转是一种几何变换,它保持图形的大小和形状不变,只改变图形的位置。

旋转的性质包括旋转角度的可加性,即连续旋转两个角度相当于旋转这两个角度的和。

在几何学中,图形旋转常用于证明图形的对称性,解决几何构造问题,以及在变换几何中研究图形的不变性质等。

旋转单元测试题及答案

旋转单元测试题及答案

旋转(90分钟,120分)一、选择题()1.平面图形的旋转一般情况下改变图形的()A. 位置B.大小C.形状D.性质2. 9点钟时,钟表的时针与分针的夹角是()A.30°B.45°C.60°D.90°3. 将□ABCD旋转到□A′B′C′D′的位置,下面结论错误的是()A. AB=A′B′B. A B∥A′B′C.∠A=∠A′D.△ABC≌△A′B′C′4.在下列图形中,既是中心对称又是轴对称的图形是()5.如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是()A. 30°B. 60°C.90°D. 120°6.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点A B C DFEDCBAOFEDCBA第5题图第6题图第8题图C 顺时针旋转90°得到△DCF ,连接EF ,若∠BEC=60°,则∠EFD 的 度数为()A. 10°B. 15°C. 20°D. 25° 7.把一个正方形绕它的中心旋转一周和原来的图形重合() A. 1次 B. 2次 C. 3次 D. 4次8.如图,△ABC 和△DEF 关于点O 中心对称,要得到△DEF ,需要将△ABC A.. 30° B. 90° C. 180° D. 360° 二、填空题()9.钟表上的时针随时间的变化而转动,这可以看做的数学上的 . 10.菱形ABCD 绕点O 沿逆时针方向旋转得到四边形A ′B ′C ′D ′,则四边形A ′B ′C ′D ′是 .11.钟表的分针经过20分钟,旋转了 ° . 12.等边三角形至少旋转 °才能与自身重合.13.如图,△ABC 以点A 为旋转中心,按逆时针方向旋转60°,得到的△A B 1B 是 三角形。

旋转测试题及答案

旋转测试题及答案

旋转测试题及答案一、选择题1. 一个物体绕着一个固定点旋转,这个固定点被称为什么?A. 旋转中心B. 旋转轴C. 旋转半径D. 旋转角答案:A2. 如果一个物体绕着一个点旋转了180度,这个物体的状态是:A. 完全翻转B. 回到原位C. 位置不变D. 无法确定答案:B3. 在平面几何中,一个点绕原点旋转90度后,其坐标的变化是:A. 坐标不变B. 坐标变为原来的相反数C. 横坐标变为纵坐标,纵坐标变为横坐标的相反数D. 横坐标变为纵坐标的相反数,纵坐标变为横坐标答案:C二、填空题4. 旋转对称图形在旋转一定角度后,图形的______不变。

答案:形状和大小5. 一个物体在平面上绕一点旋转,如果旋转角度为360度,物体将______。

答案:回到原位三、简答题6. 描述一个物体绕着一个点旋转的过程,并说明旋转的性质。

答案:一个物体绕着一个点旋转的过程是物体的每一个点都以旋转点为中心,按照相同的旋转角度进行移动。

旋转的性质包括旋转的方向(顺时针或逆时针)、旋转的角度以及旋转的中心点。

旋转后,物体上各点到旋转中心的距离保持不变,形状和大小也保持不变。

四、计算题7. 如果一个点P(x, y)绕原点(0, 0)顺时针旋转90度,求旋转后点P 的新坐标。

答案:旋转后点P的新坐标为(-y, x)。

五、论述题8. 论述旋转在日常生活中的应用,并给出至少两个例子。

答案:旋转在日常生活中有广泛的应用。

例如:- 门的开关:门围绕门轴的旋转使得我们可以打开或关闭门。

- 风力发电机:风力发电机的叶片围绕中心轴旋转,将风能转换为电能。

六、绘图题9. 给定一个正方形ABCD,点A位于(0, 0),点B位于(1, 0),点C位于(1, 1),点D位于(0, 1)。

请画出正方形绕点A顺时针旋转45度后的图形。

答案:[绘图题,答案需要根据旋转的几何规则进行作图,此处不提供具体图形,考生需自行绘制]。

初三旋转测试题及答案

初三旋转测试题及答案

初三旋转测试题及答案一、选择题(每题3分,共30分)1. 旋转对称图形是指绕某一点旋转一定角度后能够与自身重合的图形。

下列选项中,哪一个不是旋转对称图形?A. 正方形B. 正三角形C. 五边形D. 圆2. 一个图形绕某点旋转180°后与原图形重合,这个点称为图形的:A. 旋转中心B. 对称轴C. 旋转角D. 旋转对称中心3. 一个图形绕一点旋转90°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正六边形4. 一个图形绕某点旋转180°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角5. 一个图形绕某点旋转120°后与自身重合,这个图形是:B. 正三角形C. 正五边形D. 正六边形6. 一个图形绕某点旋转360°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角7. 一个图形绕某点旋转60°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正八边形8. 一个图形绕某点旋转45°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正八边形9. 一个图形绕某点旋转30°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正十二边形10. 一个图形绕某点旋转72°后与自身重合,这个图形是:A. 正方形C. 正六边形D. 正十边形二、填空题(每题4分,共20分)1. 一个图形绕某点旋转______度后与自身重合,这个点是图形的旋转中心。

2. 一个图形绕某点旋转______度后与自身重合,这个图形是正六边形。

3. 一个图形绕某点旋转______度后与自身重合,这个图形是正五边形。

4. 一个图形绕某点旋转______度后与自身重合,这个图形是正三角形。

5. 一个图形绕某点旋转______度后与自身重合,这个图形是正方形。

第23章《旋转》全章测试含答案

第23章《旋转》全章测试含答案

4月初三数学第23章《旋转》全章测试测试时间45分钟,满分100分一.选择题1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D2. 平面直角坐标系内一点P(-2,3)关于原点对称点的坐标是()A、(3,-2)B、(2,3)C、(-2,-3)D、(2,-3)3.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=3,∠B=60°,则CD的长为()A. 0.5 B.1.5 C.2 D. 14.如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为( ).A.∠BOF B.∠AODC.∠COE D.∠COF5. 如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:(1)点E和点F,点B和点D是关于中心O的对称点.(2)直线BD必经过点O.(3)四边形DEOC与四边形BFOA的面积必相等.(4)△AOE与△COF成中心对称,其中正确的个数为( )A.1B.2C.3D.46. 在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A.点AB.点BC.点CD.点D二、填空题7.在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为.8.如图所示,将△ABC绕点A按逆时针旋转30°后,得到△ADC′,则∠ABD的度数是.9.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形A′B′C′D′,则它们的公共部分的面积等于______.10.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B 的横坐标为.三、解答题11.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.12.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.13. 已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.14.(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.参考答案1.C2.D3.D4.D5.D6.B(7.)4,2758.039.310. 10070.11. (1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).12. (1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n 度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.13. ∠PBD=53°,∠BPD=64°,∠PDB=63°.14. (1)证明:在正方形ABCD中,∴∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG(2)解:如图2,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=。

人教版九年级数学上册第二十三章《旋转》测试题(含答案)

人教版九年级数学上册第二十三章《旋转》测试题(含答案)

人教版九年级数学上册第二十三章《旋转》测试题(含答案)一.选择题1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.3.已知点A的坐标为(2,3),O为坐标原点,连接OA,将线段OA绕点A按顺时针方向旋转90°得AB,则点B的坐标为()A.(5,1)B.(﹣3,2)C.(﹣1,5)D.(3,﹣2)4.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合5.下列英语单词中,是中心对称图形的是()A.SOS B.CEO C.MBA D.SAR6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是()A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)8.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.9.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=15,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为()A.48B.50C.55D.60二.填空题11.与电子显示的四位数6925不相等,但为全等图形的四位数是.12.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).13.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为.14.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.15.如图,△ABC与△DEF关于O点成中心对称.则AB DE,BC∥,AC=.16.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.17.时钟从上午9时到中午12时,时针沿顺时针方向旋转了度.18.时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角为度,从上午9时到下午5时时针旋转的旋转角为度.19.如图,把这个“十字星”形图绕其中心点O旋转,当至少旋转度后,所得图形与原图形重合.20.如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是.三.解答题21.在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为;(3)求线段CC′的长.22.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.23.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有个;第2008个图案是.24.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.25.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).①等腰梯形是旋转对称图形,它有一个旋转角为180度.()②矩形是旋转对称图形,它有一个旋转角为180°.()(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形:;②既是轴对称图形,又是中心对称图形:.26.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为a.(1)如图1,若a=90°,求AA′的长;(2)如图2,若a=120°,求点O′的坐标.参考答案一.选择题1.解:传送带传送货物的过程中没有发生旋转.故选:A.2.解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.3.解:如图,过A作y轴的平行线,过B作x轴的平行线,交点为C,由∠C=∠ADO,∠BAC=∠AOD,AB=OA,可得△ABC≌△OAD,∴AC=OD=2,BC=AD=3,∴CD=5,点B离y轴的距离为:3﹣2=1,∴点B的坐标为(﹣1,5),故选:C.4.解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选:B.5.解:是中心对称图形的是A,故选A.6.解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.7.解:点M(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故选:D.8.解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.9.解:将图绕中心按顺时针方向旋转60°后得到的图形是.故选:A.10.解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=15,∴△BCD为等边三角形,∴CD=BC=BD=15,∵AB===17,∴△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=8+15+15+17=55,故选:C.二.填空题11.答:5269.12.解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.13.解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===5,故答案为:5.14.解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.15.解:∵△ABC与△DEF关于O点成中心对称∴△ABC≌△DEFAB=DE,AC=DF又∵BO=OE,CO=OF,∠BOC=∠FOE∴△BOC≌△EOF∴∠BCO=∠OFEBC∥EF故填:=,EF,DF16.解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).17.解:从上午9时到中午12时,时针就从指向9,旋转到指向12,共顺时针转了3个“大格”,而每个“大格”相应的圆心角为30°,所以,30°×3=90°,故答案为:90.18.解:从上午6时到上午9时时针转过3个大格,所以,3×30°=90°,上午9时到下午5时时针转过8个大格,所以,8×30°=240°.故答案为:90;240.19.解:把这个“十字星”形图绕其中心点O旋转,当至少旋转360°÷4=90°后,所得图形与原图形重合,故答案为:90.20.解:∵点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OP n=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).三.解答题21.解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.22.解:(1)由图(1)可得,c=;(2)观察图形可知:当2个图(1)拼接时,总长度为:2a﹣2c=2a﹣2×=a+b;(3)结合(2)发现:用n个这样的图形拼出来的图形总长度为:a+(n﹣1)b,当a=4,b=3时,4+3(n﹣1)=28,解得:n=9.∴n的值为9.23.解:(1)原式==2;(2)根据分析,知应分别为,5,.24.解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.25.解:(1)等腰梯形必须旋转360°才能与自身重合;矩形旋转180°可以与自身重合.①等腰梯形是旋转对称图形,它有一个旋转角为180度.(假)②矩形是旋转对称图形,它有一个旋转角为180°.(真)(2)①只要旋转120°的倍数即可;②只要旋转90°的倍数即可;③只要旋转60°的倍数即可;④只要旋转45°的倍数即可.故是旋转对称图形,且有一个旋转角为120°的是①、③.(3)360°÷72°=5.①是轴对称图形,但不是中心对称图形:如正五边形,正十五边形;②既是轴对称图形,又是中心对称图形:如正十边形,正二十边形.26.解:(1)∵点A(4,0),点B(0,3),∴OA=4,OB=3.在Rt△ABO中,由勾股定理得AB=5.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=5,∴AA′=5.(2)如图,根据题意,由旋转是性质可得:∠O′BO=120°,O′B=OB=3过点O′作O′C⊥y轴,垂足为C,则∠O′CB=90°.在Rt△O′CB中,由∠O′BC=60°,∠BO′C=30°.∴BC=O′B=.由勾股定理O′C=,∴OC=OB+BC=.∴点O′的坐标为(,).。

第23章 旋转单元测试试题(含解析)

第23章 旋转单元测试试题(含解析)

人教版九年级上册第23章旋转单元测试(时间100分钟,总分100分)一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.33.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70° B.35° C.40° D.50°4. 如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格5. 如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=()A.2 B.3 C.4 D.1.56.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′7. 如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45° B.60° C.90° D.120°8. 如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对 B.2对 C.3对 D.4对9. 如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°10. 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1二、填空(共8个小题,每题3分,共24分)11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是.12. △ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.14. 如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16. 如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B 运动的最短路径长为.17. 如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.18. 如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是(填序号)三、解答题(前3题每题7分,后三题分别为8、8、9分,共46分)19.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.20. 如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.22. 将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC 与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由。

小学旋转测试题目及答案

小学旋转测试题目及答案

小学旋转测试题目及答案一、选择题1. 一个正方形旋转180度后,其形状和大小会如何变化?A. 形状和大小都不变B. 形状不变,大小变小C. 形状改变,大小不变D. 形状和大小都改变答案:A2. 一个圆形在平面上旋转任意角度,其形状和大小会如何变化?A. 形状和大小都不变B. 形状不变,大小变小C. 形状改变,大小不变D. 形状和大小都改变答案:A3. 一个等腰直角三角形绕着其直角边旋转180度,其形状和大小会如何变化?A. 形状和大小都不变B. 形状不变,大小变小C. 形状改变,大小不变D. 形状和大小都改变答案:A二、填空题1. 当一个物体绕着一个点旋转360度后,其位置和方向将______。

答案:保持不变2. 如果一个物体绕着一个点旋转90度,那么它的位置将______。

答案:改变三、判断题1. 一个物体绕着一个轴旋转180度后,它将回到原始位置。

()答案:正确2. 一个物体绕着一个轴旋转360度后,它的位置和方向将发生变化。

()答案:错误四、简答题1. 描述一个物体绕着一个点旋转90度后,它的位置和方向的变化。

答案:物体绕着一个点旋转90度后,它的位置相对于旋转点将顺时针或逆时针移动到新的位置,方向也会相应地顺时针或逆时针旋转90度。

2. 解释为什么一个圆形在平面上旋转任意角度,其形状和大小都不会改变。

答案:圆形是一个对称图形,无论旋转到哪个角度,其所有点到中心点的距离都是相等的,因此形状和大小都不会因为旋转而发生变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转测试题
一、填空题(每题2分,共32分)
1.如图,把∆OAB 绕着O 点按逆时针方向旋转到∆OCD 的位置,那么OA= ,
∠B= ,旋转角度是 .
2.如图,∆ADE 是由∆ABC 绕A 点旋转180度后得到的.那么,∆ABC 与∆ADE 关于A 点 对称,A 点叫做 .
3.如图15-22所示,ABC ∆绕点A 旋转了0
50后到了'''C B A ∆的位置,若0
'33=∠B ,
056=∠C ,则________'=∠AC B .
4.如图,四边形OACB 绕点O 旋转到四边形DOEF ,在这个旋转过程中,•旋转中心是________,旋转角是_______,AO 与DO 的关系是________,∠AOD 与∠BOE 的关系是___________.
5.如图,AC ⊥BE ,AC=EC ,CB=CF ,则△EFC 可以看作是△ABC•绕点________按_________方向旋转了________度而得到的.
6.如图所示,ABC ∆中,0
90=∠BAC ,cm AC AB 5==,ABC ∆按逆时针方向旋转一定角度后得到ACD ∆,则图中的________是旋转中心,旋转角度为_______度. 7.正六边形至少旋转______度后与自身重合.
8.图形在平移、旋转过程中,图形的______和_______不变.
A
B
D
C
O
E
A
B
D
C
图15-22
C'B'
C
B
A
第1题图 第2题图 第3题图


图15-23
E A
B
C
D D
C
B
A
第4题图 第5题图 第6题图
9.下列四个图形中,既是轴对称图形,又是中心对称图形的是 .
10.已知ABC ∆经过旋转得到DEF ∆,4=AB ,5=AC ,则EF 的取值范围是
_______.
11.国旗上的五角星是旋转对称图形,它的旋转角度是______(填最小的度数),请你
再举一个旋转角度与五角星相同的正多边形是_______.
12.在26个大写英文字母中,写出既是轴对称,•也是中心对称的字母______•、•_____、
_____.(写3个)
13.小明把如图所示的扑克牌放在一张桌子上,•请一位同学避开他任意将其中一张牌
倒过来,•然后小明很快辨认为被倒过来的那张扑克牌是________.
颠倒前
颠倒后
14.如下左图,等边△ABC 经过平移后成为△BDE ,则其平移的方向是_____;平移的
距离是_____;△ABC•经过旋转后成为△BDE ,则其旋转中心是_____;旋转角度是_____.
15.如图,一块等边三角形木板ABC 的边长为1,现将木板沿
水平线翻转(绕一个点旋转),那么A 点从开始到结束所走的路径长度为 .
A .
B .
C .
D .
第14题图 第15题图 第16
题图
P'P D
C
B
A
图15-28
16.P 是等边ABC ∆内部一点,APB ∠、BPC ∠、CPA ∠的大小之比是5:6:7,所以
PA 、PB 、PC 的长为边的三角形的三个角的大小之比是 .
二、解答题(共68分)
17.(4分)分析图中①,②,④中阴影部分的分布规律,按此规律在图③中画出其中
的阴影部分.
18.(5分)把图中的长方形绕点A 逆时针旋转90°,画出旋转后的图形A ′B ′C•′D ′.
19.(5分)如图,△AEC 经旋转后与△BFD 重合,确定图中的旋转中心和旋转角,•指
出图中相等的线段和相等的角.
20.(5分)如图,点C 是线段AB 上任意一点,分别以AC 、
BC•为边在同侧作等边△ACD 和等边△BCE ,连接BD 、AE ,试找出图中能够通过旋转完全重合的图形,•它是绕哪一点旋转?旋转了多少度?
21.(5分)如图,△ABC是等腰三角形,∠ACB=90°,延长BC到D,连接AD,作BE•⊥AD 于E,交AC于F,在这个图形中,•哪两个三角形可以看成是一个三角形沿某一点旋转而得到的?试说明理由.
22.(6分)如图,正方形ABCD中,E在BC上,F在AB上,∠FDE=45°,△DEC•按顺时针方向旋转一个角度后成△DGA.
(1)图中哪一个点是旋转中心,旋转角等于多少?
(2)指出图中旋转图形的对应线段和对应角.
23.(6分)如图,在正方形网格上有一个△ABC.
(1)作出△ABC关于点O的中心对称图形△A′B′C′
(不写作法,但要标出字母);
(2)若网格上的最小正方形边长为1,求出△ABC的面积.
24.(6分)如图,正方形ABCD 中,E 为BC 边上的一点,将△ABE 旋转后得到△CBF . (1)指出旋转中心及旋转的角度; (2)判断AE 与CF 的位置关系;
(3)如果正方形的面积是18cm 2
,△BCF 的面积是5cm 2
,问四边形AECD 的面积是多少?
25.(6分)如图15-28所示,是正方形内一点,△ABP 经旋转能与△CBP ′重合,求: (1)旋转中心是哪个点? (2)旋转了多少度?
(3)若3=PB ,求'
PBP ∆的面积.
26.(6分)(1)如图(a ),它是一个多么漂亮的图案啊!请你在这个图案中确定一
个基本图形,然后说出这个基本图形经过怎样的变换便可得到图(b ); (2)如图(b ),将它分成,△OAB 、△OBC 、△OCD 等三个等边三角形(包含三角形内部所有图形).
①探究:△OAB 怎样变换可以得到△OBC?△OBC 怎样变换可以得到△OCD?△OAB 怎样变换可以得到△OCD? ②思考:对称与旋转有何关系?
27.(8分)如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图
(b )
2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图
3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6
中统一用F表示)
(图1)(图2)(图3)
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求
出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(图4)(图5)(图6)
答案
一、填空题
1.OC ,∠D ,∠BOD 2.中心,对称中心 3.91度 4.O ,∠EOB ,AO=DO ,∠AOD= ∠BOE 5.C ,顺时针,90 6.A ,90 7.60 8.形状,大小 9.B 10.1<EF <9 11.72度,正五边形 12.H 、I 、O 13.方块5 14.水平向右,AB ,B ,120度 15.43
π 16.2:3:4 二、解答题 17.略 18.略 19.略 20.△ACE 和△DCB ,C ,60度 21.略 22.△BFC 和△ADC 23.(1)D ,90度;(2)略 24.(1)略;(2)2.5 25.(1)B ,90;(2)AE=CF 且AE ⊥CF ;(3)13cm 2 26.(1)B ;(2)90度;(3)4.5
27.(1)将图(a )中的下半部分绕着图形的中心顺时针旋转180度;(2)①将△OAB 以O 为旋转中心,顺时针旋转60度得到△OBC ,将△OBC 以O 为旋转中心,顺时针旋转60度得到△OCD ,将△OAB 以O 为旋转中心,顺时针旋转120度得到△OCD ;②中心对称是特殊的旋转对称,当旋转角度为180度时,此时的旋转对称图形即为中心对称图形。

28.解:(1)图形平移的距离就是线段BC 的长(2分)
又∵在Rt △ABC 中,斜边长为10cm ,∠BAC=30,∴BC=5cm , 平移的距离为5cm .(2分)
(2)∵∠1A FA =30°,∴∠60GFD =,∠D=30°.∴∠90FGD =.
在RtEFD 中,ED=10 cm ,∵FD= ∵FC =
cm .。

相关文档
最新文档