习题集-02 数字信号处理习题答案

合集下载

数字信号处理第2章习题答案

数字信号处理第2章习题答案

根据零、 极点分布可定性画幅频特性。 当频率由0到2π 变化时, 观察零点矢量长度和极点矢量长度的变化, 在极点 附近会形成峰。 极点愈靠进单位圆, 峰值愈高; 零点附近形 成谷, 零点愈靠进单位圆, 谷值愈低, 零点在单位圆上则 形成幅频特性的零点。 当然, 峰值频率就在最靠近单位圆的 极点附近, 谷值频率就在最靠近单位圆的零点附近。

X (z)z 1zN z 1 N (z 1 1 )zN z 1 N (z 1 1 )z2 1 N 1 zz N 1 1 2
[例2.4.4] 时域离散线性非移变系统的系统函数H(z)为
H(z) 1 , a和b为常数 (za)(zb)
(1) 要求系统稳定, 确定a和b的取值域。 (2) 要求系统因果稳定, 重复(1)。 解: (1) H(z)的极点为a、 b, 系统稳定的条件是收敛 域包含单位圆, 即单位圆上不能有极点。 因此, 只要满足 |a|≠1, |b|≠1即可使系统稳定, 或者说a和b的取值域为除单位圆 以的整个z平面。 (2) 系统因果稳定的条件是所有极点全在单位圆内, 所以a和b
采样间隔T=0.25 s, 得到 xˆ ( t ) , 再让 xˆ ( t ) 通过理想低通
滤波器G(jΩ), G(jΩ)用下式表示:
G(j)0.025
≤ 4π 4π
(1) 写出xˆ ( t )的表达式;
(2) 求出理想低通滤波器的输出信号y(t)。
解:(1)
x ˆ(t) [c2 o πn s)T (co 5πs n()T ](tn)T n
(3) 若y(n)=x(n)h(n), 则
Y(ej)1H(ej)X(ej) 2π
这是频域卷积定理或者称复卷积定理。
(4)
xe(n)12[x(n)x(n)]

数字信号处理习题及答案

数字信号处理习题及答案

数字信号处理习题及答案数字信号处理作业(1)1、画出离散信号的波形(1))2(3)3(2)(1++-=n n n x δδ(2))2()(2+-=n u n x(3))5()()(3--=n u n u n x(4))()()(214n u n x n ?= (5))()25.0sin(3)(5n u n n x ??=π2、设x (n )、y (n )分别为系统的输⼊、输出变量,根据定义确定系统是否为:(1)线性,(2)稳定,(2)因果① )()]([ )(2n ax n x T n y == ② b n x n x T n y +==)()]([ )( ③ )0( )()]([ )(00>-==n n n x n x T n y④ ∑+-=>=0)0( )( )(0n n n n m n m x n y3、已知:描述系统的差分⽅程为)()1(5- )(n x n y n y =-且初始条件为: 0)1(=-y 求:系统的单位冲激响应h (n )4、已知:线性时不变系统的单位脉冲响应为10 , )( )(<求:该系统的单位阶跃响应。

数字信号处理作业(1)解答1、画出离散信号的波形(1))2(3)3(2)(1++-=n n n x δδ(2))2()(2+-=n u n x(3))5()()(3--=n u n u n x(4))()()(214n u n x n ?= (5))()25.0sin(3)(5n u n n x ??=π2、设x (n )、y (n )分别为系统的输⼊、输出变量,根据定义确定系统是否为:(1)线性,(2)稳定,(3)因果因果:输出只取决于当前和之前的输⼊。

线性移不变系统的因果的充要条件:h (n )=0 , n < 0稳定系统:有界输⼊产⽣有界输出。

线性移不变系统稳定的充要条件:∞<=∑∞-∞=n n n x n x T n y (线性,稳定,因果)④ )0( )( )(0>=∑+-=n m x n y n n n n m (线性,稳定,⾮因果)注意:⾮线性系统的稳定、因果只能按定义判断,不能按线性、移不变系统的h (n )特点判断。

数字信号处理课后习题答案完整版

数字信号处理课后习题答案完整版

数字信号处理课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数字信号处理(姚天任江太辉)第三版课后习题答案第二章判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥3已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

数字信号处理习题答案

数字信号处理习题答案

部分练习题参考答案第二章2.1 )1(2)(3)1()2(2)(-+++-+=n n n n n x δδδδ)6()4(2)3()2(-+-+-+-+n n n n δδδδ2.2 其卷积过程如下图所示)5(5.0)4()3()2(5.2)1(5)(2)(-------+-+=n n n n n n n y δδδδδδ2.3 (1)3142,73==ωππω这是有理数,因此是周期序列。

周期N =14。

(2)k kp ππ168/12==,k 取任何整数时,p 都不为整数,因此为非周期序列。

(3)k kp k k p 45.02,5126/5221====ππππ,当p 1,p 2 同时为整数时k =5,x (n )为周期序列,周期N =60。

(4)k kp πππ25.16.12==,取k =4,得到p =6,因此是周期序列。

周期N =6。

2.4 (1) ∑∞-∞=-=*=m m n R m R n h n x n y )()()()()(45(a) 当n <0 时,y (n )=0-0.5 -1 2.55h (m ) x (m ) 00 mm-121 0.51 2 h (0-m)m-121 h (-1-m)m-12 1h (1-m) 0m-121y (n )n-12(b) 当30≤≤n 时,11)(0+==∑=n n y nm(c) 当74≤≤n 时,n n y n m -==∑-=81)(34(d) 当n>7时,y (n )=0所以743070810)(≤≤≤≤><⎪⎩⎪⎨⎧-+=n n n n n n n y 或 (2))2(2)(2)]2()([)(2)(444--=--*=n R n R n n n R n y δδ)]5()4()1()([2-----+=n n n n δδδδ(3)∑∞-∞=--=*=m mn m n u m R n y n x n y )(5.0)()()()(5∑∞-∞=--=m mnm n u m R )(5.0)(5.05(a) 当n <0 时,y (n )=0 (b) 当40≤≤n 时,n n nnm mn n y 5.0221215.05.05.0)(1-=--==+=-∑(c) 当5≥n 时,n nm mn n y 5.03121215.05.05.0)(540⨯=--==∑=- 最后写成统一表达式:)5(5.031)()5.02()(5-⨯+-=n u n R n y nn(4)∑∞-∞=-=*=m mn m R n h n x n y 5.0)()()()(3(a) 当n ≤0 时,y (n )=0(b) 当31≤≤n 时,n nnn m mnn y 5.0121215.05.05.0)(1-=--==∑-=-(c) 当54≤≤n 时,25.05.01621)21(25.05.05.0)(6232-⨯=--==---=-∑n n n nn m mnn y(d) 当n ≥6时,y (n )=0)5(25.0)4(75.0)3(875.0)2(75.0)1(5.0)(-+-+-+-+-=n n n n n n y δδδδδ2.6 (1)非线性、移不变系统(2)线性、移不变系统 (3)线性、移变系统 (4)非线性、移不变系统 (5)线性、移变系统2.7 (1)若∞<)(n g ,则稳定,因果,线性,时变(2)不稳定,0n n ≥时因果,0n n <时非因果,线性,时不变 (3)线性,时变,因果,不稳定 2.8 (1)因果,不稳定(2)因果,稳定(3)因果,稳定 (4)因果,稳定 (5)因果,不稳定 (6)非因果,稳定 (7)因果,稳定 (8)非因果,不稳定 (9)非因果,稳定 (10)因果,稳定2.9 因为系统是因果的,所以0)(,0=<n h n令)()(n n x δ=,)1(5.0)()1(5.0)()(-++-==n x n x n h n h n y 1)1(5.0)0()1(5.0)0(=-++-=x x h h15.05.0)0(5.0)1()0(5.0)1(=+=++=x x h h 5.0)1(5.0)2()1(5.0)2(=++=x x h h 25.0)2(5.0)3()2(5.0)3(=++=x x h h 15.0)1(5.0)()1(5.0)(-=-++-=n n x n x n h n h所以系统的单位脉冲响应为)1(5.0)()(1-+=-n u n n h n δ2.10 (1)初始条件为n <0时,y (n )=0设)()(n n x δ=,输出)(n y 就是)(n h 上式可变为)()1(5.0)(n n h n h δ+-=可得 11)1(5.0)0(=+-=h h 依次迭代求得5.00)0(5.0)1(=+=h h25.00)1(5.0)2(=+=h hn n h n h 5.00)1(5.0)(=+-=故系统的单位脉冲响应为)(5.0)(n u n h n= (2)初始条件为n ≥0时,y (n )=0)]()([2)1(n x n y n y -=-0,0)(≥=n n h2)]0()0([2)1(-=-=-x h h 22)]1()1([2)2(-=---=-x h h 32)]2()2([2)3(-=---=-x h hn n h n h 2)1(2)(-=+=所以)1(2)(---=n u n h n2.11 证明(1)因为∑∞-∞=-=*m m n h m x n h n x )()()()(令m n m -=',则)()()'()'()()('n x n h m h m n x n h n x m *=-=*∑∞-∞=(2)利用(1)证明的结果有)]()([)()]()([)(1221n h n h n x n h n h n x **=**∑∞-∞=-*-=m m n h m n h m x )]()()[(12∑∑∞-∞=∞-∞=--=m k k m n h k h m x )()()(12交换求和的次序有∑∑∞-∞=∞-∞=--=**k m k m n h m x k h n h n h n x )()()()]()([)(1221∑∞-∞=-*-=k k n h k n x k h )]()()[(12)]()([)(12n h n x n h **= )()]()([21n h n h n x **=(3)∑∞-∞=-+-=+*m m n h m n h m x n h n h n x )]()()[()]()([)(2121∑∑∞-∞=∞-∞=-+-=m m m n h m x m n h m x )()()()(21)()()()(21n h n x n h n x *+*=2.12 ∑∞-∞=--=*=m m n Nm n u a m Rn y n x n y )()()()()(∑∞-∞=--=m m Nnm n u a m Ra)()((a) 当n <0 时,y (n )=0(b) 当10-≤≤N n 时,11/11)/1(1)(110--=--==++=-∑a a a a a aan y n n nnm mn(c) 当N n ≥时,1)/1(1)/1(1)(111--=--==+-+-=-∑a a a a a a aan y N n n N nN m mn最后写成统一表达式:)(1)(11)(111N n u a a a n R a a n y N n n N n ---+--=+-++ 2.13 )]4()([*)()()()(11--=*=n n n u n h n x n y δδ)()4()(4n R n u n u =--=)()()()()(421n u a n R n h n y n y n *=*=)4(1)(113141---+--=-++n u a a a n R a a n n n2.14 (1)采样间隔为005.0200/1==T)()82sin()(ˆ0nT t nT f t xn a -+=∑∞-∞=δππ)()8100sin(nT t nT n -+=∑∞-∞=δππ(2))85.0sin()(ππ+=n n x数字频率πω5.0=,42=ωπ,周期N =42.15 (1)0)()(0n j n n j j e e nn eX ωωωδ-∞-∞=-=-=∑ (2)∑∑∞=-+-∞-∞=-==0)(0)()(n n j n j n nj j e e en x eX ωωαωω∑∞=--=0)(0n nj eeωωα)(01ωωα---=j ee (3)∑∑∑∞=+-∞=--∞-∞=-===)(0)()(n n j n nj nn nj j e eeen x eX ωαωαωω)(11ωαj e +--=(4)∑∑∞=--∞-∞=-==0cos )()(n n j n n nj j ne e en x eX ωαωωω∑∑∞=----+---∞=-+=+=0)()(0][21)(210000n n j j n j j nj n j n j n ne e e e e e ωωαωωαωωωααωαωαωωωαωωαωω2200)()(cos 21cos 111112100------+----+--=⎥⎦⎤⎢⎣⎡-+-=e e e e e e e e e e j j j j j (5)nj N N n n nj j e n N en x eX ωωωπ--=∞-∞=-∑∑⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+==12cos 1)()( ∑∑-=---=-++=1212)(21N N n n j n N j nN j N Nn nj e e e eωππω ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--+--=+-+-+-------)()()()()()(1)1(1)1(211)1(ωπωπωπωπωπωπωωωN j N N j N N j N j N N j N N j j Nj Nj e e e e e e e e e-0.92-0.380.920.38x (n ) 0nωωωωωωπωN j j j j N j e N e e Ne N e N 232)123()2cos(cos 21cos 12sin )2sin(------+--+=2.16 (1)⎰⎰⎰-==--πωπωππωωωπωπωπ002121)(21)(d je d je d e e H n h n j nj n j j ⎪⎩⎪⎨⎧=--=为奇数为偶数n n n n n ππ20)1(1 (2))sin()()()(011n n h n x n y ω=*=)cos()()()(022n n h n x n y ω-=*=2.17 (1))(ωj eX -*(2))]()([21ωωj j e X eX -*+(3))]()([2122ωωj j e X e X -+(4))(2ωj e X2.18采样间隔为25.0=T ,采样频率π8=Ωs)(1t y a 没有失真,因为输入信号的频率π21=Ω小于π42=Ωs)(2t y a 失真,因为输入信号频率π52=Ω大于π42=Ωs第三章3.1 设)(ωj eX 和)(ωj e Y 分别是)(n x 和)(n y 的傅里叶变换,试求下列序列的傅里叶变换:(1))(0n n x - (2) )(*n x (3) )(n x - (4) )(*)(n y n x (5) )()(n y n x ∙ (6) )(n nx (7) )2(n x (8))(2n x (9)⎩⎨⎧===奇数,偶数n n n x n x 0),2()(9解:(1) FT[)(0n n x -]=∑∞-∞=--n n j e nn x ω)(0令0n n n -=',0n n n +'=,则FT[)(0n n x -]=)()(00)(ωωωj n j n n n j e X e e n x -∞-∞=+''-='∑ (2) FT[)(*n x ]=)(*])([)(**ωωωj n n j n nj e X e n x en x-∞-∞=-∞-∞=-∑∑==(3) FT[)(n x -]=∑∞-∞=--n nj en x ω)(令n n -=',则FT[)(n x -]=∑∞-∞=''n n j e n x ω)()(ωj e X -=(4) FT[)(*)(n y n x ]=)(ωj eX )(ωj e Y证明 )(*)(n y n x =∑∞-∞=-m m n y m x )()(FT[)(*)(n y n x ]=∑∑∞-∞=-∞-∞=-n nj m em n y m x ω)]()([令m n k -=,则FT[)(*)(n y n x ]=m j k kj m e ek y m x ωω-∞-∞=-∞-∞=∑∑)]()([=mj k m kj em x ek y ωω-∞-∞=∞-∞=-∑∑)()(=)(ωj eX )(ωj e Y(5) FT[)()(n y n x ∙] =∑∞-∞=-n nj en y n x ω)()(=∑⎰∞-∞=-'-''n n j n j j e d e eY n x ωωππωωπ])(21)[(=ωπωωππω'∑⎰∞-∞='---'d e n x eY n n j j )()()(21=ωπωωππω''--'⎰d e X e Y j j )()(21)( 或者 FT[)()(n y n x ]=)(*)(21ωωπj j e Y e X(6) 因为∑∞-∞=-=n nj j en x eX ωω)()(,对该式两边对ω求导,得到j e n nx j d e dX n n j j -=-=∑∞-∞=-ωωω)()(FT[)(n nx ] 因此 FT[)(n nx ]=ωωd e dX j j )((7) FT[)2(n x ]=∑∞-∞=-n nj en x ω)2(令n n 2=',则FT[)2(n x ]=∑''-'取偶数n n j en x 2)(ω=n j nn e n x n x ω21)]()1()([21-∞-∞=-+∑=])()([212121n j n n j n j n e n x e en x ωπω-∞-∞=-∞-∞=∑∑+ =)]()([21)21(21πωω-+j j e X e X 或者FT[)2(n x ]=)()]()([21212121ωωωj j j e X e X eX =+ (8) FT[)(2n x ]=∑∞-∞=-n n j e n xω)(2利用(5)题结果,令)()(n y n x =,则FT[)(2n x ]=)(*)(21ωωπj j e X e X =ωπωωππω''--'⎰d e X e X j j )()(21)( (9) FT[)(9n x ]=∑∞-∞=-取偶数n n n j e nx ω)2(令∞≤'≤∞-='n n n ,2,则FT[)(9n x ]=)()(22ωωj n n n j e X en x ='∑∞-∞='-取偶数3.2 已知⎩⎨⎧≤<<=πωωωωω||,0||,1)(00j e X求)(ωj eX 的傅里叶反变换)(n x 。

(完整word版)数字信号处理第二章习题解答

(完整word版)数字信号处理第二章习题解答

数字信号处理第2章习题解答2.1 今对三个正弦信号1()cos(2)a x t t π=,2()cos(6)a x t t π=-,3()cos(10)a x t t π=进行理想采样,采样频率为8s πΩ=,求这三个序列输出序列,比较其结果。

画出1()a x t 、2()a x t 、3()a x t 的波形及采样点位置并解释频谱混淆现象。

解:采样周期为2184T ππ== 三个正弦信号采样得到的离散信号分别表示如下:1()cos(2)cos()42a n x n n ππ=⋅=2()cos(6)cos()42a n x n n ππ=-⋅=-3()cos(10)cos()42a n x n n ππ=⋅=输出序列只有一个角频率2π,其中1()a x n 和3()a x n 采样序列完全相同,2()a x n 和1()a x n 、3()a x n 采样序列正好反相。

三个正弦信号波形及采样点位置图示如下:tx a 1(t )tx a 2(t )tx a 3(t )三个正弦信号的频率分别为1Hz 、3Hz 和5Hz ,而采样频率为4Hz ,采样频率大于第一个正弦信号频率的两倍,但是小于后两个正弦信号频率的两倍,因而由第一个信号的采样能够正确恢复模拟信号,而后两个信号的采样不能准确原始的模拟信号,产生频谱混叠现象。

2.3 给定一连续带限信号()a x t 其频谱当f B >时,()a X f 。

求以下信号的最低采样频率。

(1)2()a x t (2)(2)a x t (3)()cos(7)a x t Bt π解:设()a x t 的傅里叶变换为()a X j Ω(1)2()a x t 的傅里叶变换为22()[()]Ba a BX j X j d ππωωω-⋅Ω-⎰因为22,22B B B B πωππωπ-≤≤-≤Ω-≤ 所以44B B ππ-≤Ω≤即2()a x t 带限于2B ,最低采样频率为4B 。

数字信号处理习题及答案(精编文档).doc

数字信号处理习题及答案(精编文档).doc

【最新整理,下载后即可编辑】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫⎝⎛-= (2))81(j e)(π-=n n x解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理课后习题答案

数字信号处理课后习题答案

数字信号处理课后习题答案数字信号处理课后习题答案数字信号处理是一门重要的学科,它研究如何对数字信号进行处理和分析。

在学习过程中,我们经常会遇到一些习题,通过解答这些习题可以帮助我们更好地理解和掌握数字信号处理的知识。

本文将为大家提供一些数字信号处理课后习题的答案,希望对大家的学习有所帮助。

一、离散时间信号和系统1. 什么是离散时间信号?答:离散时间信号是在离散时间点上取值的信号,它可以用数学上的序列表示。

2. 什么是离散时间系统?答:离散时间系统是对离散时间信号进行处理的系统,它可以用差分方程或差分方程组来描述。

3. 离散时间信号和连续时间信号有何区别?答:离散时间信号是在离散时间点上取值的信号,而连续时间信号是在连续时间上取值的信号。

二、离散时间信号的表示和运算1. 如何表示离散时间信号?答:离散时间信号可以用数学上的序列表示,例如x(n)表示离散时间信号x在时间点n上的取值。

2. 离散时间信号的运算有哪些?答:离散时间信号的运算包括加法、减法、乘法和卷积等。

3. 什么是离散时间信号的卷积?答:离散时间信号的卷积是指两个离散时间信号之间的一种数学运算,它可以表示两个信号之间的线性叠加关系。

三、离散时间系统的性质和稳定性1. 离散时间系统有哪些常见的性质?答:离散时间系统常见的性质包括线性性、时不变性、因果性和稳定性等。

2. 什么是离散时间系统的稳定性?答:离散时间系统的稳定性是指当输入信号有界时,输出信号也有界。

3. 如何判断离散时间系统的稳定性?答:可以通过判断系统的冲激响应的绝对可和性来判断离散时间系统的稳定性。

四、离散傅里叶变换1. 什么是离散傅里叶变换(DFT)?答:离散傅里叶变换是将离散时间信号转换为离散频率信号的一种数学变换。

2. 离散傅里叶变换有何作用?答:离散傅里叶变换可以将时域的信号转换为频域的信号,从而方便对信号的频谱进行分析。

3. 如何计算离散傅里叶变换?答:可以通过对离散时间信号进行离散傅里叶变换公式的计算来得到离散傅里叶变换的结果。

数字信号处理 课后习题答案 第2章.docx

数字信号处理 课后习题答案 第2章.docx

习题1.设X(e"。

)和r(e JC0)分别是印7)和)仞的傅里叶变换,试求下面序列的傅里叶变换:(1) x("-"o) (3) x(-n) (5) x(")y(")(7) x(2n)⑵ x*(〃)(4) x(") * v(«) (6) nx(n) (8) /(〃)解:⑴00 FT[X(/7-Z70)] = £x(〃一〃o)e—S令n r = n-n0,即〃=n' + n Q,贝!J00FT[x(n-n o y\=工》(〃')以"''*""="初。

乂(烈)00 00(2)FT[x («)] = £ x* (n)e*= [ £ 戏〃)攻以]* = X* (e「W=—00 w=—00(3)00FT[x(—")]= 〃)e*"令=一〃,则00FT[x(—”)]= Zx(〃')e" =X(e—〃")”'=—00(4)00 x(〃) *'(〃)= ^\x(jrT)y(n -m)W=-0000 00FT[x(n) * v(w)] = Z【Z x("y("-初)]e""' n=-<x> w=-oo k = n-m,贝U00 00FT[x(ri)*y(ri)]= £[ £x(初) k=—CD W=-0000 00k=-<x> m=—cc= X(e5(em)_00 00 1时[x(M)贝〃)]= Z》(〃)贝〃)e「9 = Zx(〃)[-Lf/(em'"'"d 渺]e-加""=—00 〃=—00 2l "1 00=—£ Y(e j0)')2l " n=—<x>1 伙=一L "口")*?®"、技或者FT[x{n)y{ny\ = —「171 »兀oo(6)因为X(e,")= »("初,对该式两边口求导,得到叫、)=-J £仗"如=-jFT[nx(n)]因此矶孙(〃)]=j至@3)dco00⑺ FT\x(2ri)\=加n=-(x)令n' = 2n ,则FT[X(2W)]= £x(z/)e 7 %W--00,且取偶数00 1 r r・l 八1°0 . 1 00 . 1£?kO + (T)“x(")厂=| 广伽+£ef ("广伽〃=—oo 匕匕〃=—oo 〃=—00=L「xa*+x(/*E)F7[x(2z?)] = | X(e‘2") + X(—e'尸)(8) F7[X2(»)]= J X2(77)6^»=-OO利用(5)题结果,令x{n) = y{n),则F巾2(”)] = _£x(em)*X(eS) = —「X®。

数字信号处理课后习题答案

数字信号处理课后习题答案

数字信号处理(姚天任江太辉)第三版课后习题答案第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n) 解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

数字信号处理答案第二章习题解答

数字信号处理答案第二章习题解答

————第二章————教材第二章习题解答1. 设()jw X e 和()jw Y e 分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换: (1)0()x n n -; (2)()x n -; (3)()()x n y n ; (4)(2)x n 。

解:(1)00[()]()jwnn FT x n n x n n e∞-=-∞-=-∑令''00,n n n n n n =-=+,则'00()'0[()]()()jw n n jwn jw n FT x n n x n e e X e ∞-+-=-∞-==∑(2)****[()]()[()]()jwnjwn jw n n FT x n x n ex n e X e -∞∞-=-∞=-∞===∑∑(3)[()]()jwnn FT x n x n e∞-=-∞-=-∑令'n n =-,则'''[()]()()jwn jw n FT x n x n eX e ∞-=-∞-==∑(4) [()*()]()()jwjwFT x n y n X e Y e = 证明: ()*()()()m x n y n x m y n m ∞=-∞=-∑[()*()][()()]jwnn m FT x n y n x m y n m e ∞∞-=-∞=-∞=-∑∑令k=n-m ,则[()*()][()()] ()() ()()jwk jwnk m jwkjwnk m jw jw FT x n y n x m y k eey k e x m eX e Y e ∞∞--=-∞=-∞∞∞--=-∞=-∞===∑∑∑∑2. 已知001,()0,jww w X e w w π⎧<⎪=⎨<≤⎪⎩求()jw X e 的傅里叶反变换()x n 。

解: 00sin 1()2w jwn w w nx n e dw nππ-==⎰3. 线性时不变系统的频率响应(传输函数)()()(),jw jw j w H e H e eθ=如果单位脉冲响应()h n 为实序列,试证明输入0()cos()x n A w n ϕ=+的稳态响应为00()()cos[()]jw y n A H e w n w ϕθ=++。

数字信号处理习题集(附标准答案)

数字信号处理习题集(附标准答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

数字信号处理第二章习题答案

数字信号处理第二章习题答案

2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωω(等比数列求解)ωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωωω21sin 27sin 1137j j j e ee ((1-e^a)提出e^(0.5a))(5) 3350011()(3)44nkj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。

数字信号处理习题及解答

数字信号处理习题及解答
4 解答
数字信号处理习题及解答
第一章 离散时间信号与离散时间系统
4 解答
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 1
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 1 解答
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 1 解答
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 2
7
(1) X(ej0) x(n)6
n3
(2)
πX (ej)d x(0 )2π4π
π
7
(3) X (ejπ) x(n)ejn ( 1 )nx(n)2
n
n 3
数字信号处理习题及解答
第三章 信号的傅里叶变换 2 试求如下序列的傅里叶变换: (1) x1(n)=δ(n-3)
(2) x2(n)1 2δ(n1)δ(n)1 2δ(n1)
11 a 2 ac 2ac o o s s
F[x T o(n) ]jIm X(e [j]jIm 1a [1 ej]jIm 1a [1 ej1 1 a ae ejj ]
1a 2a s2a i cno s
数字信号处理习题及解答
第三章 信号的傅里叶变换 4 已知长度为N=10的两个有限长序列:
1 0≤ x1(n)0 5≤
故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=[ax1(n)+bx2(n)]2 ≠aT[x1(n)]+bT[x2(n)] =ax21(n)+bx22(n)
因此系统是非线性系统。
数字信号处理习题及解答
第一章 离散时间信号与离散时间系统
2 给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明理由。

数字信号处理习题解答

数字信号处理习题解答
fs≥2fh, T=1/fs ≤1/2fh=0.125*10-3 (s) (3)最小记录点数 N,它应满足 N≥2fh /F=800
13、对实信号进行谱分析,要求谱分辨率 F ≤10 Hz,信号最高频率 fc=2.5 kHz, 试确定:
(1)最小记录时间 Tpmin; (2)最大的采样间隔 Tmax; (3)最少的采样点数 Nmin。
3
)
用采样频率 fs 100Hz
采样,写出所得到的信
号序列 x(n)表达式,求出该序列 x(n) 的最小周期长度。
解: T
1 fs
0.01,
x(n)
xa
(nT )
A c os (0.8n
3
)
2 2 5 ; N 5 0 0.8 2
12、设系统的单位取样响应 h(n) u(n) ,输入序列为
k 0
则存在公共的收敛区域
X (z)
1 1 cz 1
cz 1 cz
,
c
z
1 c
18、分析单位脉冲响应为 h(k ) aku(k ), 的线性时不变系统
的因果性和稳定性。 解:1)因为 k0 时,h(k)=0,因此系统是因果的
2)如果 |a|<1, 则 s 1 故系统是稳定的 1 | a |
如果 |a|≥1 , 则 s → ∞,级数发散。 故系统仅在|a|<1 时才是稳定的
17、求 x(n) c n 的 z 变换 ( c 1 )
1
解 X (z) x(n)z n cn z n cn z n
n
n
n0
c 1,
X 1 ( z)
cn zn
n0
1 1 cz 1
zc
X 2 (z)
1

数字信号处理课后习题答案 全全全

数字信号处理课后习题答案   全全全
1 0.5
1
1 >
. . z
z
(3) , | | 0.5
1 0.5
1
1 <
. . z
z
(4)
, | | 0
1 0.5
1 (0.5 )
1
1 10
>
.
.
.
.
z
z
z
1.8 (1) ) , 0
1
( ) (1 2
1 3 3
3.014 2.91 1.755 0.3195
0.3318 0.9954 0.9954 0.3318
1 0.9658 0.5827 0.1060
z z z
z z z
z z z
z z z
. . .
. . .
. . .
. . .
. + .
=
= . . +
= . . . +
..
.
..
. π
2.13
0,1,2, , 1
( ) ( )
= .
=
k N
Y rk X k
..
2.14
Y(k) = X ((k)) R (k) k = 0,1, ,rN .1 N rN ..
2.15 (1) x(n) a R (n) N
= n y(n) b R (n) N
= n
(2) x(n) =δ (n) y(n) = Nδ (n)
2.16 ( )
1
1 a R N
a N
n
. N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ Z 变换➢ Z 变换的定义及收敛域【习题】1. 假如)(n x 的z 变换代数表示式是下式,问)(z X 可能有多少不同的收敛域。

)83451)(411(411)(2122----+++-=z z z z z X 【分析】)要单独讨论,(环状、圆外、圆内:有三种收敛域:双边序列的收敛域为:特殊情况有:左边序列的收敛域为:因果序列的收敛域为:右边序列的收敛域为:特殊情况有:有限长序列的收敛域为 0 0, , 0 0, , 0, 0 0, 0 , 0 22112121∞==<<≤≤<≤<<≥≥∞≤<≥∞<<≤∞<≤≥∞≤<≤≤∞<<+-++--z z R z R n n R z n n R z n n z R n n z R n z n z n n n z x x x x x x解:对X (Z )的分子和分母进行因式分解得)431)(211)(211(2111111----+-+-=Z jZ jZ Z X (Z )的零点为:1/2,极点为:j/2,-j/2,-3/4∴ X (Z )的收敛域为:(1) 1/2 < | Z | < 3/4,为双边序列,见图一(2) | Z | < 1/2,为左边序列,见图二(3) | Z | > 3/4,为右边序列,见图三图一 图二 图三)431)(211)(411()211)(211()(11211-----++++-=Z Z Z Z Z Z X➢ Z 反变换【习题】2. 有一右边序列 )(n x ,其 z 变换为)1)(211(1)(11----=z z z X(a) 将上式作部分分式展开(用 1-z 表示),由展开式求 )(n x 。

(b) 将上式表示成 z 的多项式之比,再作部分分式展开,由展开式求 )(n x ,并说明所得到的序列与(a)所得的是一样的。

【注意】不管哪种表示法最后求出 x (n ) 应该是相同的。

解:(a) 因为11122111)(---+--=z z z X 且x(n)是右边序列 所以 )()212()(n u n x n ⎪⎭⎫ ⎝⎛-= (b)1221211 )1)(21(21231 )1)(21()(2-+--+=---+=--=z z z z z z z z z X )()212( )1(2)1(21)()( n u n u n u n n x n n ⎪⎭⎫ ⎝⎛-=-+-⎪⎭⎫ ⎝⎛-=δ则➢ Z 变换的基本性质和定理【习题】3. 对因果序列,初值定理是)(lim )0(z X x z ∞→=,如果序列为 0>n 时0)(=n x ,问相应的定理是什么?)( n x 讨论一个序列,其z 变换为:值。

试求其的收敛域包括单位圆, )0( )(x z X 【分析】这道题讨论如何由双边序列Z 变换)(z X 来求序列初值)0(x ,把序列分成因果序列和反因果序列两部分,〖它们各自由)(z X 求)0(x 表达式是不同的〗,将它们各自的)0(x 相加即得所求。

)0()(lim )2()1()0( )()(:,0)(,0020x z X z x z x x zn x z X n x n z n n =+-+-+===>→--∞=-•••∑所以此时有:有时当序列满足解: 若序列)(n x 的Z 变换为:21,2 )()()(21 32 4 )21)(2(24191272512419127)(21212211==∴+=-+-=---=+--=---z z z X z X z X z z z z z z z z z z z z X 的极点为)()( 由题意可知:X (Z )的收敛域包括单位圆 则其收敛域应该为:221<<z 31)0()0()0(31213lim )(lim )0(024lim)(lim )0( )( 0 )( 2122010121=+=∴=-===-==≤∞→∞→→→x x x z z z X x z z z X x n x n n x z z z z )()(为因果序列:时为有值左边序列,为则 2112512419127)(---+--=z z z z X4. 有一信号)(n y ,它与另两个信号)(1n x 和)(2n x 的关系是:)1()3()(21+-*+=n x n x n y其中 )(21)(1n u n x n ⎪⎭⎫ ⎝⎛= ,)(31)(2n u n x n ⎪⎭⎫ ⎝⎛= 已知 111)]([--=az n u a Z n ,a z >,。

变换的变换性质求利用 )( )( z Y z n y z 【分析】。

则)(:注意移位定理 )()()( )(*)()( 2)( )()( )()( )()( )1(212111z X z X z Y n x n x n y z X z m)n x(z X z m n x z X n x z X n x -m m ==↔+-↔+↔-↔--解:根据题目所给条件可得:112111)(-Z -−→←z n x 123111)(--−→←z n x Z 131211)3(--−→←+⇒z z n x Z 21>z z z X n x Z 3111)()(122-=−→←-- 311>-z z z n x Z311)1(12-−→←+-- 3<z 而 )1( )3()(21+-*+=n x n x n y所以 [][])1()3()(21+-⋅+=n x Z n x Z z Yz z z z 311211113-⋅-=-- )21)(3(33---=z z z➢ Z 变换与傅里叶变换的关系【习题】5. 求以下序列)(n x 的频谱)(ωj e X 。

(1) )(0n n -δ (2) )(n u ean - (3) )()(0n u e n j ωα+- (4) )cos()(0n n u e an ω-【分析】可以先求序列的Z 变换)(z X 再求频率ωωωj j j e z z X e X e X ==)()( )(即)(ωj e X 为单位圆上的Z 变换,或者直接求序列的 傅里叶变换∑∞-∞=-=n n j j e n x e X ωω)()(解: 对题中所给的)(n x 先进行z 变换再求频谱得:[][]0)( )()( )1(0n z n n Z n x Z z X -=-==•••δ ωωω0 |)()(jn e z j ez X e X j -===∴ []111 )()()2(----==•••z e n u e Z z X a an ωωωj a e z j e e z X e X j --=-==∴11 |)()( []1)()(0011)()()3(-+-+--==•••z e n u e Z z X j n j ωαωα)(011 |)()(ωωαωω+--=⋅-==∴j e z j e e z X e X j[])cos()()()4(0n n u e Z z X an ω-=••• aa a e z e z e z 220101cos 21cos 1------+--=ωω ∴ωωj e z j z X e X ==|)()(a j a j a j ee e e e e 2200cos 21cos 1------+--=ωωωωω6. 若)(),(21n x n x 是因果稳定序列,求证:⎰⎰⎰---=ππωππωππωωωπωπωπ})(21}{)(21{)()(212121d e X d e X d e X e X j j j j【分析】利用时域卷积则频域是相乘的关系来求解 ωπωωππωd e e X e X n x n x n j j j )()(21)(*)(2121⎰-= ,而 )()(21)0()0(0)(*)( 212121ωπωππωd e X e X x x n n x n x j j ⎰-===再利用)()(21n x n x 、的傅里叶反变换,代入n = 0即可得所需结果。

证明:⎰-∴⋅=∴⋅=*=ππωωωωωωωπd e e X e X e X e X e Y z X z X z Y n x n x n y n j j j j j j )()(21)()()( )()()( )()()( 21212121则设 )()()()(2121n x n x n y d e e Y n j j *===⎰-ππωωωπ)0()0( )()( |)()( )()(21 21002102121x x k n x k x n x n x d e X e X n n k n j j ⋅=⎥⎦⎤⎢⎣⎡-=*=∴===-∑⎰ππωωωπ⎰⎰--==•••ππωωππωωωπωπd e e X n x d e e X n x n j j n j j )(21)( )(21)(2211 ∴⎰-=ππωωπd e X x j )(21)0(11 ⎰-=ππωωπd e X x j )(21)0(22 ⎰⎰⎰---=∴ππωππωππωωωπωπωπ})(21}{)(21{)()(212121d e X d e X d e X e X j j j j。

和即可得到所需的时,当 )(arg )( 5ωωj j e X e X N =➢ 序列的傅里叶变换【习题】7. 求)()(5n R n x =的傅里叶变换。

【分析】这道题利用傅里叶变换的定义即可求解,但最后结果应化为模和相角的关系。

解:根据傅里叶变换的概念可得:[]ωωωωωωωωωω2121222121011 1 )()( j j N j N j j N j j N n N j e e e e e e e e e n R DTFT e X N j nj -------=--⋅=--=⋅==∑- ()()⎪⎪⎪⎩⎪⎪⎪⎨⎧=≠⋅=⎪⎭⎫ ⎝⎛--πωπωωωωk N k k N e N j 2 ,,2 ,2sin 2sin 21为整数()()2sin 2sin )( 2 ωωπωωN e X k j =≠∴,时当 ()()[]2sin 2sin arg 21)(arg ωωωωN N e X j +⎪⎭⎫ ⎝⎛--=()1N 2 N 2 , 21+<≤+⎪⎭⎫ ⎝⎛--=n n n N πωππω➢ 傅里叶变换的一些对称性质【习题】8. 设)(ωj e X 是如下图所示的)(n x 信号的傅里叶变换,不必求出)(ωj eX ,试完成下列计算: (a) )(0j e X (b)⎰-ππωωd e X j )( (c) ⎰-ππωωd e X j 2)( (d) ⎰-ππωωωd de dX j 2)(【分析】利用序列傅里叶变换的定义、它的导数以及帕塞瓦公式。

相关文档
最新文档