2003年全国初中数学联赛试题及解答

合集下载

2003年全国初中数学联赛试卷参考答案与试题解析

2003年全国初中数学联赛试卷参考答案与试题解析

2003年全国初中数学联赛试卷参考答案与试题解析一、选择题(共6小题,每小题7分,满分42分)1.(7分)的值等于().5﹣4B.4﹣1 C解答:解:原式==+=,故选D.2.(7分)在凸10边形的所有内角中,锐角的个数最多是()3.(7分)若函数y=kx(k>0)与函数的图象相交于A,C两点,AB垂直x轴于B,则△ABC的面积为()解答:解:设点A的坐标为(x,y),则xy=1,故△ABO的面积为,又∵△ABO与△CBO同底等高,∴△ABC的面积=2×△ABO的面积=1.故选A.解答:解:由可得,(﹣)(++)=0,∵++>0,∴﹣=0,∴,故选B.5.(7分)设△ABC的面积为1,D是边AB上一点,且=,若在边AC上取一点E,使四边形DECB的面积为,则的值为().B.C.D.解答:解:连接BE.∵=,∴△ADE和△ABE的面积比是1:3.设△ADE的面积是k,则△ABE的面积是3k,则△BDE的面积是2k.设△BCE的面积是x,则有(2k+x)=(3k+x),解得x=k.则△ABE和△BCE的面积比是3:1,则的值为.故选B.6.(7分)如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为().D.解答:解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选D.二、填空题(共4小题,每小题7分,满分28分)7.(7分)抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则ac= ﹣解答:解:设A(x1,0),B(x2,0),由△ABC是直角三角形可知x1、x2必异号,则x1•x2=<0,由于函数图象与y轴相交于C点,所以C点坐标为(0,c),由射影定理知,|OC|2=|AO|•|BO|,即c2=|x1|•|x2|=||,故|ac|=1,ac=±1,由于<0,所以ac=﹣1.故答案为:﹣1.8.(7分)设m是整数,且方程3x2+mx﹣2=0的两根都大于﹣而小于,则m= 4 .解答:解:由题设可知,,解得.因为m是整数,所以m=4.故答案为4.9.(7分)如图,AA′、BB′分别是∠EAB、∠DBC的平分线,若AA′=BB′=AB,则∠BAC的度数为12°.∴∠CAB=∠BB′A,∴∠B′BD=2x°,∵BB′是∠DBC的平分线,∴∠CBD=4x°,∵AB=AA′,∴∠AA′B=∠ABA′=∠CBD=4x°,∵∠A′AB=(180°﹣x°),∴(180°﹣x°)+4x°+4x°=180°,∴x°=12°.故答案为:12°.10.(7分)已知正整数a、b之差为120,它们的最小公倍数是其最大公约数的105倍,那么,a、b中较大的数是225 .解答:解:设(a,b)=d,且a=md,b=nd,其中m>n,且m与n互质,于是a、b的最小公倍数为mnd,依题意有即,则m>n据②可得或或或根据①只取可求得d=15,故两个数中较大的数是md=225.三、解答题(共5小题,满分120分)11.(20分)试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数.解答:解:设前后两个二位数分别为x,y,∴(x+y)2=100x+y.x2+2(y﹣50)x+(y2﹣y)=0.b2﹣4ac=4(y﹣50)2﹣4(y2﹣y)=4(2500﹣99y)≥0,解得y≤25,当y≤25时,原方程有解.∴x==50﹣y±,∴2500﹣99y必为完全平方数,∵完全平方数的末位数字只可能为0;1;4;5;6;9.x的数位是2位,y是2位.∴y=25,∴x=30或20,12.(25分)在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB 的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;②∠PAE=∠PBF.解答:证明:①如图,在△ABP中,∵D、M、N分别是AB、AP、BP的中点,∴DM=BP,DN=AP,又∵PE⊥AE,BF⊥PF∴EM=AP=DN,FN=BP=DM,∵DE=DF∴△DEM≌△DFN(SSS);②∵由①结论△DEM≌△DFN可知∠EMD=∠FND,∵DM∥BP,DN∥AP,∴∠AMD=∠BND=∠APB,∴∠AME=∠BNF又∵PE⊥AE,BF⊥PF,∴△AEP和△BFP都为直角三角形,又M,N分别为斜边PA与PB的中点,∴AM=EM=AP,BN=NF=BP,∴∠MAE=∠MEA,∠NBF=∠NFB,∴∠PAE=(180°﹣∠AME),∠PBF=(180°﹣∠BNF).即∠PAE=∠PBF,13.(25分)已知实数a、b、c、d互不相等,且,试求x的值.解答:解:由已知有a+=x,①; b+=x,②;c+=x,③;d+=x,④;即dx3﹣(ad+1)x2﹣(2d﹣a)x+ad+1=0⑦由④得ad+1=ax,代入⑦得(d﹣a)(x3﹣2x)=0由已知d﹣a≠0,∴x3﹣2x=0若x=0,则由⑥可得a=c,矛盾.故有x2=2,x=±15.(25分)已知四边形ABCD的面积为32,AB、CD、AC的长都是整数,且它们的和为16.(1)这样的四边形有几个?(2)求这样的四边形边长的平方和的最小值.解答:解:(1)如图,记AB=a,CD=b,AC=l,并设△ABC的边BA上的高为h1,△ADC的边DC上的高为h2,则S四边形ABCD=S△ABC+S△ADC=(h1a+h2b)≤l(a+b),当且仅当h1=h2=l时等号成立,即在四边形ABCD中,当AC⊥AB,AC⊥CD时,等号成立,由已知得64≤l(a+b),又∵a+b=16﹣l,得64≤l(16﹣l)=64﹣(l﹣8)2≤64,于是l=8,a+b=8,且这时AC⊥AB,AC⊥CD,因此这样的四边形由如下4个:a=1,b=7,l=8;a=2,b=6,l=8;a=3,b=5,l=8;a=b=4,l=8;(2)由于AB=a,CD=8﹣a,则BC2=82+a2,AD2=82+(8﹣a)2,故这样的四边形的边长的平方和为:2a2+2(8﹣a)2+128=4(a﹣4)2+192,当a=b=4时,平方和最小,且为192.故答案为:4,192.。

2003年全国初中数学竞赛试题(含答案)

2003年全国初中数学竞赛试题(含答案)

(第3题图)D F(第4题图)B①②③2003年“TRULY ®信利杯”全国初中数学竞赛试题一、选择题(共5小题,每小题6分,满分30分。

以下每道小题均给出了英文代号的四个结论,其中有且只有一个结论是正确的. 请将正确结论的代号填入题后的括号里. 不填、多填或错填,得零分)1、若0634=--z y x ,()0072≠=-+xyz z y x ,则222222103225zyx zy x ---+的值等于( )A 、 21- B 、219- C 、15- D 、13-2、在本埠投寄平信,每封信质量不超过g 20时付邮费0.80元,超过g 20而不超过g 40时付邮费1.60元,依次类推,每增加g 20需增加邮费0.80元(信的质量在g 100以内)。

如果所寄一封信的质量为g 5.72,那么应付邮费 ( )A 、2.4元B 、2.8元C 、3元D 、3.2元 3、如下图所示,=∠+∠+∠+∠+∠+∠+∠G FE D C B A ( )A 、︒360B 、︒450C 、 ︒540D 、︒7204、四条线段的长分别为9,5,x ,1(其中x 为正实数),用它们拼成两个直角三角形,且AB 与CD 是其中的两条线段(如上图),则x 可取值的个数为( )A 、2个B 、3个C 、4个D 、6个 5、某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将其排列成前多后少的梯形队阵(排数3≥),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有( )A 、1种B 、2种C 、4种D 、 0种 二、填空题(共5小题,每小题6分,满分30分) 6、已知31+=x ,那么___________2141212=---++x xx .7、若实数x ,y ,z 满足41=+yx ,11=+zy ,371=+x z ,则xyz 的值为 .8、观察下列图形:(第9题图)D E C AB根据图①、②、③的规律,图④中三角形的个数为 .9、如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成︒45,︒=∠60A ,m CD 4=,()m BC 2264-=,则电线杆AB 的长为_____m .10、已知二次函数c bx ax y ++=2(其中a 是正整数)的图象经 过点A (-1,4)与点B (2,1),并且与x 轴有两个不同的交点,则c b +的最大值为 .三、解答题(共4题,每小题15分,满分60分)11、如图所示,已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P . 问EP 与PD 是否相等?证明你的结论。

2003年全国初中数学联赛预赛暨2002年山东省初中数学竞赛试题(有答案)

2003年全国初中数学联赛预赛暨2002年山东省初中数学竞赛试题(有答案)

2003年全国初中数学联赛预赛暨2002年⼭东省初中数学竞赛试题(有答案)2003年全国初中数学联赛预赛暨 2002年⼭东省初中数学竞赛试题⼀、选择题(本题共8⼩题,每⼩题6分,满分48分)1.磁悬浮列车是⼀种科技含量很⾼的新型交通⼯具.它有速度快、爬坡能⼒强、能耗低的优点.它每个座位的平均能耗仅为飞机每个座位的平均能耗的三分之⼀、汽车每个座位的平均能耗的70%.那么汽车每个座位的平均能耗是飞机每个座位平均能耗的( )(A)37 (B)73 (C)1021 (D)21102.已知a,b,c,d都是正实数,且ab <cd .给出下列四个不等式: ①aa+b >cc+d②aa+b <cc+d③ba+b >dc+d④ba+b <dc+d其中正确的是( )(A)①③ (B)①④ (C)②④ (D)②③3.如图,在等腰直⾓三⾓形ABC中,∠C=90°,∠CBD=30°,则ADDC的值是( ) (A)3 3 (B) 2 2(C) 2 -1 (D) 3 -1 4.世界杯⾜球赛⼩组赛,每个⼩组4个队进⾏单循环⽐赛,每场⽐赛胜队得3分,败队得0分,平局时两队各得1分.⼩组赛完以后,总积分最⾼的两个队出线进⼊下轮⽐赛.如果总积分相同,还要按净胜球数排序.⼀个队要保证出线,这个队⾄少要积( )(A)5分 (B)6分 (C)7分 (D)8分5.如图,四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD等于( )(A)6 3 (B)5 3 (C)4 3 (D)3 36.如图,在梯形ABCD中,AD∥BC,AD=3,BC=9,AB=6,CD=4.若EF∥BC,且梯形AEFD与梯形EBCF的周长相等,则EF的长为( )(A)45 7 (B) 33 5 (C) 39 5 (D) 1527.如图,在RtABC中,∠ACB=90°,AC=b,AB=c,若D、E分别是AB和AB延长线上的两点,BD=BC,CE⊥CD,则以AD和AE的长为根的⼀元⼆次⽅程是()(A)x2-2cx+b2=0(B)x2-cx+b2=0(C)x2-2cx+b=0(D)x2-cx+b=08.已知实数a、b、c满⾜a<b<c,ab+bc+ca=0,abc=1,则()(A)|a+b|>|c|(B)|a+b|<|c|(C)|a+b|=|c|(D)|a+b|与|c|的⼤⼩关系不能确定⼆、填空题(本题共4⼩题,每⼩题8分,满分32分)9.M是个位数字不为零的两位数,将M的个位数字与⼗位数字互换后得另⼀个两位数N,若M-N恰是某正整数的⽴⽅,则这样的M共有____个.10.设x1、x2是⽅程x2-2 (k+1)x+k2+2=0的两个实数根,且(x1+1) (x2+1)=8, 则k的值是____.11.已知实数x、y、z满⾜x+y=5及z2=xy+y-9,则x+2y+3z=____.12.如图,P是矩形ABCD内⼀点,若PA=3,PB=4,PC=5,则PD=____.三、解答题(本题共3⼩题,每⼩题20分,满分60分)13.如图,甲楼楼⾼16⽶,⼄楼坐落在甲楼的正北⾯,已知当地冬⾄中午12时太阳光线与⽔平⾯的夹⾓为30°,此时,求:(1)如果两楼相距20⽶,那么甲楼的影⼦落在⼄楼上有多⾼?(2)如果甲楼的影⼦刚好不落在⼄楼上,那么两楼的距离应当是多少⽶?14.如图, △ABC是等腰直⾓三⾓形,∠C=90°,O是△ABC内⼀点,点O到△ABC各边的距离都等于1,将△ABC绕点O顺时针旋转45°得△A1B1C1,两三⾓形公共部分为多边形KLMNPQ.(1)证明: △AKL、△BMN、△CPQ都是等腰直⾓三⾓形;(2)求△ABC与△A1B1C1公共部分的⾯积.15.某乡镇⼩学到县城参观,规定汽车从县城出发于上午7时到达学校,接参观的师⽣⽴即出发去县城.由于汽车在赴校的途中发⽣了故障,不得不停车修理. 学校师⽣等到7时10分,仍未见汽车来接,就步⾏⾛向县城. 在⾏进途中遇到了已经修理好的汽车,⽴即上车赶赴县城, 结果⽐原定到达县城的时间晚了半⼩时. 如果汽车的速度是步⾏速度的6倍,问汽车在途中排除故障花了多少时间.参考解答⼀、选择题1 C2 D3 D4 B5 B6 C7 A8 A⼆、填空题9 6 10 1 11 8 12 3 2 三、解答题13 (1)设冬天太阳最低时,甲楼最⾼处A点的影⼦落在⼄楼的C处, 那么图(1)中CD的长度就是甲楼的影⼦在⼄楼上的⾼度.设CE⊥AB于点E,那么在△AEC中,∠AEC=90°,∠ACE=30°,EC=20⽶.∴AE=EC·tan∠ACE=20·tan30°=20×33≈11.6(⽶). CD=EB=AB-AE=16-11.6=4.4(⽶).(2)设点A的影⼦落到地⾯上⼀点C(如图(2)),则在△ABC中,∠ACB=30°,AB=16⽶,∴BC=AB·cot∠ACB=16×cot30°=16×3≈27.7(⽶).所以,要使甲楼的影⼦不影响⼄楼,那么⼄楼距离甲楼⾄少要27.7⽶.14 (1)连结OC,OC1,分别交PQ、NP于点D,E,根据题意得∠COC1=45°. ∵点O到AC和BC的距离都等于1, ∴OC是∠ACB的平分线. ∵∠ACB=90°,∴∠OCE=∠OCQ=45°. 同理∠OC1D=∠OC1N=45°, ∴∠OEC=∠ODC1=90°.∴∠CQP=∠CPQ=∠C1PN=∠C1NP=45°. ∴△CPQ和△C1NP都是等腰直⾓三⾓形.∴∠BNM=∠C1NP=45°, ∠A1QK=∠CQP=45°. ∵∠B=45°,∠A1=45°,∴△BMN和△A1KQ都是等腰直⾓三⾓形.∴∠B1ML=∠BMN=90°, ∠AKL=∠A1KQ=90°. ∴∠B1=45°,∠A=45°,∴△B1ML和△AKL也都是等腰直⾓三⾓形.(2)在Rt△ODC1和Rt△OEC中, ∵OD=OE=1,∠COC1=45°,∴OC=OC1= 2 . ∴CD=C1E= 2 -1.∴PQ=NP=2( 2 -1)=2 2 -2,CQ=CP=C1P=C1N=2- 2 . ∴S△CPQ=12 ×(2- 2 )2=3-2 2 .延长CO交AB于H.∵CO平分∠ACB,且AC=BC, ∴CH⊥AB.∴CH=CO+OH= 2 +1.∴AC=BC=A1C1=B1C1= 2 ( 2 +1)=2+ 2 . ∴S△ABC= 12×(2+ 2 )2=3+2 2 .∵A1Q=BN=(2+ 2 )-(2 2 -2)-(2- 2 )=2,∴KQ=MN= 22 = 2 ,∴S△BMN=12×( 2 )2=1.∵AK=(2+ 2 )-(2- 2 )- 2 = 2 , ∴S△AKL=12×( 2 )2=1.∴S多四边形KLMNPQ=S△ABC-S△CPQ-S△BMN-S△AKL= (3+2 2 )-(3-2 2 )-1-1 = 4 2 -2.15 假定排除故障花时x分钟.如图,设点A为县城所在地,点C为学校所在地,点B为师⽣途中与汽车相遇之处.在师⽣们晚到县城的30分钟中,有10分钟是因晚出发造成的,还有20分钟是由于从C到B由步⾏代替乘车⽽耽误的.汽车所晚的30分钟,⼀⽅⾯是由于排除故耽误了x分钟,但另⼀⽅⾯由于少跑了B到C之间的⼀个来回⽽省下了⼀些时间.已知汽车速度是步⾏速度的6倍,⽽步⾏⽐汽车从C到B这段距离要多花20分钟.由此知汽车由C到B应花206-1=4(分钟).⼀个来回省下8分钟,所以有x-8=30,x=38,即汽车在途中排除故障花了38分钟.。

2003年全国初中数学联赛试题及解答

2003年全国初中数学联赛试题及解答
2003 年全国初中数学联合竞赛试卷
第一试(4 月 13 日上午 8:30—9:30) 一、选择题(本题满分 42 分,每小题 7 分)
1. 2 3 − 2 2 + 17 −12 2 等于( )
A. 5 − 4 2 B. 4 2 −1 C.5 D.1 2.在凸 10 边形的所有内角中,锐角的个数最多是( )
而 x + y + 2003 > 0 ,所以, xy − 2003 = 0 。故 xy = 2003
又因为
2003
为质数,必有
⎧ ⎨ ⎩
x y
=1 = 2003

⎧ ⎨ ⎩
x y
= =
2003 1
5、(B);
如图,连结
BE ,
SΔADE
=1− 3 = 1 44
,设
CE AC
=x
,则
A D
E
SΔABE
2、4;
由题设可知,
⎧ ⎪3 ⎪ ⎨ ⎪⎪⎩3
× ×
⎛ ⎜⎝ ⎛ ⎜⎝

3 79 ⎞2 5 ⎠⎟源自⎞2 ⎟⎠+
+m m×
× ⎛ ⎜⎝
⎛ ⎝⎜ 3 7
− ⎞ ⎟⎠
9 5

⎞ ⎠⎟ 2
− >
2 0
>
0
,
解得 3 8 < m < 4 13 。故 m = 4
21
45
3、12º;
设∠BAC 的度数为 x ,因 AB = BB ' ,故∠ B ' BD = 2x, ∠CBD = 4x 又 AB = AA' ,
=
SΔABC
+
SΔADC

2003年全国初中数学联合竞赛试题及解答

2003年全国初中数学联合竞赛试题及解答
2
为使方程有正整数根要求 4 y 50 4 y 2 y 4 2500 99 y 是完全平方数.
2
经试验得到 y 25 时 是完全平方数,解出 x 20 或 30,即 2025 或者 3025 满足题意. 方法二: 设这两个两位数分别为 x , y ,则 x y 100 x y
2
由于 △ABC 是直角三角形,所以抛物线与 x 轴的交点必然在 y 轴两边,所以
c 再由射影定理得到 c 2 ,所以 ac 1 . a
c 0. a
9 3 2.设 m 是整数,且方程 3x2+mx-2=0 的两根都大于 而小于 ,则 m=_________. 5 7
【答】 4. 考虑二次函数 f ( x) 3x2 mx 2 与二次函数的两个交点, 由于 3 大于 0, 图像开口向上.
所以 故:
S△ ADE AD AE 1 AE 3 1 , S△ ABC AB AC 3 AC 4
AE 3 CE 1 ,所以 AC 4 EA 3
B
C
6.如图,在平行□ABCD 中,过 A,B,C 三点的圆交 AD 于 E,且与 CD 相切.若 AB=4, BE=5,则 DE 的长为( A.3. 【答】D. 连接 CE,由于 ABCE 四点共圆,所以:∠DEC=∠CBA, 在平行四边形 ABCD 中,∠D=∠ABC, 所以有∠DEC=∠D=∠ABC, 同时,CD 平行于 AB,且 DC 与圆相切, 可知:C 为弧 AB 中点,所以∠CEB=∠CBA,且∠DCE=∠CBE, 故由∠DEC=∠D 可知△DEC 为等腰三角形,CD=CE=AB=4, 由∠DEC=∠CBE 和∠D=∠ABC=∠CEB 可知△CDE∽△BCE, 所以:

1991~2011全国初中数学联赛试题及答案

1991~2011全国初中数学联赛试题及答案
【答】15.
将这些球的位置按顺序标号为1,2,3,4,…….
由于1号球与7号球中间夹有5个球,1号球与12号球中间夹有10个球,12号球与6号球中间夹有5个球,7号球与13号球中间夹有5个球,13号球与2号球中间夹有10个球,2号球与8号球中间夹有5个球,8号球与14号球中间夹有5个球,14号球与3号球中间夹有10个球,3号球与9号球中间夹有5个球,9号球与15号球中间夹有5个球,15号球与4号球中间夹有10个球,4号球与10号球中间夹有5个球,因此,编号为1,7,12,6, 13,2,8,14,3,9,15,4,10的球颜色相同,编号为5,11的球可以为另外的一种颜色.因此,可以按照要求摆放15个球.
………………………………20分
又因为MD//AC,所以MD和MQ为同一条直线.
又点Q、D均在⊙I上,所以点Q和点D重合,故PD是⊙I的切线.……………………………25分
三.(本题满分25分)已知二次函数 的图象经过两点P ,Q .
(1)如果 都是整数,且 ,求 的值.
(2)设二次函数 的图象与 轴的交点为A、B,与 轴的交点为C.如果关于 的方程 的两个根都是整数,求△ABC的面积.
类似的,可求得 出现的总次数均为 .
因此 =28068.
二、填空题:(本题满分28分,每小题7分)
1.已知实数 满足方程组 则 .
【答】13.
由 得 ,把 代入,可得 .
因此, 是一元二次方程 的两个实数根,易求得这两个实数根分别为3和 ,所以 .
2.二次函数 的图象与 轴正方向交于A,B两点,与 轴正方向交于点C.已知 , ,则 .
如果球的个数多于15个,则一方面,16号球与10号球应同色,另一方面,5号球与16号球中间夹有10个球,所以5号球与16号球同色,从而1到16号球的颜色都相同,进一步可以知道:所有的球的颜色都相同,与要求不符.

历年初中数学竞赛真题库含答案

历年初中数学竞赛真题库含答案

1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21; 答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y , yx 四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S =(C)21S S < (D)不确定 答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3(C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则x x x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于 (A)c b a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________. 第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。

【数学竞赛】2003年全国初中数学联赛试卷及答案

【数学竞赛】2003年全国初中数学联赛试卷及答案

【数学竞赛】2003年全国初中数学联赛试卷第一试(4月13日上午8:30—9:30)一、选择题(本题满分42分,每小题7分)1.A .5-B .1C .5D .1[答]( )2.在凸10边形的所有内角中,锐角的个数最多是A .0B .1C .3D .5[答]( )3.若函数()0y kx k =>与函数1y x=的图象相交于A ,C 两点,AB 垂直x 轴于B ,则△ABC 的面积为 A .1 B .2 C .k D .2k[答]( )4.满足等式2003的正整数对()x y ,的个数是A .1B .2C .3D .4[答]( )5.设△ABC 的面积为1,D 是边AB 上一点,且13AD AB =.若在边AC 上取一点E ,使四边形DECB 的面积为34,则CE EA的值为 A .12 B .13 C .14 D .15[答]( )6.如图,在□ABCD 中,过A ,B ,C 三点的圆交AD 于E ,且与CD 相切.若AB =4,BE =5,则DE 的长为A .3B .4C .154D .165[答]( ) D CA B E二、填空题(本题满分28分,每小题7分)1.抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C .若△ABC 是直角三角形,则ac =__________.2.设m 是整数,且方程2320x mx +-=的两根都大于95-而小于37,则m =____________. 3.如图,'AA ,'BB 分别是∠EAB ,∠DBC 的平分线.若''AA BB AB ==,则∠BAC 的度数为_____________.4.已知正整数a ,b 之差为120,它们的最小公倍数是其最大公约数的105倍,那么a ,b 中较大的数是_________.2003年全国初中数学联合竞赛试卷第二试(A )(4月13日上午10:00—11:30)考生注意:本试三大题,第一题20分,第二、三题各25分,全卷满分70分.一、(本题满分20分)试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数.二、(本题满分25分)。

初中数学常见8种最值问题

初中数学常见8种最值问题

的方程 3 B.初中数学常见8种最值问题最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题. 这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一. 配方法例 1. (2005 年全国初中数学联赛武汉 CASIO 杯选拔赛)可取得的最小值为.解:原式 由此可知,当时,有最小值 .二. 设参数法例 2. (《中等数学》奥林匹克训练题)已知实数满足 .则 的最大值为.解:设 ,易知,由,得从而,.由此可知,是关于 t 的两个实根.于是,有,解得.故的最大值为 2.例 3. (2004 年全国初中联赛武汉选拔赛)若,则可取得的最小值为( )A. C.D. 6取得最小值 .故选(B ).解:设 ,则从而可知,当时,解:由 得解得由是非负实数,得 , 解得又 ,故, 三. 选主元法例 4. (2004 年全国初中数学竞赛) 实数满足.则 z 的最大值是.解:由 得.代入 消去 y 并整理成以为主元的二次方程,由 x 为实数,则判别式 . 即 ,整理得 解得 .所以,z 的最大值是 .四. 夹逼法例 5. (2003 年北京市初二数学竞赛复赛)是非负实数,并且满足.设,记 为 m 的最小值,y 为 m 的最大值.则.五. 构造方程法例 6. (2000 年山东省初中数学竞赛).于是,因此.已知矩形 A 的边长为 a 和 b ,如果总有另一矩形 B 使得矩形 B 与矩形 A 的周长之比与面积之比都等于 k ,试求 k 的最小值.解:设矩形 B 的边长为 x 和 y ,由题设可得 .从而x 和y 可以看作是关于t 的一元二次方程 的两个实数 根,则 ,因为 ,所以 ,解得,所以 k 的最小值是.六. 由某字母所取的最值确定代数式的最值例 7. (2006 年全国初中数学竞赛)已知为整数,且.若,则的最大值为.解:由得,代入得.而由和可知的整数.所以,当时,取得最大值,为.七. 借助几何图形法例 8. (2004 年四川省初中数学联赛)函数的最小值是.解:显然,若,则.因而,当取最小值时,必然有. 如图1,作线段AB=4,,且AC=1,BD=2.对于AB 上的任一点O,令OA=x,则.那么,问题转化为在 AB 上求一点 O,使 OC+OD 最小.图 1设点 C 关于 AB 的对称点为 E,则 DE 与 AB 的交点即为点 O,此时,.作 EF//AB 与DB 的延长线交于 F.在中,易知,所以,.因此,函数的最小值为5.八. 比较法例 9. (2002 年全国初中数学竞赛)某项工程,如果有甲、乙两队承包天完成,需付180000 元;由乙、丙两队承包天完成,需付150000 元;由甲、丙两队承包天完成,需付160000 元. 现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?解:设甲、乙、丙单独承包各需天完成,则解得又设甲、乙、丙单独工作一天,各需付元,则解得于是,由甲队单独承包,费用是(元);由乙队单独承包,费用是(元);而丙队不能在一周内完成,经过比较得知,乙队承包费用最少.。

全国初中数学联赛试题(含参考答案)

全国初中数学联赛试题(含参考答案)

全国初中数学联合竞赛试题参考答案第一试一、选择题(本题满分42分,每小题7分) 1、设17-=a ,则=--+12612323a a a ( A )A 、24B 、 25C 、1074+D 、1274+ 2、在ABC ∆中,最大角A ∠是最小角C ∠的两倍,且7=AB ,8=AC ,则=BC ( C ) A 、27 B 、10 C 、105 D 、37 3、用[]x 表示不大于x 的最大整数,则方程[]0322=--x x 的解的个数为( C ) A 、1 B 、2 C 、3 D 、 44、设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( B )A 、143 B 、73 C 、21 D 、74 5、如图,在矩形ABCD 中,3=AB ,2=BC ,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则=∠CBE sin ( D )A 、36 B 、32C 、31D 、10106、设n 是大于1909的正整数,使得nn --20091909为完全平方数的n 的个数是 ( B )A 、3B 、 4C 、 5D 、6 二、填空题(本题满分28分,每小题7分)1、已知t 是实数,若a ,b 是关于x 的一元二次方程0122=-+-t x x 的两个非负实根,则()()1122--b a的最小值是____________.答案:3-2、设D 是ABC ∆的边AB 上的一点,作BC DE //交AC 于点E ,作AC DF //交BC 于点F ,已知ADE ∆、DBF ∆的面积分别为m 和n ,则四边形DECF 的面积为______.答案:mn 23、如果实数a ,b 满足条件122=+b a ,2212|21|a b a b a -=+++-,则____=+b a . 答案:1-4、已知a ,b 是正整数,且满足⎪⎪⎭⎫ ⎝⎛+b a 15152是整数,则这样的有序数对(a ,b )共有_对。

2003第二十届 全国 初中数学联赛(含答案)

2003第二十届 全国 初中数学联赛(含答案)

读万卷书 行万里路12003第二十届全国初中数学联赛第一试一、选择题(本题满分42分,每小题7分)1.232217122-- )A .542-B .421C .5D .12.在凸10边形的所有内角中,锐角的个数最多是( )A .0B .1C .3D .53.若函数(0)y kx k =>与函数1y x=的图象相交于A ,C 两点,AB 垂直x 轴于B ,则ABC △的面积为( )A .1B .2C .3D .44.满足等式2003200320032003x y x y x y xy -=的正整数对()x y ,的个数是( )A .1B .2C .3D .4yxCB AEDCBA读万卷书 行万里路25.设ABC △的面积为1,D 是边AB 上一点,且13AD AB =.若在边AC 上取一点E ,使四边形DECB 的面积为34,则CE EA的值为( ) A .12B .13C .14D .156.在平行四边形ABCD 中,过A ,B ,C 三点的圆交AD 于E ,且与CD 相切.若4AB =,5BE =,则DE 的长为( )A .3B .4C .154D .165二、填空题(本题满分28分,每小题7分)1.抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C .若ABC △是直角三角形,则ac =_________.2.设m 是整数,且方程2320x mx +-=的两根都大于95-而小于37,则m =_________. 3.如图,AA ',BB '分别是EAB ∠,DBC ∠的平分线.若AA BB AB ''==,则ABC ∠的度数为________.4.已知正整数a ,b 之差为120,它们的最小公倍数是其最大公约数的105倍,那么a ,b 中较大的数是________.第二试(A )B'A'EDCBA读万卷书 行万里路3考生注意:本试三大题,第一题20分,第二、三题各25分,全卷满分70分.一、(本题满分20分)试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数之和的平方,恰好等于这个四位数.二、(本题满分25分)在ABC △中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE DF =;过E ,F 分别作CA ,CB 的垂线,相交于P .设线段PA ,PB 的中点分别为M ,N .求证:⑴DEM DFN △≌△;⑵PAE PBF ∠=∠.三、(本题满分25分)已知实数a ,b ,c ,d 互不相等,且1111a b c d x b c d a+=+=+=+=,试求x 的值.第二试(B )考生注意:本试三大题,第一题20分,第二、三题各25分,全卷满分70分.一、(本题满分20分)试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数之和的平方,恰好等于这个四位数.FEDC B A读万卷书 行万里路4二、(本题满分25分)在ABC △中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE DF =;过E ,F 分别作CA ,CB 的垂线,相交于P .求证:PAE PBF ∠=∠.三、(本题满分25分)已知四边形ABCD 的面积为32,AB ,CD ,AC 的长都是整数,且它们的和为16.⑴这样的四边形有几个?⑵求这样的四边形边长的平方和最小值.第二试(C )考生注意:本试三大题,第一题20分,第二、三题各25分,全卷满分70分.一、(本题满分20分)已知实数a ,b ,c ,d 互不相等,且1111a b c d x b c d a+=+=+=+=,试求x 的值. 二、(本题满分25分)NMA B C D EF读万卷书 行万里路5在ABC △中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE DF =;过E ,F 分别作CA ,CB 的垂线,相交于P .求证:PAE PBF ∠=∠.三、(本题满分25分)已知四边形ABCD 的面积为32,AB ,CD ,AC 的长都是整数,且它们的和为16.⑴这样的四边形有几个?⑵求这样的四边形边长的平方和最小值.2003第二十届全国初中数学联赛BA读万卷书 行万里路6试 题第一试一、选择题1.D【解析】 本题应该利用配方法:原式()()2221322222321=--=+-.故选择D .【点评】 这是一道比较简单的二次根式的配方,注意去掉根号时要注意符号.2.C【解析】 凸10边形的外角和是360o ,所以最多有3个钝角,也就是内角最多3个锐角.故选择C .【点评】 这道题要从外角来考虑,因为对于任何凸多边形外角和都是360o ,这是一个隐含的条件,在很多的四边形的题中都要从这一点出发来考虑.读万卷书 行万里路73.A【解析】 如图,求ABC △的面积,可以将AB 当作三角形的底边,而AC 的水平距离就是ABC △的高.y kx =,1y x=, 所以有:1kx x =,21x k =,x k=, 故ABC △的高为x k =,而当x k=时,y k =, 也就是AB k 112ABC S k k=△.所以选A .【点评】 对于函数图像与几何结合的题型,尤其是一元二次方程,二次函数图像以及几何面积等结合的时候,要掌握的重点是两交点之间的水平距离为21x x -,可以通过韦达定理即根与系数的关系求出,而不必要去解带字母系数的一元二次方程.4.B【解析】 将2003移到等号左边并变形得到:)200320030xy x y =,20030xy ,即2003xy =,又2003是质数,所以共有2003x =,1y =;1x =,2003y =两组解.AB Cxy读万卷书 行万里路8故选择B .【点评】 这道题的考点是恒等变形,需要将原来很复杂的根式变成比较简单的形式,然后再求解.在变换过程中也要注意要解的方程里含两个未知数,一般情况下是无法解的,但是有整数这个条件下的约束,我们可以通过将方程表示成两个多项式的乘积等于零的形式再求解.5.B【解析】 显然由正弦定理可知:sin sin ADE ABC S AD AE BACS AB AC BAC⨯⨯∠=⨯⨯∠△△, 所以13134ADE ABC S AD AE AE S AB AC AC ⨯==⋅=-⨯△△,故:34AE AC =, 所以13CE EA =, 应该选B .【点评】 应该了解算三角形面积的三种不同的算法,正弦定理、底乘高的公式以及利用三角形内切圆半径和周长算三角形面积的方法.其中对于利用正弦定理来算三角形面积的方法可以直接转化成两对边比例的乘积,在作填空选择的时候可以直接利用.ABCDE读万卷书 行万里路96.D【解析】 连接CE ,由于ABCE 四点共圆,所以:DEC CBA ∠=∠,在平行四边形ABCD 中,D ABC ∠=∠,所以有DEC D ABC ∠=∠=∠,同时,CD 平行于AB ,且DC 与圆相切,可知:C 为弧AB 中点,所以CEB CBA ∠=∠,且DCE CBE ∠=∠,故由DEC D ∠=∠可知DEC △为等腰三角形,4CD CE AB ===,由DCE CBE ∠=∠和D ABC CEB ∠=∠=∠可知CDE △相似于BCE △,所以:CE BEDE CE=, 故:2165CE DE BE ==,选D .【点评】 注意弦切角的应用,以及圆周角与弧之间的联系.二、填空题E D CBA读万卷书 行万里路101.1-【解析】 由于ABC △是直角三角形,所以抛物线与x 轴的交点必然在y 轴两边,所以0ca<,再由射影定理得到2c c a =.得到1ac =,有0ca<,所以1ac =-. 【点评】 这是一道几何与代数的综合题,需要利用给出的几何条件得到二次函数的性质,要掌握的重点是两交点之间的水平距离为21x x -,可以通过韦达定理即根与系数的关系求出,而要去解方程.2.4【解析】 解法一:考虑二次函数232y x mx =+-与二次函数的两个交点,由于3大于0,图像开口向上.由于两个交点都在95-和37之间,所以从图像可以看出,905y ⎛⎫-> ⎪⎝⎭,307y ⎛⎫> ⎪⎝⎭.得到813342125m <<,所以m 的值为4. 【点评】 直接从已知条件不好下手,而利用二次函数与一元二次方程的关系,从二次函数的图像考虑就比较容易得到结果,利用二次函数的图像是一种很重要的方法.3.12︒11【解析】 本题考察的是角度计算的知识,令B α'∠=,由于AB BB '=,所以有:B AB B α''∠=∠=,对于三角形B BA '的一个外角和等于不相邻的的两内角之和,故:2B BD B AB B α'''∠=∠+∠=,又BB'为CBD ∠的角平分线,所以: 24CBD B BD α'∠=∠=,又由对顶角相等可知:4ABA CBD α'∠=∠=,由AA AB '=可知:4AA B ABA α''∠=∠=,故:1801808BAA AA B ABA α'''∠=-∠-∠=-o o ,同时AA '为BAE ∠的角平分线,故:236016BAE BBA α'∠=∠=-o ,则:36016180BAE CAB αα∠+∠=-+=o o ,解得:12α=o ,12BAC α∠==o .【点评】 对于很多的角的计算时一般设一个最小的角便于计算,同时还应该注意三角形中外角、对顶角等的性质.B'A'EDCBA读万卷书 行万里路4.225【解析】 设两个数的最大公约数为d ,大数为md ,小数为nd ,其中m ,n 互质,则最小公倍数为mnd .由已知得105mn =,()120m n d -=.由于m n >,所以m 只可能是105,35,21,15.对应的n 分别为1,3,5,7.只有在15m =,7n =时d 为整数,15d =.所以大数为225md =.【点评】 这道题的考点是最大公约数与最小公倍数的性质,利用其性质列出整数方程就很容易求解了.第二试(A )一、【解析】 设这两个两位数分别为x ,y ,则()2100x y x y +=+,即()()222500x y x y y +-+-=,旗开得胜13为使方程有正整数根要求()()()2245044250099y y y y ∆=---=-是正整数.经试验得到25y =时∆是完全平方数,解出20x =或30,即2025或者3025满足题意.【点评】 本题的关键是根据自然数的性质列出方程,再结合一元二次方程求出结果,这种题目在二试中经常出现.二、【解析】 连接DE ,EM ,MD ,DN ,NF ,FD ,在直角AEP △和CFP △中,M 、N 分别是它们斜边上的中点,所以:EM MA MP ==,CN NF NP ==,在APC △中,D 、M 、N 分别为各边的中点,故DM ,DN 均为APC △的中位线,所以有EM MA MP DN ===,CN NF NP DM ===,同时,由于D 为AC 边中点,所以AD DC =,因此DME FND △≌△,命题得证:由DME FND △≌△可知:EMD DNF ∠=∠,PF EDCBAMN又由于DM,DN均为三角形APC的中位线,所以AMD DNC∠=∠,则有:EMD AMD DNF DNC∠-∠=∠-∠,即:AEM FNC∠=∠,同时,AME△为等腰三角形,△和FNC所以,PAE PBF∠=∠,【点评】对于线段相等通常是围绕线段构造全等的三角形,对于要证明角相等,除了构造三角形全等以外,还可以构造相似.三、【解析】由已知有:1a x+=;①b1b x+=;②c1c x+=;③d1d x+=.④a读万卷书行万里路15由式①解出:1b x a=-, ⑤将⑤代入②式可得:21x ac x ax -=--,⑥将⑥代入③式可得:211x a x x ax d-+=--,即:()()321210dx ad x d a x ad -+--++=,⑦由④式得:1ad ax +=,代入⑦式得:()()320d a x x --=,由已知0d a -≠,所以:320x x -=,若0x =,则由式⑥可得a c =,矛盾,故有22x =,即2x =±【点评】 本道题只能是通过代数式的变换来解题,在代数式的变换中注意到共有四个等式,有a ,b ,c ,d 四个字母,也就是可以通过消元最后得到x 和其中一个字母的关系,但是这样我们得到的是一个三次式,不利于解题.实际上不管最后得出的式子含有多少个未知数,只要可以表示成几个多相式的乘积为零,就能得到结果,实际解题中应该从这方面着手.第二试(B )一、读万卷书 行万里路【解析】 设这两个两位数分别为x ,y ,则()2100x y x y +=+,即()()222500x y y y +-+-=,为使方程有正整数根要求()()()2245044250099y y y y ∆=---=-是正整数,经试验得到25y =时∆完全平方数,解出20x =或30,即2025或者3025满足题意.【点评】 本题的是根据自然数的性质列出方程,再结合一元二次方程求出结果,这种题目在二试中经常出现.二、【解析】 连接DE 、EM 、MD 、DN 、NF 、FD ,在直角三角形AEP 和CFP 中,M 、N 分别是它们斜边上的中点,所以:EM MA MP ==,CN NF NP ==在APC △中,D 、M 、N 分别为各边的中点,故DM ,DN 均为APC △的中位线,所以有EM MA MP DN ===,CN NF NP DM ===,同时,由于D 为AC 边中点,所以AD DC =,因此DME FND △≌△,命题得证:PF EDCBA MN17由DME FND △≌△可知:EMD DNF ∠=∠,又由于DM ,DN 均为三角形APC 的中位线,所以AMD DNC ∠=∠,则有:EMD AMD DNF DNC ∠-∠=∠-∠,即:AEM FNC ∠=∠,同时,AME △和FNC △为等腰三角形,所以,PAE PBF ∠=∠,【点评】 对于线段相等通常是围绕线段构造全等的三角形,对于要证明角相等,除了构造三角形全等以外,还可以构造相似.三、【解析】 如图,设AB a =,CD b =,AC l =并设的边AB 上的高为2h ,边DC 上的高为1h ,则:()()121122ABC ADCABCD S S S h a h b t a b =+=++△△≤平行四边形, 仅当121h h ==,等号成立,即在四边形ABCD 中,当AC 垂直于AB ,AC 垂直于CD 时等号成立.由已知可得:()64l a b +≤,又由题设16a b l +=-,可得:()()26464864l a b l +--≤≤≤,h 2h 1AB读万卷书 行万里路于是:8l =,8a b +=,且这时AC 垂直于AB ,AC 垂直于AD .因此,这样的四边形有如下4个:1a =,7b =,8l =;2a =,6b =,8l =;3a =,5b =,8l =;4a =,4b =,8l =;它们都是以AC 为高的梯形或平行四边形.又由AB a =,8CD a =-,则2228BC a =+,()22288AD a =--,因此,这样的四边形的边长的平方和为:()()22222812844192a a a +-+=-+.故当4a b ==时,平方和最小,且为192.【点评】 本题是一道综合性很强的题目,其中运用到了面积法,不等式,四边形知识,需要同学们对这些知识掌握得很好,并能够融会贯通.第二试(C )一、【解析】 由已知有:191a x b+=; ①1b xc +=; ②1c x d+=; ③1d x a+=. ④由式①解出:1b x a=-, ⑤将⑤代入②式可得:21x ac x ax -=--,⑥将⑥代入③式可得:211x a x x ax d-+=--,即:()()321210dx ad x d a x ad -+--++=,⑦由④式得:1ad ax +=,代入⑦式得:()()320d a x x --=,由已知0d a -≠,所以:320x x -=,若0x =,则由式⑥可得a c =,矛盾,故有22x =,即2x =±【点评】 本道题只能是通过代数式的变换来解题,在代数式的变换中注意到共有四个等式,有a ,b ,c ,d 四个字母,也就是可以通过消元最后得到x 和其中一个字母的关系,但是这样我们得到的是一个三次式,不利于解题.实际上不管最后得出的式子含有多少个未知数,只要可以表示成几个多相式的乘积为零,就能得到结果,实际解题中应该从这方面着手.二、【解析】连接DE、EM、MD、DN、NF、FD,在直角三角形AEP和CFP中,M、N分别是它们斜边上的中点,所以:EM MA MP==,CN NF NP==在APC△中,D、M、N分别为各边的中点,故DM,DN均为APC△的中位线,所以有EM MA MP DN===,CN NF NP DM===,同时,由于D为AC边中点,所以AD DC=,因此DME FND△≌△,命题得证:由DME FND△≌△可知:EMD DNF∠=∠,又由于DM,DN均为三角形APC的中位线,所以AMD DNC∠=∠,则有:EMD AMD DNF DNC∠-∠=∠-∠,即:AEM FNC∠=∠,PF EDCBAM N读万卷书行万里路读万卷书 行万里路21同时,AME △和FNC △为等腰三角形,所以,PAE PBF ∠=∠,【点评】 对于线段相等通常是围绕线段构造全等的三角形,对于要证明角相等,除了构造三角形全等以外,还可以构造相似.三、【解析】 如图,设AB a =,CD b =,AC l =并设的边AB 上的高为2h ,边DC 上的高为1h ,则:()()121122ABC ADC ABCD S S S h a h b t a b =+=++△△≤平行四边形, 仅当121h h ==,等号成立,即在四边形ABCD 中,当AC 垂直于AB ,AC 垂直于CD 时等号成立.由已知可得:()64l a b +≤,又由题设16a b l +=-,可得:()()26464864l a b l +--≤≤≤, 于是:8l =,8a b +=,且这时AC 垂直于AB ,AC 垂直于AD .因此,这样的四边形有如下4个:1a =,7b =,8l =;2a =,6b =,8l =;h 2h 1A BCD读万卷书 行万里路22 3a =,5b =,8l =;4a =,4b =,8l =;它们都是以AC 为高的梯形或平行四边形.又由AB a =,8CD a =-,则2228BC a =+,()22288AD a =--, 因此,这样的四边形的边长的平方和为:()()22222812844192a a a +-+=-+. 故当4a b ==时,平方和最小,且为192.【点评】 本题是一道综合性很强的题目,其中运用到了面积法,不等式,四边形知识,需要同学们对这些知识掌握得很好,并能够融会贯通.。

2003年全国高中数学联赛试题及解答

2003年全国高中数学联赛试题及解答

2003年全国高中数学联合竞赛试卷第一试(10月12日上午8:00 9:40)一、选择题(每小题6分,共36分)1.(2003年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是A. B. C. D.3.过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B两点,弦AB 的中垂线与x轴交于点P,则线段PF的长等于(A)163(B)83(C)163 3 (D) 8 34.若x∈[-512,-3],则y=tan(x+23)-tan(x+6)+cos(x+6)的最大值是(A)125 2 (B)116 2 (C)116 3 (D)125 35.已知x,y都在区间(-2,2)内,且xy=-1,则函数u=44-x2+99-y2的最小值是(A)85(B)2411(C)127(D)1256.在四面体ABCD中,设AB=1,CD=3,直线AB与CD的距离为2,夹角为3,则四面体ABCD 的体积等于(A)32(B)12(C)13(D)33二.填空题(每小题9分,共54分)7.不等式|x|3-2x2-4|x|+3<0的解集是.8.设F1、F2是椭圆x29+y24=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=2∶1,则△PF1F2的面积等于.9.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0,x2-2(a+7)x+5≤0,x∈R}若A B,则实数a的取值范围是.10.已知a,b,c,d均为正整数,且log a b=32,log c d=54,若a-c=9,则b-d=.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于.12.设M n={(十进制)n位纯小数0.-a1a2…a n|a i只取0或1(i=1,2,…,n-1),a n=1},T n是M n中元素的个数,S n是M n中所有元素的和,则limn→∞S nT n=.三、(本题满分20分)13.设32≤x≤5,证明不等式2x+1+2x-3+15-3x<219.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R )与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A 刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A 取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠P AC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l 104=⎩⎨⎧⎭⎬⎫3m 104=⎩⎨⎧⎭⎬⎫3n 104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).1997年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 2049解:452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2003-1980=23项.由2025+23=2048.知选C.2.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是A. B. C. D.解:曲线方程为x2a+y2b=1,直线方程为y=ax+b.由直线图形,可知A、C中的a<0,A图的b>0,C图的b<0,与A、C中曲线为椭圆矛盾.由直线图形,可知B、D中的a>0,b<0,则曲线为焦点在x轴上的双曲线,故选B.3.过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B两点,弦AB 的中垂线与x轴交于点P,则线段PF的长等于(A)163(B)83(C)163 3 (D) 8 3解:抛物线的焦点为原点(0,0),弦AB所在直线方程为y=3x,弦的中点在y=pk=43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.4.若x∈[-512,-3],则y=tan(x+23)-tan(x+6)+cos(x+6)的最大值是(A)125 2 (B)116 2 (C)116 3 (D)125 3解:令x+6=u,则x+23=u+2,当x∈[-512,-3]时,u∈[-4,-6],y=-(cot u+tan u)+cos u=-2sin2u+cos u .在u∈[-4,-6]时,sin2u与cos u都单调递增,从而y单调递增.于是u=-6时,y取得最大值1163,故选C.5.已知x,y都在区间(-2,2)内,且xy=-1,则函数u=44-x2+99-y2的最小值是(A)85(B)2411(C)127(D)125解:由x,y∈(-2,2),xy=-1知,x∈(-2,-12)∪(12,2),u=44-x2+9x29x2-1=-9x4+72x2-4-9x4+37x2-4=1+3537-(9x2+4x2).当x∈(-2,-12)∪(12,2)时,x2∈(14,4),此时,9x2+4x2≥12.(当且仅当x2=23时等号成立).此时函数的最小值为125,故选D.6.在四面体ABCD 中, 设AB=1,CD=3,直线AB 与CD 的距离为2,夹角为3,则四面体ABCD的体积等于(A) 32 (B) 12 (C) 13 (D) 33解:如图,把四面体补成平行六面体,则此平行六面体的体积=1×3×sin π3×2=3. 而四面体ABCD 的体积=16×平行六面体体积=12.故选B . 二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0解:即|x |3-2|x |2-4|x |+3<0,(|x |-|x |<-5+12,或5-12<|x |<3.∴ 解为(-3,-5-12)∪(5-12,3).8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .解:F 1(-5,0),F 2(5,0);|F 1F 2|=25.|PF 1|+|PF 2|=6,|PF 1|=4,|PF 2|=2.由于42+22=(25)2.故PF 1F 2是直角三角形55. ∴ S=4.9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }若A B ,则实数a 的取值范围是 .解:A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .解:a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9. ∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45而得.设E 的射影为N ,则 MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .解:由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -20.11…1+2n -210-n .∴ lim n →∞S n T n =12 19=118.三、(本题满分20分)13.设32≤x ≤5,证明不等式2x +1+2x -3+15-3x <219.N MDC B A解:x +1≥0,2x -3≥0,15-3x ≥0.32≤x ≤5. 由平均不等式x +1+x +1+2x -3+15-3x 4≤x +1+x +1+2x -3+15-3x 4≤14+x4.∴ 2x +1+2x -3+15-3x=x +1+x +1+2x -3+15-3x ≤214+x .但214+x 在32≤x ≤5时单调增.即214+x ≤214+5=219.故证.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R )与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.解:曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c sin 4t ) ∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ① 若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c 0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0,此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A 刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A 取遍圆周上所有点时,求所有折痕所在直线上点的集合.解:对于⊙O 上任意一点A ,连AA ,作AA 的垂直平分线MN ,连OA .交MN 于点P .显然OP +P A=OA =R .由于点A 在⊙O 内,故OA=a <R .从而当点A 取遍圆周上所有点时,点P 的轨迹是以O 、A 为焦点,OA=a 为焦距,R (R >a )为长轴的椭圆C . 而MN 上任一异于P 的点Q ,都有OQ +QA=OQ +QA >OA .故点Q 在椭圆C 外.即折痕上所有的点都在椭圆C 上及C 外.反之,对于椭圆C 上或外的一点S ,以S 为圆心,SA 为半径作圆,交⊙O 于A ,则S 在AA 的垂直平分线上,从而S 在某条折痕上.最后证明所作⊙S 与⊙O 必相交.1 当S在⊙O 外时,由于A 在⊙O 内,故⊙S 与⊙O 必相交; 2 当S 在⊙O 内时(例如在⊙O 内,但在椭圆C 外或其上的点S ),取过S 的半径OD ,则由点S 在椭圆C 外,故OS +S A ≥R (椭圆的长轴).即S A ≥S D .于是D 在⊙S 内或上,即⊙S 与⊙O 必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C 上及C 外的所有点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠P AC .分析:由∠PBC=∠CDB ,若∠DBQ=∠P AC=∠ADQ ,则BDQ ∽DAQ .反之,若BDQ ∽DAQ .则本题成立.而要证BDQ ∽DAQ ,只要证BD AD =DQAQ即可.证明:连AB .∵ PBC ∽PDB , ∴ BD BC =PD PB ,同理,AD AC =PD P A . ∵ P A=PB ,∴ BD AD =BC AC. ∵ ∠BAC=∠PBC=∠DAQ ,∠ABC=∠ADQ .∴ ABC ∽ADQ . ∴ BC AC =DQ AQ .∴ BD AD =DQ AQ.∵ ∠DAQ=∠PBC=∠BDQ . ∴ ADQ ∽DBQ .∴ ∠DBQ=∠ADQ=∠P AC .证毕.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l 104=⎩⎨⎧⎭⎬⎫3m 104=⎩⎨⎧⎭⎬⎫3n 104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.解:当3l 、3m 、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l 104=⎩⎨⎧⎭⎬⎫3m 104=⎩⎨⎧⎭⎬⎫3n 104.即求满足3l 3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104). 下面先求满足3x ≡1(mod 104)的最小正整数x .∵ (104)=10412⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N *,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501. 取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).证明:设点集为V ={A 0,A 1,…,A n -1},与A i 连线的点集为B i ,且|Bi |=b i .于是1≤b i ≤n -1.又显然有O Q CD B APi =0n -1∑b i =2l ≥q (q +1)2+2.若存在一点与其余点都连线,不妨设b 0=n -1. 则B 0中n -1个点的连线数l -b 0≥12q (q +1)2+1-(n -1) (注意:q (q +1)=q 2+q =n -1)=12(q +1)(n -1)-(n -1)+1=12(q -1)(n -1)+1 ≥12(n -1)+1≥[12(n -1)]+1.(由q ≥2) 但若在这n -1个点内,没有任一点同时与其余两点连线,则这n -1个点内至多连线[n -12]条,故在B 0中存在一点A i ,它与两点A j 、A k (i 、j 、k 互不相等,且1≤i ,j ,k )连了线,于是A 0、A j 、A i 、A k 连成四边形.现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式) =12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2) (2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即(n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入)得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ① 但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3≥(q -1)(q +2)-n +3=q 2+q +1-n =0.(b 0≥q +2)② (nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③ 又(nq -q -n +3-b 0)、(nq -q +2-b 0)、q (n -b 0-1)、(q +1)(n -b 0)均为正整数,从而由②、③得, q (q +1)(n -b 0)(n -b 0-1)<(nq -q +2-b 0)(nq -q -n +3-b 0). ④ 由①、④矛盾,知原命题成立.又证:画一个n ×n 表格,记题中n 个点为A 1,A 2,…,A n ,若A i 与A j 连了线,则将表格中第i 行j 列的方格中心涂红.于是表中共有2l 个红点,当d (A i )=m 时,则表格中的i 行及i 列各有m 个红点.且表格的主对角线上的方格中心都没有涂红.由已知,表格中必有一行有q +2个红点.不妨设最后一行前q +2格为红点.其余格则不为红点(若有红点则更易证),于是:问题转化为:证明存在四个红点是一个边平行于格线的矩形顶点.若否,则表格中任何四个红点其中心都不是一个边平行于格线的矩形顶点.于是,前n -1行的前q +2个方格中,每行至多有1个红点.去掉表格的第n 行及前q +2列,则至多去掉q +2+(n -1)=q +2+q 2+q =(q +1)2+1个红点.于是在余下(n -1)×(n -q -2)方格表中,至少有2l -(q +1)2-1=q (q +1)2+2-(q +1)2-1=(q -1)(q +1)2+1=q 3+q 2-q 个红点.设此表格中第i 行有m i (i =1,2,…,n -1)个红点,于是,同行的红点点对数的总和=i =1n -1∑C 2 m i .其中n -1=q 2+q .(由于当n >k 时,C 2n +C 2k <C 2 n +1+C 2k -1,故当红点总数为q 3+q 2-q 个时,可取q 2行每行取q 个红点,q 行每行取q -1个红点时i =1n -1∑C 2 m i 取最小值,由下证可知红点数多于此数时更有利于证明.即)但 q2C 2q +q C 2q -1≤i =1n -1∑C 2 m i . 由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2m i≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。

初中数学竞赛题详细解析全套(完整版)

初中数学竞赛题详细解析全套(完整版)
二、(本题满分 25 分) EFGH 是正方形 ABCD 的内接四边形,两条对角线 EG 和 FH 所夹的锐角为θ,且∠BEG 与∠CFH
都是锐角。已知 EG=k,FH= l ,四边形 EFGH 的面积为 s.
(1)求证: sin 2s ; kl
(2)试用 k, l, s 表示正方形 ABCD 的面积.
物超过 200 元但不超过 500 元的,按标价给予九折优惠;③如一次购物超过 500 元的,其中
500 元按第②条给予优惠,超过 500 元的部分则给予八折优惠。某人两次去购物,分别付款
-7-
初中数学竞赛题详解
168 元和 423 元;如果他只去一次购物同样的商品,则应付款是【

(A)522.8 元

b
(A) 9 5
(B) 5 9
(C) 2001 5
(D) 2001 9
3、已知在△ABC 中,∠ACB=900,∠ABC=150,BC=1,则 AC 的长为【

(A) 2 3
(B) 2 3
(C) 0 3
(D) 3 2
4、如图,在△ABC 中,D 是边 AC 上的一点,下面四种情况中,△ABD∽△ACB 不一定成立的
二、1、20;2、150;3、4;4、
详解 一、1.(C) ∵ 14 6 5 (3 5)2 ,
,∴ 原式
2. (A ). 由 已 知 条 件 知 x≠0, y≠0 . 把 已 知 等 式 变 形 并 利 用 等 比 消 去 y, 得
则 x=3y .

3. (C )
设 a = 1 , b = 3 ,得 x = 1 0 , y = 2 . 从 而 否 定 ( A ) 及 ( B ) . 设 a = 3 , b = 4 ,得 x = 17 ,

2003年全国高中数学联合竞赛试题及解答.

2003年全国高中数学联合竞赛试题及解答.

2003年全国高中数学联合竞赛一试一、选择题:本大题共6个小题,每小题6分,共36分。

2003*1、删去正整数数列 ,3,2,1中的所有完全平方数,得到一个新数列.这个新数列的第2003项是A.2046B. 2047C. 2048D. 2049◆答案:C★解析:2025452=,2116462=.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的1980452025=-项.还缺2319802003=-项.由2048232025=+.2003*2、设R b a ∈,,0≠ab ,那么直线0=+-b y ax 和曲线ab ay bx =+22的图形是A. B. C. D.◆答案:B★解析:曲线方程为122=+by a x ,直线方程为b ax y +=,由直线图形,可知A 、C 中的0<a ,A 图的0>b ,C 图的0<b ,与A 、C 中曲线为椭圆矛盾.由直线图形,可知B 、D 中的0,0<>b a ,则曲线为焦点在x 轴上的双曲线,故选B .2003*3、过抛物线)2(82+=x y 的焦点F 作倾斜角为060的直线.若此直线与抛物线交于B A ,两点,弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于A. 316B. 38C. 3316D. 38◆答案:A★解析:抛物线的焦点为原点,弦AB 所在直线方程为x y 3=,弦的中点在34==k p y 上,即AB 中点为⎪⎭⎫⎝⎛34,34,中垂线方程为343433+⎪⎭⎫ ⎝⎛--=x y ,令0=y ,得316=px ,所以316=PF2003*4、若⎥⎦⎤⎢⎣⎡--∈3,125ππx ,则)6cos()6tan()32tan(πππ+++-+=x x x y 的最大值是A.5212 B. 6211 C. 6311 D. 5312 ◆答案:C★解析:令θπ=+6x ,则232πθπ+=+x ,当⎥⎦⎤⎢⎣⎡--∈3,125ππx 时,⎥⎦⎤⎢⎣⎡--∈6,4ππθ,原函数即变为θθcos 2sin 2+-=y ,在⎥⎦⎤⎢⎣⎡--∈6,4ππθ上,θθcos ,2sin 都单调递增,从而y 单调递增.于是6πθ-=时,y 取得最大值6311,故选C .2003*5、已知y x ,都在区间)2,2(-内,且1-=xy ,则函数229944yx u -+-=的最小值是 A. 58 B. 1124 C. 712 D. 512◆答案:D★解析:由)2,2(,-∈y x ,1-=xy 知,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--∈2,2121,2 x ,将xy 1-=代入函数解析式整理得 ⎪⎭⎫ ⎝⎛+-+=224937351x x u .因为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--∈2,2121,2 x ,所以⎪⎭⎫ ⎝⎛∈4,412x ,知当2249x x = 即322=x 时,u 取得最小值为512,故选D .2003*6、在四面体ABCD 中,设1=AB ,3=CD ,直线AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于A. 23B. 21C. 31D. 33◆答案:B★解析:如图,把四面体补成平行六面体,则此平行六面体的体积为323sin31=⨯⨯π,而四面体BCD A -的体积为21361=⨯.故选B .二、填空题:本大题共6小题,每小题9分,共54分。

全国初中数学竞赛(联赛)分类题型详解-几何

全国初中数学竞赛(联赛)分类题型详解-几何

历年(95-10)年全国数学竞赛(联赛)分类题型详解 - 几何(1)选择题(30道题)1. 如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[ ]A.62πB.63π C.64πD.65π1995年全国初中数学联赛试题答案: D详解:四个选择支表明,圆的周长存在且唯一,从而直径也存在且唯一.又由AB2+AD2 =252+602 =52×(52+122)=52×132=(32+42)×132 =392+522 =BC2+CD2故可取BD=65为直径,得周长为65π,选D.2. 设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则[ ]A.M>N B.M=N C.M<N D.M、N的大小关系不确定1995年全国初中数学联赛试题答案: B详解1: 不失一般性,设CE≥ED,在CE上取CF=ED,则有OF=OE,且S△ACE-S△ADE=S△AEF=2S△AOE.同理,S△BCE-S△BDE=2S△BOE.相加,得S△ABC-S△DAB=2S△OAB,即M=N.选B.详解2: 若过C、D、O分别作AB的垂线(图3),CE⊥AB、DF⊥AB、OL⊥AB,垂足分别为E、F、L.连CF、DE,可得梯形CEDF.又由垂径分弦定理,知L是EF的中点.根据课本上做过的一道作业:梯形对角线中点的连线平行底边,并且等于两底差的一半,有|CE-DF|=2OL.即M=N.选B.3.如图,A是半径为1的圆O外的一点,OA=2,AB是圆O的切线,B是切点,弦BC∥OA,连结AC,则阴影部分的面积等于[ ]1996年全国初中数学联赛试题答案: B4.如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的[ ]A.内心B.外心C.重心D.垂心1996年全国初中数学联赛试题答案: A5.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有[ ]A.4个B.8个 C.12个 D.24个1996年全国初中数学联赛试题答案: C6. 在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积等于()(A)12(B)14(C)16(D)181998年全国数学联赛试卷答案: C详解: 连ED,则又因为DE是△ABC两边中点连线,所以故选C.7.一个凸n边形的内角和小于1999°,那么n的最大值是().A.11 B.12 C.13 D.141999年全国初中数学竞赛答案: C8.在三角形ABC 中,D 是边BC 上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC 的面积是( ).A .30B .36C .72D .1251999年全国初中数学竞赛答案: B9.在正五边形ABCDE 所在的平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形,这样的不同的点P 的个数为( ).A .2B .3C .4D .51999年全国初中数学竞赛答案: D10. 设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是( )。

2003年全国高中数学联赛试题及解答[2]

2003年全国高中数学联赛试题及解答[2]
-4-
200最小值为 ,故选 D. 5 6.在四面体 ABCD 中, 设 AB=1,CD= 3,直线 AB 与 CD 的距离为 2,夹角为 ,则四面体 ABCD 3 的体积等于 3 1 1 3 (A) (B) (C) (D) 2 2 3 3 A π 解: 如图, 把四面体补成平行六面体,则此平行六面体的体积=1× 3×sin ×2=3. M 3 D 1 1 N 而四面体 ABCD 的体积= ×平行六面体体积= .故选 B. B 6 2 C 二.填空题(每小题 9 分,共 54 分) 7.不等式|x|3-2x2-4|x|+3<0 的解集是 . 5-1 5-1 5+1 5+1 解:即|x|3-2|x|2-4|x|+3<0,(|x|-3)(|x|- )(|x|+ )<0.|x|<- ,或 <|x|<3. 2 2 2 2 5-1 5-1 ∴ 解为(-3,- )∪( ,3). 2 2 2 2 x y 8.设 F1、F2 是椭圆 + =1 的两个焦点,P 是椭圆上一点,且|PF1|∶|PF2|=2∶1,则△PF1F2 的面积 9 4 等于 . 解:F1(- 5,0),F2( 5,0);|F1F2|=2 5. |PF1|+|PF2|=6,|PF1|=4,|PF2|=2.由于 42+22=(2 5)2.故PF1F2 是直角三角形 5 5. ∴ S=4. 9.已知 A={x|x2-4x+3<0,x∈R}, - B={x|21 x+a≢0,x2-2(a+7)x+5≢0,x∈R} 若 AB,则实数 a 的取值范围是 . 解:A=(1,3); 1 x2+5 - 又,a≢-21 x∈(-1,- ),当 x∈(1,3)时,a≣ -7∈( 5-7,-4). 4 2x ∴ -4≢a≢-1. 3 5 10.已知 a,b,c,d 均为正整数,且 logab= ,logcd= ,若 a-c=9,则 b-d= . 2 4 3 2 5 4 2 3 4 5 2 4 2 2 解:a =b ,c =d ,设 a=x ,b=x ;c=y ,d=y ,x -y =9.(x+y )(x-y )=9. ∴ x+y2=9,x-y2=1,x=5,y2=4.b-d=53-25=125-32=93. H 11.将八个半径都为 1 的球分放两层放置在一个圆柱内,并使得每个球都和 其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等 E G 于 . F 解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球 心与其相切的球的球心距离=2.EFGH 在平面 ABCD 上的射影是一个正方形.是 D C 把正方形 ABCD 绕其中心旋转 45而得.设 E 的射影为 N,则 N M MN= 2-1.EM= 3,故 EN2=3-( 2-1)2=2 2.∴ EN= 4 8.所求圆柱的 高=2+ 4 8. 12. 设 Mn={(十进制)n 位纯小数 0.- a1a2…an |ai 只取 0 或 1(i=1,2,…,n-1),an=1},Tn 是 Mn 中 Sn 元素的个数,Sn 是 Mn 中所有元素的和,则 lim = . T n→∞ n - 解:由于 a1,a2,…,an-1 中的每一个都可以取 0 与 1 两个数,Tn=2n 1. - n-2 在每一位(从第一位到第 n-1 位)小数上,数字 0 与 1 各出现 2 次.第 n 位则 1 出现 2n 1 次. -n n-2 n-2 ∴ Sn=2 0.11…1+2 10 . Sn 1 1 1 ∴ lim = = . n→∞Tn 2 9 18 三、 (本题满分 20 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
B
F MN
P
因为 DE=DF,则△DEM≌△FDN
故∠EMD=∠FND,从而,∠AME=∠BNF
而△AME、△BNF 均为等腰三角形,故∠PAE=∠PBF
三、(1)如图,记 AB=a,CD=b,AC= l ,并设△ABC
A
的边 AB 上的高为 h1 ,△ADC 的边 DC 上的高为 h2 。
则 S四边形ABCD
2. 设 m 是 整 数 , 且 方 程 3x2 + mx − 2 = 0 的 两 根 都 大 于 − 9 而 小 于 3 , 则
5
7
B'
m=____________.
C EA
3.如图, AA' , BB' 分别是∠EAB,∠DBC 的平分线.
BD
若 AA' = BB' = AB ,则∠BAC 的度数为_____________.
=1−
x 。 SΔADE
= 1− x 3
=
1,x 4
=
1 4
。故
CE EA
=
1 3
B
C
6、(D); 如图,连结 AC、CE。
D C
由 AE∥BC,知四边形 ABCE 是等腰梯形。故 AC=BE=5。 E
又因为 DC∥AB,DC 与圆相切,所以,∠BAC=∠ACD=
∠ABC。 则 AC=BC=AD=5,DC=AB=4
E
且与 CD 相切.若 AB=4,BE=5,则 DE 的长为( )
A.3 B.4 C. 15
4
D. 16
5
A
B
二、填空题(本题满分 28 分,每小题 7 分)
1.抛物线 y = ax2 + bx + c 与 x 轴交于 A,B 两点,与 y 轴交于点 C.若△ABC 是直角
三角形,则 ac=__________.
x−a + − ax −1
1 d
=
x
即 dx3 − (ad +1)x2 − (2d − a)x + ad +1 = 0 ⑦
由式④得 ad + 1 = ax ,代入式⑦得 (d − a)(x3 − 2x) = 0
由已知 d − a ≠ 0 ,故 x3 − 2x = 0
若 x = 0 ,则由式⑥可得 a = c ,矛盾。故有 x2 = 2, x = ± 2
即 2500 − 99 y ≥ 0 ,则 y ≤ 25 时,方程有实数解 x = 50 − y ± 2500 − 99 y
由于 2500-y 必为完全平方数,而完全平方数的未位数字仅可能为 0,1,4,
5,6,9,故 y 仅可取 25;此时, x = 30 或 = 20 故所求四位数为 2025 或 3025
∠BNF, 而△AME、△BNF 均为等腰三角形,所以,∠PAE=∠PBF.
三、解:由已知有
a + 1 = x ①; b + 1 = x ②; c + 1 = x ③; d + 1 = x ④
b
c
d
a
由式①解出 b = 1 ⑤ x−a
式⑤代入式②得 c
=
x2
x−a − ax −1

将式⑥代入③得
x2
而 x + y + 2003 > 0 ,所以, xy − 2003 = 0 。故 xy = 2003
又因为
2003
为质数,必有
⎧ ⎨ ⎩
x y
=1 = 2003

⎧ ⎨ ⎩
x y
= =
2003 1
5、(B);
如图,连结
BE ,
SΔADE
=1− 3 = 1 44
,设
CE AC
=x
,则
A D
E
SΔABE
2a2 + 2(8 − a)2 +128 = 4(a − 4)2 +192
故当 a = b = 4 时,平方和最小,且为 192。
P
F M
N
C
E
A
D
B
第二试(C 卷)
一、同(A 卷)第三题的解答。 二、除图的形式不同(如图)外,解答同(B 卷)第二题 三、同(B 卷)第三题解答。
2、4;
由题设可知,
⎧ ⎪3 ⎪ ⎨ ⎪⎪⎩3
× ×
⎛ ⎜⎝ ⎛ ⎜⎝

3 7
9 ⎞2 5 ⎠⎟
⎞2 ⎟⎠
+
+m m×
× ⎛ ⎜⎝
⎛ ⎝⎜ 3 7
− ⎞ ⎟⎠
9 5

⎞ ⎠⎟ 2
− >
2 0
>
0
,
解得 3 8 < m < 4 13 。故 m = 4
21
45
3、12º;
设∠BAC 的度数为 x ,因 AB = BB ' ,故∠ B ' BD = 2x, ∠CBD = 4x 又 AB = AA' ,
第一试
一、选择题
1、(D); 2、(C); 由于任何凸多边形的外角之和都是 360º,故外角中钝角的个数不超过 3 个,即 内角中锐角最多不超过 3 个。 3、(A);

A(
x,
y
),则
xy
=
1 ,故
SΔABO
=
1 2
xy
=
1 2
。又因为△ABO
与△CBO
同底等高,
因此, SΔABC = 2 × SΔABO = 1 4、(B); 由已知等式可得 ( xy − 2003)( x + y + 2003) = 0
于是, l = 8, a + b = 8 ,且这时 AC⊥AB,AC⊥CD 因此,这样的四边形有如下 4 个: a = 1,b = 7 , l = 8; a = 2,b = 6,l = 8
a = 3,b = 5,l = 8; a = b = 4,l = 8
它们都是以 AC 为高的梯形或平行四边形。 (2)又由 AB= a ,CD= 8 − a ,则 BC2 = 82 + a2, AD2 = 82 + (8 − a)2 因此,这样的四边形的边长的平方和为
则∠ AA' B = ∠ABA' =∠CBD= 4x 。因为∠ A' AB = 1 (180° − x) 2
故 1 (180° − x) + 4x + 4x = 180° ,解得 x = 12 º 2
4、225; 设( a,b )= d ,且 a = md ,b = nd ,其中 m > n ,m 与 n 互质。于是 a,b 的最
根据式(1),只能取
⎧m = 15 ⎨⎩n = 7
,可求得
d
=
15
故两个数中较大的数是 md = 225 。
第二试(A 卷)
一、解:设前后两个二位数分别为 x, y ,10 ≤ x, y ≤ 99 有 (x + y)2 = 100x + y ;即 x2 + 2( y − 50)x + ( y2 − y) = 0 当△= 4( y − 50)2 − 4( y2 − y) = 4(2500 − 99 y) ≥ 0
A.1 B.2 C.3 D.4 5.设△ABC 的面积为 1,D 是边 AB 上一点,且 AD = 1 .若在边 AC 上取一点 E,
AB 3
使四边形 DECB 的面积为 3 ,则 CE 的值为( )
4
EA
A.
1 2
B.
1 3
C.
1 4
D.
1 5
D
C
6.如图,在□ABCD 中,过 A,B,C 三点的圆交 AD 于 E,
F,使 DE=DF;过 E,F 分别作 AC,BC 的垂线,相交于 P.求证:∠PAE=∠PBF.
三、(本题满分 25 分)已知四边形 ABCD 的面积为 32,AB,CD,AC 的长都是
整数,且它们的和为 16.
⑴这样的四边形有几个?
⑵求这样的四边形边长的平方和的最小值.
2003 年全国初中数学联赛试卷答案
2003 年全国初中数学联合竞赛试卷
第一试(4 月 13 日上午 8:30—9:30) 一、选择题(本题满分 42 分,每小题 7 分)
1. 2 3 − 2 2 + 17 −12 2 等于( )
A. 5 − 4 2 B. 4 2 −1 C.5 D.1 2.在凸 10 边形的所有内角中,锐角的个数最多是( )
A'
4.已知正整数 a,b 之差为 120,它们的最小公倍数是其最大公约数的 105 倍,那
么 a,b 中较大的数是_________.
第二试(A) 一、(本题满分 20 分)试求出这样的四位数,它的前两位数字与后两位数字分别
组成的二位数之和的平方,恰好等于这个四位数.
二、(本题满分 25 分)在△ABC 中,D 为 AB 的中点,分别延长 CA,CB 到点 E,
小公倍数为
mnd
。依题意有
⎧⎪md − ⎨ mnd
⎪⎩ d
nd = 120 ,即 (m − n)d = 23
= 105
mn = 3× 5× 7
×3×5
(1) (2)

m
>
n
,据式(2)可得
⎧m = 105 ⎨⎩n = 1
⎧m = 35 ⎨⎩n = 3
⎧m = 21 ⎨⎩n = 5
⎧m = 15 ⎨⎩n = 7
F,使 DE=DF;过 E,F 分别作 CA,CB 的垂线,相交于 P.设线段 PA,PB 的
中点分别为 M,N.
相关文档
最新文档