新导数与数列求和01

合集下载

导数应用与数列求和

导数应用与数列求和

导数应用与数列求和作者:王大成来源:《神州》2011年第31期高中引入了导数概念,给出了导数的定义,讲清楚了导数的几何意义及物理意义,在应用方面也给出了一些例题,主要是解决函数单调性、最值、不等式证明等问题。

但是在数列求和方面的应用基本上还没有涉及到,因此我仅以本文来为导数的应用开辟一条新的途径。

问题一:数列(an)的通项公式an=n×2n-1(n∈N*),求数列(an)的前项和Sn.1.错位相减法:Sn=1×20+2×21+3×22+...+n×2n-1 (1)2Sn=1×21+2×22+...+(n-1)×2n-1+n×2n (2)由(1)-(2)得,-Sn=1+21+22+…+2n-1-n×2n,有-Sn=1+(n-1)×2(n∈N*)2.导数法:令f(x)=x+x2+x3+…xn(x≠0,x≠1)f(x)=1×x0+2x1+3x2+…+nxn-1,所以Sn=f(2),f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因为f(x)=[1-(n-1)xn](1-x)+(x-xn-1)/(1-x)2有Sn=f(2)=1+(n-1)×2n定理1:数列(an)的通项公式an=n×pn-1(p≠0,p≠1,n∈N*),其前项n和为Sn,则Sn=1+[(p-1)n-1]pn/(1-p)2。

证明:令f(x)=x+x2+x3+…+xn(x≠0,x≠1),所以,f(x)=1×x0+2x1+3x2+…+nxn-1,所以Sn=f(p),f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因為f(x)=[1-(n+1)xn](1-x)+(x-xn-1)/(1-x)2有Sn=f(p)=1+[(p-1)n-1]pn/(1-p)2,证毕。

问题二:数列(cn)的通项公式cn=anbn(n∈N*),其中,an=pn+q(p,q是常数),bn=r·sn-1(rs≠0),求数列(an)前项和Tn。

2021高三数学专题 数列求和的基本方法和技巧

2021高三数学专题 数列求和的基本方法和技巧

2021高三数学专题数列求和的基本方法和技巧2021高三数学专题数列求和的基本方法和技巧数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、使用通用求和公式利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:s(a1?an)n(n?n?n2?na1)1?2d?na1(q?1)2、等比数列求和公式:s??ann??1(1?q)a1?anq?1?q?1?q(q?1)nn3、s1n(n?1)4、s21n??KNK12? Kn(n1)(2n1)k?16n5、s3n??K[1n(n?1)]2k?12[例1]已知日志?13x?日志,x?x2?x3xn前23项的总和。

日志13x?log3?日志log13x?32? 十、二2由等比数列求和公式得sn?x?x2?x3xn1n(11=x(1?x)2?2n)1?x==1-11? 12n2[例2]设sn=1+2+3+…+n,n∈n*,求f(n)?sn(n?32)s的最大值.N1解决方案:s1n是从算术序列的求和公式中获得的?2n(n?1),s1n?2(n?1)(n?2)∴f(n)?snn(n?32)s=2n?1n?34n?64一(利用常用公式)(利用常用公式)=1n?34? 64n=(n?18n?)2?50150∴当N18,也就是说,当n=8时,f(n)max?508二、错位相减法求和该方法用于推导等比序列的前n项和公式。

该方法主要用于求序列{anbn}的前n项之和,其中{an},{BN}分别是等差序列和等比序列[例3]求和:sn?1?3x?5x2?7x3(2n?1)xn?1………………………①解决方案:从这个问题可以看出,{(2n?1)xn?1}的通项是等差序列{2n-1}的通项和等比序列{xn?1}的通项的乘积设xsn?1x?3x2?5x3?7x4(2n?1)xn……………………….②(设制错位)①-②得(1?x)sn?1?2x?2x2?2x3?2x42xn?1?(2n?1)xn(错位相减)1.xn?1.(2n?1)xn然后使用等比序列的求和公式来获得:(1?X)Sn?1.2倍?1.x(2n?1)xn?1.(2n?1)xn?(1?x)∴sn?2(1?X)[例4]找到序列2462n,2,3,,n,前n项的和.22222n1解:由题可知,{n}的通项是等差数列{2n}的通项与等比数列{n}的通项之积222462n套序列号??2.3.n、…………………………………①222212462nsn?2?3?4n?1………………………………②(设制错位)222221222222n①-②得(1?)sn??2?3?4n?n?1(错位相减)22222212N?2.N1.N一22n?2∴sn?4?n?1二三、反序相加法求和这是用来推导算术序列的前n项和公式的方法,也就是说,将一个序列倒置(按相反顺序),然后将其与原始序列进行比较2当序列被添加时,可以得到n(A1?An)012n[例5]求证:cn?3cn?5cn(2n?1)cn?(n?1)2n012n证明:设置序列号?中国…………………………。

高中数学人教A版必修五-2021届高考数列求和的方法讲解(Word版可编辑)

高中数学人教A版必修五-2021届高考数列求和的方法讲解(Word版可编辑)

数列求和的方法总结和练习方法概述:1.求数列的前n项和的方法(1)公式法①等差数列的前n项和公式S n =()21naan+=na1+()dnn21-.②等比数列的前n项和公式(Ⅰ)当q=1时,S n=na1;(Ⅱ)当q≠1时,S n=()qqa n--111=a1-a n q1-q.③常见的数列的前n项和:123+++……+n=(1)2n n+, 1+3+5+……+(2n-1)=2n2222 123+++……+n=(1)(21)6n n n++,3333123+++……+n=2(1)2n n+⎡⎤⎢⎥⎣⎦等(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法这是推导等差数列前n项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(5)错位相减法这是推导等比数列的前n项和公式时所用的方法,主要用于求{a n·b n}的前n项和,其中{an}和{b n}分别是等差数列和等比数列.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.2. 常见的裂项公式 (1)()11+n n =1n -1n +1;(2)()k n n +1=1k (1n -1n +k);(3)()()12121+-n n =12(12n -1-12n +1);(4)()()211++n n n =12()()()⎥⎦⎤⎢⎣⎡++-+21111n n n n ; (5)1n +n +k =1k(n +k -n ).(6)设等差数列{a n }的公差为d ,则1a n a n +1=1d (1a n -1a n +1).数列求和题型考点一 公式法求和1.已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.2.已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.变式训练1.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和为T n ,求T n .2.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .考点二 错位相减法1.已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n n n a c b ++=+ 求数列{}n c 的前n 项和T n .2.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.变式训练1.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .2.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .3.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n .4.设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n .5.已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .6.设数列{a n}的前n项和为S n,已知a1=1,a2=2,且a n+2=3S n-S n+1+3, n∈N*.(1)证明:a n+2=3a n;(2)求S n.考点三分组求和法1.在等差数列{a n}中,a2=4,a4+a7=15.(1)求数列{a n}的通项公式;(2)设b n=22 n a+n,求b1+b2+b3+…+b10的值.2.已知数列{a n}的前n项和S n=n2+n2,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=n a2+(-1)n a n,求数列{b n}的前2n项和.变式训练1.已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n -a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.考点四 裂项相消法1.S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.2.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和.3.已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=an+1SnSn+1,求数列{b n}的前n项和T n.变式训练1.正项数列{a n}满足:a2n-(2n-1)a n-2n=0.(1)求数列{a n}的通项公式a n;(2)令b n=1(n+1)a n,求数列{b n}的前n项和T n.2.等差数列{a n }中,a 7=4,a 19=2a 9.(1)求{a n }的通项公式;(2)设b n =1na n,求数列{b n }的前n 项和S n .3.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12. (1)求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n .考点五 倒序相加法1.已知函数f (x )=14x+2(x ∈R ).(1)证明:f (x )+f (1-x )=12;(2)若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.变式训练1.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.考点六 并项求和1.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________.2.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =()21+n n a ,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .。

高中数学《导数和数列综合证明 (1)》导学案

高中数学《导数和数列综合证明 (1)》导学案

高中数学《导数和数列综合证明(一)》导学案例2:已知:x x <+)1ln(2,(1)求证:)*2222()21...(81)41)(21(N n e n ∈<+⎪⎭⎫ ⎝⎛+++(2)求证:*2()311)...(8111)(911(N n e n ∈<+++)(3)求证:(1+421)(1+431)…(1+41n)<e )211ln(......)411ln()211ln()]211)...(411)(211ln[()1ln(12222222n n x x ++++++=+++∴<+ )(e n n n n <+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++++<)211)...(411)(211(12112112112121 (814121222),)311)...(8111)(911(21311213113113131......3131)311ln(......)8111ln()911()]311)...(8111)(911ln[(2212222e e n n n n n n =<+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++<++++++=+++∴)( (3)ln[(1+421)(1+431)……(1+41n )]=ln[(1+421)(1+431)+…ln (1+41n )<221+231+…+21n<)1(1321211-+⨯+⨯n n =1-21+21-31+…+n n 111--=1-n 1<1∴(1+421)(1+431)……(1+41n )<e 例3:设曲线y = f (x ) =cx bx x a ++23213在点x 处的切线斜率为k (x ),且k (-1) = 0.对一切实数x ,不等式).0()1(21)(2≠+≤≤a x x k x 恒成立(1)求f (1)的值;(2)求函数k (x )的表达式;(3)设数列)(1n k 的前n 项和为S n ,求证22+>n nS n解:(1)04)1(,0,00)(222≤--≤∆>∴≥-++++=ac b a x c bx ax c bx ax x k ①0)21)(21(4,0,021,02121222≤---≤∆<-∴≤--++c a b a x c bx ax ②又,4)1(1)1(),11(21)1(12a cb a k k k =++==∴+≤≤ 又1270)1(41=∴=∴f a(2))0()(2≠++='=a c bx ax y x k ,由0)1(,1)1(=-=k k 得⎩⎨⎧=+-=++01c b a c b a 得⎪⎩⎪⎨⎧==+2121b c a 又)1(21)(2+≤≤x x k x 恒成立,则由)0(0212≠≥+-a c x ax 恒成立得410402141==⇒⎪⎩⎪⎨⎧=+≤-=∆>c a c a ac a 同理由02121)21(2≥-++-c x x a 恒成立得41==c a 综上,21,41===b c a 412141)(2++=∴x x k(3)∑=+++⨯+⨯>+++=ni n n n i k 122])2)(1(1431321[41])1(121[41)(1 22]2121[41+=+-=n n n 法二:和式代换,要证22+>n n S n ,即也证()1121+->-n n S n ,只需证:()()()21411222++=+--+>n n n n n n a n ,只需()()()21414)(12++>+=n n n n k ,且()322121114211=+>=+==S a ,故22+>n n S n。

导数在数列求和中的应用

导数在数列求和中的应用

导数在数列求和中的应用导数进入中学数学教材,给传统的中学数学内容注入了新的生机与活力,怎样利用导数这个工具重新认识原中学课程中求函数的极值和判断函数的单调性的问题,并为其研究提供新的途径和方法,是当今中学数学中的新的课题之一,纵观目前各类刊物,对导数的研究多数停留在函数,解析几何等内容上,而对其他方面关注较少,本文则从一个侧面介绍导数在一类数列求和问题中的应用,以开阔学生视野,拓宽解决这类问题的方法。

高中数学教材必修5有一个习题:求1+2x+3x2+…+nx(n-1)的和Sn。

编者的本意是分三种情况进行求和:①x=0;②x=1;③x≠0且x≠1。

其中第③种情况要用错位相减的方法求。

现在就用导数的方法进行求解。

因为,(xn)’=nxn-1,而且x+x2+x3+…+xn=x(1-xn)/1-x (1)对(1)式两边进行求导数运算,就有:Sn=1+2x+3x2+…+nx(n-1)=(x+x2+x3+…+xn)’=[x(1-xn)/1-x]’=1/(1-x)2[1-(n+1)xn+nxn+1]所以,用上面的方法就可以求通项为(xn+y)qn-1(x、y、q、为常数,其中q≠0且q≠1,x≠0,y≠0)的数列的前n项的和Sn。

因为,(xn+y)qn-1=xnqn-1+yqn-1;所以只需分别求数列{xnqn-1}与{yqn-1}的和,再相加就可以得Sn。

而数列{yq(n-1)}为等比数列,用公式求即可。

设数列{xnqn-1}与{yqn-1}的前n项的和分别为Tn和Dn,则Sn=Tn+Dn,其中Dn=y(1-qn)/1-q。

现在就形如{xnqn-1}的数列用导数运算的方法求其前项的n和Tn。

Tn=x(q0+2q1+3q2+4q3+…nqn-1)=x(q1+q2+q3+…qn)’=x[q(1-qn)/1-q]’=x/(1-q)2[1-(n+1)qn+nqn+1]。

所以Sn=x/(1-q)2[1-(n+1)qn+nqn+1]+y(1-qn)/1-q (2)下面就三个具体的数列进行求和运用。

高一数学数列求和的七大方法和技巧

高一数学数列求和的七大方法和技巧

数列求和的七大方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:2、等比数列求和公式:3、4、5、[例1]已知,求的前n项和.解:由由等比数列求和公式得(利用常用公式)===1-[例2]设S n=1+2+3+…+n,n∈N*,求的最大值.解:由等差数列求和公式得,(利用常用公式)∴===∴当,即n=8时,二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:………………………①解:由题可知,{}的通项是等差数列{2n-1}的通项与等比数列{}的通项之积设………………………. ②(设制错位)①-②得(错位相减)再利用等比数列的求和公式得:∴[例4]求数列前n项的和.解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{的通项之积设…………………………………①………………………………②(设制错位)①-②得(错位相减)∴三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.[例5]求证:证明:设………………………….. ①把①式右边倒转过来得(反序)又由可得…………..…….. ②①+②得(反序相加)∴[例6]求的值解:设…………. ①将①式右边反序得…………..②(反序)又因为①+②得(反序相加)=89∴ S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n项和:,…解:设将其每一项拆开再重新组合得(分组)当a=1时,=(分组求和)当时,=[例8]求数列{n(n+1)(2n+1)}的前n项和.解:设∴=将其每一项拆开再重新组合得S n=(分组)==(分组求和)=五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)(2)(3)(4)(5)(6)[例9] 求数列的前n项和.解:设(裂项)则(裂项求和)==[例10]在数列{a n}中,,又,求数列{b n}的前n项的和.解:∵∴(裂项)∴数列{b n}的前n项和(裂项求和)==[例11] 求证:解:设∵(裂项)∴(裂项求和)===∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n.[例12]求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n= cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵(找特殊性质项)∴S n=(cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90°(合并求和)= 0[例13] 数列{a n}:,求S2002.解:设S2002=由可得……∵(找特殊性质项)∴S2002=(合并求和)====5[例14]在各项均为正数的等比数列中,若的值.解:设由等比数列的性质(找特殊性质项)和对数的运算性质得(合并求和)===10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求之和.解:由于(找通项及特征)∴=(分组求和)===[例16] 已知数列{a n}:的值.解:∵(找通项及特征)=(设制分组)=(裂项)∴项求和)==。

运用导数巧求数列和

运用导数巧求数列和

运用导数巧求数列和数列是数学中的基础概念,是一系列按特定顺序排列的数的集合。

数列求和是指对数列中的所有数进行求和运算。

在数学中,比较常见的数列有等差数列和等比数列。

在一些情况下,为了方便计算数列的和,可以运用导数的巧妙方法,通过对数列进行求导和积分等运算,将求和问题转化为其他数学运算问题。

一、等差数列求和等差数列是指数列中相邻两项之间的差值是一个常数的数列。

在等差数列中,如果已知首项a1、末项aN和项数n,我们需要求解的就是数列的和Sn,即1+2+3+…+n的和。

对于等差数列,我们可以运用导数的巧妙方法进行求和。

步骤:1. 首先,假设原等差数列的首项为a1,公差为d,那么原数列的通项公式为an = a1 + (n-1)d。

2. 对于数列的和Sn = a1+a2+a3+…+an,我们将其视为n的函数Sn,即Sn = Sn(n)。

3.接下来,我们对数列的和Sn进行求导,得到导数Sn’(n)。

4.然后,我们对Sn’(n)进行积分,得到Sn(n),即数列的和。

举例:以等差数列1 + 2 + 3 + … + n为例,首项a1为1,公差d为1,通项公式为an = 1 + (n-1)1 = n。

1.对数列的和Sn进行求导,得到导数Sn’(n):Sn’(n) = d/dn(1 + 2 + 3 + … + n) = d/dn(n(n+1)/2) = (2n +1)/22.对Sn’(n)进行积分,得到Sn(n):Sn(n) = ∫[(2n + 1)/2]dn = (n^2 + n)/2所以,数列1+2+3+…+n的和为Sn(n)=(n^2+n)/2、通过运用导数的巧妙方法,我们成功地求解了等差数列1+2+3+…+n的和。

二、等比数列求和等比数列是指数列中相邻两项之间的比值是一个常数的数列。

在等比数列中,如果已知首项a1、末项aN和公比q,我们需要求解的就是数列的和Sn,即a1 + a2 + a3 + … + an的和。

高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。

高一数学数列求及基本方法及技巧

高一数学数列求及基本方法及技巧

数列求和的根本方法和技巧数列是高中代数的重要内容,又是学 高等数学的基. 在高考和各种数学 中都占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大局部数列的求和都需要一定 的技巧 . 下面,就几个 届高考数学和数学 来 数列求和的根本方法和技巧.一、利用常用求和公式求和利用以下常用求和公式求和是数列求和的最根本最重要的方法.1、 等差数列求和公式: S nn(a 1 a n )na 1n(n 1) d 22na 1( q 1)2、等比数列求和公式:S na 1 (1 q n ) a 1a n q1)1 q1(qqn1 (1)n2 1 (1)(21)3、 S nk4、 S nk n nn n6 nk 1 2k 1nk 3 [ 1n( n 1)]25、 S nk12[ 例 1]log 3 x1 ,求 x x 2x 3x n的前 n 和 .log 2 3解:由 log 3 x1log 3x log 3 21xlog 2 32由等比数列求和公式得S nx x 2 x 3x n〔利用常用公式〕= x(1 n1(1 1 ) x) = 22n = 1- 11 x1 1 2n2[ 例 2]S n =1+2+3+⋯+n , n ∈ N * , 求 f (n)(n S n的最大 .32)S n 1解:由等差数列求和公式得S n1n(n 1) , S n11(n 1)(n2)〔利用常用公式〕22∴ f (n)S n=n234n 64(n 32) S n 1n=1=11850n 3464 ( n2 50n)n8 1 ∴ 当n,即 n = 8 , f (n)max850二、 位相减法求和种方法是在推 等比数列的前n 和公式 所用的方法,种方法主要用于求数列{a n · b n } 的前 n和,其中 { a n }、 { b n } 分 是等差数列和等比数列.[ 例 3] 求和: S n1 3x 5x2 7x 3(2n 1) x n1⋯⋯⋯⋯⋯⋯⋯⋯⋯①解:由 可知, { (2n1)x n 1 } 的通 是等差数列 {2n - 1} 的通 与等比数列 { x n 1 } 的通 之xS n1x 3x 25x 3 7 x 4(2n 1) x n ⋯⋯⋯⋯⋯⋯⋯⋯⋯.②〔设制错位〕①-②得(1 x) S n 1 2x 2x 22 x3 2x 42x n 1 (2n 1) x n〔错位相减 〕再利用等比数列的求和公式得:(1 x)S n 11 x n1( 2n 1)x n2x 1 x∴S n (2n 1) x n 1 (2n 1) x n (1 x)(1 x)2[ 例 4] 求数列 2, 42 ,63 ,,2nn , 前 n 的和 .2 222解:由 可知, {2n {2n}{1n}的通 是等差数列 的通 与等比数列 n } 的通 之22S n2462n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯①2 2 2 232n1 2 4 62n〔设制错位〕S n2 22 32 42 n 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯②2①-②得 (11)S n 2 2 2 2 2 2n〔错位相减〕2 2 22 23 24 2n 2n 12 1 2n2 n 1 2n 1∴S n 4 n 22n1三、反序相加法求和是推 等差数列的前n 和公式 所用的方法,就是将一个数列倒 来排列〔反序〕,再把它与原数列相加,就可以得到n 个(a 1a n ) .[ 例5]求 :C n03C n15C n2(2n 1)Cn n(n1)2n明:S nC n03C 1n5C n2(2n1)Cnn ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..①把①式右 倒 来得S n (2n1)C n n ( 2n 1)C n n 1 3C n 1 C n 0〔反序〕又由 C n mC n n m 可得S n (2n1)C n 0 (2n 1)C n 1 3C n n1C n n ⋯⋯⋯⋯ .. ⋯⋯ .. ②①+②得2S n (2n 2)(C n 0 C n 1 C n n1C n n ) 2(n 1) 2 n〔反序相加〕∴S n(n 1) 2 n[ 例 6] 求 sin 2 1sin 2 2 sin 2 3 sin 2 88 sin 2 89 的解: S sin 2 1 sin 2 2 sin 2 3sin 2 88 sin 2 89 ⋯⋯⋯⋯. ①将①式右 反序得S sin 2 89 sin 2 88sin 2 3 sin 2 2sin 2 1 ⋯⋯⋯⋯ .. ②〔反序〕又因 sin x cos(90x), sin 2 x cos 2 x1① +②得〔反序相加〕2S (sin 2 1 cos 2 1 )(sin 2 2 cos 2 2 ) (sin 2 89 cos 2 89 ) = 89∴ S =四、分 法求和有一 数列,既不是等差数列,也不是等比数列,假设将 数列适当拆开,可分 几个等差、等比或常 的数列,然后分 求和,再将其合并即可.[ 例 7] 求数列的前 n 和: 11 1 7, , 13n 2 ,⋯1, 4, 2 n 1aa a解: S n(1 1)1 4) ( 1 7)( 1 3n 2)(2n 1aa a将其每一 拆开再重新 合得111〔分组〕S n (1a a 2 a n 1)(1 4 73n 2)当 a =1 , S nn (3n 1)n (3n 1)n〔分组求和〕2=211(3n 1) n a a 1 n(3n 1)n当 a1, S na n2 =a121 1a[ 例 8]求数列 {n(n+1)(2n+1)}的前 n 和 .解: ak k k 1)( 2 k 1) k 3k 2 k(2 3n n∴ S n k(k 1)(2k 1) = (2k3 3k 2 k) k 1 k 1将其每一项拆开再重新组合得nk3 nk 2nS n=2 3 k 〔分组〕k 1 k 1k 1= 2(13 23 n3 ) 3(12 22 n2 ) (1 2 n)=n2 (n 1) 2 n(n 1)( 2n 1) n(n 1)〔分组求和〕2 2 2=n(n 1)2 (n 2)2五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终到达求和的目的. 通项分解〔裂项〕如:〔 1〕a n f (n 1) f ( n) 〔 2〕sin 1 tan(n 1) tan n1)cosn cos(n〔 3〕a n 11) 1 11〔 4〕a n(2n(2n) 21)1 1 ( 1 1 )n(n n n 1)( 2n 2 2n 1 2n 1〔 5〕a n1 1[1 1] n(n 1)(n 2) 2 1) ( n 1)(n 2)n(n(6) a nn 2 1 2(n 1) n 1 1 1 n , 那么S n 11n(n 1) 2 n n(n 1) 2 n n 2 n 1 (n 1)2 (n 1) 2 n[ 例 9] 求数列 1 , 1 , , 1 , 的前 n 项和 .1 2 3 n n2 1解:设 a n1n 1 n 〔裂项〕n n 1那么S n 1 1 1 〔裂项求和〕2 23 n n 11= ( 2 1) ( 3 2) ( n 1 n )=n 1 1[ 例 10]在数列 {a n } 中, a n12n ,又 b n 2,求数列 {b n } 的前 n 项的和 .n 1 n 1n 1a nan 1解:∵ a n12n nn 1 n1n 12∴ b nn 2 1 8( 11 )〔裂项〕n n n 12 2∴ 数列 {b n } 的前 n 项和S n8[(1 1 ) ( 1 1) (11 ) (11 )]〔裂项求和〕2 23 34 nn 1= 8(11 ) = 8nn 1 n 1[ 例 11]求证:111 cos1cos1 cos 2cos88 cos89sin 2 1cos0 cos1 解:设 S111cos 0 cos1 cos1 cos2cos88 cos89∵sin1tan(n 1) tan n〔裂项〕1)cos n cos(n∴ S111〔裂项求和〕cos 0 cos1 cos1 cos2cos88 cos89=1{(tan 1 tan 0 ) (tan 2 tan1 ) (tan 3tan 2 ) [tan 89tan 88 ]}sin 1=1(tan 89 tan 0 ) = 1 cos1sin 1cot 1 =2 1sin 1sin∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[ 例 12]求 cos1° + cos2 ° + cos3 ° +···+ cos178 ° + cos179 °的值 .解:设 S n = cos1 ° + cos2 ° + cos3 ° +··· + cos178 ° + cos179 °∵ cos ncos(180 n )〔找特殊性质项〕∴ S n = 〔 cos1 ° + cos179 °〕 +〔 cos2 ° + cos178 °〕 + 〔 cos3 °+ cos177 °〕 +···+〔 cos89 °+ cos91 °〕 + cos90 ° 〔合并求和〕= 0[ 例 13]数列 {a n } : a 1 1,a 2 3, a 3 2, a n 2 a n 1 a n ,求 S 2002.解:设 S = a 1 a 2a 3a20022002由 a1 1, a2 3, a3 2, a n 2 a n 1 a n可得a4 1, a5 3, a6 2,a7 1, a8 3, a9 2, a10 1, a11 3, a12 2,⋯⋯a6 k 1 1, a6k 2 3, a6k 3 2, a6 k 4 1, a6k 5 3, a6 k 6 2∵a6k1 a6k2 a6k3 a6 k4 a6 k5 a6 k 6 0 〔找特殊性质项〕∴S2002=a1 a2 a3 a2002 〔合并求和〕= ( a1 a2 a3 a6 ) ( a7 a8 a12 ) (a6k 1 a6k 2 a6k 6 )(a1993 a1994a1998) a1999a2000a2001a2002= a1999 a2000 a2001 a2002=a6 k 1 a6k 2 a6k 3 a6 k 4= 5[ 例 14] 在各均正数的等比数列中,假设a5 a6 9, 求 log 3 a1 log 3 a2 log 3 a10的.解: S n log 3 a1 log 3 a2 log 3 a10由等比数列的性m n p q a m a n a p a q 〔找特殊性质项〕和数的运算性log a M log a N log a M N 得S n (log 3 a1 log 3 a10 ) (log 3 a2 log 3 a9 ) (log 3 a5 log 3 a6 ) 〔合并求和〕= (log 3 a1 a10 ) (log 3 a2 a9 ) (log 3 a5 a6 )= log 3 9 log 3 9 log 3 9= 10七、利用数列的通求和先根据数列的构及特征行分析,找出数列的通及其特征,然后再利用数列的通揭示的律来求数列的前n 和,是一个重要的方法.[ 例 15]求111 111111 1 之和.n个1解:由于 1111 1 9999 1(10 k1) 〔找通项及特征〕k 个19 k 个19∴ 111 111111 1n 个1= 1(101 1) 1 (1021) 1 (1031)1(10 n 1)〔分组求和〕9999= 1(10110 2 10310 n )1(1 1 11)99 n 个1n= 1 10(10 1) n910 19= 1(10n 1 10 9 )81n[ 例 16]数列 {a n } : a n8, 求(n 1)(a n a n 1 ) 的值 .( n 1)(n 3)n 1解:∵ (n1)(a n a n 1 ) 8(n1)[ 11 ]〔找通项及特征〕3)( n 2)( n ( n 1)(n4)= 8 [11]〔设制分组〕2)(n4) (n 3)(n(n 4)= 4 (11 ) 8 ( 11 〔裂项〕n 2nn 3n)44∴( n1)(a n a n1) 4 ( 11 ) 8 (11 ) 〔分组、裂项求和〕n 1n 1 n2 n 4n 1n3 n 4= 4 (11 )8 13 44=133说明:本资料适用于高三总复习,也适用于高一“数列〞一章的学习。

利用导数解决数列的求和问题

利用导数解决数列的求和问题

龙源期刊网
利用导数解决数列的求和问题
作者:徐庆峰
来源:《教育界》2011年第11期
【摘要】本文借助数列的特点,用高数的观点研究数列的性质,结合高数中的一些思想,将高数中的知识应用于中学数学的数列问题,探讨一些数列的解法。

【关键词】求导数列
在数学分析中利用导数求数列的和是一个很常用的方法,它是建立在数项级数的相关知
识的基础上。

但这与高中的数列求和是有区别的。

在数项级数中,由于求的是无穷项数列的和,因此就有收敛域的要求,因为收敛域内,才能满足Σ与导数可交换,才能利用导数来求级数的和,但对于有限项数列的求和,我们就没有了收敛域的要求,只是借用了级数求和的
思想。

由于极限的这一知识也进入了中学教材,数项级数的求和也可以有所体现的。

下面我
们利用一些例子来介绍这一方法。

例1:利用多项式的导数
此题可以用错位相减法解,一般的,能用错位相减法解的题目都可以用这个方法解。

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

数列与导数高考知识点

数列与导数高考知识点

数列与导数高考知识点1. 数列的概念与性质数列作为数学中重要的概念之一,是指按照一定规律排列的一组数。

数列可以是有限的或无限的,其中的每一个数称为该数列的项。

在高考中,数列作为必考的知识点,具有以下重要性质:1.1 公式法数列中的每一项可以通过一个公式进行表示,这种公式称为通项公式。

在求解数列问题时,通过寻找数列的通项公式,可以简化计算过程,提高解题效率。

1.2 递推关系数列中的每一项与前一项之间存在一种递推关系,通过该关系可以得到数列的后续项。

在高考中,经常会考察学生对数列递推关系的理解和应用能力。

1.3 数列的分类数列可以按照不同的特点进行分类,如等差数列、等比数列、等差数列的和、等差数列的前n项和等。

掌握不同类型数列的性质和求解方法,对于解题非常有帮助。

2. 数列的应用数列作为数学中的基础概念,具有广泛的应用,不仅仅局限于数学领域。

在现实生活和其他学科中,也经常会遇到数列的应用问题。

以下是数列在实际问题中的一些常见应用:2.1 经济学中的数列经济学中常常使用数列来描述经济发展过程中的变化规律,如人口增长、GDP 增长等。

通过对数列的分析和计算,可以预测未来的经济趋势,对决策和规划具有指导作用。

2.2 生物学中的数列生物学中的进化过程、生物种群的数量等也可以用数列来描述。

通过分析数列的规律,可以研究生物体的演化规律,深入了解生物种群的变化趋势。

2.3 计算机科学中的数列在计算机科学中,数列也是一种基本数据结构。

常见的排序算法如冒泡排序、快速排序等都与数列的排列规律有关。

掌握数列的性质和求解方法,对于理解和设计算法非常重要。

3. 导数的概念与应用导数是微积分中的重要概念,表示函数在某一点上的变化率。

在高考中,导数作为必考的知识点,具有以下重要性质:3.1 几何意义导数在几何上表示曲线在某一点上的切线斜率。

通过求解导数,可以研究曲线的变化趋势和几何性质,如曲线的凹凸性、极值点等。

3.2 物理应用在物理学中,导数与速度、加速度等物理量的关系密切。

导数应用与数列求和论文

导数应用与数列求和论文

导数应用与数列求和高中引入了导数概念,给出了导数的定义,讲清楚了导数的几何意义及物理意义,在应用方面也给出了一些例题,主要是解决函数单调性、最值、不等式证明等问题。

但是在数列求和方面的应用基本上还没有涉及到,因此我仅以本文来为导数的应用开辟一条新的途径。

问题一:数列(an)的通项公式an=n×2n-1(n∈n*),求数列(an)的前项和sn.1.错位相减法:sn=1×20+2×21+3×22+...+n×2n-1 (1)2sn=1×21+2×22+...+(n-1)×2n-1+n×2n (2)由(1)-(2)得,-sn=1+21+22+…+2n-1-n×2n,有-sn=1+(n-1)×2(n∈n*)2.导数法:令f(x)=x+x2+x3+…xn(x≠0,x≠1)f(x)=1×x0+2x1+3x2+…+nxn-1,所以sn=f(2),f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因为f(x)=[1-(n-1)xn](1-x)+(x-xn-1)/(1-x)2 有sn=f(2)=1+(n-1)×2n定理1:数列(an)的通项公式an=n×pn-1(p≠0,p≠1,n∈n*),其前项n和为sn,则sn=1+[(p-1)n-1]pn/(1-p)2。

证明:令f(x)=x+x2+x3+…+xn(x≠0,x≠1),所以,f(x)=1×x0+2x1+3x2+…+nxn-1,所以sn=f(p),f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因为f(x)=[1-(n+1)xn](1-x)+(x-xn-1)/(1-x)2有sn=f(p)=1+[(p-1)n-1]pn/(1-p)2,证毕。

问题二:数列(cn)的通项公式cn=anbn(n∈n*),其中,an=pn+q (p,q是常数),bn=r·sn-1(rs≠0),求数列(an)前项和tn。

数学微积分与数列求和问题

数学微积分与数列求和问题

数学微积分与数列求和问题主题:数学微积分与数列求和问题引言:微积分与数列求和是数学的重要分支,广泛应用于物理、经济学、工程学等领域。

本节课将介绍微积分和数列求和的基本概念,并通过解决实际问题来加深学生对这些概念的理解和应用能力。

一、微积分基础(500字)1. 导数的概念和计算方法a. 介绍导数的定义,并通过示例解释导数的几何意义。

b. 讲解常见函数的导数公式和求导规则。

c. 练习题:计算给定函数的导数。

2. 积分的概念和计算方法a. 介绍积分的定义,解释积分的几何意义。

b. 讲解常见函数的积分公式和积分规则。

c. 练习题:计算给定函数的不定积分。

二、微积分应用:曲线的长度与面积(500字)1. 曲线的长度a. 介绍弧长的概念,并讲解如何计算曲线的长度。

b. 使用已知函数的导数公式,计算给定曲线的长度。

c. 练习题:计算给定曲线的长度。

2. 曲线下的面积a. 引入定积分的概念,解释曲线下的面积与定积分之间的关系。

b. 讲解如何计算曲线下面积的方法。

c. 练习题:计算给定曲线下的面积。

三、数列与数列求和问题(500字)1. 数列的定义与性质a. 介绍数列的概念,解释数列的通项和前n项和的含义。

b. 讲解常见数列的性质和特点。

c. 练习题:判断给定数列的特性。

2. 数列求和的方法a. 介绍常见数列求和的方法,如等差数列求和公式、等比数列求和公式等。

b. 讲解证明数列求和公式的思路与方法。

c. 练习题:计算给定数列的前n项和。

四、微积分与数列求和问题的联系(500字)1. 数列求和与定积分a. 解释数列求和与定积分之间的关系,通过数列的面积解释数列求和的意义。

b. 举例说明如何使用定积分求解数列求和问题。

c. 练习题:使用定积分求解数列的前n项和。

2. 数列求导的应用a. 介绍如何将数列求和问题转化为函数求导的问题,并解释其意义。

b. 通过示例说明数列求导在实际问题中的应用。

c. 练习题:将数列求和问题转化为函数求导并解答。

奇妙的数列与数列求和公式的推导

奇妙的数列与数列求和公式的推导

奇妙的数列与数列求和公式的推导数学作为一门学科,拥有着丰富的数学概念和理论,而数列则是数学中重要的一部分。

数列是由一系列按照特定规律排列的数所组成的序列。

在数学中,我们经常会遇到各种各样的数列,有着不同的特点和性质。

本文将介绍一些奇妙的数列,并探讨数列求和公式的推导过程。

一、斐波那契数列斐波那契数列是一种非常有趣且常见的数列,其特点是每个数都是前两个数的和。

斐波那契数列的前几项为1, 1, 2, 3, 5, 8, 13, 21, 34, ...。

我们可以使用递归或迭代的方式来生成斐波那契数列,但是这种方法在计算大量项时效率较低。

为了更高效地计算斐波那契数列的第n项,我们可以利用数学公式进行推导。

假设F(n)表示斐波那契数列的第n项,我们可以得到如下递推公式:F(n) = F(n-1) + F(n-2)。

根据这个公式,我们可以从前两项开始逐步计算出后面的每一项,直到第n项。

二、等差数列等差数列是一种数列,其中每一项与前一项的差值都相等。

等差数列的通项公式可以表示为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

等差数列的求和公式可以表示为Sn = (n/2)(a1 + an),其中Sn表示前n项的和。

例如,考虑一个等差数列:2, 5, 8, 11, 14, ...。

首项a1为2,公差d为3。

我们可以使用通项公式计算出该数列的任意一项,使用求和公式计算出前n项的和。

三、等比数列等比数列是一种数列,其中每一项与前一项的比值都相等。

等比数列的通项公式可以表示为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。

等比数列的求和公式可以表示为Sn = (a1 * (1 - r^n)) / (1 - r),其中Sn表示前n项的和。

例如,考虑一个等比数列:3, 6, 12, 24, 48, ...。

首项a1为3,公比r为2。

我们可以使用通项公式计算出该数列的任意一项,使用求和公式计算出前n项的和。

用导数法求解一类数列求和问题

用导数法求解一类数列求和问题

用导数法求解一类数列求和问题
曾晓阳
【期刊名称】《福建中学数学》
【年(卷),期】2011(000)002
【摘要】@@ 由等差数列{an}与等比数列{bn}的对应项的积构成的新数列{an·bn}的求和问题,一直以来都是应用错位相减法求得,虽求解过程有一定的套路,但是学生解题过程极易出错,为此,本文探讨应用导数方法加以解决,使运算更为简单、便捷.【总页数】2页(P38-39)
【作者】曾晓阳
【作者单位】福建省惠安县第三中学,362100
【正文语种】中文
【相关文献】
1.巧用组合恒等式求解数列求和问题 [J], 李应才
2.巧用组合恒等式求解数列求和问题 [J], 李应才
3.差比型数列前n项和求解的另一通法——导数法 [J], 王峰
4.利用倒序相加几何模型求解含平方、立方的数列求和问题 [J], 王明君; 孙晓雪
5.一类数列求和问题方法探究 [J], 叶土生
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1) ; x 1 2 ln x 1 1 ⑧ 2 2 ( x 0) ; x 2 2x 可以用“数形结合”的方法记忆。 一、公式①的应用: ln x x 1( x 0) (仅当 x=1 时取“=” ) ,y=lnx 在(1,0)处的切线方程为 y=x-1.
* ,证明:b1+b2+…+bn<1+ln2(n∈N ,n≥2).
lnx≤x-1(当 x=1,时等号成立) ,
令 x=n+1,则 ln(n+1)≤n. ln n 1 n 1 ∴n≥2 时,bn= < 3 2 3 n n n 1 1 1 < , n(n 1) n 1 n
1 1 1 1 1 1 ( )( )+ ( ) ∴b1+b2+…+bn<b1+ 1 2 2 3 n 1 n 1 ln2 ( 1 ) <1+ln2. n

ln2 ln3 lnn n2 1 , 2 2 2 2 3 n 2 n 1 4 ln 2 ln3 lnn n2 1 2 2 < 。 2 2 3 n 2 n 1 4
∴对于任意 n∈N,n≥2 有:
(3)设 bn=
ln n 1 n3
*
即有 n∈N 时,n(n+1)≤2
1 en . 1 e
ln 2 ln3 lnn n2 1 < . (2)求证:对于任意 n∈N,n≥2 有: 2 2 32 n2 2 n 1 4
证明:lnx≤x-1(当 x=1,时等号成立) ,令 x=n (n∈N ,n≥2),
2 2 则 lnn <n -1, 2 *

lnn2 n2 1 1 1 1 1 < 2 =1- 2 <1 1 , 2 n n n n n 1 n n 1

ln22 ln32 lnn2 22 32 n2 1 1 1 1 1 1 <( 1 )( 1 ) ( 1 ) 2 3 3 4 n n 1 n 1 1 1 n2 1 , 2 n 1 n 1 2
证明:证明:lnx≤x-1(当 x=1,时等号成立) ,
(11)求证:
ln 2 ln 3 ln 4 ln n 1 < , (n≥2,n∈N*). 2 3 4 n n
(12)求证:
1 1 1 >ln2 ,(n∈N*) n 1 n 2 n n 1
证明:证明:lnx≤x-1(当 x=1,时等号成立) ,

n n 1 ) 2 (1)求证:n∈N 时, (
*
en 1 . e 1
证明:lnx≤x-1(当 x=1,时等号成立) ,
n-1 * 取 x=n,n∈N ,则 n-1≥lnn,即有 n≤e . n-1 2 即有 1+2+…+n≤1+e+e +…+e .
则有
1 1 en n(n+1)≤ , 2 1 e
(8)求证: (1
1 1 1 )(1 2 )(1 2 )<e ,其中 n≥2,n∈N*. 22 3 n
证明:证明:lnx≤x-1(当 x=1,时等号成立) ,
( (9)求证: ln
n 1 1 )< ,(n∈N+) n n
证明:证明:ln(x+1)≤x(当 x=0,时等号成立) ,
1 n 1 . (10)证明对任意的 n∈N*都有 ln(1 ) < n
(6)求证:当 n∈N+时, e1 2 3 ... n>n 1 .
, 证明:lnx≤x-1(当 x=1,时等号成立)
1 1
1
(7)设各项为正数的数列{an}满足 a1=1,an+1=lnan+an+2(n∈N*),求证:an≤2n-1.
证明:lnx≤x-1(当 x=1,时等号成立) , 由已知条件 an>0, 令 x=an,则 ln an≤an -1, ∴an+1=lnan+an+2≤an-1+an+2=2an+1,
m
(4)当 m>n>1(m,n∈Z)时,证明:
证明:当 m>n>1, (m.n∈Z)时,
n m
n

n . m
(5)求证:对任意的 n∈N ,
*
n 1
n
n!
<e ,(e 为自然对数的底数.e≈2.71828)。
证明:因为 lnx≤x-1(当 x=1,时等号成立) , 所以 ln(1+x)≤x(当 x=0 时等号成立) ,
新导数与数列求和 01
以下不等式需要记住,这些公式经常结合数列进行命题,前 5 个需牢记! ,① ln x x 1( x 0) (仅当 x=1 时取“=” ) ,y=lnx 在(1,0)处的切线方程为 y=x-1. ② ln( x 1) x( x 1) (仅当 x=0 时取“=” ) , y=ln(x+1)在(0,0)处的切线方程为 y=x. x x ③ e 1 x ,y=e 在(0,1)处的切线方程为 y=x+1. -x ④ e x 1 x ,y=e 在(0,-1)处的切线方程为 y=-x+1. ⑤ sinx<x<tanx, x (0, ) ; 2 ⑥ ln( x2 1) x( x 0) ;
相关文档
最新文档