三角形内角和180度说课稿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形的内角和》说课稿
一、说教材
1、说课内容
今天我说课的内容是人教版义务教育课程标准试验教科书四年级数学下册第五单元第85页的《三角形的内角和》。
2、教材分析
在第一学段里学生熟悉了钝角、锐角、平角这些角的知识,已经掌握了三角形的概念、分类,“三角形的内角和”是三角形的一个重要性质,是“图形与几何”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,甚至大多数学生已经知道三角形的内角和是180度,但不一定知道原因,“知其然而不知其所以然” 。已经具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础,所以本课的设计不在于了解,而在于验证。它是掌握多边形内角和及其他实际问题的基础,因此,掌握三角形的内角和是180度这一规律具有重要意义。教材上这部分内容分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。剪去三角形的三个角,拼成了一个平角,以此证明三角形的内角和就是180度。最后应用三角形内角和是180度,解决已知三角形的两个内角,求另一个内角的数学问题。教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。
3、学情分析:
经过四年的学习,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
4、教学目标
根据小学数学课程标准对四年级学生的具体要求,结合教材特点及学生年龄特征,依据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定了以下教学目标:认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。初步培养学生的空间思维观念。并渗透研究问题要全面,也就是完全归纳法的数学思想
解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。
情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。体验数学的魅力,产生喜欢数学的积极情感。
5、教学重点难点:
根据对教材的编写意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。
6、实验材料
尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片(每个4人小组
准备4个不同的三角形且要求大小不一)、实验报告单一份;
二、说教法学法
学法是学生再生知识的法宝。而新课程标准的基本理念就是要让学生"人人学有价值的数学"。强调"教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程"。在教学中,我主要采用激趣法、实验法、直观演示法、启发式教学,以观察法和练习法为辅助教学,以学生为主体,教师为主导,把单项传授转化为双向互动。我力图让学生通过“自主体验合作探究”的学习,获得“自主获取知识”的体验,为学生提供一种挑战自我的情景,通过测量、拼折、实验观察,验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。
三、说教学流程
为将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。”秉着这样的指导思想,在整个教学设计上力求充分体现“以学生发展为本”教育理念,将教学流程设计了4个环节展开教学。
一、游戏导入、激发质疑:学生拿出自制的三角形,告诉老师其中的两个角,让老师猜测第三个角的度数,老师总能猜出来,由此激发学生质疑。
三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。
(创设这样的情境,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。) 教学进入第二环节
二:引导探究、试验验证:
1.介绍内角、内角和,并提出猜想
师:我们现在研究三角形的三个角,都是它的内角。今天我们就来一起探究《三角形的内角和》。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2.确定研究范围
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)请你想个办法吧!(通过引导学生分析,"研究哪几类三角形,就能代表所有的三角形"这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)
3.建立模型,解决问题
(一)测量法:
(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和都接近180度与三角形的大小和形状没有关系。
(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?
(3)记录小组测量结果及讨论结果
实验名称三角形内角和
实验目的探究三角形内角和是多少度。
实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片
方法一三角形的形状每个内角的度数三个内角的和
方法二
我的发现
(4)学生汇报量的方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
(二)剪拼法