2014高考理科立体几何难建系和动点问题(考前必做的立几大题)
2014年高考立体几何(解析版)
2014年高考真题立体几何汇编解析版16.(2014江苏)(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴13DE PA == ∵E F ,为AC AB ,中点 ∴142EF BC == ∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵AC EF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(2014山东)(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60,DAB ∠=22AB CD ==,M 是线段AB 的中点.(I )求证:111//C M A ADD 平面;B 1C 1D 1A 1DCBMA(II )若1CD 垂直于平面ABCD且1CD 平面11C D M 和平面ABCD 所成的角(锐角)的余弦值. 解:(Ⅰ)连接1AD1111D C B A ABCD - 为四棱柱,11//D C CD ∴ 11D C CD =又M 为AB 的中点,1=∴AM AM CD //∴,AM CD =11//D C AM ∴,11D C AM =11D AMC ∴为平行四边形 11//MC AD ∴又111ADD A M C 平面⊄ 111A D D A AD 平面⊂111//ADD A AD 平面∴(Ⅱ)方法一:11//B A AB 1111//D C B A共面与面1111D ABC M C D ∴作AB CN ⊥,连接N D 1 则NC D 1∠即为所求二面角在ABCD 中, 60,2,1=∠==DAB AB DC 23=∴CN 在CN D Rt 1∆中,31=CD ,23=CN 2151=∴N D 方法二:作AB CP ⊥于p 点以C 为原点,CD 为x 轴,CP 为y 轴,1CD 为z 轴建立空间坐标系,)0,23,21(),3,0,0(),3,0,1(11M D C -∴)3,23,21(),0,0,1(111-==∴M D D C设平面M D C 11的法向量为),,(111z y x =⎪⎩⎪⎨⎧=-+=∴03232101111z y x x )1,2,0(1=∴n 显然平面ABCD 的法向量为)0,0,1(2=n5551,cos 21==<∴n n 显然二面角为锐角,所以平面M D C 11和平面ABCD 所成角的余弦值为555515321523cos 11====∠∴N D NC CN D18.三棱锥A BCD -及其侧视图、俯视图如图所示。
2014高考真题-立体几何大题(含解析)
解答题1. [2014·安徽卷19] 如图1-5所示,四棱锥P - ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .图1-5(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.解: (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC . 同理可证EF ∥BC ,因此GH ∥EF .2.[2014·重庆卷20] 如图1-4所示四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD =π3,M 为BC 上一点,且BM =12.(1)证明:BC ⊥平面POM ;(2)若图解:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π6=1.又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM =12+⎝⎛⎭⎫122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .3.[2014·陕西卷17] 四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.4.[2014·湖南卷18] 如图1-3所示,已知二面角α-MN -β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD =60°,E 是(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.解:(1)证明:如图,因为DO ⊥α,AB ⊂α,所以DO ⊥AB .连接BD ,由题设知,△ABD 是正三角形,又E 是AB 的中点,所以DE ⊥AB .而DO ∩DE =D ,故AB ⊥平面ODE .5.[2014·北京卷17] 如图1-5,在三棱柱ABC A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.图1-5(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.解:(1)证明:在三棱柱ABC -A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1,所以平面ABE⊥平面B1BCC1.6.[2014·湖北卷20] 如图1-5,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.证明:(1)连接AD1,由ABCD -A1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1,从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.7.[2014·江苏卷16] 如图1-4所示,在三棱锥P -ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.图1-4解:(1)∵D E,为PC AC,中点∴DE∥P A∵PA⊄平面DEF,DE⊂平面DEF∴P A∥平面DEF8.[2014·福建卷19] 如图1-6所示,三棱锥ABCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.图1-6解:方法一:(1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD.又∵CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,∴CD⊥平面ABD.9.[2014·新课标全国卷Ⅱ18] 如图1-3,四棱锥P -ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P -ABD的体积V=34,求A到平面PBC的距离.图1-3解:(1)证明:设BD与AC的交点为O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB,EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.10.[2014·广东卷18] 如图1-2所示,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2,作如图1-3折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M - CDE 的体积.图1-2 图1-300:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅==11.[2014·山东卷18] 如图1-4所示,四棱锥P ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.图1-4(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面P AC .证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC ,所以AE ∥BC ,AE =AB =BC ,所以O 为AC 的中点.又在△P AC 中,F 为PC 的中点,所以AP ∥OF ,又OF ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .12.[2014·江西卷19] 如图1-1所示,三棱柱ABC - A 1B 1C 1中,AA 1⊥BC ,A 1B ⊥BB 1.(1)求证:A 1C ⊥CC 1;(2)若AB =2,AC =3,BC =7,问AA 1为何值时,三棱柱ABC - A 1B 1C 1体积最大,并求此最大值.解:(1)证明:由AA 1⊥BC 知BB 1⊥BC .又BB 1⊥A 1B ,故BB 1⊥平面BCA 1,所以BB 1⊥A 1C .又BB 1∥CC 1,所以A 1C ⊥CC 1.13.[2014·辽宁卷19] 如图1-4所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F ,G 分别为AC ,(1)求证:EF ⊥平面BCG ;(2)求三棱锥D -BCG 的体积.附:锥体的体积公式V =13Sh ,其中S 为底面面积,h 为高.解:(1)证明:由已知得△ABC ≌△DBC ,因此AC =DC .又G 为AD 的中点,所以CG ⊥AD ,同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC .又EF ∥AD ,所以EF ⊥平面BCG .14.[2014·全国新课标卷Ⅰ19] 如图1-4,111侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.图1-4(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC -A1B1C1的高.解:(1)证明:连接BC1,则O为B1C与BC1的交点.因为侧面BB1C1C为菱形,所以B1C⊥BC1.又AO⊥平面BB1C1C,所以B1C⊥AO,由于BC1∩AO=O,故B1C⊥平面ABO.由于AB⊂平面ABO,故B1C⊥AB.15.[2014·四川卷18] 在如图1-4所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1.(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.解:(1)证明:因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB,AA1⊥AC.因为AB,AC为平面ABC内的两条相交直线,所以AA1⊥平面ABC.因为直线BC⊂平面ABC,所以AA1⊥BC.又由已知,AC⊥BC,AA1,AC为平面ACC1A1内的两条相交直线,所以BC ⊥平面ACC 1A 1.16.[2014·天津卷17] 如图1-4所示,四棱锥P - ABCD 的底面ABCD 是平行四边形,BA =BD =2,AD =2,P A =PD =5,E ,F 分别是棱AD ,PC 的中点.(1)证明:EF ∥平面P AB ; .解:(1)证明:如图所示,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB . 17.[2014·浙江卷20] 如图15,在四棱锥A BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.图1-5(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.解:(1)证明:连接BD ,在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE .18.[2014·重庆卷20] 如图1-4所示四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD =π3,M 为BC 上一点,且BM =12.(1)证明:BC ⊥平面POM ;(2)若MP ⊥AP ,求四棱锥P -ABMO 的体积.图 解:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π6=1.又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM =12+⎝⎛⎭⎫122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .19.[2014·全国卷19] 如图1-1所示,三棱柱ABC - A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B ;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 AB C 的大小.图1-1解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,平面AA 1C 1C ∩平面ABC =AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C .由三垂线定理得AC1⊥A1B.。
高考理科立体几何大题常考题型
高考理科立体几何大题常考题型
高考理科立体几何大题常考题型包括以下几个方面:
1. 空间位置关系的证明:这类问题主要涉及线线、线面、面面的平行和垂直关系的证明。
解决这类问题需要熟练掌握相关的判定定理和性质定理,并能够灵活运用。
2. 空间角的计算:这类问题主要涉及异面直线所成的角、直线与平面所成的角、二面角的计算等。
解决这类问题需要熟练掌握相关的计算公式,并能够准确建立空间直角坐标系。
3. 空间几何体的体积和表面积计算:这类问题主要涉及圆锥、圆柱、棱锥、棱柱等基本几何体的体积和表面积的计算,以及一些组合体的体积和表面积的计算。
解决这类问题需要熟练掌握相关的计算公式,并能够根据题目要求选择合适的计算方法。
4. 投影与直观图:这类问题主要涉及根据几何体的直观图求其三视图,以及根据三视图还原几何体的直观图。
解决这类问题需要熟练掌握三视图的形成原理,并能够准确判断出几何体的各个面在三视图中的投影。
综上所述,高考理科立体几何大题常考题型多样,需要考生具备扎实的数学基础和灵活的解题能力。
建议考生在复习时注重对基础知识的理解和掌握,多做练习题,培养自己的空间想象能力和逻辑思维能力。
2014高考数学理(真题讲练 规律总结 名师押题)热点专题突破:第十二讲 空间几何体
第十二讲空间几何体空间几何体简单几何体多面体棱柱棱台直观图三视图结构特征表面积体积棱锥旋转体圆锥圆柱圆台球简单组合体1.(三视图)将长方体截去一个四棱锥,得到的几何体如图4-1-1所示,则该几何体的侧(左)视图为()图4-1-1【解析】对角线被遮住应为虚线,再根据对角线的位置可知选D.【答案】 D2.(几何体的体积)已知某三棱锥的三视图(单位:cm)如图4-1-2所示,则该三棱锥的体积等于________cm3.图4-1-2【解析】 由三视图可得该三棱锥的直观图如图所示.三棱锥的底面是两直角边长分别为3,1的直角三角形,且高为2,故V =13×12×3×1×2=1(cm 3).【答案】 13.(几何体的表面积)一个棱锥的三视图如图4-1-3所示(单位:cm),则该棱锥的表面积为________cm 2.图4-1-3【解析】 由三视图知,棱锥的底面是等腰直角三角形,斜边所在的侧面垂直于底面,从而三棱锥的高为4.其表面积S =12×6×6+12×6×5×2+12×62×4=48+12 2.【答案】 48+12 24.(直观图)若△ABC 的直观图的面积为2,则△ABC 的面积S △ABC =________. 【解析】 根据原图形的面积是直观图面积的22倍知S △ABC =4 2. 【答案】 4 25.(球的表面积)球O 与底面边长为3的正三棱柱的各侧面均相切,则球O 的表面积为________.【解析】 设球O 的半径为R ,底面正三角形内切圆半径就是球O 的半径,则R =13×332=32,因此球O 的表面积S =4πR 2=3π. 【答案】 3π【命题要点】①根据几何体确定三视图;②根据三视图中的二个视图确定另一个视图.(1)(2013·四川高考)一个几何体的三视图如图4-1-4所示,则该几何体的直观图可以是()图4-1-4(2)(2013·课标全国卷Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()【思路点拨】(1)从俯视图入手求解.(2)首先在空间直角坐标系中画出该四面体,然后根据投影面得到正视图.【自主解答】(1)根据俯视图是圆环,可排除A、B、C,选D.(2)结合已知条件画出图形,然后按照要求作出正视图.根据已知条件作出图形:四面体C1—A1DB,标出各个点的坐标如图(1)所示,可以看出正视图是正方形,如图(2)所示.故选A.【答案】(1)D(2)A1.解答本例(2)时,可先确定四面体各个顶点在投影面上的射影,再根据射影确定正视图.2.空间几何体的三视图问题的求解关键(1)形状的确定:三视图与空间几何体的相互转化是解决这类问题的常用方法.(2)大小的确定:根据三视图的大小可确定几何体的大小,由几何体的大小也可确定出三视图的大小.变式训练1(2013·齐齐哈尔模拟) 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图4-1-5所示,侧视图是一个矩形,则这个矩形的面积是()A .4B .2 3C .2 D. 3俯视图 图4-1-5【解析】 设正三棱柱的底面边长为a ,则34a 3=23, ∴a =2,从而侧视图的长为2,宽为32×2=3,侧视图的面积为2 3. 【答案】 B(1)(2013·临沂模拟)某几何体的三视图如图4-1-6所示,其中侧视图中的图弧是半圆,则该几何体的表面积为( )图4-1-6A.92+14π B.82+14πC.92+24π D.82+24π(2)(2013·浙江高考)若某几何体的三视图(单位:cm)如图4-1-7所示,则此几何体的体积等于________cm3.图4-1-7【思路点拨】(1)首先判定几何体的形状,然后确定几何体表面积的求法.(2)首先判定几何体的形状,然后确定几何体体积的求法.【自主解答】(1)由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体的中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.(2) 由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥,如图所示.三棱柱的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积V 1=12×3×4×5=30(cm 3),小三棱锥的底面与三棱柱的上底面相同,高为3,故其体积V 2=13×12×3×4×3=6(cm 3),所以所求几何体的体积为30-6=24(cm 3).【答案】 (1)A (2)241.求解几何体的表面积及体积的技巧:(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.2.根据几何体的三视图求其表面积与体积的步骤: (1)根据给出的三视图判断该几何体的形状. (2)由三视图中的大小标示确定该几何体的各个度量. (3)套用相应的面积公式与体积公式计算求解.变式训练2 (2013·江西高考)一几何体的三视图如图4-1-8所示,则该几何体的体积为( )A .200+9πB .200+18πC .140+9πD .140+18π图4-1-8【解析】 由三视图可知该几何体的下面是一个长方体,上面是半个圆柱组成的组合体.长方体的长、宽、高分别为10、4、5,半圆柱底面圆半径为3,高为2,故组合体体积V =10×4×5+9π=200+9π.【答案】 A【命题要点】 ①求球的表面积或体积;②求球心到截面的距离.(1)(2013·大连模拟)已知正三棱锥P —ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为________. (2)(2013·开封模拟)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球表面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.【思路点拨】 (1)设△ABC 的中心为M ,球心为O ,在Rt △OAM 中用勾股定理求解. (2)首先确定球的半径与圆锥底面半径的关系,然后确定圆锥的高,求高的比值. 【自主解答】 (1)由于P A ,PB ,PC 两两垂直,则点P 在底面ABC 上的射影就是正三角形ABC 的中心M ,设正三角形ABC 的边长为a ,则三棱锥的侧棱长为22a ,AM =33a ,三棱锥的高为h ,在Rt △P AM 中,由勾股定理得P A 2=PM 2+AM 2⇒⎝⎛⎭⎫22a 2=h 2+⎝⎛⎭⎫33a 2⇒h =66a . 再设球心为O ,则OM ⊥底面ABC ,且OM =3-h ,在Rt △OAM 中,由勾股定理得OA 2=OM 2+AM 2⇒(3)2=(3-h )2+⎝⎛⎭⎫33a 2,又h =66a ,则解得a =22,故球心到截面ABC 的距离为3-h =3-66a =3-66×22=33. (2)设球心为O 1,球半径为r 1,圆锥底面圆圆心为O 2,半径为r 2,则有316×4πr 21=πr 22,即r 2=32r 1,所以O 1O 2=r 21-r 22=r 12,设两个圆锥中,体积较小者的高与体积较大者的高分别为h 1,h 2,则h 1h 2=r 1-r 12r 1+r 12=13.【答案】 (1)33 (2)131.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,由4R 2=a 2+b 2+c 2求解.变式训练3 (2013·辽宁高考)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132D .310【解析】 因为直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R =122+52=13,即R =132.【答案】 C空间几何体的三视图能让学生经历由三视图到实物图,再到直观图的过程,能较好地考查学生的空间想象能力,命题涉及几何体的结构特征、表面积和体积问题是课标区高考的热点之一.将三视图还原为直观图求几何体的体积已知一个空间几何体的三视图如图4-1-9所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________ cm 3.图4-1-9【解析】 由三视图知,该空间几何体为一底面是直角梯形的四棱锥,且四棱锥顶点与底面直角顶点的连线垂直于底面.由三视图的数据可知,底面梯形的两底长分别为4和2,梯形的高和四棱锥的高都是2,因此底面梯形面积为S =12(2+4)×2=6,四棱锥的体积为V=13×6×2=4. 【答案】 4 【阅卷心语】易错提示 (1)搞不清正(主)视图中虚线是怎么来的,想象不出空间几何体的形状,或不能根据三视图确定四棱锥的哪一条侧棱垂直于底面.(2)不能根据三视图的有关数据正确得到空间几何体的相关数据,从而得不到正确答案. 防范措施 (1)根据三视图判断空间几何体的形状,应特别注意三个视图中的实线与虚线,知道为什么是实线或虚线,为什么有这些线或没有某些线,对于正(主)视图、侧(左)视图中的直角,更要弄清楚它们是直角的原因.(2)要弄清三视图的有关数据与空间几何体的哪些数据相当,只需搞清由空间几何体如何得到三视图即可,平时应多加练习,总结规律.1.一个几何体的三视图如图4-1-10所示,则它的体积为( )图4-1-10A.203 B.403C .20D .40【解析】 由三视图可知,该几何体是一个放倒的四棱锥,如图所示,其中四棱锥的底面是正(主)视图,为直角梯形,直角梯形的上底为1,下底为4,高为4.棱锥的高为4,所以四棱锥的体积为13×1+42×4×4=403,选B.【答案】 B2.有一平行六面体的三视图如图4-1-11所示,其中俯视图和侧(左)视图均为矩形,则这个平行六面体的表面积为( )图4-1-11A .21 3B .6+15 3C .30+6 3D.42【解析】由三视图可知该平行六面体的底面是个矩形,两个侧面和底面垂直.其中侧棱AA1=2,底面边长AD=3,平行六面体的高为3,BE=2,又AE=AA21-A1E2=22-(3)2=1,所以AB=1+2=3.所以平行六面体的表面积为2(3×3+3×3+3×2)=30+63,选C.【答案】 C。
2014年全国高考真题(理科数学)分类汇编九、立体几何(逐题详解)
2014年高考题专题整理 --立体几何第I 部分1.【2014年陕西卷(理05)】已知底面边长为1,侧棱长为2则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】 D【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π2.【2014年重庆卷(理07)】某几何体的三视图如下图所示,则该几何体的表面积为( )A.54B.60C.66D.72【答案】B【解析】在长方体中构造几何体'''ABC A B C -,如右图所示,4,'5,'2,3AB A A B B AC ====,经检验该几何体的三视图满足题设条件。
其表面积'''''''''ABC ACC A ABB A BCC B A B C S S S S S S ∆∆=++++,3515615146022=++++=,故选择B3.【2014年安徽卷(理07)】一个多面体的三视图如图所示,则该多面体的表面积为俯视图左视图正视图3245C'B'A'C BA(A )321+ (B )318+(C )21(D )18【答案】A【解析】此多面体的直观图如下图所示表面积为61121622⨯⨯⨯-⨯⨯ 3212)2(432+=⨯⨯+第(7)题图4.【2014年福建卷(理02)】某空间几何体的正视图是三角形,则该几何体不可能是( )A . 圆柱B .圆锥C . 四面体D .三棱柱【答案】A【解析】圆柱的正视图为矩形,故选:A5.【2014年湖南卷(理07)】一块石材表示的几何体的三视图如图2所示. 将该石材切割、打磨,加工成球,则能得到最大球的半径等于A. 1B. 2C. 3D. 4【答案】B【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则2286862r r r -+-=+⇒=,故选B6.【2014年辽宁卷(理04)】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的正(主)视图侧(左)视图俯视图111111111111是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥【答案】B【解析】A .若m ∥α,n ∥α,则m ,n 相交或平行或异面,故A 错;B .若m ⊥α,n ⊂α,则m ⊥n ,故B 正确;C .若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错;D .若m ∥α,m ⊥n ,则n ∥α或n ⊂α或n ⊥α,故D 错.故选B7.【2014年全国大纲卷(08)】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814π B .16π C .9π D .274π【答案】A【解析】设球的半径为R ,则∵棱锥的高为4,底面边长为2, ∴R 2=(4﹣R )2+()2,∴R=,∴球的表面积为4π•()2=.故选:A8.【2014年四川卷(理08)】如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
专题10 立体几何-2014年高考数学(理)试题小题部分分项版解析(解析版)
1.【2014高考安徽卷理第7题】一个多面体的三视图如图所示,则该多面体的表面积为()A.21+3B.18+3C.21D.18考点:多面体的三视图与表面积.2. 【2014高考北京版理第7题】在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠考点:三棱锥的性质,空间中的投影,难度中等.3. 【2014高考福建卷第2题】某空间几何体的正视图是三角形,则该几何体不可能是( ).A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱4. 【2014高考广东卷理第7题】若空间中四条直线两两不同的直线1l 、2l 、3l 、4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A.14l l ⊥B.14//l lC.1l 、4l 既不平行也不垂直D.1l 、4l 的位置关系不确定5. 【2014高考湖南卷第7题】一块石材表示的几何体的三视图如图2所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.46.【2014高考安徽卷理第8题】从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共有()A.24对B.30对C.48对D.60对考点:1.直线的位置关系;2.异面直线所成的角.O-中,一个四面体的7.【2014高考湖北卷理第5题】在如图所示的空间直角坐标系xyz顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②【答案】D【解析】试题分析:设)2,2,2(),1,2,1(),0,2,2(),2,0,0(D C B A ,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.考点:空间由已知条件,在空间坐标系中作出几何体的形状,正视图与俯视图面积,容易题.8. 【2014高考湖北卷理第8题】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258 C.15750 D.3551139. 【2014高考江苏卷第8题】 设甲,乙两个圆柱的底面面积分别为12,S S ,体积为12,V V ,若它们的侧面积相等且1294S S ,则12V V 的值是 .【考点】圆柱的侧面积与体积.10. 【2014江西高考理第5题】一几何体的直观图如右图,下列给出的四个俯视图中正确的是( )【答案】B【解析】试题分析:俯视图为几何体在底面上的投影,应为B 中图形.考点:三视图11. 【2014江西高考理第10题】如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C【解析】试题分析:12. 【2014辽宁高考理第4题】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥13. 【2014辽宁高考理第7题】某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π-D .84π-14. 【2014全国1高考理第12题】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )(A )62 (B )6 (C )62 (D )4【考点定位】三视图.15.【2014全国2高考理第6题】如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A. 1727 B.59 C.1027D.1316. 【2014全国2高考理第11题】直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.3010D.22 17.【2014山东高考理第13题】 三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =________.18. 【2014四川高考理第8题】如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( ) A .3[,1]3 B .6[,1]3 C .622[,]33 D .22[,1]319. 【2014浙江高考理第3题】某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cm B. 1292cm C. 1322cm D. 1382cm答案:D解析:有三视图可知,此几何体如下图,故几何体的表面积为1S=⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯=,故选D.246234363334352341382考点:三视图,几何体的表面积.20.【2014重庆高考理第7题】某几何体的三视图如图所示,则该几何体的表面积为()A.54B.60C.66D.72【答案】B【解析】试题分析:21. 【2014陕西高考理第5题】已知底面边长为1,侧棱长为2则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π22. 【2014天津高考理第10题】已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_______3m .23. 【2014大纲高考理第8题】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814π B .16π C .9π D .274π【答案】A .24.【2014大纲高考理第11题】已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 ( )A.14B.24C.34D.12【答案】B.。
立体几何不会做?数学老师整合131道经典拔高题,高中学生都适用
立体几何不会做?数学老师整合131道经典拔高题,高中学生
都适用
高中数学的整体框架分为函数、导数、不等式、三角函数、数列、排列概率、解析几何和立体几何等八类,而立体几何一直被作为高考历年的压轴大题之一,是孩子提分路上的拦路虎。
据官方统计(以北京为例),近三年高考立体几何的平均分值为20分,仅次于解析几何的24分。
并且几何模块的考察热度逐渐上升,是无论大中小考试的必考知识。
孩子立体几何学不好的主要原因:一方面是没有基础的立体构造思维和知识迁移能力,另一方面就是对立体几何中分割、平移、射影等辅助技巧的运用还不够熟练。
我们数学老师层层筛选了近三年高考原题、模拟题、联考题及各类基础题型,精心整合了131道立体几何经典拔高题,来帮助孩子在脑海中搭建基本的立体思维,并通过练题来培养孩子对平移、垂直、分割等各种技巧的交叉运用能力,最终达到提高成绩的目的。
想要获得完整的学习资料电子版,即可私信回复关键词【001】,即可获得。
2014高考理科数学必考点解题方法秘籍立体几何2
2014高考理科数学必考点解题方法秘籍: 立 体 几 何21.求异面直线所成的角(]0,90θ∈︒︒:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角[]0,90θ∈︒︒:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用);二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。
3求二面角的平面角[]0,θπ∈解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证:证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。
1.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是3cm1. 如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为_____________.2.如上图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面AB C 1D 1的距离为__________________.3.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于____________.1. 正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.1.如图,四棱锥P —ABCD 的底面ABCD 为正方形,PD ⊥底面ABCD ,PD =AD .求证:(1)平面P AC ⊥平面PBD ;(2)求PC 与平面PBD 所成的角;1.已知直线l 、m 、平面α、β,且l ⊥α,m β,给出下列四个命题:(1)α∥β,则l ⊥m (2)若l ⊥m ,则α∥β(3)若α⊥β,则l ∥m (4)若l ∥m ,则α⊥β其中正确的是__________________.1. (2011年高考山东卷理科19)在如图所示的几何体中,四边形ABCD 为平D 1EC行四边形,∠ ACB=90 ,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.2.(2011年高考浙江卷理科20)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-β为直二面角?若存在,求出AM 的长;若不存在,请说明理由。
2014年全国高考试卷立体几何部分汇编(下)
2014年全国高考试卷立体几何部分汇编(下)1. (2014山东理13)三棱锥P ABC -中,,D E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC-的体积为2V ,则12V V =_____. 【解析】 142. (2014山东理17)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.⑴求证:1C M ∥平面11A ADD ;⑵若1CD 垂直于平面ABCD且1CD =11C D M 和平面ABCD 所成的角(锐角)的余弦值.ABCDMB 1A 1C 1D 1【解析】 ⑴ 证明:因为四边形ABCD 是等腰梯形,且2AB CD =所以AB DC ∥,又由M 是AB 中点,因此//CD MA 且CD MA =.连接1AD ,在四棱柱1111ABCD A B C D -中, 因为11//CD C D ,11CD C D =可得1111//=C D MA C D MA ,所以四边形11AMC D 为平行四边形,因此11//C M D A 又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD , 所以1//C M 平面11A ADD ⑵ 由⑴知,平面11D C MABCD AB =过C 向AB 做垂线交AB 于N ,连接1D N ,由1CD ⊥面ABCD ,可得1D N AB ⊥,故1D NC ∠为二面角1C AB C --的平面角 在1Rt D CN △中,160BC NBC =∠=︒,可得CN =所以1ND = 在1Rt D CN △中,11cos CN D NC D N ∠===, 所以平面11C D M 和平面ABCD.3. (2014山东文13)一个六棱锥的体积为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 . 【解析】 124. (2014山东文18)如图,四棱锥P ABCD -中,AP ⊥平面12PCD AD BC AB BC AD E F ,,==,,∥分别为线段AD PC ,的中点.⑴求证:AP ∥平面BEF ; ⑵求证:BE ⊥平面PACCBADFEP【解析】 ⑴ 连接AC 交BE 于点O ,连接OF ,不妨设1AB BC ==,则2AD =,AB BC AD BC =∴,,∥四边形ABCE 为菱形又O F ,分别为中点,OF AP ∴∥ ∵OF ⊂平面BEF ,∴AP ∥平面BEF ⑵ ∵AP ⊥面PCD ,CD ⊂面PCD ,∴AP CD ⊥BC ED BC ED BCDE =∴,,∥为平行四边形, BE CD BE PA ∴∴⊥,∥又ABCE 为菱形,BE AC ∴⊥又PA AC A =∩,PA AC ⊂,平面PAC ,BE ∴⊥平面PAC . 5. (2014陕西理5)已知底面边长为1,则该球的体积为( )A .32π3B .4πC .2πD .4π3【解析】 D如图为正方形四棱柱1AC.根据题意得AC =11ACC A 为正方形,所以外接球直径14π2213R AC R V ==∴=∴=球,,,故选D .F E DCAGHACD D 1C 1B 1A 1B6. (2014陕西理17)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD BC ,的平面分别交四面体的棱BD ,DC CA ,于点F G H ,,. ⑴证明:四边形EFGH 是矩形;⑵求直线AB 与平面EFGH 夹角θ的正弦值.俯视图左视图DEFHGCBA【解析】 ⑴ 由该四面体的三视图可知.21BD DC BD AD AD DC BD DC AD ⊥⊥⊥===,,,,. 由题设BC ∥平面EFGH ,平面EFGH ∩平面BDC FC =, 平面EFGH ∩平面ABC EH =,BC FG BC EH FG EH ∴∴∥∥∥,,.同理EF AD HG AD EF HG ∴∥∥∥,,∴四边形EFGH 是平行四边形.又AD DC AD BD AD ⊥⊥∴⊥,,平面BDC ,AD BC EF FG ∴⊥∴⊥,,∴四边形EFGH 是矩形,⑵ 解法一:如图,以D 为坐标原点建立空间直角坐标系, 则(000)(001)D A ,,,,,(200)(020B C ,,,,,). 001(21)DA BC =-=(,,),,0,,(201)BA =-,,.设平面EFGH 的法向量()n x y z =,,,∵EF AD FG BC ∥,∥.∴0n DA ⋅=,0n BC ⋅=. 得0220z x y =⎧⎨-+=⎩..取(110)n =,,.∴sin cos 5BA n BA n BA nθ⋅===,.解法二:如图,以D 为坐标原点建立空间直角坐标系,则(000)(001)D A ,,,,,(200)(020B C ,,,,,).∵E 是AB 的中点,∴F G ,分别为BD DC ,得110(100)(010)2E F G ⎛⎫ ⎪⎝⎭,,,,,,,,.100(110)(201)2FE FG BA ⎛⎫∴==-=- ⎪⎝⎭,,,,,,,,.设平面EFGH 的法向量()n x y z =,,. 则00n FE n FG ⋅=⋅=,. 得1020z x y ⎧=⎪⎨⎪-+=⎩,,取(110)n =,,.∴sin cos 5BA n BA n BA nθ⋅=,===7. (2014陕西文5)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( ) A .4π B .3π C .2π D .π 【解析】 C8. (2014陕西文17)四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB BD DC CA ,,,于点E F G H ,,,.⑴求四面体ABCD 的体积;⑵证明:四边形EFGH 是矩形.ABCGHFED左视图俯视图【解析】 ⑴ 由该四面体的三视图可知,BD DC ⊥,BD AD ⊥,AD DC ⊥,2BD DC ==,1AD =, ∴AD ⊥平面BDC∴四面体ABCD 的体积112221323V =⨯⨯⨯⨯=.⑵ 证明:∵BC ∥平面EFGH ,平面EFGH 平面BDC FG =,平面EFGH 平面ABC EH =,∴BC FG ∥,BC EH ∥,∴FG EH ∥. 同理,EF AD ∥,HG AD ∥,∴EF HG ∥, ∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC , ∴AD BC ⊥,EF FG ⊥,∴四边形EFGH 是矩形.9. (2014上海理19)底面边长为2的正三棱锥P ABC -,其表面展开图是123PP P △,如图,求123PP P △的各边长及此三棱锥的体积VP 12【解析】 根据题意可得12,,P B P 共线,∵112ABP BAP CBP ∠=∠=∠,60ABC ∠=, ∴11260ABP BAP CBP ∠=∠=∠= ∴160P ∠=,同理2360P P ∠=∠=,∴123PP P ∆是等边三角形,P ABC -是正四面体; ∴123PPP ∆边长为4;3P ABC V AB -==10. (2014四川理8)如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
2014高考数学必做的立体几何
课标文数19.G4,G7[2011·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4【解析】 本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.图1-5【解答】 (1)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与线段FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B ,C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF .(向量法)过点F 作FQ ⊥AD ,交AD 于点Q ,连QE .由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED .以Q 为坐标原点,QE →为x 轴正向,QD →为y 轴正向,QF →为z 轴正向,建立如图所示空间直角坐标系.由条件知E (3,0,0),F (0,0,3),B ⎝⎛⎭⎫32,-32,0,C ⎝⎛⎭⎫0,-32,32.则有BC →=⎝⎛⎭⎫-32,0,32,EF →=(-3,0,3).所以EF →=2BC →,即得BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S 四边形OBED =S △EOB +S △OED =332.过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F-OBED 的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.课标文数17.G4[2011·北京卷] 如图1-4,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由.【解答】 (1)证明:因为D ,E 分别为AP ,AC 的中点, 所以DE ∥PC .又因为DE ⊄平面BCP ,PC ⊂平面BCP , 所以DE ∥平面BCP .(2)因为D 、E 、F 、G 分别为AP 、AC 、BC 、PB 的中点, 所以DE ∥PC ∥FG , DG ∥AB ∥EF ,所以四边形DEFG 为平行四边形. 又因为PC ⊥AB , 所以DE ⊥DG ,所以平行四边形DEFG 为矩形. (3)存在点Q 满足条件,理由如下: 连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC 、AB 的中点M ,N ,连接ME 、EN 、NG 、MG 、MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG .所以Q 为满足条件的点.课标数学16.G4,G5[2011·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点. 求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面P AD .本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力. 【解答】 证明:(1)在△P AD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF ∥平面PCD .(2)连结BD ,因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面P AD ⊥平面ABCD ,BF ⊂平面ABCD , 平面P AD ∩平面ABCD =AD ,所以BF ⊥平面P AD . 又因为BF ⊂平面BEF ,所以平面BEF ⊥平面P AD .大纲理数19.G5,G11[2011·全国卷] 如图1-1,四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.【解答】 解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2. 连结SE ,则SE ⊥AB ,SE = 3. 又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角. 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,则SG ⊥BC .又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,故E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB =217,α=arcsin 217.解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图1-3所示的空间直角坐标系C -xyz .图1-3设D (1,0,0),则A (2,2,0),B (0,2,0). 又设S (x ,y ,z ), 则x >0,y >0,z >0. (1)AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1, 由|DS →|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝⎛⎭⎫1,12,32,AS →=⎝⎛⎭⎫-1,-32,32,BS →=⎝⎛⎭⎫1,-32,32,DS →=⎝⎛⎭⎫0,12,32,DS →·AS →=0,DS →·BS →=0.故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S , 所以SD ⊥平面SAB .(2)设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎫1,-32,32,CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).又AB →=(-2,0,0),所以cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成的角为arcsin 217.课标理数18.G5,G10[2011·广东卷] 如图1-3,在锥体P -ABCD 中,ABCD 是边长为1的菱形,且∠DAB =60°,P A =PD =2,PB =2,E ,F 分别是BC ,PC 的中点.(1)证明:AD ⊥平面DEF ;(2)求二面角P -AD -B 的余弦值.图1-3【解答】 法一:(1)证明:设AD 中点为G ,连接PG ,BG ,BD.图1-1因P A =PD ,有PG ⊥AD ,在△ABD 中,AB =AD =1,∠DAB =60°,有△ABD 为等边三角形,因此BG ⊥AD ,BG ∩PG =G ,所以AD ⊥平面PBG ,所以AD ⊥PB ,AD ⊥GB .又PB ∥EF ,得AD ⊥EF ,而DE ∥GB 得AD ⊥DE ,又FE ∩DE =E ,所以AD ⊥平面DEF . (2)∵PG ⊥AD ,BG ⊥AD ,∴∠PGB 为二面角P -AD -B 的平面角.在Rt △P AG 中,PG 2=P A 2-AG 2=74,在Rt △ABG 中,BG =AB ·sin60°=32,∴cos ∠PGB =PG 2+BG 2-PB 22PG ·BG =74+34-42·72·32=-217.法二:(1)证明:设AD 中点为G ,因为P A =PD ,所以PG ⊥AD , 又AB =AD ,∠DAB =60°,所以△ABD 为等边三角形,因此,BG ⊥AD ,从而AD ⊥平面PBG .延长BG 到O 且使PO ⊥OB ,又PO ⊂平面PBG ,所以PO ⊥AD ,又AD ∩OB =G ,所以PO ⊥平面ABCD .以O 为坐标原点,菱形的边长为单位长度,直线OB ,OP 分别为x 轴,z 轴,平行于AD 的直线为y 轴,建立如图1-2所示的空间直角坐标系.设P (0,0,m ),G (n,0,0),则A ⎝⎛⎭⎫n ,-12,0,D ⎝⎛⎭⎫n ,12,0.图1-2∵|GB →|=|AB →|sin60°=32,∴B ⎝⎛⎭⎫n +32,0,0,C ⎝⎛⎭⎫n +32,1,0,E ⎝⎛⎭⎫n +32,12,0,F ⎝⎛⎭⎫n 2+34,12,m2.∴AD →=(0,1,0),DE →=⎝⎛⎭⎫32,0,0,FE →=⎝⎛⎭⎫n 2+34,0,-m 2,∴AD →·DE →=0,AD →·FE →=0, ∴AD ⊥DE ,AD ⊥FE ,又DE ∩FE =E ,∴AD ⊥平面DEF .(2)∵P A →=⎝⎛⎭⎫n ,-12,-m ,PB →=⎝⎛⎭⎫n +32,0,-m , ∴m 2+n 2+14=2,⎝⎛⎭⎫n +322+m 2=2,解得m =1,n =32.取平面ABD 的法向量n 1=(0,0,-1), 设平面P AD 的法向量n 2=(a ,b ,c ),由P A →·n 2=0,得32a -b 2-c =0,由PD →·n 2=0,得32a +b 2-c =0,故取n 2=⎝⎛⎭⎫1,0,32.∴cos 〈n 1,n 2〉=-321·74=-217.即二面角P -AD -B 的余弦值为-217.课标理数18.G5,G11[2011·湖北卷] 如图1-4,已知正三棱柱ABC -A 1B 1C 1的各棱长都是4,E 是BC 的中点,动点F 在侧棱CC 1上,且不与点C 重合.(1)当CF =1时,求证:EF ⊥A 1C ;(2)设二面角C -AF -E 的大小为θ,求tan θ的最小值.图1-4【解答】 解法1:过E 作EN ⊥AC 于N ,连结EF .(1)如图①,连结NF 、AC 1,由直棱柱的性质知,底面ABC ⊥侧面A 1C ,又底面ABC ∩侧面A 1C =AC ,且EN ⊂底面ABC ,所以EN ⊥侧面A 1C ,NF 为EF 在侧面A 1C 内的射影,在Rt △CNE 中,CN =CE cos60°=1,则由CF CC 1=CN CA =14,得NF ∥AC 1.又AC 1⊥A 1C ,故NF ⊥A 1C , 由三垂线定理知EF ⊥A 1C .(2)如图②,连结AF ,过N 作NM ⊥AF 于M ,连结ME , 由(1)知EN ⊥侧面A 1C ,根据三垂线定理得EM ⊥AF ,所以∠EMN 是二面角C -AF -E 的平面角,即∠EMN =θ, 设∠F AC =α,则0°<α≤45°.在Rt △CNE 中,NE =EC ·sin60°=3, 在Rt △AMN 中,MN =AN ·sin α=3sin α,故tan θ=NE MN =33sin α.又0°<α≤45°,∴0<sin α≤22,故当sin α=22,即当α=45°时,tan θ达到最小值,tan θ=33×2=63,此时F 与C 1重合.解法2:(1)建立如图③所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1),于是CA 1→=(0,-4,4),EF →=(-3,1,1), 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0,故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ), AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0,取m =(3λ,-λ,4),又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),于是由θ为锐角可得cos θ=|m·n||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2, 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63,故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.图1-2课标文数18.G5,G11[2011·湖北卷] 如图1-2,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为32,点E 在侧棱AA 1上,点F 在侧棱BB 1上,且AE =22,BF = 2.(1)求证:CF ⊥C 1E ;(2)求二面角E -CF -C 1的大小.【解答】 解法1:(1)证明:由已知可得CC 1=32,CE =C 1F =22+(22)2=23, EF =C 1E =22+(2)2= 6.于是有EF 2+C 1E 2=C 1F 2,CE 2+C 1E 2=CC 21. 所以C 1E ⊥EF ,C 1E ⊥CE .又EF ∩CE =E ,所以C 1E ⊥平面CEF . 又CF ⊂平面CEF ,故CF ⊥C 1E .(2)在△CEF 中,由(1)可得EF =CF =6,CE =23, 于是有EF 2+CF 2=CE 2,所以CF ⊥EF . 又由(1)知CF ⊥C 1E ,且EF ∩C 1E =E , 所以CF ⊥平面C 1EF .又C 1F ⊂平面C 1EF ,故CF ⊥C 1F .于是∠EFC 1即为二面角E -CF -C 1的平面角.由(1)知△C 1EF 是等腰直角三角形,所以∠EFC 1=45°,即所求二面角E -CF -C 1的大小为45°.图1-3解法2:建立如图1-3所示的空间直角坐标系,则由已知可得A (0,0,0),B (3,1,0),C (0,2,0),C 1(0,2,32),E (0,0,22),F (3,1,2). (1)C 1E →=(0,-2,-2),CF →=(3,-1,2), ∴C 1E →·CF →=0+2-2=0, ∴CF ⊥C 1E . (2)CE →=(0,-2,22),设平面CEF 的一个法向量为m =(x ,y ,z ). 由m ⊥CE →,m ⊥CF →,得⎩⎪⎨⎪⎧m ·CE →=0,m ·CF →=0,即⎩⎨⎧-2y +22z =0,3x -y +2z =0,可取m =(0,2,1).设侧面BC 1的一个法向量为n ,由n ⊥CB →,n ⊥CC 1→,及CB →=(3,-1,0),CC 1→=(0,0,32),可取n =(1,3,0),设二面角E -CF -C 1的大小为θ,于是由θ为锐角可得cos θ=|m·n ||m ||n |=63×2=22,所以θ=45°,即所求二面角E -CF -C 1的大小为45°.课标文数19.G5,G11[2011·湖南卷] 如图1-5,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB 上,且∠CAB =30°,D 为AC 的中点.(1)证明:AC ⊥平面POD ;(2)求直线OC 和平面P AC 所成角的正弦值.图1-5【解答】 (1)因为OA =OC ,D 是AC 的中点,所以AC ⊥OD . 又PO ⊥底面⊙O ,AC ⊂底面⊙O ,所以AC ⊥PO . 而OD ,PO 是平面POD 内的两条相交直线, 所以AC ⊥平面POD .(2)由(1)知,AC ⊥平面POD ,又AC ⊂平面P AC , 所以平面POD ⊥平面P AC .在平面POD 中,过O 作OH ⊥PD 于H ,则OH ⊥平面P AC .图1-6连结CH ,则CH 是OC 在平面P AC 上的射影, 所以∠OCH 是直线OC 和平面P AC 所成的角.在Rt △ODA 中,OD =OA ·sin30°=12.在Rt △POD 中,OH =PO ·OD PO 2+OD2=2×122+14=23. 在Rt △OHC 中,sin ∠OCH =OH OC =23.故直线OC 和平面P AC 所成角的正弦值为23.图1-8课标文数18.G5,G11[2011·课标全国卷] 如图1-8,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:P A ⊥BD ;(2)设PD =AD =1,求棱锥D -PBC 的高. 【解答】 (1)证明:因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面P AD ,故P A ⊥BD . (2)如图,作DE ⊥PB ,垂足为E . 已知PD ⊥底面ABCD ,则PD ⊥BC .由(1)知BD ⊥AD ,又BC ∥AD ,所以BC ⊥BD .图1-9故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知PD =1,则BD =3,PB =2.根据DE ·PB =PD ·BD 得DE =32.即棱锥D -PBC 的高为32.课标文数16.G5[2011·陕西卷] 如图1-8,在△ABC 中,∠ABC =45°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)若BD =1,求三棱锥D -ABC 的表面积.图1-8【解答】 (1)∵折起前AD 是BC 边上的高, ∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D . ∴AD ⊥平面BDC . ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .(2)由(1)知,DA ⊥DB ,DB ⊥DC ,DC ⊥DA , DB =DA =DC =1. ∴AB =BC =CA = 2.从而S △DAB =S △DBC =S △DCA =12×1×1=12.S △ABC =12×2×2×sin60°=32.∴表面积S =12×3+32=3+32.课标数学16.G4,G5[2011·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ;(2)平面BEF⊥平面P AD.课标数学16.G4,G5[2011·江苏卷] 本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.【解答】证明:(1)在△P AD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF⊄平面PCD,PD⊂平面PCD,图1-3所以直线EF∥平面PCD.(2)连结BD,因为AB=AD,∠BAD=60°,所以△ABD为正三角形,因为F是AD的中点,所以BF⊥AD.因为平面P AD⊥平面ABCD,BF⊂平面ABCD,平面P AD∩平面ABCD=AD,所以BF⊥平面P AD.又因为BF⊂平面BEF,所以平面BEF⊥平面P AD.课标文数18.G7[2011·辽宁卷] 如图1-8,四边形ABCD 为正方形,图1-8QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD . (1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值.【解答】 (1)由条件知PDAQ 为直角梯形.因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD . 又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC .在直角梯形PDAQ 中可得DQ =PQ =22PD ,则PQ ⊥QD . 所以PQ ⊥平面DCQ .(2)设AB =a .由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=13a 3. 由(1)知PQ 为棱锥P -DCQ 的高,而PQ =2a ,△DCQ 的面积为22a 2, 所以棱锥P -DCQ 的体积V 2=13a 3. 故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1.。
2014高考解答题基本题型---立体几何(广东)
理科数学高考解答题基本题型---立体几何一、考试大纲1.立体几何初步(1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
②能画出简单空间图形(长方体、球、圆柱、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。
③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。
④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内。
◆公理2:过不在同一直线上的三点,有且只有一个平面。
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
◆公理4:平行于同一条直线的两条直线互相平行。
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。
理解以下判定定理:◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面互相平行。
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。
理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行。
◆如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。
◆垂直于同一个平面的两条直线平行。
◆如果两个平面互相垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。
2014年高考数学真题汇编:立体几何(理)
2014年高考数学真题汇编:立体几何(理)20. [2014·安徽卷] 如图1-5,四棱柱ABCD - A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,四边形ABCD 为梯形,AD ∥BC ,且AD =2BC .过A 1,C ,D 三点的平面记为α,BB 1与α的交点为Q .图1-5(1)证明:Q 为BB 1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA 1=4,CD =2,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小. 20.解: (1)证明:因为BQ ∥AA 1,BC ∥AD , BC ∩BQ =B ,AD ∩AA 1=A , 所以平面QBC ∥平面A 1AD ,从而平面A 1CD 与这两个平面的交线相互平行, 即QC ∥A 1D .故△QBC 与△A 1AD 的对应边相互平行, 于是△QBC ∽△A 1AD ,所以BQ BB 1=BQ AA 1=BC AD =12,即Q 为BB 1的中点.(2)如图1所示,连接QA ,QD .设AA 1=h ,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC =a ,则AD =2a .图1V 三棱锥Q -A 1AD =13×12·2a ·h ·d =13ahd ,V 四棱锥Q -ABCD =13·a +2a2·d ·⎝⎛⎭⎫12h =14ahd , 所以V 下=V 三棱锥Q -A 1AD +V 四棱锥Q -ABCD =712ahd . 又V 四棱柱A 1B 1C 1D 1 ABCD =32ahd ,所以V 上=V 四棱柱A 1B 1C 1D 1 ABCD -V 下=32ahd -712ahd =1112ahd ,故V 上V 下=117.(3)方法一:如图1所示,在△ADC 中,作AE ⊥DC ,垂足为E ,连接A 1E . 又DE ⊥AA 1,且AA 1∩AE =A ,所以DE ⊥平面AEA 1,所以DE ⊥A 1E .所以∠AEA 1为平面α与底面ABCD 所成二面角的平面角. 因为BC ∥AD ,AD =2BC ,所以S △ADC =2S △BCA . 又因为梯形ABCD 的面积为6,DC =2, 所以S △ADC =4,AE =4.于是tan ∠AEA 1=AA 1AE =1,∠AEA 1=π4.故平面α与底面ABCD 所成二面角的大小为π4.方法二:如图2所示,以D 为原点,DA ,DD 1→分别为x 轴和z 轴正方向建立空间直角坐标系. 设∠CDA =θ,BC =a ,则AD =2a . 因为S 四边形ABCD =a +2a2·2sin θ=6, 所以a =2sin θ.图2从而可得C (2cos θ,2sin θ,0),A 1⎝⎛⎭⎫4sin θ,0,4,所以DC =(2cos θ,2sin θ,0),DA 1→=⎝⎛⎭⎫4sin θ,0,4.设平面A 1DC 的法向量n =(x ,y ,1), 由⎩⎨⎧DA 1→·n =4sin θx +4=0,DC →·n =2x cos θ+2y sin θ=0,得⎩⎪⎨⎪⎧x =-sin θ,y =cos θ, 所以n =(-sin θ,cos θ,1).又因为平面ABCD 的法向量m =(0,0,1), 所以cos 〈n ,m 〉=n·m|n||m|=22,故平面α与底面ABCD 所成二面角的大小为π4.17.[2014·陕西卷] 四面体ABCD 及其三视图如图1-4所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H . (1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.图1-417.解:(1)证明:由该四面体的三视图可知, BD ⊥DC ,BD ⊥AD ,AD ⊥DC , BD =DC =2,AD =1.由题设,BC ∥平面EFGH , 平面EFGH ∩平面BDC =FG , 平面EFGH ∩平面ABC =EH , ∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG . ∴四边形EFGH 是平行四边形.又∵AD ⊥DC ,AD ⊥BD ,∴AD ⊥平面BDC , ∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形.(2)方法一:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA =(0,0,1),BC =(-2,2,0), BA =(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ), ∵EF ∥AD ,FG ∥BC , ∴n ·DA =0,n ·BC =0,得⎩⎪⎨⎪⎧z =0,-2x +2y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪BA ·n |BA ||n |=25×2=105.方法二:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得E ⎝⎛⎭⎫1,0,12,F (1,0,0),G (0,1,0). ∴FE →=⎝⎛⎭⎫0,0,12,FG =(-1,1,0),BA =(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ), 则n ·FE =0,n ·FG =0,得⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪BA ·n |BA →||n |=25×2=105.17.、、[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-517.解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示). 依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝⎛⎭⎫0,12,12. 则BC →=(1,1,0),BM →=⎝⎛⎭⎫0,12,12,AD →=(0,1,-1). 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63. 即直线AD 与平面MBC 所成角的正弦值为63. 18.,,,[2014·四川卷] 三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP . (1)证明:P 是线段BC 的中点; (2)求二面角A - NP - M 的余弦值.图1-418.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角. 由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6.作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.故二面角A - NP - M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz . 则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN=(1,0,0),NP =⎝⎛⎭⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即 ⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0.取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1).设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105. 故二面角A -NP -M 的余弦值是105.G4 空间中的平行关系 20.、、[2014·安徽卷] 如图1-5,四棱柱ABCD - A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,四边形ABCD 为梯形,AD ∥BC ,且AD =2BC .过A 1,C ,D 三点的平面记为α,BB 1与α的交点为Q .图1-5(1)证明:Q 为BB 1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA 1=4,CD =2,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小. 20.解: (1)证明:因为BQ ∥AA 1,BC ∥AD , BC ∩BQ =B ,AD ∩AA 1=A , 所以平面QBC ∥平面A 1AD ,从而平面A 1CD 与这两个平面的交线相互平行, 即QC ∥A 1D .故△QBC 与△A 1AD 的对应边相互平行, 于是△QBC ∽△A 1AD ,所以BQ BB 1=BQ AA 1=BC AD =12,即Q 为BB 1的中点.(2)如图1所示,连接QA ,QD .设AA 1=h ,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC =a ,则AD =2a .图1V 三棱锥Q -A 1AD =13×12·2a ·h ·d =13ahd ,V 四棱锥Q -ABCD =13·a +2a2·d ·⎝⎛⎭⎫12h =14ahd , 所以V 下=V 三棱锥Q -A 1AD +V 四棱锥Q -ABCD =712ahd . 又V 四棱柱A 1B 1C 1D 1 ABCD =32ahd ,所以V 上=V 四棱柱A 1B 1C 1D 1 ABCD -V 下=32ahd -712ahd =1112ahd ,故V 上V 下=117.(3)方法一:如图1所示,在△ADC 中,作AE ⊥DC ,垂足为E ,连接A 1E .又DE ⊥AA 1,且AA 1∩AE =A ,所以DE ⊥平面AEA 1,所以DE ⊥A 1E .所以∠AEA 1为平面α与底面ABCD 所成二面角的平面角. 因为BC ∥AD ,AD =2BC ,所以S △ADC =2S △BCA . 又因为梯形ABCD 的面积为6,DC =2, 所以S △ADC =4,AE =4.于是tan ∠AEA 1=AA 1AE =1,∠AEA 1=π4.故平面α与底面ABCD 所成二面角的大小为π4.方法二:如图2所示,以D 为原点,DA ,DD 1→分别为x 轴和z 轴正方向建立空间直角坐标系. 设∠CDA =θ,BC =a ,则AD =2a . 因为S 四边形ABCD =a +2a2·2sin θ=6, 所以a =2sin θ.图2从而可得C (2cos θ,2sin θ,0),A 1⎝⎛⎭⎫4sin θ,0,4,所以DC =(2cos θ,2sin θ,0),DA 1→=⎝⎛⎭⎫4sin θ,0,4.设平面A 1DC 的法向量n =(x ,y ,1), 由⎩⎨⎧DA 1→·n =4sin θx +4=0,DC →·n =2x cos θ+2y sin θ=0,得⎩⎪⎨⎪⎧x =-sin θ,y =cos θ, 所以n =(-sin θ,cos θ,1).又因为平面ABCD 的法向量m =(0,0,1), 所以cos 〈n ,m 〉=n·m|n||m|=22,故平面α与底面ABCD 所成二面角的大小为π4.17.、[2014·北京卷] 如图1-3,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P - ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H . (1)求证:AB ∥FG ;(2)若P A ⊥底面ABCDE ,且P A =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.图1-317.解:(1)证明:在正方形AMDE 中,因为B 是AM 的中点,所以AB ∥DE . 又因为AB ⊄平面PDE , 所以AB ∥平面PDE .因为AB ⊂平面ABF ,且平面ABF ∩平面PDE =FG , 所以AB ∥FG .(2)因为P A ⊥底面ABCDE , 所以P A ⊥AB ,P A ⊥AE .建立空间直角坐标系Axyz ,如图所示,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC →=(1,1,0).设平面ABF 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AB →=0,n ·AF →=0,即⎩⎪⎨⎪⎧x =0,y +z =0.令z =1,则y =-1.所以n =(0,-1,1).设直线BC 与平面ABF 所成角为α,则 sin α=|cos 〈n ,BC →〉|=⎪⎪⎪⎪⎪⎪n ·BC →|n ||BC →|=12.因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH →=λPC →(0<λ<1).即(u ,v ,w -2)=λ(2,1,-2),所以u =2λ,v =λ,w =2-2λ. 因为n 是平面ABF 的一个法向量, 所以n ·AH →=0,即(0,-1,1)·(2λ,λ,2-2λ)=0, 解得λ=23,所以点H 的坐标为⎝⎛⎭⎫43,23,23. 所以PH =⎝⎛⎭⎫432+⎝⎛⎭⎫232+⎝⎛⎭⎫-432=2.19.、、、[2014·湖北卷] 如图1-4,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2). (1)当λ=1时,证明:直线BC 1∥平面EFPQ .(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.19.解:方法一(几何方法):(1)证明:如图①,连接AD 1,由ABCD A 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1,所以BC 1∥FP . 而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)如图②,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且EF =12BD .又DP =BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD ,从而EF ∥PQ ,且EF =12PQ .在Rt △EBQ 和Rt △FDP 中,因为BQ =DP =λ,BE =DF =1, 于是EQ =FP =1+λ2,所以四边形EFPQ 也是等腰梯形. 同理可证四边形PQMN 也是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连接EM ,FN ,则由EF ∥MN ,且EF =MN 知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点, 所以GH =ME =2.在△GOH 中,GH 2=4,OH 2=1+λ2-⎝⎛⎭⎫222=λ2+12, OG 2=1+(2-λ)2-⎝⎛⎭⎫222=(2-λ)2+12,由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±22,故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.方法二(向量方法):以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图③所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1→=(-2,0,2),FP =(-1,0,λ),FE =(1,1,0). (1)证明:当λ=1时,FP =(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1). 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角, 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.18.、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =118.解:(1)证明:连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)因为P A ⊥平面ABCD ,ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →,AD ,AP 的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系A -xyz ,则D ()0,3,0,E ⎝⎛⎭⎫0,32,12,AE →=⎝⎛⎭⎫0,32,12.设B (m ,0,0)(m >0),则C (m ,3,0),AC =(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0,可取n 1=⎝⎛⎭⎫3m ,-1,3.又n 2=(1,0,0)为平面DAE 的法向量,由题设易知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32.因为E 为PD 的中点,所以三棱锥E -ACD 的高为12.三棱锥E -ACD 的体积V =13×12×3×32×12=38.17.,[2014·山东卷] 如图1-3所示,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.图1-3(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值. 17.解:(1)证明:因为四边形ABCD 是等腰梯形, 且AB =2CD ,所以AB ∥DC , 又M 是AB 的中点,所以CD ∥MA 且CD =MA .连接AD 1.因为在四棱柱ABCD - A 1B 1C 1D 1中,CD ∥C 1D 1,CD =C 1D 1,所以C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形, 因此,C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1, 所以C 1M ∥平面A 1ADD 1. (2)方法一:连接AC ,MC .由(1)知,CD ∥AM 且CD =AM , 所以四边形AMCD 为平行四边形, 所以BC =AD =MC .由题意∠ABC =∠DAB =60°, 所以△MBC 为正三角形,因此AB =2BC =2,CA =3, 因此CA ⊥CB .设C 为坐标原点,建立如图所示的空间直角坐标系C xyz .所以A (3,0,0),B (0,1,0),D 1(0因此M ⎝⎛⎭⎫32,12,0,所以MD 1→=⎝⎛⎭⎫-32,-12,3,D 1C 1→=MB →=⎝⎛⎭⎫-32,12,0.设平面C 1D 1M 的一个法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得⎩⎨⎧3x -y =0,3x +y -2 3z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1). 又CD 1→=(0,0,3)为平面ABCD 的一个法向量. 因此cos 〈CD 1→,n 〉=CD 1→·n |CD 1→||n |=55,所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 方法二:由(1)知,平面D 1C 1M ∩平面ABCD =AB ,点过C 向AB 引垂线交AB 于点N ,连接D 1N.由CD 1⊥平面ABCD ,可得D 1N ⊥AB ,因此∠D 1NC 为二面角C 1 AB C 的平面角. 在Rt △BNC 中,BC =1,∠NBC =60°, 可得CN =32, 所以ND 1=CD 21+CN 2=152. 在Rt △D 1CN 中,cos ∠D 1NC =CN D 1N =32152=55,所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为5 5.18.,,,[2014·四川卷] 三棱锥A-BCD及其侧视图、俯视图如图1-4所示.设M,N分别为线段AD,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.图1-418.解:(1)如图所示,取BD的中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD为正三角形,所以AO⊥BD,OC⊥BD.因为AO,OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N,H分别为线段AD,AB,BO的中点,所以MN∥BD,NH∥AO,因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO的中点,所以P为BC的中点.(2)方法一:如图所示,作NQ⊥AC于Q,连接MQ.由(1)知,NP∥AC,所以NQ⊥NP.因为MN⊥NP,所以∠MNQ为二面角A -NP -M的一个平面角.由(1)知,△ABD,△BCD为边长为2的正三角形,所以AO=OC= 3.由俯视图可知,AO⊥平面BCD.因为OC⊂平面BCD,所以AO⊥OC,因此在等腰直角△AOC中,AC= 6.作BR⊥AC于R因为在△ABC中,AB=BC,所以R为AC的中点,所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.故二面角A - NP - M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz . 则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN=(1,0,0),NP =⎝⎛⎭⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即 ⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1).设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0.取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). 设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105. 故二面角A -NP -M 的余弦值是105.G5 空间中的垂直关系 17.、、[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-517.解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示). 依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝⎛⎭⎫0,12,12. 则BC →=(1,1,0),BM →=⎝⎛⎭⎫0,12,12,AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ, 则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63. 即直线AD 与平面MBC 所成角的正弦值为63. 18.、[2014·广东卷] 如图1-4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =30°,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E . (1)证明:CF ⊥平面ADF ; (2)求二面角D - AF - E 的余弦值.图1-419.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形. (1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求二面角C 1OB 1D 的余弦值.19.解:(1)如图(a),因为四边形ACC 1A 1为矩形,所以CC 1⊥AC .同理DD 1⊥BD . 因为CC 1∥DD 1,所以CC 1⊥BD .而AC ∩BD =O ,因此CC 1⊥底面ABCD . 由题设知,O 1O ∥C 1C .故O 1O ⊥底面ABCD .(2)方法一: 如图(a),过O 1作O 1H ⊥OB 1于H ,连接HC 1.由(1)知,O 1O ⊥底面ABCD ,所以O 1O ⊥底面A 1B 1C 1D 1,于是O 1O ⊥A 1C 1.又因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形A 1B 1C 1D 1是菱形,因此A 1C 1⊥B 1D 1,从而A 1C 1⊥平面BDD 1B 1,所以A 1C 1⊥OB 1,于是OB 1⊥平面O 1HC 1. 进而OB 1⊥C 1H .故∠C 1HO 1是二面角C 1OB 1D 的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H =237197=25719.即二面角C 1OB 1D 的余弦值为25719.方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 两两垂直.如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0), B 1(3,0,2),C 1(0,1,2).易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB →1=0,n 2·OC →1=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1OB 1D 的大小为θ,易知θ是锐角,于是cos θ=|cos 〈,〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719.故二面角C 1OB 1D 的余弦值为25719.19.、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面P AD ⊥平面ABCD .(1)求证:AB ⊥PD .(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P - ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD . 又平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD , 所以AB ⊥平面P AD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG . 在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P - ABCD 的体积为V =13×6·m ·43-m 2=m38-6m 2. 因为m 8-6m 2=8m 2-6m 4= -6⎝⎛⎭⎫m 2-232+83, 所以当m =63,即AB =63时,四棱锥P - ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为O (0,0,0),B ⎝⎛⎭⎫63,-63,0,C ⎝⎛⎭⎫63,263,0,D ⎝⎛⎭⎫0,263,0,P ⎝⎛⎭⎫0,0,63,故PC →=⎝⎛⎭⎫63,263,-63,BC →=(0,6,0),CD =⎝⎛⎭⎫-63,0,0. 设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1).同理可求出平面DPC 的一个法向量为n 2=⎝⎛⎭⎫0,12,1. 设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105.19.、[2014·辽宁卷] 如图1-5所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点. (1)求证:EF ⊥BC ; (2)求二面角E -BF -C 的正弦值.19.解:(1)证明:方法一,过点E 作EO ⊥BC ,垂足为O ,连接OF .由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC =∠FOC =π2,即FO ⊥BC .又EO ⊥BC ,EO ∩FO =O ,所以BC ⊥平面EFO .又EF ⊂平面EFO ,所以EF ⊥BC .方法二,由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线,并将其作为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线,并将其作为z 轴,建立如图所示的空间直角坐标系,易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E (0,12,32),F (32,12,0),所以EF→=(32,0,-32),BC →=(0,2,0),因此EF →·BC →=0,从而EF →⊥BC →,所以EF ⊥BC .(2)方法一,在图1中,过点O 作OG ⊥BF ,垂足为G ,连接EG .因为平面ABC ⊥平面BDC ,所以EO ⊥面BDC ,又OG ⊥BF ,所以由三垂线定理知EG ⊥BF , 因此∠EGO 为二面角E -BF -C 的平面角.在△EOC 中,EO =12EC =12BC ·cos 30°=32.由△BGO ∽△BFC 知,OG =BO BC ·FC =34,因此tan ∠EGO =EO OG =2,从而得sin ∠EGO =255,即二面角E -BF -C 的正弦值为2 55.方法二,在图2中,平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量n 2=(x ,y ,z ),又BF →=(32,12,0),BE →=(0,12,32),所以⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0,得其中一个n 2=(1,-3,1).设二面角E -BF -C 的大小为θ,且由题知θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15,因此sin θ=25=2 55,即所求二面角正弦值为2 55.19.G 5、G 11[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .图1-5(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1 C 1的余弦值.19.解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,所以B 1C ⊥平面ABO . 由于AO ⊂平面ABO ,故B 1C ⊥AO . 又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO .又因为AB =BC ,所以△BOA ≌ △BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系O xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又AB =BC ,则A ⎝⎛⎭⎫0,0,33,B (1,0,0),B 1⎝⎛⎭⎫0,33,0,C ⎝⎛⎭⎫0,-33,0. AB 1→=⎝⎛⎭⎫0,33,-33,A 1B 1→=AB =⎝⎛⎭⎫1,0,-33,B 1C →1=BC =⎝⎛⎭⎫-1,-33,0.设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎨⎧n ·AB 1=0,n ·A 1B 1→=0,即⎩⎨⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3). 设m 是平面A 1B 1C 1的法向量, 则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0,同理可取m =(1,-3,3). 则cos 〈n ,m 〉=n ·m |n ||m |=17.所以结合图形知二面角A -A 1B 1 C 1的余弦值为17.18.,,,[2014·四川卷] 三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP . (1)证明:P 是线段BC 的中点; (2)求二面角A - NP - M 的余弦值.图1-418.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角. 由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.故二面角A - NP - M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz . 则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN=(1,0,0),NP =⎝⎛⎭⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0.取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). 设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105. 故二面角A -NP -M 的余弦值是105. 17.、[2014·天津卷] 如图1-4所示,在四棱锥P - ABCD 中,P A ⊥底面ABCD, AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点. (1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F - AB - P 的余弦值.图1-417.解:方法一:依题意,以点A 为原点建立空间直角坐标系(如图所示),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).C 由E 为棱PC 的中点,得E (1,1,1).(1)证明:向量BE =(0,1,1),DC =(2,0,0),故BE ·DC =0, 所以BE ⊥DC .(2)向量BD =(-1,2,0),PB =(1,0,-2). 设n =(x ,y ,z )为平面PBD 的法向量,则⎩⎪⎨⎪⎧n ·BD =0,n ·PB =0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0. 不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量.于是有 cos 〈n ,BE 〉=n ·BE |n |·|BE |=26×2=33,所以直线BE 与平面PBD 所成角的正弦值为33. (3) 向量BC =(1,2,0),CP =(-2,-2,2),AC =(2,2,0),AB =(1,0,0).由点F 在棱PC 上, 设CF =λCP →,0≤λ≤1.故BF =BC +CF =BC +λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF ·AC =0,因此2(1-2λ)+2(2-2λ)=0,解得λ=34,即BF =⎝⎛⎭⎫-12,12,32.设n 1=(x ,y ,z )为平面F AB 的法向量,则⎩⎪⎨⎪⎧n 1·AB =0,n 1·BF =0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面F AB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则cos 〈,〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知二面角F - AB - P 是锐角,所以其余弦值为31010.方法二:(1)证明:如图所示,取PD 中点M ,连接EM ,AM .由于E ,M 分别为PC ,PD 的中点,故EM ∥DC ,且EM =12DC .又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为P A ⊥底面ABCD ,故P A ⊥CD ,而CD ⊥DA ,从而CD ⊥平面P AD .因为AM ⊂平面P AD ,所以CD ⊥AM .又BE ∥AM ,所以BE ⊥CD .(2)连接BM ,由(1)有CD ⊥平面P AD ,得CD ⊥PD .而EM ∥CD ,故PD ⊥EM .又因为AD =AP ,M 为PD 的中点,所以PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD ,所以直线BE 在平面PBD 内的射影为直线BM .而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角. 依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE = 2.故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33,所以直线BE与平面PBD所成角的正弦值为3 3.(3)如图所示,在△P AC中,过点F作FH∥P A交AC于点H.因为P A⊥底面ABCD,所以FH⊥底面ABCD,从而FH⊥AC.又BF⊥AC,得AC⊥平面FHB,因此AC⊥BH.在底面ABCD内,可得CH=3HA,从而CF =3FP.在平面PDC内,作FG∥DC交PD于点G,于是DG=3GP.由于DC∥AB,故GF∥AB,所以A,B,F,G四点共面.由AB⊥P A,AB⊥AD,得AB⊥平面P AD,故AB⊥AG,所以∠P AG为二面角F -AB -P的平面角.在△P AG中,P A=2,PG=14PD=22,∠APG=45°.由余弦定理可得AG=102,cos∠P AG=31010,所以二面角F -AB -P的余弦值为310 10.20.、[2014·浙江卷] 如图1-5,在四棱锥A -BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B -AD -E的大小.20.解:(1)证明:在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=2,由AC=2,AB=2,得AB2=AC2+BC2,即AC⊥BC.又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE.又DE⊥DC,从而DE⊥平面ACD.(2)方法一:过B作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG.由(1)知DE⊥AD,则FG⊥AD.所以∠BFG是二面角B -AD -E的平面角.在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC.又平面ABC ⊥平面BCDE ,得BD ⊥平面⊥平面BCDE ,得AC ⊥CD . 在Rt △ACD 中,由DC =2,AC =2,得AD = 6. 在Rt △AED 中,由ED =1,AD =6,得AE =7.在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23.在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23.在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF=32.所以,∠BFG =π6,即二面角B - AD - E 的大小是π6.方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D - xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0), A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1), 平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0).由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0,可取n =(1,-1,2).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32.由题意可知,所求二面角是锐角,故二面角B - AD - E 的大小是π6.19.,[2014·重庆卷]如图1-3所示,四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长; (2)求二面角A -PM -C 的正弦值.19.解:(1)如图所示,连接AC ,BD ,因为四边形ABCD 为菱形,所以AC ∩ BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知,BM →=14BC →=⎝⎛⎭⎫-34,-14,0,从而OM →=OB →+BM →=⎝⎛⎭⎫-34,34,0,即M ⎝⎛⎭⎫-34,34,0.设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝⎛⎭⎫34,-34,a .因为MP ⊥AP ,所以MP →·AP →=0,即-34+a 2=0,所以a =32或a =-32(舍去),即PO =32. (2)由(1)知,AP →=⎝⎛⎭⎫-3,0,32,MP →=⎝⎛⎭⎫34,-34,32,CP →=⎝⎛⎭⎫3,0,32.设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).由n 1·AP →=0, n 1·MP →=0,得⎩⎨⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝⎛⎭⎫1,533,2.由n 2·MP →=0,n 2·CP →=0,得⎩⎨⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155,故所求二面角A -PM -C 的正弦值为105.G6 三垂线定理 19.、[2014·全国卷] 如图1-1所示,三棱柱ABC - A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 AB C 的大小.19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC . 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1. 作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离, 即A 1E = 3.因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3.作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 AB C 的平面角.由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1D DF =15,所以cos ∠A 1FD =14. 所以二面角A 1 AB C 的大小为arccos 14.方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B .(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为|CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2cc 2+(2-a )2=c .又依题设,A 到平面BCC 1B 1的距离为3, 所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3).设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1). 又p =(0,0,1)为平面ABC 的法向量,故 cos 〈n ,p 〉=n ·p |n ||p |=14.所以二面角A 1 AB C 的大小为arccos 14.G7 棱柱与棱锥 13.[2014·山东卷] 三棱锥P - ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D - ABE 的体积为V 1,P - ABC 的体积为V 2,则V 1V 2=________.13.1419.、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面P AD ⊥平面ABCD .。
2014年全国高考理科数学试题分类汇编(纯word解析版)_九、立体几何(逐题详解)--题目
2014年全国高考理科数学试题分类汇编1.【2014年陕西卷(理05)】已知底面边长为1,侧棱长为2则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π2.【2014年重庆卷(理07)】某几何体的三视图如下图所示,则该几何体的表面积为( ) A.54 B.60 C.66 D.723.【2014年安徽卷(理07)】一个多面体的三视图如图所示,则该多面体的表面积为(A )321+(B )318+(C )21(D )184.【2014年福建卷(理02)】某空间几何体的正视图是三角形,则该几何体不可能是( ) A . 圆柱 B . 圆锥 C . 四面体 D . 三棱柱6.【2014年辽宁卷(理04)】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥俯视图左视图正视图3245正(主)视图侧(左)视图俯视图1111111111118.【2014年四川卷(理08)】如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .3[,1]3B .6[,1]3C .622[,]33D .22[,1]39.【2014年辽宁卷(理07)】某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π-D .84π-10.【2014年全国大纲卷(11)】已知二面角l αβ--为060,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,0135ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14 B .24 C .34D .1211.【2014年全国新课标Ⅰ(理12)】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .412.【2014年全国新课标Ⅱ(理06)】如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 1313.【2014年全国新课标Ⅱ(理11)】直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C. 3010D.2214.【2014年北京卷(理07)】在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx坐标平面上的正投影图形的面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠15.【2014年广东卷(理07)】若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定16.【2014年湖北卷(理05)】在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A.①和②B.③和①C. ④和③D.④和②17.【2014年湖北卷(理08)】.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,另相乘也。
2014理科数学高考热点专题(四)——立体几何
1、如图,在长方体1111ABCD A BC D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)证明:11D E A D ⊥;(2)当E 点为AB 的中点时,求点E 到平面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4π?(1)证明:如图,连接1D B ,依题意有:在长方形11A ADD 中,11AD AA ==,1111111111111A ADD A D AD A D AD B AB A ADD AB A D A D D E D E AD B AD AB A ⇒⊥⎫⇒⊥⎫⎪⊥⇒⊥⇒⊥⎬⎬⊂⎭⎪=⎭四边形平面又平面平面.……… 4分(2)解:AC /21AE AB ==,EC =cos AEC ∠==sin 2AEC ⇒∠=.∴111222AEC S ∆=⨯=,…………… 6分 11111326D AEC V -=⨯⨯=.1AD ==1D C ==1sin D AC ⇒∠==.∴11322A DC S ∆==. 设点E 到平面1ACD 的距离为d ,∴11131326D AEC E AD C V V d --==⨯=13d ⇒=.∴点E 到平面1ACD 的距离为13. ………………………………………………… 8分(3)解:过D 作DF EC ⊥交EC 于F ,连接1D F .由三垂线定理可知,1DFD ∠为二面角1D EC D --的平面角.∴14DFD π∠=,12D DF π∠=,111D D DF =⇒=. ……………………… 10分D CA B A B CDF 045E D CABA 1B 1C 1D 11sin 26DF DCF DCF DC π∠==⇒∠=,∴3BCF π∠=.…………………… 12分∴tan 3BEBE BC π=⇒=2AE AB BE =-=故2AE =1D EC D --的平面角为4π.…………………………… 14分 2、如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且13AD DB =,点C 为圆O上一点,且BC =.点P 在圆O 所在平面上的正投影为点D ,PD DB =.(1)求证:PA CD ⊥;(2)求二面角C PB A --的余弦值.解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO又∵AB 为圆O 的直径,∴AC CB ⊥,BC =知,60CAB ∠=,∴ACO ∆为等边三角形,从而CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥. -----------------6分(注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.)法2:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆中设1AD =,由3AD D B =BC =得,3DB =,4AB =,BC = ∴BD BC BC AB ==,则BDC BCA ∆∆∽, 第18题图∴BCA BDC∠=∠,即C ⊥. -----------------3分∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥. -----------------6分法3:∵AB 为圆O 的直径,∴AC CB ⊥, 在Rt ABC ∆BC =得,30ABC ∠=, 设1AD =,由3AD DB =得,3DB =,BC = 由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=, ∴222CD DB BC +=,即C⊥. -----------------3分∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥. -----------------6分(Ⅱ)法1:(综合法)过点D 作DE PB ⊥,垂足为E ,连接CE . -----------------7分由(1)知CD ⊥平面PAB ,又PB ⊂平面PAB , ∴CD PB ⊥,又DE CD D =,∴PB ⊥平面CDE ,又CE ⊂平面CDE , ∴CE PB ⊥,-----------------9分∴DEC ∠为二面角C PB A--的平面角. -----------------10分由(Ⅰ)可知CD =,3PD DB ==,(注:在第(Ⅰ)问中使用方法1时,此处需要设出线段的长度,酌情给分.)∴PB =2PD DB DE PB ⋅===, ∴在Rt CDE ∆中,tan 3CD DEC DE ∠===,∴cos DEC ∠=,即二面角C P B --的余弦值为-----------------14分 法2:(坐标法)以D 为原点,DC 、DB 和DP 的方向分别为x 轴、y 轴和z 轴的正向,建立如图所示的空间直角坐标系. -----------------8分 (注:如果第(Ⅰ)问就使用“坐标法”时,建系之前先要证明CD AB ⊥,酌情给分.) 设1AD =,由3AD DB =BC =得,3PD DB ==,CD =, ∴(0,0,0)D,C ,(0,3,0)B ,(0,0,3)P , ∴(3,0,3)PC =-,(0,3,3)PB =-,(CD =, 由CD ⊥平面PAB,知平面PAB的一个法向量为(CD =. -----------------10分设平面PBC 的一个法向量为(,,)x y z =n ,则PC PB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即30330y y z -=-=⎪⎩,令1y =,则x =1z =,∴,1)=n ,-----------------12分 设二面角C PB A --的平面角的大小为θ,则cos 5||5CD CD θ⋅===-⋅n |n|-----------------13分 ∴二面角C PB A --的余弦值为5.-----------------14分3、如图4,已知四棱锥P ABCD -,底面ABCD 是正方形,PA ^面ABCD ,点M 是CD 的中点,点N 是PB 的中点,连接AM ,AN MN ,. (1) 求证:MN //面PAD ;(2)若5MN =,3AD =,求二面角N AM B --的余弦值.NBA P(1)证法1:取的中点,连接,∵点是的中点,∴. ……………1分∵点是的中点,底面是正方形,∴. ……………2分∴.∴四边形是平行四边形.∴. ……………3分∵平面,平面,∴面. ……………4分证法2:连接并延长交的延长线于点,连接,∵点是的中点,∴, ……………1分∴点是的中点. ……………2分∵点是的中点,∴. ……………3分∵面,平面,∴面. ……………4分证法3:取的中点,连接,∵点是的中点,点是的中点,∴,.∵面,平面,∴面. ……………1分∵面,平面,∴面. ……………2分∵,平面,平面,∴平面面. ……………3分∵平面,∴面. ……………4分(2)解法1:∵,面,∴面. ……………5分∵面,∴. ……………6分过作,垂足为,连接,∵,面,面,∴面. ……………7分∵面,∴. ……………8分∴是二面角的平面角. ……………9分在Rt△中,,,得,……………10分在Rt△中,,得,. ……………11分在Rt△中,,……………12分. ……………13分∴二面角的余弦值为. ……………14分解法2:∵,面,∴面.在Rt△中,,,得,……………5分以点为原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系,……………6分则.∴,,. ……………8分设平面的法向量为,由,,得令,得,.∴是平面的一个法向量. ……………11分又是平面的一个法向量,……………12分. ……………13分∴二面角的余弦值为. ……………14分4、(中山市2013届高三上学期期末)如图,三棱柱111ABC A B C-中,1AA⊥平面ABC,D、E分别为11A B、1AA的中点,点F在棱AB上,且14AF AB=.(Ⅰ)求证://EF平面1BDC;A1图4(Ⅱ)在棱AC 上是否存在一个点G ,使得平面EFG 将三棱柱分割成的两部分体积之比为1:15,若存在, 指出点G 的位置;若不存在,说明理由.(I )证明:取AB 的中点M ,14AF AB =F ∴为AM又E 为1AA 的中点,1//EF A M ∴在三棱柱111ABC A B C -中,,D M 分别为11,A B AB 的中点, 11//,A D BM A D BM ∴=,1A DBM ∴为平行四边形,1//A M BD ∴//,EF BD ∴BD ⊆平面1BC D ,EF ⊄平面1BC D //EF ∴平面1BC D…………………….7分(II )设AC 上存在一点G ,使得平面EFG 将三棱柱分割成两 部分的体积之比为1︰15,则111:1:16E AFG ABC A B C V V --=111111sin 321sin 2E AFG ABC A B C AF AG GAF AEV V AB AC CAB A A --⨯⋅∠⋅=⋅⋅∠⋅ 111134224AG AG AC AC =⨯⨯⨯=⋅112416AG AC ∴⋅=, 32AG AC ∴=, 32AG AC AC ∴=>所以符合要求的点G 不存在 ……………………….14分5、如图4,四棱锥ABCD P -中,⊥PA 底面ABCD ,ABCD 是直角梯形,E 为BC 的中点,090=∠=∠ADC BAD ,3=AB ,1=CD ,2==AD PA .⑴求证:⊥DE 平面PAC ;⑵求PA 与平面PDE 所成角的正弦值.证明与求解:⑴因为⊥PA ABCD ,⊂DE ABCD ,所以⊥PA DE ……1分,取AD 的中点F ,连接EF ,则EF 是梯形ABCD 的中位线,所以AB EF //且MFBA 11A22=+=CDAB EF ……3分,在ADC Rt ∆和DEF Rt ∆中,090=∠=∠ADC EFD ,2==DCADDF EF ,所以EFD ∆∽ADC ∆……5分,DAC FED ∠=∠,所以DE AC ⊥ ……6分,因为A AC PA = ,所以⊥DE 平面PAC ……7分.⑵(方法一)由⑴知平面⊥PDE 平面PAC ……8分, 设G AC DE = ,连接PG ,在PAG Rt ∆中作PG AH ⊥,垂足为H ,则⊥AH 平面PDE ……10分,所以APH ∠是PA 与平面PDE 所成的角……11分,由⑴知,在ADG Rt ∆中,2=AD ,21tan ==∠AD CD CAD ,所以54c o s =∠⨯=C A D AD AG ……12分,因为⊥PA ABCD ,所以56=PG ……13分,32sin sin ==∠=∠PG AG APG APH ,即为PA 与平面PDE 所成角的正弦值……14分.(方法二)依题意,以A 为原点,AD 、AB 、AP 所在直线分别为x 轴、y 轴、z轴建立空间直角坐标系……8分,则直线PA 的方向向量为)1 , 0 , 0(=AP ……9分,依题意,)2 , 0 , 0(P 、)0 , 0 , 2(D 、)0 , 3 , 0(B 、)0 , 1 , 2(C 、)0 , 2 , 1(E ……10分,从而)2 , 0 , 2(-=DP ,)0 , 2 , 1(-=DE ……11分,设平面PDE 的一个法向量为) , , (c b a n =,则⎪⎩⎪⎨⎧=+-=⋅=+-=⋅02 022b a DE n c a n ……12分,所以b c a 2==,可选取平面PDE 的一个法向量为)2 , 1 , 2(=n ……13分,所以PA 与平面PDE所成角的正弦值为32,==……14分.6、如图,在四棱锥P-ABCD 中,AB 丄平面PAD,PD=AD, E 为PB 的中点,向量,点H 在AD 上,且(I):EF//平面PAD.(II)若PHAD=2, AB=2, CD=2AB,(1)求直线AF 与平面PAB 所成角的正弦值.(2)求平面PAD 与平面PBC 所成二面角的平面角的余弦值.(Ⅰ) 取PA 的中点Q ,连结EQ 、DQ ,则E 是PB 的中点,∴1//,2EQ AB AB 且EQ=12DF AB =又1//,2DF AB AB ∴且DF=∴DF EQ DF EQ =且,//,∴四边形EQDF 为平行四边形, ∴//EF QD ,,EF PAD PAD ⊄⊂又平面且DQ 平面,//EF PAD 平面………………………………(3分)(Ⅱ)⑴解法一:证明:0PH AD ∙=,∴PH AD ⊥ ∴PH ⊥AD,又 AB ⊥平面PAD ,PH ⊂平面PAD ,∴AB ⊥PH ,又PH ⋂AD=H ,∴PH ⊥平面ABCD ; ---------------------------------(4分)连结AE ,PD AD Q PA =为的中点DQ PA ∴⊥ 又AB PAD ⊥平面且DQ PAD ⊂平面AB DQ ∴⊥AB PA A = DQ PAB ∴⊥平面………………………………(5分)由(Ⅰ)知 //EF DQ EF PAB ∴⊥平面AE AF PAB ∴为在平面上的射影FAE AF PAB ∴∠为直线与平面所成的角………………………………(7分)2PD AD == PH =Rt PHD ∆在中 1HD ===H ∴为AD 中点, 又PH AD ⊥ 2PA PD AD ∴=== EF DQ PH ∴===AB PAD ⊥平面 AB AD ∴⊥ //DF AB DF AD ∴⊥在Rt ADF ∆中 AF === 又EF PAB ⊥平面 EF AE ∴⊥Rt AEF ∴∆在中 sin EF FAE AF ∠===155AF PAB ∴直线与平面所成的角的正弦值为515………………………………(9分) (2)延长DA ,CB 交于点M ,连接PM ,则PM 为平面PAD 与平面PBC 所成二面角的交线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生姓名 年级 授课时间 教师姓名 课时 2
1.(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))如图四棱锥P ABCD -902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形
(I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小
(2012年高考(四川理))如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC .
(Ⅰ)求直线PC 与平面ABC 所成角的大小;
(Ⅱ)求二面角B AP C --的大小.
(2012年高考(辽宁理)) 如图,直三棱柱///
ABC A B C -,90BAC ∠=, /,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点.
(Ⅰ)证明:MN ∥平面//A ACC ;
(Ⅱ)若二面角/A MN C --为直二面角,求λ的值.
A B
C P
(2012年高考(北京理))如图1,在Rt△ABC 中,∠C=90°,BC=3,AC=6,D,E 分别是AC,AB 上的点,
且DE∥BC,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C⊥CD,如图2.
(1)求证:A 1C⊥平面BCDE;
(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;
(3)线段BC 上是否存在点P,使平面A 1DP 与平面A 1BE 垂直?说明理由.
(2012年高考(安徽理))平面图形111ABB AC C 如图4所示,其中11BB C C 是矩形,12,4BC BB ==,2AB AC ==, 11115A B AC ==.现将该平面图形分别沿BC 和11B C 折叠,使ABC ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA CA ,得到如图2所示的空间图形,对此空间图形解答下列问题 .
(Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长;
(Ⅲ)求二面角1A BC A --的余弦值.
(全国大纲卷理)19.(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S ABCD -中,BC AB ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.
(Ⅰ)证明:SD SAB ⊥平面;
(Ⅱ)求AB 与平面SBC 所成角的大小.
(安徽理)(17)(本小题满分12分)
如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==△OAB ,,△OAC ,△ODE ,△ODF 都是正三角形。
(Ⅰ)证明直线BC ∥EF ;
(II )求棱锥F —OBED 的体积。