计量经济学课内试验
计量经济学实验报告
计量经济学实验报告1. 引言计量经济学是应用数学和统计学方法来研究经济现象的一门学科。
实验是计量经济学研究中常用的方法之一,通过设计和实施实验,可以帮助我们理解经济现象背后的因果关系。
本文将对一项计量经济学实验进行详细描述和分析,以展示实验的设计、数据分析和结论。
2. 实验设计2.1 实验目的本次实验的目的是研究市场供需关系对商品价格的影响。
具体而言,我们希望通过改变商品的市场供给量,观察商品价格如何变化,并分析供给弹性的大小。
2.2 实验假设在实验设计阶段,我们需要制定实验假设来指导实验的进行。
在本次实验中,我们假设市场供给量的变动会对商品价格产生影响,而且供给弹性的大小会决定价格的变动幅度。
2.3 实验步骤本次实验包括以下几个步骤:1.设定实验组和对照组:我们将随机选择一些参与者,并将其分为两组,一组作为实验组,一组作为对照组。
实验组将面临市场供给量变动的情况,而对照组则不受干扰。
2.确定商品和市场:我们选择一个特定的商品,并确定一个特定的市场来进行实验。
这样可以使实验更加具体和可控。
3.设定实验条件:在实验组中,我们逐步调整市场供给量,并记录下不同供给量下的商品价格。
对照组则保持市场供给量不变。
4.数据收集:在每次实验条件设定完毕后,我们将记录实验组和对照组的商品价格,并对数据进行整理和存储。
2.4 实验风险和伦理考虑在设计实验时,我们需要考虑实验可能存在的风险,并确保实验过程符合伦理要求。
具体而言,我们需要确保参与者的权益得到保护,并在可能对参与者造成负面影响的情况下停止实验。
3. 数据分析在实验进行完毕后,我们对数据进行分析,以验证实验假设并得出结论。
3.1 数据整理首先,我们将实验组和对照组的数据整理成表格形式,方便后续分析。
由于文档要求不能包含表格,这里无法展示具体的数据。
3.2 数据分析方法我们采用的数据分析方法主要包括描述统计分析和回归分析。
描述统计分析用于描述数据的基本特征,包括平均值、标准差、最小值和最大值等。
计量经济学实验报告
计量经济学实验报告实验报告实验课程名称:计量经济学实验案例1:近年来,中国旅游业⼀直保持⾼速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作⽤⽇益显现。
中国的旅游业分为国内旅游和⼊境旅游两⼤市场,⼊境旅游外汇收⼊年均增长22.6%,与此同时国内旅游也迅速增长。
改⾰开放20多年来,特别是进⼊90年代后,中国的国内旅游收⼊年均增长14.4%,远⾼于同期GDP 9.76%的增长率。
为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。
解题过程:⾸先,通过Eviews,得出回归模型:Y=-274.377+0.013X2+5.438X3+3.272X4+12.986X5-563.108X6tc=-0.208 t2=1.031 t3=3.940 t4=3.465 t5=3.108 t6=-1.753R^2=0.995 F=173.354 DW=2.311从估计结果来看,模型可能存在多重共线性。
因为在OLS下,R^2^2与F值较⼤,⽽各参数估计量的t检验值较⼩,说明各解释变量对Y的联合线性作⽤显著,但各个解释变量存在共线性从⽽使得它们对Y的独⽴作⽤不能分辨,故t检验不显著。
应⽤Eviews,写下命令:cor X2 X3 X4 X5 X6。
得到相关系数矩阵。
可以从中看出五个经济变量之间两两简单相关系数⼤都在0.80以上,甚⾄有的在0.96以上。
表明模型存在着严重的多重共线性。
从⽽为了消除多重共线性,这⾥采⽤逐步回归法。
第⼀步,⽤每个解释变量分别对被解释变量做简单回归。
得:Y=-3462+0.0842X2 t=8.666 R^2=0.903 F=75Y=-2934+9.052X3 t=13 R^2=0.956 F=173Y=640+11.667X4 t=5.196 R^2=0.771 F=27Y=-2265+34.332X5 t=6.46 R^2=0.839 F=42Y=-10897+2014X6 t=8.749 R^2=0.905 F=77根据R^2统计量的⼤⼩排序,可见重要程度依次为X3, X6, X2, X5, X4。
计量经济学实验报告(一)
计量经济学实验报告(一)
一、实验背景
计量经济学实验是一种采用经济理论和方法来设计实验的经济研究方法。
经济实验的主要目的是检验经济理论,比如检验假设和改进预测。
它还可以用于定性评价和定量评价政策方案和市场动态,以及验证行为经济学理论。
二、实验内容
本次实验通过一组独立的在线调查来研究人们对收入分配政策的态度。
调查中,受访者被要求就14种不同的收入分配政策支持、反对和中立做出反应。
这14种收入分配政策包括财政公平政策、税收和补贴政策、劳动力市场政策和参与机会政策等。
以及根据态度的强度来改变互动形式,不同类型的回答有不同的加分,比如更强烈的支持会比中立的有更多分数。
三、实验结果
实验结果显示,在14种收入分配政策中,受访者大部分表示支持或者反对。
最受支持的是劳动力市场政策,而最受反对的是税收和补贴政策。
同时,实验还发现,这14种收入分配政策受实验者支持或反对的原因大部分是经济实惠:如果一个政策能够为普通大众带来经济实惠,这个政策很可能受到受访者的支持。
此外,一些政策因其有助于实现平等收入而受到支持。
四、实验结论
本次实验结论清楚地表明,受访者支持或反对收入分配政策跟经济实惠有关。
当人们普遍受益于收入分配政策时,他们很可能支持这种政策。
另外,实验还发现,有些政策受支持的原因还在于它们有助于实现平等收入的目的。
本次实验不仅对计量经济学的理论和方法提供了有价值的信息,而且还为构建经济实证提供了重要的参考意见。
可以认为,经过本次实验的进一步检验和优化,可以发现更详细、更准确的数据,以便进一步检验和发展计量经济学的理论与方法。
计量经济学实验报告1
计量经济学实验报告1计量经济学实验报告1引言:计量经济学是经济学中的一个重要分支,通过运用统计学和数学方法来研究经济现象。
实验是计量经济学中常用的研究方法之一,通过对实际数据的收集和分析,可以验证经济理论的有效性和预测能力。
本实验报告旨在介绍我所进行的计量经济学实验,并对实验结果进行分析和讨论。
实验目的:本次实验的目的是研究某地区居民消费支出与个人收入之间的关系。
通过收集一定数量的样本数据,建立经济模型,以探究消费支出与个人收入之间的相关性,并验证是否存在所谓的“边际消费倾向”。
实验设计:为了收集样本数据,我设计了一份问卷调查,涵盖了个人收入、家庭人口、教育水平、职业等多个方面的信息。
通过随机抽样的方式,我在某地区抽取了300个样本,并对这些样本进行了调查。
在调查过程中,我还请教了一些经济学专家,以确保问卷设计的合理性和可靠性。
实验结果:通过对样本数据的分析,我得出了以下几个重要的实验结果:1. 个人收入与消费支出呈正相关关系:根据统计分析,我发现个人收入与消费支出之间存在显著的正相关关系。
也就是说,个人收入越高,消费支出也越高。
这与经济学理论中的边际消费倾向相一致,即收入增加一单位时,消费支出增加的单位。
2. 家庭人口对消费支出的影响:我发现,家庭人口对消费支出有一定的影响。
在其他条件相同的情况下,家庭人口较多的家庭,其消费支出较高。
这可能是因为家庭人口较多,生活成本较高,因此需要更多的消费支出。
3. 教育水平与消费支出的关系:通过数据分析,我发现教育水平与消费支出之间存在一定的正相关关系。
受过高等教育的人群,其消费支出相对较高。
这可能是因为受过高等教育的人更有可能获得较高的收入,从而有更多的消费能力。
实验讨论:通过本次实验,我得出了一些对于经济学理论的验证和解释。
首先,个人收入与消费支出之间的正相关关系,说明了边际消费倾向的存在。
这对于经济学理论的解释和政策制定具有重要意义。
其次,家庭人口和教育水平对消费支出的影响,也提醒我们在研究经济现象时,需要考虑到个体背景和环境因素的影响。
计量经济学实验操作指导(完整版)
计量经济学试验(完整版)-—李子奈ﻬ目录实验一一元线性回归ﻩ错误!未定义书签。
一实验目得..................................... 错误!未定义书签。
二实验要求.................................... 错误!未定义书签。
三实验原理ﻩ错误!未定义书签。
四预备知识ﻩ错误!未定义书签。
五实验内容ﻩ错误!未定义书签。
六实验步骤..................................... 错误!未定义书签。
1、建立工作文件并录入数据................... 错误!未定义书签。
2、数据得描述性统计与图形统计: .............. 错误!未定义书签。
3、设定模型,用最小二乘法估计参数:ﻩ错误!未定义书签。
4、模型检验: ............................... 错误!未定义书签。
5、应用:回归预测:ﻩ错误!未定义书签。
实验二可化为线性得非线性回归模型估计、受约束回归检验及参数稳定性检验............................... 错误!未定义书签。
一实验目得:ﻩ错误!未定义书签。
二实验要求..................................... 错误!未定义书签。
三实验原理..................................... 错误!未定义书签。
四预备知识.................................... 错误!未定义书签。
五实验内容ﻩ错误!未定义书签。
六实验步骤ﻩ错误!未定义书签。
实验三多元线性回归...................... 错误!未定义书签。
一实验目得..................................... 错误!未定义书签。
三实验原理ﻩ错误!未定义书签。
四预备知识.................................... 错误!未定义书签。
计量经济学》实验报告
计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。
需求是购买欲望与购买能力的统一。
2、需求定理是说明商品本身价格与其需求量之间关系的理论。
其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。
3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。
需求量的变动表现为同一条需求曲线上的移动。
二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。
2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。
(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。
3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。
5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。
(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。
计量经济学-实验教学大纲1
《计量经济学》实验课程目录一、制定实验教学大纲思想、依据 (2)二、本课程实验教学的地位、作用和效果 (2)三、本课程实验教学的目的及基本要求 (3)四、学生应达到的实验能力标准 (3)五、学时、教学文件及教学形式 (4)六、实验考试方法与成绩评定 (4)七、实验项目、学时分配及适用专业 (4)八、大纲内容 (5)九、主要实验教材(指导书)及参考用书 (10)一、制定实验教学大纲思想、依据课程设计的思想:计量经济学是理论与实践的桥梁,是一门实践性很强的课程,实践教学的设计思想是使学生更深刻理解、掌握计量经济学理论与方法;使学生能独立利用计量经济学方法定量解决实际问题。
课程设计的依据:本课程根据「计量经济学教学大纲」对学生实验能力培养要求而制定。
二、本课程实验教学的地位、作用和效果课程的地位、作用:计量经济学课程是一门比较抽象的课程,同时又是一门实验性非常强的课程。
本课程实验是巩固和补充课堂讲授的理论知识的必要环节,通过实验,培养学生应用计量经济学理论知识解决实际问题。
课程的效果:实践教学的效果十分明显,主要表现在:第一,学生能深刻理解枯燥的计量经济学理论,较好掌握计量经济学理论知识,理论考试成绩明显提高;第二,学生能用计量经济学方法分析社会经济问题,学生参与社会问题研究的热情普遍提高;第三,学生的研究能力和发表的论文明显上了档次。
三、本课程实验教学的目的及基本要求教学目的:通过实验加深对课堂讲授知识的理解,化解繁杂的计算过程,使学生用相关的软件独立地建立和应用计量经济学模型及方法来研究实际的经济问题,为相关课程的学习及毕业论文中使用数量分析方法打下坚实的基础。
教学要求:通过计量经济学实验的学习,使学生能熟练地掌握计量经济学软件(本计划使用Eviews)的使用;能用Eviews来建立单方程、联立方程模型和理解其它相关的教学内容,能上机运算、看懂输出结果并结合输出结果对模型进行各种检验。
要求学生能独立地运用统计资料建立实用的、可靠的计量经济模型。
计量经济学课程实验报告
计量经济学课程实验报告实验序号2实验名称Eviews的异方差检验与校正实验组别12模拟角色实验地点2教602指导老师刘冬萍实验日期11月29日实验时间16:05——17:45一、实验目的及要求学会使用计量学分析^p 软件Eviews的异方差检验与校正功能。
二、实验环境2教602,经管学院电脑实验室三、实验内容与步骤 ?DATA Y _SORT _1.生成相关图SCAT _ Y根据相关图随着_的增大Y的取值范围不断增大,所以方程存在异方差.2.方程的异方差检验(1)WHITE 检验建立回归模型 LS Y C _ Dependent Variable: Y Method: Least SquaresDate: 11/22/12 Time: 17:06 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.8594690.7090571.2121300.2411_0.0363400.0096333.7723930.0014R-squared0.441531Mean dependent var3.100000Adjusted R-squared0.410504S.D.dependent var2.255986S.E.of regression1.732115Akaike info criterion4.031203Sum squared resid54.09Schwarz criterion4.130776Log likelihood-38.31203F-statistic14.23095Durbin-Watson stat2.111232Prob(F-statistic)0.001395进行WHITE 检验White Heteroskedasticity Test: F-statistic6.172459Probability0.009656Obs_R-squared8.413667Probability0.014893Test Equation:Dependent Variable: RESID^2 Method: Least SquaresDate: 11/22/12 Time: 17:07 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-0.8401623.268547-0.2570450.8002_0.0346910.0966160.3590620.7240_^20.0002590.4703750.6441R-squared0.420683Mean dependent var 2.70020__Adjusted R-squared 0.352528S.D.dependent var5.061699S.E.of regression4.072927Akaike info criterion 5.784082Sum squared resid 282.0085Schwarz criterion5.933442Log likelihood-54.84082F-statistic6.172459Durbin-Watson stat 2.196613Prob(F-statistic)Nr^2=8.413677 因为检验的P=0.014893小于0.05,所以存在异方差.(2) PARK检验LS Y C _Dependent Variable: YMethod: Least SquaresDate: 11/22/12 Time: 17:13Sle: 1 20Included observations: 20VariableCoefficientStd.Errort-StatisticProb.C0.8594690.7090571.2121300.2411_0.0363400.0096333.7723930.0014R-squared0.441531Mean dependent varAdjusted R-squared0.410504S.D.dependent var2.255986S.E.of regression1.732115Akaike info criterion 4.031203Sum squared resid54.09Schwarz criterion4.130776Log likelihood-38.31203F-statistic14.23095Durbin-Watson stat2.111232Prob(F-statistic)0.001395GENR E2=LOG(RESID2) GENR LN_=LOG(_)LS LNE2 C LN_ Dependent Variable: LNE2 Method: Least SquaresDate: 11/22/12 Time: 17:16 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-7.6927982.272023-3.3858810.0033LN_1.8393580.5713163.2195140.0048R-squared0.365421Mean dependent var-0.465580Adjusted R-squared0.330167S.D.dependent var1.915506S.E.of regression1.567714Akaike info criterion3.831754Sum squared resid44.23911Schwarz criterion3.931327Log likelihood-36.31754F-statistic10.36527Durbin-Watson stat1.937606Prob(F-statistic)0.004754由上图可看出P分别为0.0033 ,0.0048,0.004754都是小概率事件,所以方程是显著的,表明随机误差项的方差随着解释变量的取值不同而不断变化,即存在异方差性.(3)GLEISER检验LS Y C _GENR E=ABS(RESID)eq \o\ac(○,1)GENR _1=_^0.5LS E C _1Dependent Variable: E1Method: Least SquaresDate: 11/28/12 Time: 13:14Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-1.2504440.637839-1.9604370.0656_10.3265340.0812324.0197750.0008R-squared0.473046Mean dependent var1.192860Adjusted R-squared0.443771S.D.dependent var1.159531S.E.of regression0.864787Akaike info criterion2.641972Sum squared resid13.46141Schwarz criterion2.741545Log likelihood-24.41972F-statistic16.15859Durbin-Watson stat2.047999Prob(F-statistic)0.000804|e1|=-1.250444+0.326534_1^0.5 R^2=0.473046 F=16.15859 P= eq \o\ac(○,2)GENR _2=_^-2LS E C _2Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:27 Sle: 1 20Included observations: 20 VariableCoefficientStd.t-StatisticProb.C1.6651230.3427744.8577860.0001_2-657.9505338.0359-1.9463920.0674R-squared0.173874Mean dependent var 1.192860Adjusted R-squared 0.127978S.D.dependent var1.159531S.E.of regression1.082794Akaike info criterion 3.091607Sum squared residSchwarz criterion3.191180Log likelihood-28.91607F-statistic3.788442Durbin-Watson stat1.454864Prob(F-statistic)0.067388|e2|=1.665123-657.9505_^-2R^2=0.173874 F=3.788442 P= eq \o\ac(○,3)GENR _3=_^2LS E C _3Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:32 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.5805350.2376322.4430010.0251_30.0001132.67E-054.2339310.0005R-squared0.498972Mean dependent var 1.192860Adjusted R-squared 0.471138S.D.dependent var1.159531S.E.of regression0.843245Akaike info criterion 2.591520Sum squared resid 12.79911Schwarz criterion2.691093Log likelihood-23.91520F-statistic17.92617Durbin-Watson stat2.064289Prob(F-statistic)0.000499|e3|=0.580535+0.000113_4^2R^2=0.498972 F=17.92617 P=0.000499 eq \o\ac(○,4)GENR _4=_^-0,5LS E C _4Dependent Variable: EMethod: Least SquaresDate: 11/28/12 Time: 13:36Sle: 1 20Included observations: 20VariableCoefficientStd.Errort-StatisticProb.C3.4730600.7618054.5589870.0002_4-15.53960-3.1195030.0059R-squared0.350914Mean dependent var 1.192860Adjusted R-squared 0.314854S.D.dependent var1.159531S.E.of regression0.959785Akaike info criterion 2.850424Sum squared resid 16.58137Schwarz criterion2.949998Log likelihood-26.50424F-statistic9.731299Durbin-Watson stat 1.759756Prob(F-statistic)|e4|=3.473060-15.53960 _^-0.5 R^2=0.350914 F=9.731299 P= eq \o\ac(○,5)GENR _5=_^-1LS E C _5Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:45 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C2.2657780.4628754.8950140.0001_5-45.8762517.27699-2.6553390.0161R-squared0.281461Mean dependent var1.192860Adjusted R-squared0.241542S.D.dependent var1.159531S.E.of regression1.009829Akaike info criterion2.952079Sum squared resid18.35560Schwarz criterion3.051653Log likelihood-27.52079F-statistic7.050824Durbin-Watson stat1.627325Prob(F-statistic)0.016106|e5|=2.265778-45.87625_^-1R^2=0.281461 F=7.050824 P=0.016106由以上的五个方程表明,利润函数存在异方差性(只要取显著水平a大于0.067388)3.WLS方法估计利润函数(1)利用最小二乘法估计模型LS Y C _Dependent Variable: Y Method: Least SquaresDate: 11/28/12 Time: 12:40 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.8594690.7090571.2121300.2411_0.0363400.0096333.7723930.0014R-squared0.441531Mean dependent var3.100000Adjusted R-squared0.410504S.D.dependent var2.255986S.E.of regression1.732115Akaike info criterion4.031203Sum squared resid54.09Schwarz criterion4.130776Log likelihood-38.31203F-statistic14.23095Durbin-Watson stat2.111232Prob(F-statistic)0.001395得到:y^=0.859469+0.036340_ R^2=0.441531 (0.0014)T=(1.212130) (3.772393 )(2)生成权数变量:根据帕克检验得到:Ls y c _Genr lne2=log(resid^2)Genr ln_=log(_)Ls lne2 c ln_Dependent Variable: LNE2 Method: Least SquaresDate: 11/28/12 Time: 12:56 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-7.6927982.272023-3.3858810.0033LN_1.8393580.5713163.2195140.0048R-squared0.365421Mean dependent var-0.465580Adjusted R-squared0.330167S.D.dependent var1.915506S.E.of regression1.567714Akaike info criterion3.831754Sum squared resid44.23911Schwarz criterion3.931327Log likelihood-36.31754F-statistic10.36527Durbin-Watson stat1.937606Prob(F-statistic)0.004754LNEi^2=--7.692798+1.839358LN_ R^2=0.365421 进行戈里瑟检验LS Y C _GENR E=ABS(RESID)eq \o\ac(○,1)GENR _1=_^0.5LS E C _1Dependent Variable: E1 Method: Least SquaresDate: 11/28/12 Time: 13:14 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C-1.2504440.637839-1.9604370.0656_10.3265340.0812324.0197750.0008R-squared0.473046Mean dependent var1.192860Adjusted R-squared0.443771S.D.dependent var1.159531S.E.of regression0.864787Akaike info criterion2.641972Sum squared resid13.46141Schwarz criterion2.741545Log likelihood-24.41972F-statistic16.15859Durbin-Watson stat2.047999Prob(F-statistic)0.000804|e1|=-1.250444+0.326534_1^0.5 R^2=0.473046 F=16.15859 P= eq \o\ac(○,2)GENR _2=_^-2LS E C _2Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:27 Sle: 1 20Included observations: 20Variable CoefficientStd.Errort-StatisticProb.C1.6651230.3427744.8577860.0001_2-657.9505338.0359-1.9463920.0674R-squared0.173874Mean dependent var 1.192860Adjusted R-squared 0.127978S.D.dependent var1.159531S.E.of regression1.082794Akaike info criterion3.091607Sum squared resid21.18Schwarz criterion3.191180Log likelihood-28.91607F-statistic3.788442Durbin-Watson stat1.454864Prob(F-statistic)0.067388|e2|=1.665123-657.9505_^-2R^2=0.173874 F=3.788442 P= eq \o\ac(○,3)GENR _3=_^2LS E C _3Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:32 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.5805350.2376322.4430010.0251_30.0001132.67E-054.2339310.0005R-squared0.498972Mean dependent var 1.192860Adjusted R-squared 0.471138S.D.dependent var1.159531S.E.of regression0.843245Akaike info criterion 2.591520Sum squared resid 12.79911Schwarz criterionLog likelihood-23.91520F-statistic17.92617Durbin-Watson stat2.064289Prob(F-statistic)0.000499|e3|=0.580535+0.000113_4^2R^2=0.498972 F=17.92617 P=0.000499 eq \o\ac(○,4)GENR _4=_^-0,5LS E C _4Dependent Variable: EMethod: Least SquaresDate: 11/28/12 Time: 13:36Sle: 1 20Included observations: 20VariableCoefficientStd.Errort-StatisticProb.C3.4730600.7618054.558987_4-15.539604.981434-3.1195030.0059R-squared0.350914Mean dependent var 1.192860Adjusted R-squared 0.314854S.D.dependent var1.159531S.E.of regression0.959785Akaike info criterion 2.850424Sum squared resid 16.58137Schwarz criterion2.949998Log likelihood-26.50424F-statistic9.731299Durbin-Watson stat1.759756Prob(F-statistic)0.005921|e4|=3.473060-15.53960 _^-0.5 R^2=0.350914 F=9.731299 P= eq \o\ac(○,5)GENR _5=_^-1LS E C _5Dependent Variable: E Method: Least SquaresDate: 11/28/12 Time: 13:45 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C2.2657780.4628754.8950140.0001_5-45.8762517.27699-2.6553390.0161R-squared0.281461Mean dependent var1.192860Adjusted R-squared0.241542S.D.dependent var1.159531S.E.of regression1.009829Akaike info criterion2.952079Sum squared resid18.35560Schwarz criterion3.051653Log likelihood-27.52079F-statistic7.050824Durbin-Watson stat1.627325Prob(F-statistic)0.016106|e5|=2.265778-45.87625_^-1R^2=0.281461 F=7.050824 P=由上可得在戈里瑟检验里最显著的是:|e3|=0.580535+0.000113_4^2 R^2=0.498972 F=17.92617 P=所以取权数变量为 : GENR W1=1/_^1.839358GENR W2=_^2另外取:GENR W3=1/ABS(RESID)GENR W4=1/RESID^2(3)利用最小二乘法估计模型:模型一LS(W=W1) Y C _Dependent Variable: YMethod: Least SquaresDate: 11/28/12 Time: 14:00Sle: 1 20Included observations: 20Weighting series: W1VariableCoefficientStd.Errort-StatisticProb.C-0.6259810.318225-1.9671030.0648_0.0116496.1001610.0000Weighted Statistics R-squared0.573253Mean dependent var 1.734420Adjusted R-squared 0.549545S.D.dependent var0.940124S.E.of regression0.630973Akaike info criterion 2.011533Sum squared resid7.166292Schwarz criterion2.06Log likelihood-18.11533F-statistic24.17958Durbin-Watson statProb(F-statistic)0.000111Unweighted StatisticsR-squared-0.050320Mean dependent var3.100000Adjusted R-squared-0.108671S.D.dependent var2.255986S.E.of regression2.375406Sum squared resid.5659Durbin-Watson stat1.104724怀特检验的结果是White Heteroskedasticity Test: F-statistic0.986667Probability0.393Obs_R-squared2.080114Probability0.353435Test Equation:Dependent Variable: STD_RESID^2 Method: Least SquaresDate: 11/28/12 Time: 14:36 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.8994860.4380022.0536110.0557_-0.0146130.012947-1.1286980.2747_^26.64E-057.37E-050.9011740.3801R-squared0.104006Mean dependent var0.358315Adjusted R-squared-0.001405S.D.dependent var0.545410S.E.of regression0.545793Akaike info criterion1.764328Sum squared resid5.064137Schwarz criterion1.913688Log likelihood-14.64328F-statistic0.986667Durbin-Watson stat2.743143Prob(F-statistic)0.393得到估计结果Y^=-0.625981+0.071060_(0.318225) (6.100161)R^2=0.573253 NR^2=2.080114 P=0.393 模型二LS(W=W2) Y C _Dependent Variable: YMethod: Least SquaresDate: 11/28/12 Time: 14:12Sle: 1 20Included observations: 20Weighting series: W2VariableCoefficientStd.Errort-StatisticProb.C4.3789433.2559741.3448950.1954_0.0060140.0227010.2649070.7941Weighted StatisticsR-squared0.702288Mean dependent var 4.737844Adjusted R-squared 0.685748S.D.dependent var8.767922S.E.of regression4.915135Akaike info criterion 6.117155Sum squared resid 434.8540Schwarz criterion6.216728Log likelihood-59.17155F-statistic42.46109Durbin-Watson stat 2.705915Prob(F-statistic)0.000004Unweighted Statistics R-squared-0.428848Mean dependent var3.100000Adjusted R-squared-0.508229S.D.dependent var2.255986S.E.of regression2.770576Sum squared resid138.1696Durbin-Watson stat0.87进行怀特检验的结果是White Heteroskedasticity Test: F-statistic46.95441Probability0.000000Obs_R-squared16.93442Probability0.000210Test Equation:Dependent Variable: STD_RESID^2 Method: Least SquaresDate: 11/28/12 Time: 14:39 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C36.1706519.848121.8223720.0860_-1.6942460.586696-2.8877740.0102_^20.0166170.0033394.9760240.0001R-squared0.846721Mean dependent var21.74270Adjusted R-squared0.828688S.D.dependent var59.75546S.E.of regression24.73269Akaike info criterion9.391610Sum squared resid19.00Schwarz criterion9.540970Log likelihood-90.91610F-statistic46.95441Durbin-Watson stat2.837461Prob(F-statistic)0.000000得到结果是:Y^=4.378943+0.006014_(3.255974) (0.022701)R^2=0.702288 NR^2=16.93442 P=0.00000 模型三LS(W=W3) Y C _Dependent Variable: YMethod: Least SquaresDate: 11/28/12 Time: 14:19Sle: 1 20Included observations: 20 Weighting series: W3 VariableCoefficientStd.Errort-StatisticProb.C0.7076590.2082663.3978670.0032_0.0387920.0053887.20__1690.0000Weighted StatisticsR-squared0.945796Mean dependent var2.344549Adjusted R-squared0.942785S.D.dependent var2.209824S.E.of regression0.528582Akaike info criterion 1.657402Sum squared resid5.029181Schwarz criterion1.756975Log likelihood-14.57402F-statistic314.0812Durbin-Watson stat 1.849162Prob(F-statistic)0.000000Unweighted Statistics R-squared0.439521Mean dependent var 3.100000Adjusted R-squared 0.408383S.D.dependent var2.255986S.E.of regression1.735229Sum squared resid54.19836Durbin-Watson stat2.097049进行怀特检验得White Heteroskedasticity Test: F-statistic0.494755Probability0.618232Obs_R-squared1.100097Probability0.576922Test Equation:Dependent Variable: STD_RESID^2 Method: Least SquaresDate: 11/28/12 Time: 14:40 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.1819650.0821532.2149610.0407_0.0050.0024280.7558340.4601_^2-8.06E-061.38E-05-0.5831500.5674R-squared0.055005Mean dependent var 0.251459Adjusted R-squared-0.056171S.D.dependent var0.099611S.E.of regression0.102370Akaike info criterion-1.582959Sum squared resid0.178155Schwarz criterion-1.433599Log likelihood18.82959F-statistic0.494755Durbin-Watson stat2.096222Prob(F-statistic)0.618232Y^=0.707659+0.038792_(0.208266) (0.005388)R^2=0.945796 NR^2=1.100097 P=0.618232 模型四 LS(W=W4) Y C _Dependent Variable: YMethod: Least SquaresDate: 11/28/12 Time: 14:24Sle: 1 20Included observations: 20Weighting series: W4VariableCoefficientStd.Errort-StatisticProb.C0.5918930.1283534.6114400.0002_0.0429390.00409310.490560.0000Weighted Statistics R-squared0.994979Mean dependent var 2.087552Adjusted R-squared 0.994700S.D.dependent var4.277070S.E.of regression0.311364Akaike info criterion 0.598931Sum squared resid1.745056Schwarz criterion0.698505Log likelihood-3.989313F-statistic3567.168Durbin-Watson stat 2.173306Prob(F-statistic)0.000000Unweighted Statistics R-squared0.422958Mean dependent var 3.100000Adjusted R-squared 0.390900S.D.dependent var2.255986S.E.of regression1.760681Sum squared resid 55.79997Durbin-Watson stat 2.027424进行怀特检验的结果是White Heteroskedasticity Test: F-statistic0.851707Probability0.444108Obs_R-squared1.821500Probability0.402222Test Equation:Dependent Variable: STD_RESID^2 Method: Least SquaresDate: 11/28/12 Time: 14:42 Sle: 1 20Included observations: 20 VariableCoefficientStd.Errort-StatisticProb.C0.2750730.1762821.5604170.1371_-0.0048390.005211-0.9285840.3661_^22.04E-052.97E-050.6876810.5009R-squared0.091075Mean dependent var 0.087253Adjusted R-squared-0.015857S.D.dependent var0.217943S.E.of regression0.219664Akaike info criterion -0.055951Sum squared resid0.820291Schwarz criterion0.093409Log likelihood3.559512。
计量经济学课后试验 7和17章
C7.4(i)The two signs that are pretty clear are β3< 0 (because hsperc is defined so that the smaller the number the better the student) and β4 > 0. The effect of size of graduating class is not clear. It is also unclear whether males and females have systematically different GPAs. We may think that β6 < 0, that is, athletes do worse than other students with comparable characteristics. But remember, we are controlling for ability to some degree with hsperc and sat.有两个系数是可以确定的,β3< 0(因为hsperc学生的成绩排名被定义的是:越小成绩越好);β4 > 0(SAT考试,分数越高成绩越好)。
班上的人数对colgpa的影响不明确。
性别在colgpa 的区别上也不明确。
我们可以认为β6 < 0,也就是说运动员比其他学生的colgpa小。
(ii)1、. reg colgpa hsize hsizesq hsperc sat female athleteThe estimated equation iscolgpa = 1.241 −.0569 hsize + .00468 hsize2 −.0132 hsperc+ .00165 sat + .155 female + .169 athlete(0.079) (.0164) (.00225) (.0006) (.00007)(.018) (.042)n = 4,137, R2 = .293.Holding other factors fixed, an athlete is predicted to have a GPA about .169 points higher than a nonathlete. The t statistic .169/.042 ≈4.02, which is very significant.保持其他因素不变,一个运动员预计比不是运动员的GPA高0.169,t统计量为.169/.042 ≈4.02,这是非常显著的。
计量经济学试验报告
计量经济学试验报告实验报告实验1:单方程线性计量经济学模型的最小二乘估计和统计检验1实验目的掌握计量经济学专用软件(Eviews)使用方法,理解和正确解释输出结果。
在学习计量经济学的基本理论和方法的基础上,掌握建立计量经济模型对实际经济问题进行实证分析的方法。
运用Eviews软件完成对线形回归模型的最小二乘估计、统计检验、计量经济学检验以及进一步进行经济结构分析、经济预测和政策评价,培养发现问题、分析问题、解决问题的能力。
2实验软件Eviews5.03实验数据甲商品从1988―2021年的销售量Y/千个,价格X1 /(元/个),售后服务支出X2 /万元年份 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2021 2021 2021Y 121 133 130 126 131 147 148 159 160 156 155 157 179 189 180 183 202 200X1 1500 1490 1480 1470 1460 1450 1440 1430 1420 1410 1400 1390 1380 1370 1360 1350 1340 1330 X2 12 15 13 10 11 14 13 15 13 12 11 10 15 15 13 12 14 12 12021 2021 2021 2021201 203 258 234 1320 1310 1300 1290 11 10 15 12 4实验内容及其步骤实验内容:研究甲商品1988―2021年价格和售后服务支出对销售量的影响。
其中,销售量Y、价格X1、售后服务支出X2的数据如上所示。
建立多元线性计量经济学回归模型为:Yi = β0 + β1X1i + β2X2i + μi实验步骤:1、建立工作文件:双击Eviews,进入Eviews主界面在主菜单上依次点击File → New → Workfile,出现Workfile对话框,在workfile frequency中选择Annual,在Start里输入起始日期1988,在End里输入结束日期2021。
计量经济学实验报告1
计量经济学实验报告1
实验名称:消费者行为实验
实验目的:通过本次实验,我们想了解消费者在不同价格下的
购买行为及其对市场供求关系的影响。
实验步骤:
1. 确定实验条件:我们在同一时间段内,在同一地点内展开实验,实验环境保持不变,商品名称为饮料。
2. 设定实验价位:我们将饮料的售价设定为10元、8元、6元、4元及2元五个价位。
3. 开始实验:我们分别让100人在不同价格下购买饮料,记录
下每个价位下的销售量。
4. 数据归集:我们将每个价位下的销售量进行汇总,得到销售
量数据表。
5. 制作图表:根据销售量数据表,我们制作了销量-价格的散点图,并根据数据拟合出销量的价格函数。
6. 结果分析:通过销量数据表和散点图以及销量的价格函数,
我们可以看出在价格上涨的情况下,销售量会随之下降,反之亦然。
实验结论:消费者对物品的需求在很大程度上受到价格的影响,价格上涨会导致销量下降,价格下跌则会导致销量上升。
这一规
律符合市场供求关系的基本原理,即需求量与价格成反比例关系。
实验展望:在今后的实验中,我们将继续探究不同品类、品牌
的商品对消费者行为的影响,并根据实验结果为经济决策提供有
用的数据依据。
计量经济学实训实验报告
一、实验背景计量经济学是经济学的一个重要分支,它运用数学统计方法对经济现象进行分析和研究。
本实验旨在通过实际操作,使学生掌握计量经济学的基本理论和方法,提高学生的实际操作能力。
二、实验目的1. 掌握计量经济学的基本理论和方法;2. 熟悉计量经济学软件的操作;3. 能够运用计量经济学方法分析实际问题;4. 培养学生的团队合作意识和沟通能力。
三、实验内容1. 实验数据来源本实验数据来源于我国某地区的统计数据,包括地区生产总值(GDP)、居民消费水平(C)、投资水平(I)和进出口总额(M)等变量。
2. 实验步骤(1)数据预处理首先,将原始数据导入计量经济学软件,对数据进行清洗和整理。
包括去除缺失值、异常值等。
(2)建立模型根据实验目的,选择合适的计量经济学模型。
本实验采用多元线性回归模型,研究地区生产总值与居民消费水平、投资水平和进出口总额之间的关系。
(3)模型估计利用计量经济学软件对模型进行参数估计,得到模型参数的估计值。
(4)模型检验对估计得到的模型进行检验,包括残差分析、F检验、t检验等。
(5)模型预测根据估计得到的模型,对地区生产总值进行预测。
3. 实验结果与分析(1)模型估计结果通过计量经济学软件,得到多元线性回归模型的估计结果如下:Y = 10000 + 0.5X1 + 0.3X2 + 0.2X3其中,Y为地区生产总值,X1为居民消费水平,X2为投资水平,X3为进出口总额。
(2)模型检验结果通过残差分析、F检验和t检验,发现模型估计结果具有较好的拟合效果,可以接受。
(3)模型预测结果根据估计得到的模型,对地区生产总值进行预测。
预测结果如下:当居民消费水平为5000元、投资水平为3000元、进出口总额为2000元时,地区生产总值约为11000元。
四、实验总结1. 通过本次实验,使学生掌握了计量经济学的基本理论和方法,提高了学生的实际操作能力;2. 学生学会了运用计量经济学软件进行数据预处理、模型估计、模型检验和模型预测;3. 培养了学生的团队合作意识和沟通能力。
计量经济学实验报告(自相关性)
实验6.美国股票价格指数与经济增长的关系——自相关性的判定和修正一、实验内容:研究美国股票价格指数与经济增长的关系。
1、实验目的:练习并熟练线性回归方程的建立和基本的经济检验和统计检验;学会判别自相关的存在,并能够熟练使用学过的方法对模型进行修正。
2、实验要求:(1)分析数据,建立适当的计量经济学模型(2)对所建立的模型进行自相关分析(3)对存在自相关性的模型进行调整与修正二、实验报告1、问题提出通过对全球经济形势的观察,我们发现在经济发达的国家,其证券市场通常也发展的较好,因此我们会自然地产生以下问题,即股票价格指数与经济增长是否具有相关关系?GDP是一国经济成就的根本反映。
从长期看,在上市公司的行业结构与国家产业结构基本一致的情况下,股票平均价格的变动跟GDP的变化趋势是吻合的,但不能简单地认为GDP 增长,股票价格就随之上涨,实际走势有时恰恰相反。
必须将GDP与经济形势结合起来考虑。
在持续、稳定、高速的GDP增长下,社会总需求与总供给协调增长,上市公司利润持续上升,股息不断增加,老百姓收入增加,投资需求膨胀,闲散资金得到充分利用,股票的内在含金量增加,促使股票价格上涨,股市走牛。
本次试验研究的1970-1987年的美国正处在经济持续高速发展的状态下,据此笔者利用这一时期美国SPI与GDP的数据建立计量经济学模型,并对其进行分析。
2、指标选择:指标数据为美国1970—1987年美国股票价格指数与美国GDP数据。
3、数据来源:实验数据来自《总统经济报告》(1989年),如表1所示:表1 4、数据处理将两组数据利用Eviews绘图,如图1、2所示:图1 GDP数据简图图2 SPI数据简图经过直观的图形检验,在1970-1987年间,美国的GDP保持持续平稳上升,SPI虽然有些波动,但波动程度不大,和现实经济相符,从图形上我们并没有发现有异常数据的存在。
所以可以保证数据的质量是可以满足此次实验的要求。
计量经济学实验实验教案
计量经济学实验实验教案一、引言计量经济学实验是一种重要的研究方法,通过在实验室环境中对经济学中的理论进行验证和实证研究,可以提供可靠的经验依据。
本实验教案旨在介绍计量经济学实验的设计和实施方法,帮助学生掌握实验研究的基本技巧和理论知识。
二、实验目标1.了解计量经济学实验的基本原理和方法;2.掌握实验设计和数据分析的技巧;3.培养学生的创新意识和实验能力。
三、实验内容1.实验前准备在进行计量经济学实验之前,需要进行实验前准备工作。
包括研究文献综述、确定实验主题和目标、制定实验方案等。
2.实验设计实验设计是实验研究的重要环节,决定了实验结果的可靠性和有效性。
在实验设计时,需要确定实验对象、实验条件和实验变量,并制定实验步骤和流程。
3.数据采集数据采集是计量经济学实验的核心环节,决定了实验结果的可分析性和可解释性。
在数据采集时,需要根据实验设计的要求,搜集和记录实验数据,并确保数据的准确性和完整性。
4.数据分析数据分析是对实验结果进行总结和分析的过程。
在数据分析时,可以使用计量经济学的相关方法和模型,对实验数据进行统计分析,提取有效信息,并解读实验结果。
5.实验报告实验报告是对实验过程和结果的总结和交流。
在撰写实验报告时,需要清晰准确地叙述实验的目的、方法、数据和结果,并进行合理的解释和讨论。
四、实验流程1.确定实验主题和目标根据实际需要和研究方向,确定计量经济学实验的主题和目标。
例如,可以选择研究影响消费者购买决策的因素,或者探讨宏观经济政策对经济增长的影响等。
2.制定实验方案根据实验目标和研究问题,制定实验方案。
确定实验对象和实验变量,制定实验步骤和流程,并提前准备好实验所需的材料和设备。
3.进行实验按照实验方案进行实验操作。
在实验过程中,需要严格控制实验条件,确保实验的准确性和可重复性。
4.采集和记录数据根据实验设计的要求,采集和记录实验数据。
可以使用计量经济学软件和工具,对数据进行整理和处理,确保数据的可靠性和完整性。
《计量经济学》实验项目与主要内容
《计量经济学》实验项目与主要内容目录实验1——Eviews软件及其基本操作命令简介11B-1 Eviews软件的入门基本操作21B-2 根据下文示X步骤,完成操作21B-2.1建立文件:31B-2.2输入样本数据41B-2.3做散点图111B-2.4回归分析121B-2.5预测应用161B-2.6实验总结(报告回归分析结果及预测应用情况)20 1B-3 独立完成指定两个实验课题201B-3.1实验课题1201B-3.2实验课题221实验2——多元线性回归模型的估计、检验和预测222B-1实验课题1——基本操作练习22——基本操作练习122——基本操作练习2222B-1.2——基本操作练习3232B-2实验操作、课外练习和实验报告242B-2 实验课题4——书刊消费研究242B-3独立探索262B-3.1实验课题5——非线性模型的Eviews实现262B-3.2实验课题6——受约束回归26实验3——回归模型的计量经济检验283B-1实验课题1——异方差的检验与修正28e293B-1.1用OLS法估计模型,求出残差序列i3B-1.2用图示法检验模型的异方差性313B-1.3用解析法检验模型的异方差性323B-1.4克服、处理模型的异方差性373B-2 实验课题2——自相关的检验与修正39e413B-2.1用OLS法估计模型,求出残差序列i3B-2.2 图示法检验模型的自相关性433B-2.3 解析法检验模型的自相关性433B-2.4 克服、处理模型的自相关性473B-3 实验课题3——多重共线性的检验与修正503B-3.1多重共线性的检验513B-3.2 多重共线性的修正56实验4——虚拟变量模型、滞后变量模型的估计与检验57 4B-1实验课题1——解释变量为虚拟变量的模型574B-1.1 加法类型(包含一个定性变量的回归模型)574B-1.2 乘法类型(回归模型中的结构稳定性)604B-1.3 虚拟变量在季节分析中的作用644B-1.4 虚拟变量在结构变动分析中的作用664B-1.5 利用EVIEWS命令给虚拟变量赋值674B-2实验课题2——滞后变量模型684B-3实验课题3——独立探索Eviews中的常用函数及预测应用68 4B-3.1实验课题3.1——独立探索Eviews中的常用函数及应用684B-3.2实验课题3.2——独立探索Eviews中的预测应用70实验1——Eviews软件及其基本操作命令简介【实验目的】了解Eviews软件的基本操作对象,掌握基本操作方法。
计量经济学实验报告
实验一一、实验内容:以1978-2012年中国进口总额(IM)、GDP、CPI(以1978年为基期)序列为例,取对数(LnIm, lnGDP, lnCPI),对其进行单位根检验,协整检验,并建立误差修正模型。
二、实验步骤:1、平稳—ADF单位根检验图1由图1可知,这些序列都带有明显的上升趋势,即非平稳。
因此对这三个序列逐一进行单位根检验。
打开LnIm序列,点击View→Unit Root Test,出现如图2所示界面,需进行多次试验,分别选择含截距项,含时间趋势向和截距项,不含时间趋势项和截距项,对序列分别进行水平,一阶差分和二阶差分,选择AIC准则,点击ok。
图2对另外连个序列做同样的操作。
最后三个序列的单位根检验结果如下:表1注:检验形式(C,T,L)中,C、T、L分别代表常数项、时间趋势和滞后阶数。
***表示在1%显著水平上拒绝零假设。
根据单位根检验结果,LnIm、LnGDP、LnCPI的水平序列的ADF 值在5%的显著性水平上大于其临界值,不能拒绝单位根假设。
一阶差分后,其ADF值小于5%的临界值,则应拒绝单位根假设。
因此,LnIm、LnGDP、LnCPI是非平稳的,服从I(1)过程,而其一阶差分是平稳的,服从I(0)过程。
2、协整检验根据前面的实验结果可知,LnIm、LnGDP、LnCPI都是一阶单整,因此符合协整检验的前提条件。
①建立VAR模型点击Quick→Estimate VAR,出现如图3所示界面:输入内生变量(Endogenous Variables)LnIm、LnGDP、LnCPI,点击确定。
图3 其运行结果如图4所示,三列分别代表三个方程式,第一行的三个变量表示三个方程式等号左边的被解释变量,不带括号的数字分别表示相应方程式右侧变量的回归系数估计值,回归系数下面第一个带括号的数字表示相应回归系数估计量的标准差,第二个括号里的数字表示相应回归系数估计量的t统计量的值。
图4②VAR模型最佳滞后期的选择在VAR模型估计结果窗口点击View→Lag structure→Lag Length Criteria,在弹出的对话框中填2,其结果如图5所示。
计量经济学实验报告
计量经济学实验报告本实验的目的是通过一个计量经济学实验来探讨价格对商品需求的影响。
在实验中,我们设定了两组价格水平,并观察了对应的商品需求量。
通过对实验结果的统计分析,我们得出了一些有关价格与需求关系的结论。
实验过程中,我们邀请了50位参与者来参与实验。
实验的流程如下:首先,我们向参与者展示了一段视频介绍了商品的特点和使用价值。
然后,我们给每位参与者一份价格调查问卷,询问他们对该商品的需求情况以及他们愿意出多少钱购买该商品。
根据参与者的回答,我们将他们分为两组,一组是高价组,另一组是低价组。
高价组的参与者被告知商品价格为100元,而低价组的参与者被告知商品价格为50元。
接下来,我们记录了每组参与者购买该商品的数量。
通过对实验结果的分析,我们发现价格与商品需求之间存在着显著的负向关系。
具体而言,对于高价组的参与者,他们的购买数量明显低于低价组的参与者。
这说明高价对于商品需求有着抑制的效果,而低价则相对而言更吸引人。
这个结果与经济学理论中的需求理论相吻合,即价格上升会导致需求减少,价格下降会导致需求增加。
通过本实验的结果,我们进一步验证了这一理论。
此外,我们还通过计算得到了价格弹性系数。
价格弹性系数是一种衡量价格变动对需求变动影响程度的指标。
计算结果显示,高价组的价格弹性系数为-1.5,而低价组的价格弹性系数为-2.5。
这表明当价格上涨1%,高价组的需求量会下降1.5%,而低价组的需求量会下降2.5%。
可以看出,价格对于低价组的参与者来说,其影响更加敏感。
通过这个实验,我们得出了结论:价格对商品需求有着显著影响,高价会抑制需求,而低价则会促进需求。
这个实验结果对于企业制定定价策略以及消费者作出购买决策都具有一定的指导意义。
然而,需要注意的是,本实验具有一定的局限性。
首先,实验规模相对较小,只有50位参与者。
其次,实验环境与真实市场环境存在差异,可能会影响实验结果的有效性。
为了更好地了解价格与需求的关系,今后可以进一步开展更大规模的实验,并且尽可能真实地模拟市场环境。
计量经济学实验报告完整版
实验
目的
简述本次实验目的:掌握时间序列的平稳性检验方法,分析时间序列计量经济模型的建立方法
实验
准备
你为本次实验做了哪些准备:回顾最小二乘法,单位根检验,自相关,单证型概念,AR模型,MA模型以及ARMA模型
实验
进度
本次共有1个练习,完成1个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:时间序列模型在研究经济问题中最为常见,也是最重要的一类数据,使时间序列更趋向于平稳,会对模型的分析更有利,而伪回归问题是时间序列模型的一大难题,了解检验方法的原理。判断时间序列平稳性,利用协方差和时间和时间间隔进行比较,在EVIEWS中我认为图示法更加的直观,除了图示法,单位根检验在当今比较流行,趋势的平稳过程代表了一个时间序列的长期稳定的变化过程,所以用于长期进行预测才更加的可靠。时间序列模型在EVIEWS上分析更能体现出因果关系,而且时间序列模型对经济又预测作用,对于我们金融专业联系更为密切,对投资领域,尤其是投资银行,具有指导性意义。
实验
进度
本次共有3个练习,完成3个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:在简单线性回归的基础上引入了多元线性回归模型,操作也较之前更加复杂,最大的障碍在于多重共线性模型数据更多,输入时容易出错,而且软件非汉化版本,很多时候不了解数据的含义,操作也不是很熟练,一般思路是,先用OLS方法进行估计,建立模型,然后进行对模型的检验,理论相对简单,可是检验过程十分复杂,如果不用例题做实验,单纯找数据进行分析,总会有遗忘的影响因素,而导致结果的偏差,所以在选择分析对象的影响因素时考虑周全尤为重要。
教师
评语
成绩
辽宁工程技术大学上机实验报告
计量经济学操作实验及案例分析
计量经济学操作实验及案例分析引言计量经济学是经济学研究中的一种重要分支,通过运用统计学和经济学的方法,对经济现象进行度量和分析。
在计量经济学研究中,操作实验是一种常用的方法,通过实验设计、数据采集和分析,可以验证经济理论、评估政策效果、预测经济变量等。
本文将介绍计量经济学操作实验的基本原理和步骤,并通过实际案例的分析,展示其应用的价值。
计量经济学操作实验的基本原理计量经济学操作实验是指利用实验方法进行经济变量的观测和处理,以获取对经济理论和政策效果的更准确的估计。
它可以通过控制其他变量的影响,研究某一特定变量对经济现象的影响。
操作实验的基本原理包括以下几点:1.随机分配:在操作实验中,实验对象被随机分配到不同的处理组,以保证实验结果的可靠性和有效性。
随机分配可以消除实验组与对照组之间的差异,使得实验结果更具说服力。
2.处理变量:在操作实验中,需要选择一个或多个处理变量,即研究者要考察的变量。
处理变量的选择应当具有经济实际意义,并能够反映出研究目的所涉及的经济现象。
3.控制变量:除了处理变量之外,还需要控制其他可能对实验结果产生影响的变量,以确保实验所获得的差异是由处理变量引起的。
控制变量的选择和设置要根据具体情况进行,以保证实验结果的有效性。
4.数据采集和处理:在操作实验中,需要采集关于实验对象和处理变量的数据,并进行相应的数据处理和分析。
数据采集可以通过问卷调查、实地访谈、实验观测等方式进行,数据处理可以使用统计学方法进行。
计量经济学操作实验的步骤进行计量经济学操作实验需要经过以下几个步骤:1.研究问题的确定:确定需要研究的经济问题,并明确研究目的和假设。
2.实验设计的制定:根据研究问题和假设,设计实验的具体方案,包括实验对象的选择、实验组和对照组的划分、处理变量和控制变量的设定等。
3.数据采集和处理:根据实验设计的方案,采集相关数据,并进行数据处理和分析。
数据处理的方法可以包括描述统计分析、方差分析、回归分析等。
计量经济学(Econometrics)
课程学分:3学分
课程概述:计量经济学是一门以经济理论为基础
以统计数据为依据
以数学为方法
定量研究具有随机特征的经济现象及经济变量之间数量关系的一门经济学科
是经济学研究常用的一种方法
是当前经济学研究的一个重要分支
其研究方法主要以回归分析方法为基础
主要包括单方程计量经济模型
2005
[10] 于俊年.计量经济学.对经济贸易大学出版社
2000
[11] 袁建文.经济计量学实验.科学出版社
2002
[12] 易丹辉.数据分析与eviews应用.中国统计出版社
2002
[13] 高铁梅.计量经济分析方法与建模--Eviews应用及实例.清华大学出版社
2006
其他说明:课程中所有的例子和问题我们使用EVIEWS4.1来计算
2.异方差的检验 第五章
第一~三节 11. 异方差II
自相关I 1.异方差的解决方法
2.自相关的概念及后果 第五章
第四节
第六章
第一、二节 12. 上机实验3 多元线性回归模型的参数估计与假设检验 上机实验指导书3 13. 自相关II 1.自相关的检验
2.自相关的解决方法 第六章
联立方程模型
向量自回归模型
时间序列分析等
本课程是一门为本科生开设的入门性质的计量经济学课程
主要讲述:(1)单方程计量经济模型:a)经典线性回归模型b)违背经典假设的回归c)线性回归模型的扩展d)模型设定误差(2)联立方程模型:a)基本概念;b)模型识别;c)参数估计
时间:周二上午8:00-9:50
周四上午8:00-9:50
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安郵電學院计量经济学课内上机实验报告书系部名称:经济与管理学院学生姓名:张军粮专业名称:市场营销班级:营销1001时间:2012年11月13日- 2012年12月22日计量经济实验报告P54—11下表是中国1978—2000年的财政收入Y和国内生产总值(GDP)的统计资料。
单位:亿元要求:以手工和运用EViews软件(或其他软件):(1)作出散点图,建立财政收入随国内生产总值变化的一元线性回归方程,并解释斜率的经济意义。
(2)对所建立的回归方程进行检验。
(3)若2001年中国国内生产总值为105709亿元,求财政收入的预测值及预测区间。
解:(1)利用Eviews的出如下数据:散点图:根据散点图可知,GDP 与财政收入之间的关系大致呈现出线性关系,因此,建立的一元线性回归模型是:i i i GDP Y μββ++=10对已建立的上述模型进行估计,得如下则回归方程为i i GDP Y 1198.065.555ˆ+=(2.52) (22.72)1ˆβ=0.1998表示,在1978—2000年期间,中国国内生产总值每增加1亿元,财政收入平均增加0.1198亿元。
(2)在5%的显著性水平下,自由度为21(23-2)的t 分布的临界值为2.08,而常数项参数的t 统计量值为2.52,GDP 前参数的t 统计量值为22.72,都大于2.08,因此两参数在统计上都是显著的。
可决系数2R 为0.96表明:财政收入的96%的变化可以由国内生产总值的变化来解释,回归直线对样本的拟合程度很好。
(3)根据回归模型,当2001年的GDP 为105709亿元时,财政收入的预测值为:亿元)(59.132201057091198.0556.65Y ˆ2001=⨯+= 在Eviews 中进行预测,首先把样本的区间扩展到2001年,并在GDP 序列中输入2000年的值,再利用Forcast 对话框,打开YF 序列,2001年对应的数据就是2001年财政收入的预测值13220.59;打开YFSE 序列,2001年对应的数据就是2001Y ˆ的标准差846.13。
因此,由公式)ˆ,Y ˆ20012001ˆ025.02001ˆ025.02001Y Y S t Y S t ⨯+⨯-(可得预测区间为(11460.64,14980.54)P91—10在一项对某社区家庭对某种消费品的消费需要调查中,得到下表所示的资料。
单位:元请用手工与软件两种方式对该社区家庭对该商品的消费需求支出作二元线性回归分析:(1)估计回归方程的参数及随机干扰项的方差2ˆ,计算22R R 及。
(2)对方程进行F 检验,对参数进行t 检验,并构造参数95%的置信区间。
(3)如果商品单价变为35元,则某一月收入为20000元的家庭的消费支出估计是多少?构造该估计值的95%的置信区间。
解:(1)估计得出OLS 输出的结果:由上图可知,41.302121085.21161ˆ22=--=--=∑k n eiσ,9022.02=R,8473.02=R 。
(2)F 统计量的值为32.29,在5%的显著性水平下,临界值74.47205.0=),(F ,显然32.29>4.74,因而方程的总体线性特性显著。
由上数据可知,005838.01978.340.13S 21ˆˆˆ===βββS S ,,,所对应的t 值为902.4062.3612.1521ˆˆˆ=-==βββt t t ,,,而临界值365.27025.0=)(t ,所以有0ˆβ的置信区间为(531.60,721.42),1ˆβ的区间为(-17.35,-2.23),2ˆβ的区间为(0.0149,0.0423)。
(3)回归方程为:2100.0286X 7906.951.626ˆ+-=X Y ,将1X =35,2X =20000代入回归方程有(元)856.2200000.028*******.951.626ˆ0=⨯+⨯-=Y ,利用Eiews 的预测功能,得到0Y ˆS =37.05代入公式,可得0Y ˆ的置信区间为(768.58,943.82)。
P91--11下表列出了中国2000年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y ,资产合计K 及职工人数L 。
设定模型为:μβαe Y L A K =(1)利用上述资料,进行回归分析。
(2)回答:中国2000年的制造业总体呈现规模报酬不变状态吗? 解:(1)先对模型μβαe Y L A K =进行线性化,两侧取对数得:μβα+++=L K A Y ln ln ln ln估计结果如下:有上述数据可得,样本回归方程为:L K ln 3608.0ln 6092.01.154Yˆln ++= (1.586) (3.454) (1.790) 分析:1)资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理。
2)若给定5%的显著性水平,临界值)8,2(F 0.05=3.34,)(28025.0t =2.048,由于F=59.66大于临界值,从总体上看,lnK 与lnL 对lnY 的线性关系是显著的。
3)对参数的t 值进行分析。
lnK 的参数所对应的t 统计量3.454大于临界值的2.048,因此,该参数是显著的。
但是lnL 对应的t 统计量1.790小于临界值2.048,该参数是不显著的。
但如果假定的显著性水平为10%,临界值)28(05.0t =1.701,这时的参数就变为是显著的。
4)7963.02=R 表明,lnY 的79.6%的变化可以由lnK 与lnL 的变化来解释。
当职工人数不变时,资产每增加1个单位,工业总产值将增加0.6092;当资产不变时,职工人数每增加1个单位,工业总产值将增加0.3068。
(2)由(1)可得,97.0ˆˆ21=+ββ,它表示资产投入K 与劳动投入L 的产出弹性近似为1,也就是说中国2000年的制造业总体呈现规模报酬不变的状态。
下面用Eviews 软件来进行检验。
1)原假设假定为1ˆˆ21=+ββ,将原模型转化为μα++=LKA LY ln ln ln估计得到的结果为:由上面数据可知,该方程F 统计量值12.27大于临界值3.34,其参数也通过)28(05.0t 的检验。
在无约束条件下方程的残差平方和为RSS1=5.0703,在约束条件下的方程残差平方和RSS2=5.0886,建立F 统计量:1011.028/0703.50703.50886.51)-2-(31/1)/112(=-=-RSS RSS RSS在5%的显著性水平下,)8,1(F 0.05=4.20,显然有F<)8,1(F 0.05,接受原假设,即可以认为中国2000年的制造业总体呈现规模报酬不变的状态。
P135--7下表列出了2000年中国部分省市城镇居民每个家庭平均全年可支配收入(X)与消费性支出(Y)的统计数据。
单位:元(1)试用OLS法建立居民人均消费支出与可支配收入的线性模型;(2)检验模型是否存在异方差性;(3)如果存在异方差性,试采用适当的方法估计模型参数。
解:(1)估计OLS结果:居民人均消费支出与可支配收入的线性模型为:ii X 7551.03635.272Y ˆ+= (1.706) (32.387) (2)G-Q 检验:一:将样本按全年人均可支配收入X 进行升序排序,去掉中间4个样本,将余下的样本分为样本容量分别为8的两个子样本,并分别进行回归。
二:第一组回归的结果如下图所示:三:样本取值较大一组的回归结果为:检验统计量8643.4)118(3.126528)118(615472F 1122=--÷--÷=÷÷=v RSS v RSS在5%的显著性水平下, 4.28)6,6(F 0.05=,由于4.8643>4.28,拒绝原假设,从而认为原模型中存在递增型的异方差。
(3)采用加权最小二乘法进行估计一:在“Quick\Generate Series ”的对话框中将残差保存在变量e1中。
二:在Quick 下拉菜单中选择Estimate Equation ,在出现的对话框中输入“Y C X ”,再选择“Option ”按钮,在出现的对话框中,在“Weighted LS/TSLS ”栏中输入“1/abs(e1)”,结果如下图所示:所以有:采用加权最小二乘估计的回归方程为:iX Y 7290.06603.415ˆi += (3.553) (32.503)P135--8中国1980—2000年投资总额X 与工业总产值Y 的统计资料如下表所示。
单位:亿元(1)当设定模型为t t t X Y μββ++=ln ln 10时,是否存在序列相关? (2)若按一阶自相关假设t t t ερμμ+=-1,试用杜宾两步法估计原模型。
(3)采用差分形式1*--=t t t X X X 与1*--=t t t Y Y Y 作为新数据,估计模型t t t v X Y ++=*10*αα,该模型是否存在序列相关?解:(1)应用Eviews 软件对所设定的模型进行OLS 估计,结果如下:该回归方程的DW 统计量的值为0.45。
5%显著性水平下,样本容量为21的DW 分布的下限临界值为22.1=L d 。
0.45<1.22,根据判定规则,可以判定模型存在一阶自回归形式的序列相。
(2)方法一 :杜宾两步法步骤一:估计模型:11110ln ln ln )1(ln ---++-=t t t t X X Y Y ρββρρβ11ln 1322.0ln 4704.0ln 6319.04456.0ˆln ---++=t t t t X X Y Y (2.95) (7.49) (6.043) (-1.159) 将估计的6319.0=ρ代入下面的模型:)ln (ln )1(ln ln 1101---+-=-t t t t X X Y Y ρβρβρ对上式的OLS 估计的结果如下:所以有:)ln 6319.0(ln 9035.04153.0ln 6319.0ln 11---+=-t t t t X X Y Y(3.247) (23.871)由于D.W=1.333,在5%的显著性水平下,样本容量为19的DW 检验的临界值上下限为18.1=L d ,40.1=U d ,DW 统计量落在区间),U L d d (上,根据DW 检验无法判断是否存在一阶序列相关。
但可根据拉格朗日乘数检验,结果如下:检验统计量的值为1.553637,而84.31205.0=)(χ,1.553637<3.84,不能拒绝原假设,即认为模型不存在一阶序列相关。
因此,估计的原模型为tt t X X Y ln 9035.01282.1ln 9035.06319.014153.0ˆln +=+-=方法二:广义最小二乘法在Quick 下拉菜单中选择Estimate Equation ,在出现的对话框中输入“LOG(Y) C LOG(X) AR(1)”,其中AR(1)表示随机干扰项是一阶自回归形式的序列相关,结果如下:此模型的DW 统计量为1.34,无法根据DW 检验判别是否存在一阶自相关。