耳机电路图

合集下载

AC6936D+TWS耳机标准原理图V1.2

AC6936D+TWS耳机标准原理图V1.2
C1
C2
224
224
注意 :PCB Layout需要 分地(区分 AGND和GND)
32 VCOM 31 DACVDD 30 VCOMO 29 DACL 28 DACR 27 MIC 26 MIC_POWER 25 USBDP
T1
晶振选型:
DP
要求:内部负载电容:1 2PF;频偏偏差:±1 0PPM 以内
模拟硅MIC
MIC_POWER
R1 1K
M1 MIC3722
C15
C14
MIC
105
104
C19 NC
驻极体MIC
MIC
C8
+
M2
NC
MIC4013
DACL DACR
J5 Earphone
6
MIC电路 处的滤 波电容 位置需 预留
6
J4
+5V DM DP
ID GND
DC5V
1 2 3 4 6
6
USB(MICRO)
12
13
P/P/POWER 14 15
BT_RF
16
AC6936D_QFN32
BT_ANT
C16
2.7P
L3
L4
NC
NC
LDO _IN电容位置预留
备注:天线匹配电路参数,以实际样机调试结果为准。
MCU
+3.3V
LED_B/R
D1 BLUE
D2 RED/CHARG_LED
LED
G-sensor和触 摸采用 IO口供 电,可减 小Poweroff模式 耳机功 耗
Mic、Earphone
VBAT
BT1 3.4V~4.2V

耳机电路图全集

耳机电路图全集
8
电源供电问题考虑
电子管功放的供电与普通晶体管功放不同,单端甲类电子管功放开机后其静态功耗占到总功耗的一半以 上,而普通晶体管功放开机后的静态功耗不到总功耗的 10%,所以两者是有区别的。
图 2 为一个典型的小功率电子管电源电路,从图中我们可以看到,高压部分为带中心抽头的两组线圈, 经双真空整流二极管 6Z4 进行全波整流,由 C1、L、C2 组成 CLC 型电路进行滤波,这种电路有两个缺点: (1)次级高压需要两组线圈,自制时绕的两个线圈不易对称,造成两组线圈输出交流电压不一致。由于受到 铁芯窗口限制,一般线径都较细,所以线阻较大,带上负荷后压降也大。(2)由于受到 6Z4 整流管最大屏 流的限制(300mA),C1 的容量不能过大,因为电容器 C1 的容量大时,开机时电容的瞬间充电电流可能 超过 6Z4 整流管的最大屏流值,造成整流管 6Z4 的损坏。所以这种电路的滤波电容容量都选得较小,滤 波效果也就不太理想。而且滤波电感 L 在业余条件下也不易做好。
3
在电子管手册中我们都能查到功放管的典型应用参数,一般都有屏极工作电压这个参数,例如 6P1 电 子管的屏极电压手册上推荐为 250V,有很多制作图纸和发烧友在实际制作中都按照这个参数来选择电源 变压器的交流输出电压,实际上这样是不好的,并不能很好的发挥功放管的性能,因为在屏级回路中串有 输出变压器。输出变压器的初级线圈是有直流电阻的,当静态电流流过初级线圈时便会产生电压降,这时 加到电子管屏极的直流工作电压就会降低,其它参数随着屏极电压的改变也相应变化,我用下面的图 1 和 表 2 给大家说明。
表 1 中的输出功率值与屏极工作电压和负载阻抗(输出变压器初级阻抗)有很大关系,任何一个数据的变 化都会引起输出功率值的变化。适宜使用的场合与所用音箱的灵敏度有关,灵敏度越高使用面积越大。

AC6932A TWS耳机双MIC降噪方案标准原理图V1.0

AC6932A TWS耳机双MIC降噪方案标准原理图V1.0

VDD
5 L/R
DATA 3
R1 4.7R
C8 C9 106 104
DACL DACR
2 CLK 2 CLK
P_CLK P_DAT
J5 Earphone
D-Mic、Earphone
6
6
J4
+5V DM DP
ID GND
DC5V
1 2 3 4 6
6
USB(MICRO)
VBAT
BT1 3.4V~4.2V
0 GND(衬底)
7
8
9
VBAT LDO_IN VDDIO PB2/ADC12 PB1/ADC6
10
DVDD VSSIO BT_OSCO BT_OSCI VSSIO BT_RF
17 DVDD 16 GND 15 BT_OSCO 14 BT_OSCI 13 GND 12 BT_RF
C1 105
C16
BT_ANT
G_SDA 2 SDA/SDI/SDO GND 9
G_PWR 3 VDD_IO
C4
104
4 NC
GND_IO 8 VDD 7
INT INT2
DA230/SC7A21
G_PWR
C18 NC
P/P/POWER
Touch PAD C12
1pF~50pF
G_PWR
U3
1 2 3
OC/OD GND TCH
TOG VDD AHLB
DACR ADC0/MIC/PA1
ADC1/PA3 ADC10/USBDP ADC11/USBDM
BT_AVDD
DACL
AGND
BT_AVDD
C2 LED_B/R 105 GND

耳机中的基本电路知识

耳机中的基本电路知识

耳机中的基本电路知识一. 常用的描述耳机性质的术语:1)工作点:如把欲分析的电路划分成两个二端网络A和B,在同一坐标系下分别画出两个网络的伏-安特性曲线,两条曲线的交点称为工作点。

工作点对应的电流和电压值,既是A的输出电流和输出电压,也是B的输入电流和输入电压。

2)阻抗匹配:计算实际电源的输出功率,电源的输出功率最大。

此时对应的负载电阻为当负载电阻和电源内阻相等时,电源的输出功率最大,这就是阻抗匹配。

在实际电路中,追求阻抗匹配的时候并不多,因为阻抗匹配时虽然输出功率最大,但是有一半的功率都消耗在内阻上了,效率太低。

为了提高能量利用效率,也为了避免后端的负载对前端造成比较大的影响,后端的输入阻抗一般要比前端的输出阻抗大若干个量级。

3)音源:从电路的角度来看,音源是一个有源二端网络。

如果假设声音信号频率固定,则音源是一个线性有源二端网络,可以用电压源等效模型来描述。

为了尽量使音源的输出信号不受后端负载的影响,音源的输出阻抗相当低,一般都只有几欧姆甚至1欧姆以下,音源的伏-安特性曲线接近理想的电压源。

4)放大器:音源信号频率固定的前提下,可以把放大器看成一个线性有源四端网络。

实际的放大器可以看成两个带有内阻、工作范围受限的电源,其中输出端的电压在一定范围内与输入端的电压成正比。

需要注意的是对四端网络来说,从输入端看进去的阻抗可以和从输出端看进去的阻抗不一样。

为了提高能量利用效率,同时减少对音源的影响,放大器的输入阻抗相当高,一般都有十几千欧甚至几十千欧。

因此,放大器输入端的伏-安特性曲线接近理想的电流源。

放大器的输出阻抗原本也应该尽量小,但是由于需要调节音量,放大器的输出阻抗是可调的。

调节输出阻抗的大小,就可以改变耳机音量。

设输入端的电压为Uo,放大系数为A,则输出端的最大电压为AUo。

放大器输出端的伏-安特性曲线是经过Y轴上一个定点的一系列直线。

5)耳机:在假设音源信号频率固定的前提下,可以把耳机看成一个线性无源二端网络,等效为一个电阻。

MOSFET功放电路

MOSFET功放电路

目录场效应管功率放大电路 (1)场效应管80W音频功率放大电路 (1)一款性能极佳的JFET-MOSFET耳机功放电路图 (2)100W的MOSFET功率放大器 (2)场效应管(MOSFET)组成的25W音频功率放大器电路图 (4)一种单电源供电的MOSFET功放电路 (6)100W的V-MOSFET功率放大器电路 (6)100W场效应管功率放大电路 (8)全对称MOSFET OCL功率放大器电路图 (9)场效应管功率放大电路如图所示电路是采用功率MOSFET管构成的功率放大器电路。

电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。

其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。

场效应管80W音频功率放大电路一款性能极佳的JFET-MOSFET耳机功放电路图100W的MOSFET功率放大器电路图关于电路电容C8是阻止直流电压,如果从输入源的输入直流去耦电容。

如果畅通,将改变这个直流电压偏置值S后续阶段。

电阻R20限制输入电流到Q1 C7 -绕过任何输入的高频噪声。

晶体管Q1和Q2的形式输入差分对和Q9和Q10来源1毫安左右建成的恒流源电路。

预设R1用于调整放大器的输出电压。

电阻R3和R2设置放大器的增益。

第二差的阶段是由晶体管,第三季度和Q6,而晶体管Q4和Q5形式电流镜,这使得第二个差分对漏一个相同的电流。

这样做是为了提高线性度和增益。

Q7和Q8在AB 类模式运行的功率放大级的基础上。

预设R8可用于调整放大器的静态电流。

电容C3和电阻R19组成的网络,提高了高频率稳定度和防止振荡的机会。

F1和F2是安全的保险丝。

电路设置设置在中点R1开机前,然后慢慢调整为了得到一个最低电压(比50mV)输出。

下一步是成立的静态电流,并保持在最低电阻预设的R8和万用表连接跨标记点电路图X和Y的调整R8使万用表读取16.5mV对应50mA的静态电流。

耳机的维修与使用注意点(重要)

耳机的维修与使用注意点(重要)

耳机的维修与使用注意点。

简单耳机的电路图:
带话筒耳机原理图:
耳机线头分别用3种颜色表示功能,比较常用的分别是红色、蓝色和黄色(杂色、绿色),左声道一般是蓝色、右声道一般是红色,杂色、绿色、黄色的一般是公共端。

耳机维修步骤:
1.拿到耳机后,如果有MP3就先试试,看是哪个耳机听筒不响。

然后打开那个听筒,用
电表测量插头金属接线柱与听筒中焊点之间是否通路,测量听筒中两个焊点之间的线圈是否通路。

2.如果是中间线路断路,则主要有三处可能断开。

一是插头处的接线断了,这时需要把插
头上的保护套揭下,削去绝缘塑料,露出焊点,然后重新焊上接线。

注意区分公共端和左右声道。

焊好后用热熔胶包裹好,注意分开各条导线,防止短路。

第二,可能是线路交叉口接线断了,只需拆开,烧去导线表面的绝缘漆,然后接好。

第三就是听筒上的焊点脱焊,重新焊上就行。

3.如果是线圈断路了,一般是引出线在拐弯处断了,很难维修,一般不会再修理。

如果有
兴趣修,先用针挑开振膜,小心的将铜丝从线圈上撕下,拉长,最好注意下极性。

然后用牙签或导线蘸上502胶将振膜重新粘好。

接着焊上铜丝,然后轻轻将铜丝压在听筒上,用热熔胶固定、保护好。

4.组装好耳机。

耳机使用注意点:
1.小心插拔,避免插头处焊点断开。

2.避免大力从耳朵上扯下听筒,否则容易扯断接线。

3.轻拿轻放耳机,防止摔坏听筒。

耳房 47电路图

耳房 47电路图

这张是47的电路图,说句实话,这个电路间接明了,做得非常好。

首先我们分析一下这个电路。

从结构上说,电路由两块运放组成,其中IC1a起到放大的作用,IC1b形成跟随器,进行电流扩充,增大驱动能力。

从信号的走向上来说,信号首先经过一个音量控制电位器,信号的一部分通过一个由0.47uf和100K电阻构成的高通,到达IC1a的+端。

IC1a的—端接了两个电阻,分别是4.7K和10K的电阻,这2个电阻构成了反馈网络,提供了约3.1倍(1+10/4.7)的电压放大倍数。

IC1a的输出分2路走,一路通过47欧姆的电阻,达到耳机的输出;另外一路,连接到IC1b的+端,由IC1b构成的跟随器,在通过另外一个47欧姆达到输出。

下面针对每一个元件,结合我做这个二房的体会,小弟我胡乱乱说2句。

1、音量控制电位器,也就是我们常说的音量开关。

对于这个音量控制电位器是否需要,我曾经犹豫了一会。

因为我个人认为“Simple is the best”,如果加入这个电位器,这个电位器将会引入不必要的噪声和非线性问题,而且我用的音源是随身听,已经有了音量控制电位器,所以在我做的耳房中,没有加入这个电位器(其实一个主要原因也是我手上没有比较好的音量控制电位器)。

但是等我的二放做出来,发现这个音量控制电位器还是非常有用的。

这不是为了控制音量,还是为了减少前级音源的本底噪声问题。

在我使用自己做的耳房的时候,就发现前级的音源(松下Ct570)有一个本底噪声,在CD直接推耳机的时候,CD本身送出的信号比较大(虽然有失真),本底噪声察觉不出来,但是用了耳房以后,CD本身送出的信号比较小(这时候信号线性度很好),本底噪声就察觉出来了。

考虑到本底噪声是一个相对固定不变的值,如果安装了音量控制电位器,就可以让CD输出相对较多的信号,让本底噪声的相对比例下降。

*****后来我找到了一个音量控制电位器,装上去以后,的确降低了CD的本底噪声,但是需要注意的是要适当提高电压放大倍数,我将10K的电阻又换成了15K的*****但是必须注意的是,这个音量控制电位器在信号的输入通路上,它的好坏直接关系到二放的好坏,所以如果有条件的话,还是选取好一点的电位器。

耳机扬声器等效电路图探讨20121209

耳机扬声器等效电路图探讨20121209

1)尽量不要形成二次声腔,即在保证前盖强度的情况下尽可能多开孔 2)利用二次声腔对声音进行调制,去掉尖峰,平滑曲线
高频高的是少开了几个孔 低的是多开了几个孔 且孔的数目是变化的 还请 ACOUTICS 兄 费工:谢谢你发的那篇文章,很是受启发,也是一个很好的总结,以后工作中遇到这种问题 也可一一验证一下也许那样印象还会更深。
面盖的设计主要考虑这几个方面 1)上间隙的设计(即前盖里面与膜片最高峰的间隙),这个跟你要求的最大功率有关系 2)强度,这个是设计的最初要求,一般很容易别忽略 3)对声音的影响,这个就不多说了,大家可以用电力声分析 4)对音圈引出线,这个要求就是不要压线,一般可以做槽口,或者支架上设计缺口 5)材料的选择
以上这个供大家共同学习和探讨。
另外我想问一下,是否大家觉得将盆架开圆孔加长(相当于这些孔的内腔增大,对中频也 应该有所提高呢?费工对面盖孔作了一些探讨,大家再来说一下盆架上的开孔对受话器的影响吧
像动能,势能,电能,磁能这样的能量, 我们称为第二类能量, 它是能量的比较高的形式体现. 热能, 称为第一类能量, 这是比较初级的能量. 两类能量的区别是, 第二类能量, 会自发地向第一类能量转化,反过来就不行. 这称之为能量的 恶化(降阶), 这在宇宙中是无法避免的.
那么力学与电学里这两种能量转换的方式很相似, 并且它们都有唯一的, 共同的耗能元件: 电 阻. 所以可以把它们相同类比. 你既可以势能看做电能, 动能看作磁能, 力阻看作电阻. 也可以 把动能看成电能, 势能看做磁能.力阻看作电导. 怎么样类比, 随你喜欢. 这里顺便提一下初哥 说的马大猷说的什么力电情况下,导纳类比好, 力声情况下阻抗类比好. 对此, 呵呵, 我只能说马 老对这并不是很懂,实际上任何情况下,这两种对比都是等效的, 前面我已经说过了"随你喜欢 ", 你觉得习惯哪种就用哪种,就像吃饭一样, 你是习惯左手拿刀,右首拿叉子, 还是右手持刀,左 手哪叉子呢? 我说这都一样, 随你喜欢, 因为这不影响你吃饭, 但是如果你在这问题上纠结: 哎 呀这是右手拿刀对呢还是左手拿刀才对呢. 在这问题上绕来绕去, 那么这饭就没法吃了. 想起以 前啊, 管善群教授在一次会议上, 也批评过南大学生,他评论道:"南大毕业的习惯用阻抗类比, 不 善于使用导纳类比", 我想他当时的意思时说导纳类比比较方便,大概是这样的. 所以管教授犯了

NE5532经典电路图

NE5532经典电路图

NE5532功放说到小功率的耳放,不得不提到20世纪的运放之王NE5532,曾经出现在无数的优秀前级放大、调音电路之中,中频温暖细腻厚实,胆味十足,性价比很高!直到今天我们还能很容易地在一些中低档的音响产品中找到它。

由于其体积小、电路简单,所以是讲究实用性、低投入的动手派的首选。

因为NE5532从面世到如今已历经数载,大家对其电路也非常熟悉,有着多种多样的玩法。

在此介绍的耳放的特点是简单、功率小,侧重的是制作的过程。

一、原理分析NE5532是典型的双极型输入运算放大器,用单个NE5532组成的小功率电路有很多版本,本人通过不断地对比和思考,对那些五花八门的电路图作了修改,最终确定了原理图(图1)。

放大倍数是由R3(R4)和R5(R6)来控制的,理论上说如果R3(R4)为1kΩ,R5(R6)为100kΩ,则其放大倍数为100倍,但对于耳放来说,这会引起自激,再说就算真的能达到100倍,效果也不可能好,所以这个电路用于前级时也最好别调成100倍。

当然,对于耳放定2~3倍可以让负反馈适量、音质柔和、清晰更通透,但放大倍数也不能太小,否则也会影响音质,大家可以反复调试,达到自己满意的效果。

笔者是将R3(R4)定为1kΩ,R5(R6)定为20 kΩ,即2倍。

C5(C6)是输入回路的对地通路,在用于耳放电路时应该加大,原理图中的值为22 uF,但用于此耳放应该加大到100 uF。

在这里值得一提的是电源问题,如果你是使用的稳压电源,要注意稳压电源的滤波要给足,因为本电路本身就非常简单,那么对元器件的选取就比较挑剔,建议在选材时尽量选择质量好一点的元器件。

二、PCB绘制笔者使用Protel 99 SE进行布线设计,大家看到的这个PCB图(图2)是我画的第三版,也是我最满意的一版,前几版都存在着飞线,而这一版是没有的,网上的很多版本都存在着飞线的问题,这对挑剔的动手派是不能容忍的。

由于面积小,所以在接地方面要尽量争取一点接地,输入和输出端也可以根据实际情况进行改动。

47耳放制作HIFI耳机放大器-PCB-电路图-及全套设计资料(吐血推荐)

47耳放制作HIFI耳机放大器-PCB-电路图-及全套设计资料(吐血推荐)

对于47耳放的完美改进制作高保真耳机放大器之前一直折腾功放听桌面音箱,半年前忽然打算用用耳机了,于是入了森海的HD595。

虽然50欧的阻抗不算高,但是要发挥出设备的实力耳放还是少不了的。

所以,决定自己动手做一个耳放。

这期间参考了大量关于耳放的资料,最终决定以47耳放电路为基础并加以改进制作一个比较完美的耳机放大器。

便动手做了起来。

一、放大部分47耳放是一位外国人设计的电路,电路如图。

因为电路中有较多以47为参数的元件所以称作47耳放。

传说中的47耳放结构其实是很简单的,第一级运放进行负反馈控制放大倍数进行比例放大,第二个运放进行电压跟随,降低放大器内阻,增加了输出电流,并做声音修饰。

两个运放输出经过两个47欧匀流电阻输出致耳机。

因为反馈取样点在47电阻之后,所以不用考虑电阻带来的损耗。

曾经在网上看过很多47耳放的PCB设计,虽然47耳放的电路十分简单,但是很多PCB却存在着或多或少的布线问题,有些抗干扰能力不是很强,甚至在淘宝上看到很多看似很漂亮的板子却有很大的交流声。

所以自己决定做一个比较完美的47耳放以便把这个电路的能力发挥出来。

于是,开工了。

首先线路图电路没有添加音量电位器,只做了放大部分。

这样一来功能比较独立,方便以后的各种组合。

47原设计使用的运放是OPA2132,这个运放是FET输入型的,所以内阻极高。

而且在低电压下可以正常工作,失调电压与失调电流极小,算是比较高档的运放了。

当然OPA2132的价格也是很高档的。

我作为0收入人士必然不能把这种高档传承下去,于是我选用了这年头满大街都是的NE5532。

NE5532虽然指标相对于OPA2132较差,但是工作于+-15V时音色总体来说还是比较讨人喜欢的。

单片5532耗电相对较大,两片并联就更不用说了,双15V下耗电可想而知。

这就意味着这款耳放将要脱离便携式耳放的范畴转型向台式耳放了。

由于5532失调电压较高而且又是NPN管输入的,如果使用原设计必然会引来较大的输出中点漂移,经过测试最大有30多MV。

MOSFET功放电路

MOSFET功放电路

目录场效应管功率放大电路 (1)场效应管80W音频功率放大电路 (1)一款性能极佳的JFET-MOSFET耳机功放电路图 (2)100W的MOSFET功率放大器 (2)场效应管(MOSFET)组成的25W音频功率放大器电路图 (4)一种单电源供电的MOSFET功放电路 (6)100W的V-MOSFET功率放大器电路 (6)100W场效应管功率放大电路 (8)全对称MOSFET OCL功率放大器电路图 (9)场效应管功率放大电路如图所示电路是采用功率MOSFET管构成的功率放大器电路。

电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。

其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。

场效应管80W音频功率放大电路图100W的MOSFET功率放大器电路图关于电路电容C8是阻止直流电压,如果从输入源的输入直流去耦电容。

如果畅通,将改变这个直流电压偏置值S后续阶段。

电阻R20限制输入电流到Q1 C7 -绕过任何输入的高频噪声。

晶体管Q1和Q2的形式输入差分对和Q9和Q10来源1毫安左右建成的恒流源电路。

预设R1用于调整放大器的输出电压。

电阻R3和R2设置放大器的增益。

第二差的阶段是由晶体管,第三季度和Q6,而晶体管Q4和Q5形式电流镜,这使得第二个差分对漏一个相同的电流。

这样做是为了提高线性度和增益。

Q7和Q8在AB 类模式运行的功率放大级的基础上。

预设R8可用于调整放大器的静态电流。

电容C3和电阻R19组成的网络,提高了高频率稳定度和防止振荡的机会。

F1和F2是安全的保险丝。

电路设置设置在中点R1开机前,然后慢慢调整为了得到一个最低电压(比50mV)输出。

下一步是成立的静态电流,并保持在最低电阻预设的R8和万用表连接跨标记点电路图X和Y的调整R8使万用表读取16.5mV对应50mA的静态电流。

注意事项质量好的印刷电路板组装的电路。

094054_NE5532经典电路图

094054_NE5532经典电路图

NE5532功放说到小功率的耳放,不得不提到20世纪的运放之王NE5532,曾经出现在无数的优秀前级放大、调音电路之中,中频温暖细腻厚实,胆味十足,性价比很高!直到今天我们还能很容易地在一些中低档的音响产品中找到它。

由于其体积小、电路简单,所以是讲究实用性、低投入的动手派的首选。

因为NE5532从面世到如今已历经数载,大家对其电路也非常熟悉,有着多种多样的玩法。

在此介绍的耳放的特点是简单、功率小,侧重的是制作的过程。

一、原理分析NE5532是典型的双极型输入运算放大器,用单个NE5532组成的小功率电路有很多版本,本人通过不断地对比和思考,对那些五花八门的电路图作了修改,最终确定了原理图(图1)。

放大倍数是由R3(R4)和R5(R6)来控制的,理论上说如果R3(R4)为1kΩ,R5(R6)为100kΩ,则其放大倍数为100倍,但对于耳放来说,这会引起自激,再说就算真的能达到100倍,效果也不可能好,所以这个电路用于前级时也最好别调成100倍。

当然,对于耳放定2~3倍可以让负反馈适量、音质柔和、清晰更通透,但放大倍数也不能太小,否则也会影响音质,大家可以反复调试,达到自己满意的效果。

笔者是将R3(R4)定为1kΩ,R5(R6)定为20 kΩ,即2倍。

C5(C6)是输入回路的对地通路,在用于耳放电路时应该加大,原理图中的值为22 uF,但用于此耳放应该加大到100 uF。

在这里值得一提的是电源问题,如果你是使用的稳压电源,要注意稳压电源的滤波要给足,因为本电路本身就非常简单,那么对元器件的选取就比较挑剔,建议在选材时尽量选择质量好一点的元器件。

二、PCB绘制笔者使用Protel 99 SE进行布线设计,大家看到的这个PCB图(图2)是我画的第三版,也是我最满意的一版,前几版都存在着飞线,而这一版是没有的,网上的很多版本都存在着飞线的问题,这对挑剔的动手派是不能容忍的。

由于面积小,所以在接地方面要尽量争取一点接地,输入和输出端也可以根据实际情况进行改动。

耳机放大器及电路原理2

耳机放大器及电路原理2

■任保华图11OTL阴极输出胆耳放图12OTL电子管耳放电路图耳机放大器及其电路(下)图11是笔者制作的分体OTL阴极输出胆耳放的实物图,图12是它的电路图。

这台耳放的输入级采用了两只并联的孪生三极管,我们不妨称它为双管并联SRPP输入级。

SRPP电路的特点是频响宽、声音华丽,采用双管并联后降低了输出阻抗,提高了灵敏度,不要小看这个改动,它会给你带来比常规单管SRPP输入级更加优良的性能呢!C2、C3是旁路电容。

旁路电容使交流信号电流不流经V1的阴极电阻R1,于是没有交流信号电流的负反馈,这使输入级瞬态得到提升、频率响应更加平坦。

耳放的功率输出级是典型的阴极跟随器(cathode图14变压器输出胆耳放图13变压器输出胆耳放电路图专题follower),或称阴极输出器。

阴极输出器过去曾经有过一段为声频爱好者狂热追求的历史,在那个时期各种杂志一片赞赏美誉之辞,声称如果把这种电路应用于声频放大器输出级,那么放大器就不会有非线性失真,频率特性会变得异常平坦,扬声器的阻尼问题也可得到很好的解决等等。

一时间阴极输出器似乎成了高保真设备的规范模式了。

日月荏苒,白驹过隙,随着时光的流逝这种电路却不知不觉地被人们淡忘了,在主流的胆机功放中已经很难找到它的身影。

那么阴极输出功率放大器是不是已经失去了昔日的风采了呢?当然不是。

我们知道,阴极输出器的基本特征是:1)高的动态输入阻抗;2)低的输出阻抗;3)通带电压放大系数小于1。

阴极输出器具有这些性能是因为它是一个电压负反馈放大器,所有电压负反馈放大器的优点,如噪声的抑低、频率响应性能的改善,非线性失真的抑低等等,它都具备。

阴极输出功率放大器的致命弱点是它的功率灵敏度太低,要求的输入电压幅度太大,对于前级来说,向后级供给很大的输入电压就可引起很大的非线性失真。

从总体上来讲会得不偿失,另一方面它的输出功率太小,效率很低;高阻抗的优质扬声器的匮乏也是影响阴极输出功率放大器发展的瓶颈。

耳机和麦克插头电路详解

耳机和麦克插头电路详解

3.5毫米插座/ 插头的结构和接线方式1、3.5毫米前置音频插座的结构首先要了解前置音频插座的结构。

根据英特尔关于AC97前置音频接口的规范,机箱的前置音频面板采用两种3.5毫米微型插座:1开关型的,2无开关型的,见下图:开关型的2/3,4/5端是两个开关,当没有插头插入时,2/3,4/5端是连通的,当插头插入时2/3,4/5端断开。

无开关的就没有3,4两个开关端。

2、3.5毫米插头结构3.5毫米插头一般可分为三芯和二芯两种,如下图:二芯插头一般用于麦克,三芯插头一般用于立体声音耳机(有源音箱)。

现在二芯插头很少,所以麦克也用三芯插头。

耳机和麦克插头的接线定义如下图:麦克、耳机插头的接线如下图:采用三芯的麦克插头还有两种接法,如下图:这种接法没有麦克偏置,如果与麦克插座接线配合不准确。

会不好用。

3、前置麦克连接的问题前置音频口的连接,耳机一般没有什么问题,麦克会经常出现问题,原因是有些机箱的前置麦克插座的接线方式不标准。

下图列出了标准接线与非标准接线的区别:标准的接线有三条线:地线、麦克输入、麦克偏置。

非标准的有二条线:地线和麦克输入,把麦克偏置省了。

非标准1是把插座1、3短接,非标准2是3脚空着。

这两种的把MIC_IN接到JAUD1的1脚是可以使用的。

非标准3是把2、3短接,这种插入标准插头的麦克肯定是没有声音的,除非也用那种与之相对应接法的非标准插头的麦克。

4、前置音频线英特尔规范中对前置音频线也作了规定:左右声道、麦克以及AUD_VCC/HP_ON都要成对屏蔽,同时这些线还要组合在一起外层屏蔽。

参考下图:国内的机箱看不到有符合这种标准的前置音频线。

这种标准的音频线会减少干扰,降低噪声。

市场主流低端的6(5.1)声道主板一般配置3个插孔的音频接口,这三个插孔分别是①蓝色的音频输入②绿色的音频输出③粉色的麦克输入。

这三个插孔通过软件设置可以提供4-或6-声道模拟音频输出功能。

AC97音量控制面板与HD音量控制面板最大的差异在录音/input音量控制面板。

ACCDET

ACCDET

ACCDET1.耳机种类耳机种类分大概分为三段(TRS)和四段(TRRS:OMTP、CTIA/AHJ)两种(具体的还有直径和长度之分,这里不再详述),具体规格如图:带三个按键和MIC的标准耳机电路:2.MTK平台耳机检测种类1.ACCDET这种方式只使用ACCDET检测HP_MIC上的电压,检测时会出现更多的错误或者错误的按键状态。

缺点:插拔时由于耳机MIC上的电压导致电路噪声比较大。

插拔错误检测率比ACCDET+EINT方式的低,会出现更多的错误检测;按键错误检测率也比后者的低。

电路设计:2.ACCDET+EINT这种方式HP_MIC作为检测中断源的同时使用ACCDET来检测HP_MIC上的电压。

对于电路噪声改善比较大。

电路设计:3.ACCDET+EINT(multi-key)设计要求:需要在L_switch引脚添加470K上拉电阻HPL和HPR输出引脚需要添加470ohm下拉使用1K电阻将ACCDET和HP_MIC连接起来耳机检测:Plug in:HP_EINT触发中断->插入检测->ACCDET检测耳机类型Plug out:HP_EINT触发中断->拔出检测(HP_EINT:插入拔出检测ACCDET:检测耳机类型和按键UP:0.09<V<0.24MID: 0<V<0.09DOWN: 0.24<V<0.5)电路设计:4.ACCDET+EINT(multi-key+Pin recognition)对于TRRS耳机的两种标准,MTK提供了这个方案来解决耳机检测的兼容问题。

检测流程如第3点(ACCDET+EINT(multi-key)),稍微不同的是在检测时软件处理上多了1s的防抖延时。

此方案限制:仅支持默认的耳机接口(default open audio jack)对于使用外置功放的方案,因为使用外放播音乐时插入耳机会导致检测时效,所以不支持Pin recognition检测方案。

几款发射器

几款发射器

几款发射器编者按:本文较详尽地介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。

主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、监听、数据传输及校园调频广播等。

单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。

电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。

工作电流为60--80mA。

但以上三极管难以购到,且价格较高,假货较多。

笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。

笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短, 电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。

其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。

实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。

若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。

图1介绍的单管发射机具有电路简单,输出功率大,制作容易的特点,但是不便接高频电缆将射频信号送至室外的发射天线,一般是将0.7--0.9m的拉杆天线直接连在C5上作发射的,由于多普勒效应,人在天线附近移动时,频漂现象很严重,使本来收音正常的接收机声音失真或无声。

若将本发射机作无线话筒使用,手捏天线保灯卸嘌现鼐涂上攵恕?lt;BR>图2为2km调频发射机电路。

本电路分为振荡、倍频、功率放大三级。

耳机功放电路图原理介绍

耳机功放电路图原理介绍

一.耳机功率放大器耳放耳机功率放大器,因为比较大的耳机阻抗很高,小的随身听是带不起来,推不动,就要耳放,有源的,接在音源和耳机中间。

耳放这个词也是很多烧友经常谈论的词汇,耳放是放耳机的箱子嘛?当然不是,耳放是耳机功率放大器的简称,链接在耳机与音源之间,起到发挥耳机实力作用。

在高端的耳机中分为两类,一种是高阻抗、低灵敏度的耳机,这类的耳机普通设备的耳机输出很难驱动。

还有一类的耳机采用的低阻抗、高灵敏度的设计,这样的耳机对于电流输出的稳定性要求很高。

针对这种情况,需要耳放来改善音源的耳机输出,来发挥耳机的效果。

从体积上来分,耳放可以分为台式耳放,这种耳放一般体积较大,适合在家庭中使用。

还有一种为便携耳放,体积小巧,可以和随身设备搭配。

从使用的主要元器件,也可以分为胆机(电子管)和石机(晶体管)两种,声音趋向各不相同。

在实际的使用中,根据自己的耳机耳塞添加合适的耳放设备,效果提升是十分明显的。

二.耳机功放电路图原理介绍(1). 图1为耳机控制功能工作示意图,当没有耳机插头接入插孔时,R1-R2分压电阻使提供到HP-IN管脚(16脚)的电压近似为50mV,驱动Amp1B和Amp2B处于工作状态,使HWD2163工作于桥式模式。

输出耦合电容隔离半供给直流电压,起到保护耳机的作用。

输入HP-IN管脚的电压为4V。

当HWD2163工作于桥式模式时,实质上负载两端的电压为0V。

因此甚至为理想状态下,难以引发放大器处于单终端输出的工作模式。

耳机接入耳机插孔使得耳机插孔与-OUTA分离并使R1上接HP管脚的电压至VDD。

这样耳机关断功能把Amp2A和Amp2B给关断且桥式连接的扬声器就不工作了,放大器便驱动输出耦合阻抗为R2和R3的耳机,当耳机阻抗为典型值32Ω时,输出耦合阻抗R2、R3对HWD2163输出驱动能力的影响可忽略不计。

图2也是耳机插孔的电性连接关系示意图,插孔为一组三线插头的设计,尖端和环分别为立体双声道的一个信号输出,然而最外端的环为地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

耳机电路图
耳机最容易损坏的是耳机线,有能力自己更换耳机线的用户,可以拆开导线自己修复耳机。

自己维修的玩家需要了解耳机的结构,并且会使用万用表及电烙铁。

耳机线全长2.2米,中间有调音器,内带咪头。

插头为2个3.5毫米的立体声插头,一个是喇叭插头,一个是麦克风插头,喇叭插头为黑色,麦克风插头为红色。

编织线直径3.7毫米,长度2米,弹簧线直径3.0毫米,压缩长度20厘米,拉长长度35厘米,耳机线全长2.2米。

耳机线的引出线分别为金色、红色和绿色,其中金色接左右声道喇叭的公共线,绿色线接做声道,红色线接右声道!将调音器调到最下面,也就是音量调整到最大,然后用万用表测量金色引出线与红色引出线之间,电阻大约500欧姆,测量金色引出线与绿色引出线之间,电阻也大约是500欧姆。

相关文档
最新文档