6.5《频率与概率》导学案

合集下载

高中高三数学《频率与概率》教案、教学设计

高中高三数学《频率与概率》教案、教学设计
学生独立完成练习,我会在一旁观察他们的解题过程,及时发现问题,给予针对性的指导。
(五)总结归纳
在总结归纳环节,我将引导学生从以下几个方面进行:
1.本节课我们学习了频率与概率的关系,以及概率的性质和计算方法。
2.通过实例分析,我们了解了如何运用概率知识解决实际问题。
3.学生在小组讨论和课堂练习中,提高了自己的问题解决能力和合作能力。
最后,我会强调概率在生活中的重要作用,鼓励学生在日常生活中多观察、多思考,将所学知识运用到实际中。同时,提醒学生课后复习本节课的内容,巩固所学知识。
五、作业布置
为了巩固本节课所学内容,检验学生对频率与概率知识的掌握程度,特布置以下作业:
1.请同学们完成课后练习题第1、2、3题,重点加强对概率性质、计算方法的理解和应用。
3.小组合作:鼓励学生进行小组讨论,培养学生的团队协作能力和沟通能力。
4.知识迁移:将所学概率知识与其他学科知识相结合,提高学生的综合运用能力。
5.数学建模:运用概率知识解决实际问题,培养学生的建模能力和创新意识。
(三)情感态度与价值观
在本章节的教学中,教师应关注学生的情感态度与价值观的培养,使学生在学习过程中形成以下素养:
4.复习本节课内容,准备下次课的小测验,内容包括:
-随机事件、频率与概率的定义及其关系。
-概率的性质和计算方法。
-古典概型的计算及应用。
5.阅读拓展资料,了解概率论在统计学、经济学等领域的应用,拓宽知识视野。
请同学们认真完成作业,加强对频率与概率知识的学习和巩固。在完成作业的过程中,如遇到问题,请及时与同学、老师交流,共同解决问题。期待大家在下次课上的优秀表现!
1.深化学生对概率概念的理解,引导学生从多角度认识概率,提高学生的抽象思维能力。

频率与概率导学案

频率与概率导学案

频率与概率导学案学习目标问题化知识目标: 当事件的试验结果不是有限个或结果发生的可能性不相等时, 要用频率来估计概率。

能力目标:通过试验, 理解当试验次数较大时试验频率稳定于理论概率, 进一步发展概率观念;理解用样本来估计总体的统计思想。

情感目标: 在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。

学习重点:理解当试验次数较大时, 试验频率稳定于理论概率。

学习难点: 对概率的理解。

自主学习, 合作探究1思考: 当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时, 该如何求事件发生的概率呢?2自学书P172 试验:把全班同学分成10组, 每组同学掷一枚硬币50次, 整理获得的试验数据,并记录在投掷次数n 50 100 150 200 250 300 350 400 450 500正面朝上的次数m 24 52 73 99 124 146 180 201 229 256正面朝上的概率m/n根据上表中的数据, 标注出对应的点:思考: 随着抛掷次数的增加, “正面向上”的频率的变化趋势________归纳总结:在大量试验中, 频率P就是概率利用频率估计概率的数学依据是大数定律:一般地, 在大量重复试验中, 如果随机事件A出现的频率m/n_________某个常数P, 则事件A发生的概率P(A)=________。

因为在n 次试验中, 事件A发生的频数m满足0≤m≤n, 所以 0≤ m/n≤1, 进而可知:频率所稳定得到的常数P满足0≤P≤1, 因此, 0≤P(A)≤1例: 下表记录了一名球员在罚球线上投篮的结果.投篮次数(n) 50 100 150 200 250 300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n)(1)计算投中频率(精确到0.01)(2)这名球员投蓝一次, 投中的概率约是多少?(精确到0.1)?学以致用一个口袋中放有20个球, 其中红球6个, 白球和黑球个若干个, 每个球出了颜色外没有任何区别: (1) 小王通过大量反复试验(每次取一个球, 放回搅匀后再取)发现, 取出黑球的频率稳定在1/4左右, 请你估计袋中黑球的个数。

北师大版九年级数学上册《频率与概率(一)》导学案

北师大版九年级数学上册《频率与概率(一)》导学案

频率与概率(一)学习目标:1.理解频数、频率和概率的概念,会对一组数据进行统计,并列出相应的统计图表。

2.通过实验,理解当实验次数较大时实验频率稳定于理论概率,并可根据此估计某一事件发生的概率。

学习重点:通过多次试验,让学生理解实验频率稳定于理论概率.学习难点:实验中估计某一事件发生的概率。

学习过程:一、温故知新:1.频数:_____________________________________________________________.2.频率:_____________________________________________________________.3.频数、频率和总数之间的关系:_______________________________________.4.概率:_____________________________________________________________.5.一般地,在大量重复进行同一试验时,某事件发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做这一事件发生的_________.二、阅读教材:172——174页内容.三、探究新知:动手做一做:1、用掷硬币的方法决定小明和小丽谁去看周末的电影:任意掷一枚均匀的硬币.如果正面朝上,小丽去;如果反面朝上,小明去.这样决定对双方公平吗?2、任意掷一枚骰子(骰子的每个面上分别标有数字1,2,3,4,5,6).“6”朝上的概率是多少?3、在一副没有大小王的扑克牌中任意抽取一张,抽到“红桃”的概率为多少?4、准备两组相同的牌,每组两张。

两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次实验.(1)估计一次实验中。

两张牌的牌面数字和可能有哪些值?牌面数字和 2 3 4 频数频率(4)根据频数分布直方图.估计哪种情况的频率最大?(5)计算两张牌的牌面数字和等于3的频率是多少?(6)统计六组同学的数据,分别汇总其中一组、两组、三组、四组、五组的试验数据,相应得到试验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率,填写下表.并绘制相应的折线统计图:小组互相交流与思考:(1)在上面的试验中,你发现了什么?(2)当试验次数较大时,请你估计两张牌的牌面数字和等于3的频率大约是多少?你是怎样估计的?(3)两张牌的牌面数字和等于3的频率与两张牌的牌面数字和等于3的概率有什么关系?四、练习题下列说法正确的是 ( )A. 某事件发生的概率为12,这就是说:在两次重复试验中,必有一次发生B.一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C.两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反.所以出现一正一反的概率是 .D.全年级有400名同学,一定会有2人同一天过生日.五、布置作业习题6.3 1、2六、课后反思。

《频率与概率》导学案 2022年北师大版九上

《频率与概率》导学案 2022年北师大版九上

强湾中学导学案教师活动(环节、措施)学生活动(自主参与、合作探究、展示交流)学科:数学年级:九年级主备人:张晓霞辅备人:王花香审批:活动探究交流合作2.议一议:小明对自己的试验记录进行了统计,结果如下:因此小明认为,如果摸得第一张牌的牌面的数字为1,那么摸第二张牌时,摸得牌面数字为2的可能性大.你同意小明的看法吗?将全班同学的试验记录汇总,然后再统计一下!事实上,在一次试验时,不管摸得第一张牌的牌面数字为几,摸索第二张牌时,摸得牌面数字为1和平友好的可能性是相同的.3.想一想:对于前面的摸牌游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗?实际上,摸第一张牌时,可能出现的结果是:牌面数字为1或2,而且这两种结果出现的可能性相同;摸第二张牌时,情况也是如此.因此,我们可以用右面的树状图或下面的表格来表示所有可能出现的结果:课题 6.1频率与概率(2)课时1课时课型导学+展示学习目标1.学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.2.培养合作交流的意识和能力,提高所研究问题的反思和拓广的能力,逐步形成良好的反思意识.流程回顾思考---知识梳理---课堂检测---感悟收获---拓展延伸重难点重点:用树状图和列表法计算涉及两步实验的随机事件发生的概率.难点:正确地用列表法计算涉及两步实验的随机事件发生的概率.教师活动(环节、措施)学生活动(自主参与、合作探究、展示交流)回顾思考检测旧知【回顾思考】1.当试验次数很大时,一个事件发生也稳定在相应的附近.因此,我们可以通过多次试验,用一个事件发生的来估计这一事件发生的 .2.掷两枚完全相同的硬币,两个都是正面朝上的概率是多少?3.抛骰子时,出现点数为6的概率是多少?【知识梳理】1.做一做:(1)在前面的摸牌游戏中,在第一次试验中,如果摸得第一张牌的牌面的数字为1,那么摸第二张牌时,摸得牌面数字为几的可能性大?如果摸得第一张牌的牌面的数字为2呢?(2)根据你所做的30次试验的记录,分别统计一下,摸得第一张牌的牌面的数字为1时,摸第二张牌的牌面数字为1和2的次数.教师活动(环节、措施)学生活动(自主参与、合作探究、展示交流)教师活动(环节、措施)学生活动(自主参与、合作探究、展示交流)启发探索引导合作用表格表示概率从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:(1,1),(1,2),(2,1),(2,2),而且每种结果出现的可能性相同.也就是说,每种结果出现的概率都是1/4.结论:利用树状图或表格可以较方便地求出某些事件发生的概率【课堂检测】1.随机掷一枚均匀的硬币两次,到少有一次正面朝上的概率是多少?(请用树状图法和列表法两种方法解答)2.从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次掷硬币,出现正面朝上的可能性大,还是反面朝上的可能性大,还是一样大?说说你的理由,并与同伴进行交流.3.袋中装有一个红球和一个黄球,他们除了颜色外都相同.随机从中摸出一球,记录下颜色再放回袋中,充分摇匀后,再随机摸出一球.两次都摸到红球的概率是多少?(请用列表法解答)自我测评提高训练【感悟收获】本节课学习了利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率.【拓展延伸】1.袋中装有三个完全相同的球,分别标有“1”“2”“3”.从中随机摸出一球,以该球上的数字作为十位数;将球放回并充分摇匀后,再随机摸出一球,以该球上的数字作为十个位数.那么所得数字为“23”的概率为多少?(请用树状图法解答)2.在摸球游戏中,如果每组3张牌,他们的牌面数字分别为1,2,3,那么从每组牌中各随机摸出一张牌,两张牌的牌面数字和为几的概率最大?最大的概率为多少?3.A,B,C三个小朋友在做游戏前需要确定游戏的先后顺序.他们协商约定:将两枚均匀的硬币同时向上抛出,落地后,若都是正面朝上,则A先做;若都是反面朝上,则B先做;若一正一反,则C先做.这样的办法对三人是否公平?为什么?学科:数学年级:九年级主备人:王花香辅备人:张晓霞审批:。

频率与概率教学教案

频率与概率教学教案

频率与概率教学教案引言:频率与概率是数学中重要的概念,也是实际生活中常用的工具。

学习频率与概率的概念和计算方法,能够帮助学生更好地理解和应用数学知识。

本文将介绍一种针对中学生的,旨在帮助教师有效地教授这一内容。

一、教学目标:1. 理解频率与概率的概念及其关系;2. 掌握频率与概率的计算方法;3. 能够应用频率与概率解决实际问题。

二、教学内容:1. 频率的概念:频率是指某一事件在一定次数内发生的次数与总次数的比值。

通过引入频率的概念,可以将概率问题转化为频率问题,更易于理解和计算。

2. 概率的概念:概率是指某一事件在所有可能事件中发生的可能性大小。

概率的范围在0到1之间,0表示不可能发生,1表示必然发生。

概率可以通过频率来估计。

3. 频率与概率的关系:频率与概率是相互关联的,可以通过大量实验的频率来估计概率。

当实验次数无限大时,频率将收敛于概率。

4. 频率与概率的计算方法:频率的计算方法是将事件发生的次数除以实验总次数。

概率的计算方法包括古典概率、几何概率和统计概率等。

5. 应用频率与概率解决实际问题:频率与概率在现实生活中有广泛的应用,如投掷骰子、抽取扑克牌、统计调查等。

学生可以通过实际问题的解决,深入理解频率与概率的意义。

三、教学方法:1. 案例引入法:通过具体的案例引入频率与概率的概念,让学生在实际问题中感受到频率与概率的应用。

2. 讨论与互动:组织学生进行小组讨论,引导学生发表观点和思考问题,增强学生的主动性和参与性。

3. 实践操作:让学生参与到实际的频率与概率计算中,进行实践操作,培养学生的计算能力和解决问题的能力。

四、教学评估:1. 课堂练习:布置一些课堂练习题,检验学生对频率与概率的理解和计算能力。

2. 实际应用:组织学生进行一些实际应用题的解答,考察学生将频率与概率应用于实际问题的能力。

3. 作业评定:对学生完成的作业进行评定,综合考察学生对频率与概率的掌握程度。

结语:通过本教案的教学,学生将能够全面理解频率与概率的概念和计算方法,掌握应用频率与概率解决实际问题的能力。

频率与概率的教案

频率与概率的教案

频率与概率的教案教案标题:频率与概率的教案教案目标:1. 理解频率与概率的概念及其在日常生活中的应用。

2. 能够计算简单事件的频率和概率。

3. 能够分析和解释频率和概率对决策和预测的影响。

教学资源:1. 白板、黑板或投影仪。

2. 教学PPT或课件。

3. 学生练习册或工作纸。

4. 骰子、扑克牌或其他随机事件的实物。

教学步骤:引入(5分钟):1. 引导学生回顾事件和概率的概念,并提问他们对频率和概率的理解。

2. 通过举例子引导学生思考频率和概率在日常生活中的应用,如天气预报、运动比赛、抽奖等。

探索(15分钟):1. 向学生介绍频率的概念,即某事件在一定次数内发生的次数。

2. 利用实物(如骰子、扑克牌)进行实际操作,让学生通过多次实验计算事件发生的频率。

3. 引导学生发现频率与实验次数的关系,并进行简单的数据分析和图表绘制。

解释(10分钟):1. 引导学生理解概率的概念,即某事件发生的可能性大小。

2. 通过计算频率与实验次数的比值,引导学生计算事件的概率。

3. 引导学生分析频率和概率之间的关系,并讨论其对决策和预测的影响。

拓展(15分钟):1. 提供更多实例,让学生计算事件的频率和概率。

2. 引导学生思考如何利用频率和概率做出更准确的决策,如购买彩票、选择交通工具等。

3. 引导学生思考概率的局限性,如随机性、样本大小等因素的影响。

总结(5分钟):1. 对频率和概率的概念进行总结,并强调它们在日常生活中的应用重要性。

2. 检查学生对频率和概率的理解,解答他们可能存在的疑问。

作业:布置相关练习,要求学生计算事件的频率和概率,并思考概率在实际生活中的应用。

评估:1. 观察学生在课堂上的参与和讨论情况。

2. 收集学生完成的练习和作业,评估他们对频率和概率的掌握程度。

3. 可以进行小组或个人形式的口头或书面评估,让学生解答与频率和概率相关的问题。

教案扩展:1. 可以引导学生进行更复杂的频率和概率计算,如多个事件的组合、条件概率等。

频率与概率的关系2导学案

频率与概率的关系2导学案

19.3频率与概率的关系(2)(导学案)五中陈晓梅教学目标1.理解频率与概率的区别与联系.2.能运用事件发生的频率估计事件发生的概率.3.会计算简单事件的概率.4.通过积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.教学过程:一解决疑惑。

二、二者的意义1、频率:在相同条件下重复n次实验,事件A发生的次数m与实验总次数n 的比值。

注意:频率在一定程度上可以反映随机事件发生的可能性的大小,但频率本身是随机的,在实验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复实验的条件下可以近似地作为这个事件的概率。

2、概率:事件A的频率接近与某个常数,这时就把这个常数叫做事件A的概率,记做P(A)。

注意:①概率是随机事件发生的可能性的大小的数量反映;②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;③必然事件与不可能事件可以看作随机事件的两种特殊情况,因此,任何事件发生的概率都满足0≤P(A)P (A)≤1,必然事件的概率是1,不可能事件的概率是0。

3、频率与概率的区别与联系频率和概率是研究随机事件发生的可能性大小常用的特征量,从定义可以得到二者的联系,可用大量重复实验中的发生频率来估计事件发生的可能性,另一方面,大量重复实验中事件发的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同实验次数而有所不同,是概率的近似值,二者不能简单地等同。

4、应用在实际生活中,我们常用频率来估计概率,在大量重复的实验中发现频率接近于哪个数,把这个数作为概率。

概率是理论性的东西,频率是实践性的东西,理论应该联系实际,因此我们可以通过大量重复的实验,用一个事件发生的频率来估计这一事件发的概率。

5 学生自行总结6 解决180习题1,2。

北师大版数学九年级上册6.5《频率与概率》说课稿

北师大版数学九年级上册6.5《频率与概率》说课稿

北师大版数学九年级上册6.5《频率与概率》说课稿一. 教材分析《频率与概率》这一节内容是北师大版数学九年级上册第六章第五节的内容。

本节课主要介绍了频率与概率的概念,以及如何通过实验来估计概率。

教材通过具体的案例和活动,使学生理解和掌握频率与概率的关系,培养学生的数学思维能力和实践能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对统计和概率有一定的了解。

但是,对于频率和概率的概念以及它们之间的关系,可能还比较模糊。

因此,在教学过程中,需要通过具体的案例和实验,让学生深刻理解和掌握频率与概率的关系。

三. 说教学目标1.知识与技能目标:学生能够理解频率和概率的概念,掌握频率估计概率的方法,能够通过实验来估计事件的概率。

2.过程与方法目标:通过实验和案例分析,培养学生的观察能力、思考能力和数学思维能力。

3.情感态度与价值观目标:学生能够积极参与数学活动,体验数学的乐趣,培养对数学的兴趣。

四. 说教学重难点1.重点:频率和概率的概念,频率估计概率的方法。

2.难点:频率与概率之间的关系,如何通过实验来估计概率。

五. 说教学方法与手段本节课采用讲授法、实验法、讨论法等多种教学方法。

利用多媒体课件和实验器材,为学生提供直观的学习资源,激发学生的学习兴趣,引导学生主动参与课堂活动。

六. 说教学过程1.导入:通过一个简单的实验,让学生观察和思考实验结果,引出频率和概率的概念。

2.知识讲解:讲解频率和概率的定义,通过具体的案例来说明频率估计概率的方法。

3.实践活动:让学生进行实验,自己动手来估计事件的概率,培养学生的实践能力。

4.讨论与交流:让学生分组讨论,分享自己的实验结果和感受,引导学生思考频率与概率之间的关系。

5.总结与反思:对本节课的内容进行总结,引导学生反思自己的学习过程,巩固所学知识。

七. 说板书设计板书设计要简洁明了,突出频率与概率的关系。

可以设计一个,列出频率和概率的定义,以及频率估计概率的方法。

数学九年级上册《用频率估计概率》导学案

数学九年级上册《用频率估计概率》导学案

数学九年级上册《用频率估计概率》导学案设计人:审核人:【学习目标】1、学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力。

2、通过对问题的分析,知道用频率来估计概率的方法,渗透转化和估算的思想方法。

3、通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值。

【学习重点】通过对事件发生的频率的分析来估计事件发生的概率。

【学习难点】大量重复试验得到频率的稳定值的分析和事件的模拟试验。

【学习方法】对学、讨论、展示。

自学1、(1)阅读教材P144.145的相关内容,完成表25-5(2)思考:在实验时为了使实验结果更接近现实情况,需要注意些什么问题?2、在进行移植试验时,移植的总数是越多越好还是越少越好?3、(1)完成课本表25-6.(2)根据表中数据填空:这批柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以1元/千克的成本进了20000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利9000元,那么售价应定为_______元/千克比较合适。

4、某公司以1.5元每千克的成本新进了20000千克雪梨,销售人员首先从所有的雪梨中随机抽取若干雪梨,进行了“雪梨损害率”统计,并把获得的数据(2)如果公司希望这些雪梨能够获得税前利润10000元,那么在出售雪梨时(已去掉损害的雪梨),每千克大约定价为多少元比较合适?2、一个密不透风的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球多少个?研学1、两人对学:针对自学成果及自我发现进行交流,把有疑惑的问题记下来带到小组内解决。

2、小组群学:组长负责交流各自的疑惑及重点问题,注意把握好时间,自学中的议一议可能是讨论的要点。

《用频率估计概率》导学案

《用频率估计概率》导学案

《用频率估计概率》导学案一、学习目标加深理解概率的概念;学会用频率估计概率的方法;了解概率的试验背景和现实意义.二、情景引入1.列举法求概率的条件是什么?(1)实验的所有结果是有限个;(2)各种结果的可能性相等.2.求概率常用的列举法有哪些?直接列举法、列表法、树状图法.三、新知讲解扫一扫,有惊喜哦!1.频率的定义在实验中,每个对象出现的次数与总次数的比值叫频率.2.用频率估计概率在相同的条件下,大量地重复试验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以估计这个事件发生的概率.注:可以用大量重复试验中事件发生的频率来估计事件发生的概率,但不能说频率等于概率,两者的区别在于:频率是通过多次试验得到的数据,而概率是理论上事件发生的可能性.四、典例探究扫一扫,有惊喜哦!1.由频率估计概率【例1】(20XX•锦州)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)0.600.520.520.490.510.50总结:用频率估计概率时,应注意三个方面:1.试验的随机性;2.保证足够的试验次数;3.得到的概率仅仅是估计值,而不是准确值.练1.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n10011000100410031000满意人数m99999810021000满意频率(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?2.由频率的折线图推断实验【例2】(20XX•东海县模拟)一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色......甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A.袋子一定有三个白球B.袋子中白球占小球总数的十分之三C.再摸三次球,一定有一次是白球D.再摸1000次,摸出白球的次数会接近330次总结:1.根据频率分布折线图可以推断出频率稳定在某一固定数值附近,这个固定数值就是这个事件的概率;2.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过大量的重复试验,用随机事件发生的频率来估计概率.练2.(20XX•泰州二模)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能2被整除的概率D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率五、课后小测一、选择题1.(20XX春•句容市校级期中)做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.42 C.0.50 D.0.582.(20XX春•广陵区校级期末)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共若干只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601假如你去摸一次,你摸到白球的概率是()A.0.4 B.0.5 C.0.6 D.0.73.(20XX秋•文登市期末)某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:投篮次数/次1050100150200命中次数/次94070108144命中率0.90.80.70.720.72根据上表,你估计该队员一次投篮命中的概率大约是()A.0.9 B.0.8 C.0.7 D.0.724.(20XX•石家庄模拟)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率5.(20XX•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是46.(20XX春•南城县期中)甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率给出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概率C.任意写出一个整数,能被2整除的概率D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率二、填空题7.(20XX•扬州)色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为(结果精确到0.01)8.(20XX春•沛县期末)为调查某批乒乓球的质量,根据所做实验,绘制了这批乒乓球“优等品”概率的折线统计图,则这批乒乓球“优等品”的概率的估计值为(精确到0.01)9.(2004•郫县)在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化折线图如图所示,这个图形中折线的变化特点是,试举一个大致符合这个特点的实物实验的例子(指出关注的结果).三、解答题10.(20XX春•相城区期中)下面是小明和同学做“抛掷质地均匀的硬币试验”获得的数据.抛掷次数n100200300400500正面朝上的频数m5198153200255正面朝上的频率(1)填写表中的空格;(2)画出折线统计图;(3)当试验次数很大时,“正面朝上”的频率在附近摆动.11.(20XX春•南京校级期中)某种玉米种子在相同条件下的发芽实验结果如下表:每批粒数n1001502005008001000发芽的粒数m65111136345560700发芽的频率0.650.740.680.69(1)计算并完成表格;(2)请估计,当n很大时,频率将接近;(3)这种玉米种子的发芽概率的估计值是但是多少?请简要说明理由.12.篮球运动员在最近几场大赛中投篮的结果如下表所:投篮次数201816171618进球次数121210131214进球频率计算表中的频率:如果这位运动员投篮一次,请你估计他进球的概率是多少?13.检查某工厂产品,其结果如下:检查产品件数分别为:10,20,50,100,200,400,800,1600.其中次品数分别为:0,3,6,9,18,41,79,160.问:(1)次品的频率分别是多少?(2)估计该工厂产品出现次品的概率是多少?14.某种进口小麦种子在相同条件下的发芽试验,结果如下表所示:每批粒数n200250300500100020004000发芽的粒数m19424128348695219103810发芽的频率(1)计算并填写表中的频率;(2)这种进口小麦发芽的概率估计值约是多少?15.有两组相同的牌,每组两张,两张牌的牌面数字分别是4和5,从每组牌中各摸出一张称为一次试验,小明一共进行了50次试验.(1)在一次试验中两张牌的牌面数字的和可能有哪些值?(2)小明做了50次试验,作了如下统计,请完成统计表.牌面数字和8910频数141917频率(3)你认为哪种情况的频率最大?(4)如果经过次数足够多的试验,请你估计两张牌数字和等于9的频率是多少?牌面数字的和等于8或10的概率又是多少?典例探究答案:【例1】分析:计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解答:解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.点评:此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.练1.分析:(1)概率就是满意的人数与被调查的人数的比值;(2)根据题目中满意的频率估计出概率即可;(3)从概率与频率的定义分析得出即可.解答:解:(1)由表格数据可得:≈0.998,=0.998,≈0.998,≈0.999,=1.000;(2)由第(1)题的结果知出版社5次“读者问卷调查”中,收到的反馈信息是:读者对杂志满意的概率约是:P(A)=0.998;(3)频率在一定程度上反映了事件发生的可能性大小.尽管每进行一连串(n次)试验,所得到的频率可以各不相同,但只要 n相当大,频率与概率是会非常接近的.因此,概率是可以通过频率来“测量”的,频率是概率的一个近似.概率是频率稳定性的依据,是随机事件规律的一个体现.实际中,当概率不易求出时,人们常通过作大量试验,用事件出现的频率去近似概率.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.【例2】分析:观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一常数附近,可以用此常数表示白球出现的概率,从而确定正确的选项.解答:解:∵观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一33%附近,∴白球出现的概率为33%,∴再摸1000次,摸出白球的次数会接近330次,正确,其他错误,故选D.点评:本题考查了利用频率估计概率的知识,观察随着实验次数的增多而逐渐稳定在某个常数附近即可.练2.分析:根据利用频率估计概率得到实验的概率在30%~40%之间,再分别计算出四个选项中的概率,然后进行判断.解答:解:根据统计图得到实验的概率在30%~40%之间.而掷一枚正六面体的骰子,出现1点的概率为;抛一枚硬币,出现正面的概率为;任意写一个整数,它能2被整除的概率为;从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率=,所以符合这一结果的实验可能是从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率.故选D.点评:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.课后小测答案:一、选择题1.解:∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,∴这枚啤酒瓶盖出现“凹面向上”的次数为1000﹣420=580,∴抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为=0.58,故选D.2.解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.6左右,则P白球=0.6.故选C.3.解:由表可知,实验次数为200次时,为该组数据中试验次数最多者,故当实验次数为200次时,其频率最具有代表性,据此估计该队员一次投篮命中的概率大约是0.72,故选D.4.解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;C、掷一枚硬币,出现正面朝上的概率为,故此选项错误;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:B.5.解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故A选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:;故B选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故C选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故D选项正确.故选:D.6.解:A、掷一枚正六面体的骰子,出现5点的概率为,故本选项错误;B、掷一枚硬币,出现正面朝上的概率为,故本选项错误;C、任意写出一个整数,能被2整除的概率为,故本选项错误;D、一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为≈0.33,故本选项正确.故选D.二、填空题7.解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07,故答案为:0.07.8.解:这批乒乓球“优等品”概率的估计值是0.95,故答案为:0.95.9.解:这个图形中折线的变化特点是随着实验次数增加,频率趋于稳定;符合这个特点的实物实验的例子(指出关注的结果)如:抛掷硬币实验中关注正面出现的频率.三、解答题10.解:(1)填表如下:抛掷次数n100200300400500正面朝上的频数m5198153200255正面朝上的频率0.510.490.510.50.51(2)如图所示:;(3)当试验次数很大时,“正面朝上”的频率在0.51附近摆动.故答案为:0.51.11.解:(1)填表如下:每批粒数n1001502005008001000发芽的粒数m65111136345560700发芽的频率0.650.740.680.690.700.70(2)当n很大时,频率将接近0.70.故答案为0.70;(3)这种玉米种子的发芽概率的估计值是0.70.理由:在相同条件下,多次实验,某一事件的发生频率近似等于概率.12.解:投篮次数201816171618进球次数121210131214进球频率0.60.670.6250.7650.750.78根据求得的频率,估计该运动员进球的概率约为0.75.13.解:(1)∵检查产品件数分别为:10,20,50,100,200,400,800,1600,其中次品数分别为:0,3,6,9,18,41,79,160,∴次品的频率分别是:0÷10=0,3÷20=0.15,6÷50=0.12,9÷100=0.09,18÷200=0.09,41÷400=0.1025,79÷800=0.09875,160÷1600=0.1;(2)从(1)中所求的数据可看到,当抽取件数(即重复试验次数)n越大,“出现次品”事件发生的频率就越接近常数0.1,所以“出现次品”的概率约为0.1.14.解:(1)由表可知:概率依次为:=0.97;=0.964;=0.943;=0.972;=0.952;=0.955;=0.9525;(2)这种进口小麦发芽的概率估计值约为0.95.15.解:(1)在一次试验中两张牌的牌面数字的和可能有:4+4=8,4+5=9,5+5=10;(2)∵=0.28,=0.38,=0.34,∴完成统计表如下:牌面数字和8910频数141917频率0.280.380.34(3)由(2)得出两张牌的牌面数字和等于9的频率最大;(4)如果经过次数足够多的试验,和等于9的概率为,和为8或10的概率为.25.3用频率估计概率(第一课时)【学习内容】教材P140—142【学习目标】1、理解用频率估计概率的合理性。

频率与概率 导学案- 高一上学期数学人教B版(2019)必修第二册

频率与概率 导学案- 高一上学期数学人教B版(2019)必修第二册

5.3.4 频率与概率学习目标1.在具体情境中,了解随机事件发生的不确定性和频率的稳定性,培养学生数据分析、逻辑推理的核心素养.2.理解概率的意义,利用概率知识正确理解现实生活中的实际问题,培养学生数学建模、数学运算的核心素养.3.理解频率与概率的区别,培养学生数学抽象的核心素养.自主预习1.在n次重复进行的试验中,事件A发生的频率为m,则当n很大时,可以认为n,此时也有.事件A发生的概率P(A)的估计值为mn2.概率是可以通过来“测量”的,或者说频率是概率的一个,概率从数量上反映了一个事件发生可能性的大小.课堂探究一、温故旧知1.古典概型的两个特性是什么?2.古典概型计算概率的步骤是什么?二、设置情境1.《中国青年报》社会调查中心联合问卷网,对2 000名18~35岁的青年进行的一项调查显示,在生活节奏加快的今天,70.0%的受访青年表示仍要培养古典诗词爱好,15.5%的人认为不需要,14.5%的人表示不好说.随机选取一名18~35岁的青年,这名青年认为仍要培养古典诗词爱好的概率为多少?2.随机抛一个瓶盖,观察它落地后的状态(参见上一节的图5-3-7),怎样确定瓶盖盖口朝下的概率?怎样确定这两个概率到底多大呢,今天我们就来一起学习频率与概率.三、问题探究1.情境引入中的两个问题能不能用古典概型来确定概率?为什么?2.我们应该用什么方法来估计这两个概率?请作出简要叙述.3.你觉得用频率来估计概率的方法可靠吗?怎样检验这种方法的可靠性?四、要点归纳总结频率与概率的区别和联系:五、典型例题题型一用频率估计概率例1为了确定某类种子的发芽率,从一大批这类种子中随机抽取了2 000粒试种,后来观察到有1 806粒种子发了芽,试估计这类种子的发芽率.小结:在随机事件的大量重复试验中,往往呈现几乎必然的规律,这个规律就是大数定律.通俗地说,这个定理就是,在试验条件不变的情况下,重复试验多次,随机事件的频率近似于它的概率.偶然中包含着某种必然.变式训练1某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.转动转盘的次数n 100 150 200 500 8001000落在“铅笔”区域的次数m68 111 136 345 564 701落在“铅笔”区域的频率mn(1)计算并完成表格.(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?题型二频率与概率的关系例2下列关于概率和频率的叙述中正确的有.(把符合条件的所有答案的序号填在横线上)①随机事件的频率就是概率;②随机事件的概率是一个确定的数值,而频率不是一个固定的数值;③频率是客观存在的,与试验次数无关;④概率是随机的,在试验前不能确定;⑤概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性大小,而频率在大量重复试验的前提下可近似地看作这个事件的概率.小结:概率可以通过频率来“测量”或者说频率是概率的一个近似值,概率从数量上反映了一个事件发生的可能性的大小.变式训练2下列说法:①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;②百分率能表示频率,但不能表示概率;③频率是不能脱离试验次数n的试验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是.题型三频率与概率的综合问题例3某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.小结:根据频率与概率的关系,概率的有关计算就可以转化为频率的计算,有关事件的频率值就可以看作是概率值.六、当堂检测”意味着()1.“某彩票的中奖概率为11000A.买1 000张彩票就一定能中奖B.买1 000张彩票中一次奖C.买1 000张彩票一次奖也不中D.购买彩票中奖的可能性是110002.同时向上抛掷100枚质量均匀的铜板,落地时这100枚铜板全都正面向上,则这100枚铜板更可能是下面哪种情况()A.这100枚铜板两面是一样的B.这100枚铜板两面是不一样的C.这100枚铜板中有50枚两面是一样的,另外50枚两面是不一样的D.这100枚铜板中有20枚两面是一样的,另外80枚两面是不一样的3.已知某次试验随机事件A发生的频率是0.2,事件A出现了10次,那么共进行了次试验.七、课堂小结1.知识清单:(1)用频率估计概率.(2)频率与概率的关系.2.方法归纳:极限思想.3.常见误区:频率与概率的区别与联系.核心素养专练层次一基础巩固一、课本,P113,练习A.二、课外习题1.关于随机事件的频率与概率,以下说法正确的是()A.频率是确定的,概率是随机的B.频率是随机的,概率也是随机的C.概率是确定的,概率是频率的近似值D.概率是确定的,频率是概率的近似值2.下列说法正确的是()A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然要发生的事件D.某事件发生的概率是随着试验次数的变化而变化的3.下列说法正确的是()A.某厂一批产品的次品率为5%,则任意抽取其中20件产品一定会发现一件次品B.气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈D.掷一枚均匀硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为50%4.盒中装有4只白球和5只黑球,从中任意取出1只球.(1)“取出的球是黄球”是事件,它的概率是;(2)“取出的球是白球”是事件,它的概率是;(3)“取出的球是白球或黑球”是事件,它的概率是.5.解释下列概率的含义:(1)某厂生产产品合格的概率为0.9;(2)一次抽奖活动中,中奖的概率为0.2.层次二能力提升一、课本,P113,练习B.二、课外习题1.某人将一枚硬币连续掷了10次,正面朝上的出现了6次,若用A表示正面朝上这一事件,则A的()A.概率为35B.频率为35C.频率为6D.概率接近352.从12件同类产品(其中10件正品,2件次品),任意抽取6件产品,下列说法中正确的是()A.抽出的6件产品中必有5件正品,一件次品B.抽出的6件产品中可能有5件正品,一件次品C.抽取6件产品时逐个不放回抽取,前5件是正品,第6件必是次品D.抽取6件产品时,不可能抽得5件正品,一件次品3.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g~501.5 g之间的概率约为.4.掷一枚骰子得到6点的概率是16,是否意味着把它掷6次一定能得到一次6点?参考答案自主预习略课堂探究一、略二、略三、1.不能,因为不符合古典概型等可能性和有限性的特性.2.不能用古典概型来确定概率的时候,我们可以利用有关统计数据得出事件发生的概率的估计值.3.可靠.我们可以进行大量的重复试验,观察经过试验次数的增多,频率是否趋于稳定.要点归纳频率是通过随机试验测量出来的结果,它的值是不稳定的;概率是通过很多次随机试验总结归纳出来的,是可以代替频率的稳定值.典型例题例1解:因为1 806÷2 000=0.903,所以估计这类种子的发芽率是0.903.变式训练1解:(1)0.680.740.680.690.7050.701(2)当n很大时,落在“铅笔”区域的频率将会接近0.7.(3)获得铅笔的概率约是0.7.例2②⑤变式训练2①③④例3解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5.=20.所以总体中分数在区间[40,50)内的人数估计为400×5100(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,=30.所以样本中分数不小于70的男生人数为60×12所以样本中的男生人数为30×2=60,女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2.当堂检测1.D2.A3.50核心素养专练层次一一、略二、1.D 2.B 3.D4.(1)不可能0(2)随机49(3)必然 15.(1)从某厂生产产品中抽取一件,是合格品的可能为0.9 (2)抽奖一次,中奖可能为0.2层次二一、略二、1.B2.B3.0.254.不是。

小学生必备的频率与概率教案

小学生必备的频率与概率教案

在小学数学教学中,频率与概率是非常重要的概念。

频率与概率教学不仅可以让小学生掌握一些数字,还可以培养他们的逻辑思维能力,因此,频率与概率教案也成为了小学数学教学中必不可少的一部分。

一、教学目标1、认识频率与概率的定义。

2、理解频率与概率之间的关系。

3、学习使用频率与概率进行简单的计算。

二、教学内容1、频率和概率的定义。

频率和概率都是描述事件发生概率的概念。

具体来说:频率表示既有事件发生的次数,又有事件未发生的次数。

那么频率的计算方法就是:既有事件发生的次数÷总次数。

概率则表示随机事件发生的可能性大小。

概率的计算方法就是:随机事件发生的次数÷总可能性的次数。

2、频率和概率的关系。

频率和概率之间的关系是非常紧密的。

对于一个大样本,随着事件发生的次数越来越多,频率会趋近于概率。

因此,频率和概率可以相互转化。

3、使用频率和概率进行计算。

当我们知道了事件的频率或概率后,可以通过它们进行一些简单的计算。

比如:如果一个事件发生的概率是1/4,那么与之对应的频率是多少?如果一项运动员在400米比赛中有90%的赢的可能性,那么符合要求的比赛有多少次?三、教学过程1、导入教师可以通过一些事例引入频率和概率这个概念。

比如,假如你期末考试有60分,有一个同学考了78分,你对他拿高分的可能性是多少?又或者,在你的班级里,有多少人喜欢吃蛋糕呢?2、讲解教师可以讲解频率和概率的定义,并介绍它们之间的关系。

如果有条件的话,教师可以通过一些实际的案例,帮助学生更好地理解频率和概率。

3、例子分析教师可以举例,让学生通过计算频率和概率来理解它们之间的差异和联系。

4、练习通过一些练习题的形式,巩固学生对于频率和概率的掌握情况。

比如:一批裁判员对两个击球手的投球速度进行测试,测试结果如下表所示:击球手投球速度甲 19秒 20秒 21秒 22秒 23秒乙 19秒 20秒 21秒 22秒 23秒 24秒请问,甲乙两位选手的投球速度在22秒到23秒之间的可能性大吗?五、总结与反思在教学结束时,教师可以让学生总结和归纳今天学习的内容,并且让学生对自己的学习过程进行一些反思。

北师大版九年级数学上册《频率与概率复习》导学案

北师大版九年级数学上册《频率与概率复习》导学案

频率与概率复习学习目标1、回顾频率与概率的意义,能叙述出频率与概率的相同不同之处。

2、经历“猜测结果→进行实验→分析实验结果”的过程,建立正确的概率直觉。

3、运用统计与概率的知识和方法解决一些简单的实际问题。

学习重点、难点利用列举法计算简单事件发生的概率。

学习过程一、自主学习:知识结构图 求概率的方法: (1) (2) (3)二、合作探究探究一、 两袋分别盛着写有0,1,2,3,4,5六个数字的六张卡片,从每袋中各取一张,求所得之和等于6的概率,现有小刚和小颖分别给出了下述两种不同解答:小刚的解法:两数之和共有0,1,2,3……10,这11种不同的结果,因此所求的概率为;111小颖的解法:从每袋中各任取一张卡片共有36种取法,其中和为6的情况共有 5种。

(1,5)(2,4)(3,3)(4,2)(5,1)请问哪一种解法正确?为什么?探究二、小华和小明做抛掷两枚硬币的游戏,每人各抛10次,看看不确定事件“出现两个正面”的次数。

下表是小华和小明的实验记录:在小华的10次实验中,“出现两个正面”的次数是2次,“出现两次正面”的频率是2/10,也就是20%,小明“出现两次正面”的频率是多少?那么10次实验中,小华和小明“出现不是两个正面”的频率是多少?小华和小明“出现两个正面”的频率之差是多少?并说明两人的“出现两个正面”的频率为什么不相同?探究三、在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是83. ⑴试写出y 与x 的函数关系式;⑵若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为21,求x 和y 的值.三、当堂检测频率 概率 求简单事件的概率的方法 估计概率的方法实验的方法 模拟实验的方法列表树状图估计(一)填空:1、事先__________ 发生的事件称为不确定事件(随机事件)。

若A为不确定事件,则P(A)的范围是______ _____.1、在对100个数据进行整理的频率分布表中,各组的频数之和等于_________,各组的频率之和等于_________.3、把一组数据分成5组,列出频率分布表,其中第1, 2, 3组的频率之和为0.61,第5 组的频率为0.12,那么第4组的频率为_________.4从一个装有2黄2黑的袋子里有放回地两次摸到的都是黑球的概率是。

北师大版数学九年级上册6.5《频率与概率》教学设计

北师大版数学九年级上册6.5《频率与概率》教学设计

北师大版数学九年级上册6.5《频率与概率》教学设计一. 教材分析《频率与概率》这一节内容,主要让学生了解频率与概率的概念,掌握频率与概率之间的关系,并通过实例让学生学会如何运用频率来估计概率。

教材通过生活中的实例,引导学生从实际问题中抽象出频率与概率的概念,培养学生的抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算方法有一定的了解。

但是,对于频率与概率这一节内容,由于涉及到一些生活中的实际问题,学生可能对其概念和关系理解不够深入。

因此,在教学过程中,需要教师通过生动的实例和讲解,帮助学生理解和掌握。

三. 教学目标1.让学生理解频率与概率的概念,掌握频率与概率之间的关系。

2.培养学生从实际问题中抽象出频率与概率的能力。

3.培养学生运用频率来估计概率的方法。

四. 教学重难点1.频率与概率的概念。

2.频率与概率之间的关系。

3.如何运用频率来估计概率。

五. 教学方法采用问题驱动的教学方法,通过生活中的实例,引导学生从实际问题中抽象出频率与概率的概念,然后通过讲解和练习,使学生掌握频率与概率之间的关系,并学会如何运用频率来估计概率。

六. 教学准备1.准备一些生活中的实际问题,用于引导学生理解和掌握频率与概率的概念。

2.准备一些练习题,用于巩固学生对频率与概率的理解。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生关注事件发生的频率和概率。

提出问题:在抛硬币实验中,正面朝上的频率和概率分别是多少?让学生思考和讨论。

2.呈现(10分钟)讲解频率与概率的概念,以及它们之间的关系。

通过PPT或者黑板,呈现频率与概率的定义和公式。

让学生理解和掌握。

3.操练(15分钟)让学生通过一些练习题,运用频率与概率的知识。

教师可适时给予解答和指导。

4.巩固(10分钟)通过一些实际问题,让学生运用频率与概率的知识。

教师可适时给予解答和指导。

5.拓展(5分钟)引导学生从实际问题中抽象出频率与概率的概念,并学会如何运用频率来估计概率。

初中数学九年级上册第六章《频率与概率》教案

初中数学九年级上册第六章《频率与概率》教案

课时课题:第六章 第一节 频率与概率第一课时课 型:新授课 教学目标:1.理解当试验次数较大时试验频率稳定于理论概率,并据此估计某一事件发生的概率.(重点)2.会用试验方法估计一些复杂的随机事件发生的概率.(难点)教法与学法指导:这节课主要采用“分组试验—统计汇总—合作交流—得出结论”教学模式,引导学生经历试验的全过程,在自主探究的基础上合作交流,从而形成对知识的建构.另外利用多媒体、导学案和学生熟悉的教具,一方面生动直观,有本可依,另一方面突出重点,分散难点.课前准备:师制作课件和导学案;生同位准备两张牌(牌面数字分别是1和2)、 一枚硬币、一个啤酒瓶盖教学过程:一、 创设情境 感悟导入[师]我想用掷硬币的方法决定我们班和19班承担下周一的升旗仪式:任意掷一枚均匀的硬币.如果正面朝上,我们班担任;如果反面朝上,19班担任.这样决定对双方公平吗?[来源 [生1]公平!因为我们做过这样的试验,历史上的数学家也做过掷硬币的实验,经过实验发现当次数很大时,任意掷一枚硬币.会出现两种可能的结果:正面朝上、反面朝上.这两种结果出现的可能性相同.都是21[师]很好!我们再来看一个问题:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).“6”朝上的概率是多少?[生2]任意掷一枚均匀的小立方体,所有可能出现的结果有6种:“1”朝上,“2”朝上, “3”朝上,“4”朝上,“5”朝上,“6”朝上,每种结果出现的概率都相等,其中“6”朝上的结果只有一种,因此P(“6”朝上)=61.[师]上面两个试验涉及的都是一步.如果是连续掷两次均匀的硬币,会出现几种等可能的结果?出现“一正一反”的概率为多少呢?如果将上面均匀的小立方体也连续掷两次,会出现几种等可能的结果,两次总数都是偶数的概率为多少呢?从这一节开始我们将进一步学习概率的有关知识.[设计意图]本环节出示2个试验的目的是为了帮助学生回顾概率的相关知识,为本节课的学习作好铺垫.二、活动探究统计汇总[师] 我们用实验的方法估计出了任意掷一枚硬币“正面朝上”和“反面朝上”的概率.同样的我们也可以通过实验活动.估计较复杂事件的概率.(课件演示活动方案)从准备好的牌面数字分别是1和2的两张牌中各摸出一张,称为一次试验.(1)估计一次试验中,两张牌的牌面数字和可能有哪些值?(2)以同桌为单位,每人做30次实验,根据实验结果填写下面的表格:(4)根据频数分布直方图.估计哪种情况的频率最大?(5)计算两张牌的牌面数字和等于3的频率是多少?(6)六个同学组成一组,分别汇总其中两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率,填写下表.并绘制相应的折线统计图.[设计意图]让学生经历试验、统计等活动过程,通过摸牌活动,体会试验次数很大时,试验中的频率稳定于理论上的概率.在活动中进一步发展学生合作交流的意识和能力.试验活动的展开过程中.体现各个步骤的渐次递进.一方面为了复习巩固有关频数、频率的知识,同时也便于学生更为直观地获得新的结论.三、合作交流归纳结论[师]在上面的试验中,你发现了什么?如果继续增加试验次数呢?与其他小组交流所绘制的图表和发现的结论.[生1]在与各组交流图表的过程中,我发现:在各组的折线统计图中,随着实验次数的增加,频率的“波动”变小了.[生2]随着实验次数的增加,试验结果的差异变小了.试验的数据即两张牌的牌面数字和等于3的频率比较稳定.[生3]一个人的试验数据相差可能较大,而多人汇总后的实试验数据即两张牌的牌面数字和等于3的频率相差较小.[师]也就是说,同学们从试验中都能体会到试验次数较大时,试验频率比较稳定.请同学们估计一下,当试验次数很大时,两张牌的牌面数字和等于3的频率大约是多少?[生齐答]大约是21.[师]很好!准能将试验次数更进一步增加呢?越大越好.[生4]可以把全班各组数据集中起来,这样实验次数就会大大增加.[师]太棒了!我们集和全班的试验数据,交流合作,可以使试验次数达到一千多次.下面我们汇总全班的试验次数及两张牌的牌面数字和为3的频数,求出两张牌的牌面数字和等于3的频率.(可让各组一一汇报,然后请同学们自己算出)[生5]约为21.[师]与你们的估计相近吗? [生齐答]相近.[师]谁能总结出一般性结论吗?[生6] 当试验次数很大时,频率比较稳定,稳定在相应的概率附近.[生7]也就是说,当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近.[师]非常好!由于实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近,因此我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率. “当试验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近”是否意味着试验次数越大,就越为靠近?应该说.作为一个整体趋势,上述结论是正确的,但也可能会出现这样的情形:增加了几次试验,试验数据与理论概率的差距反而扩大了.同学们可从绘制的折线统计图中发现.[设计意图]: 引导各小组观察自己的试验数据,观察频率和试验次数的关系,接着让各小组之间进行交流,观察其他小组的频率和试验次数之间是否存在着刚才发现的关系,最后让各小组交流数据,并将全部数据汇总,再次引导学生观察频率和试验次数的关系.从而使学生感悟经过大量试验后,其频率稳定于其理论概率附近.体现了让学生自主建构知识的教学理念.四、小组讨论 理解新知[师]课件出示讨论题 抛掷一枚质量均匀的硬币,出现“正面”和“反面”的概率均相等,因此,抛掷1000次的话,一定有500次“正”、500次“反”.你对这个问题有什么看法?[生] 分组讨论交流.[师]哪个小组说说你们讨论的结果[1组代表]错,虽然“正”“反”出现的概率均为21,但频率并不等同于概率,即使多次抛掷以后,频率也只能是与概率十分接近,但不一定相等,因此,抛1000次硬币,也不一定有500次“正”,500次“反”.[师]回答很正确,历史上曾经做过抛硬币的大量试验结果如下:(课件出示)一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性.[设计意图]: 使学生体会频率与概率的的联系,从“偶然中蕴涵必然”的角度,认识频率的稳定性,并与历史上科学家的研究结果对比,感受用频率估计概率的合理性,借助大量重复试验发现:试验频率并不等于理论概率,虽然多次实验的频率逐步稳定于理论概率,但也可能会发现,无论做多少次试验,试验频率仍仅是理论概率的近似值,而不能等同于理论概率.五、设计习题 巩固新知[师]课件出示试验:抛掷一枚啤酒瓶盖,求啤酒瓶盖花面朝上的概率(8个组每组完成50次试验,然后全班汇总)啤酒盖花面朝上的频率稳定在哪个数附近? [生] 分组认真试验并统计数据计算[设计意图]:学生学习完用频率求随机事件概率的方法,并没有强烈感受到新方法有什么用处,在这里设计一个新的试验,让学生认识到新方法的价值.五、反思感悟 总结新知[师]同学生掌握的很好,那么这节课你有哪些收获呢?还有那些困惑? [生] 各抒己见,认真总结反思本节课自己的收获.[设计意图]:培养学生语言表达归纳总结的能力和反思意识,总结研究概率问题的一般方法,形成完整的知识体系,六、达标测试1.下列说法正确的是……………( )A. 某事件发生的概率为21,这就是说:在两次重复实验中,必有一次发生B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C .两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是31D .全年级有400名同学,一定会有2人同一天过生日 2.一个家庭两个孩子,两个都是男孩的概率是 .[设计意图]: 通过达标检测及时反馈学生对本节课知识点的掌握程度, 以便有的放矢进行后续教学.七、作业布置A. P 159习题6.1 1.B. 小组撰写一份试验报告反映对概率的理解.板书设计本节课只有让学生经历试验,才能感悟频率稳定概率这一规律.频率稳定概率这一规律是解决本节概率的基础,所以本节课一定要学生亲身参与试验全过程,教师应深入到小组中去,了解学生合作的效果,讨论的焦点,认知的进程等,不可为了赶进度而忽略试验过程,在活动过程中注重引导学生合作交流,在活动中形成对知识的建构.而不是直接告诉学生结论,从而培养学生解决问题的能力,提高学生的综合素质.。

频率与概率导学案

频率与概率导学案

频率与概率导学案学习目标问题化知识目标:当事件得试验结果不就是有限个或结果发生得可能性不相等时,要用频率来估计概率。

能力目标:通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念;理解用样本来估计总体得统计思想。

情感目标:在解决问题中学会用数学得思维方式思考生活中得实际问题得习惯、学习重点:理解当试验次数较大时,试验频率稳定于理论概率。

学习难点:对概率得理解。

自主学习,合作探究1思考:当实验得所有结果不就是有限个;或各种可能结果发生得可能性不相等时,该如何求事件发生得概率呢?2自学书P172 试验:把全班同学分成10组,每组同学掷一枚硬币50次,整理获得得试验数据,并记录在投掷次数n 50 100 150 200 250 300 350 400 450 500正面朝上得次数m 24 52 73 99 124 146 180 201 229 256正面朝上得概率m/n根据上表中得数据,标注出对应得点:思考:随着抛掷次数得增加,“正面向上"得频率得变化趋势________归纳总结:在大量试验中,频率P就就是概率利用频率估计概率得数学依据就是大数定律:一般地,在大量重复试验中,如果随机事件A出现得频率m/n_________某个常数P,则事件A发生得概率P(A)=________、因为在n次试验中,事件A发生得频数m满足0≤m≤n,所以 0≤ m/n≤1,进而可知:频率所稳定得到得常数P 满足0≤P≤1,因此, 0≤P(A)≤1例:下表记录了一名球员在罚球线上投篮得结果。

投篮次数(n) 50 100 150 200 250300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n)(1)计算投中频率(精确到0.01)(2)这名球员投蓝一次,投中得概率约就是多少?(精确到0、1)?学以致用一个口袋中放有20个球,其中红球6个,白球与黑球个若干个,每个球出了颜色外没有任何区别: (1) 小王通过大量反复试验(每次取一个球,放回搅匀后再取)发现,取出黑球得频率稳定在1/4左右,请您估计袋中黑球得个数。

初中数学九年级上册第六章《频率与概率》复习课教案

初中数学九年级上册第六章《频率与概率》复习课教案

北师大版初中数学九年级上册第六章《频率与概率》复习课教案一、学生知识状况分析通过本章的新授课学习,学生在思维上对概率与统计之间的内在联系加深了理性的认识,尤其是对解决实际问题方案的科学性、合理性、创造性有了一定的认识.二、教学任务分析知识目标:1.通过复习,使学生将本章所学的知识纳入“统计与概率”知识系统.2.使学生学会运用概率知识解决实际问题.过程与方法目标:1.初步形成评价与反思的意识.2.经历解决问题的过程,深刻理解每一部分的内容,运用所学的知识分析问题和解决问题形成个人解决问题的方法和策略.情感与态度目标:1.培养学生不怕困难的意志和勇于解决问题的信心.2.形成实事求是的、严谨的学习态度.教学重点回顾本章知识要点,梳理知识结构,建立有关概率知识的框架图.教学难点解决学生在本章学习中的困难和不足三、课前准备:根据本章知识特点设计导学案,学生完成导学案。

四、教学过程分析本节课设计了五个教学环节.第一环节:重点知识回顾,建立知识框架;第二环节:学案导学,找问题;第三环节:解决问题,巩固提升;第四环节:中考面对面;第五环节:知识前瞻后延,纳入体系。

第一环节:重点知识回顾,建立知识框架活动内容:师生相互补充,回顾本章知识,建立知识框架。

活动目的:引导学生对全章知识的系统进行回顾,也为本节课的顺利开展进行铺垫。

第二环节:学案导学,找问题活动内容:找出学生做题中的问题,提出改进方案,规范做题步骤。

活动目的:通过本环节的教学,使部分学生认识到自己学习上的不足,形成实事求是的、严谨的学习态度。

第三环节:解决问题,巩固提升活动内容:例1:小明和小亮用如图所示的转盘做游戏,每个转盘被分成3个相等的扇形.游戏规则如下:转动两个转盘各一次.若两次数字均为奇数,则小亮赢,否则小明赢.(1)这个游戏对双方公平吗?说说你的理由.(2)你会怎样设计游戏规则?说说你的理由。

例2:一个不透明的口袋中有若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:向口袋中放入8个除颜色外其它都相同的白球,每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中,摇匀。

频率与概率教案设计

频率与概率教案设计

频率与概率教案设计这是频率与概率教案设计,是优秀的数学教案文章,供老师家长们参考学习。

频率与概率教案设计第1篇教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的a、b、c、d、e五个牌子雪糕的数量.频率与概率教案设计第2篇教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的`,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.频率与概率教案设计第3篇1、统计科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A 小于10,N是正整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 6.5《频率与概率》课型新授课
教学目标1、经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。

2、通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的概率
教学重点通过实验估计随机事件发生的概率的方法
教学难点领会当实验次数很大时,可以用一个事件发生的频率来估计这一事件发生的概率教学方法实验法
教学内容及过程备注
一、问题引入:
1、实验一:准备20张大小相同的卡片,上面分别写好1至20的数字,然
后将卡片放在袋子里搅匀,每次从袋中抽出一张卡片,记录结果,然后放
回搅匀再抽.
(1)将实验结果填入下表:
实验次数20 40 60 80 100 120 140 160 180 200
出现5的倍数的
频数
出现5的倍数的
频率
(2)根据上表中的数据绘制频率折线图
(3)从实验数据中可以发现什么规律?
(4)频率随着实验次数的增加,稳定于什么值?
(5)从袋中抽出一张卡片是5的倍数的概率是多少?
2、实验二:准备两组相同的牌,每组两张,两张牌的牌面数字分别是
1和2.从每组牌中各摸出一张,称为一次实验.
(1)一次实验中两张牌的牌面数字和可能有哪些值?
(2)每人做30次实验,依次记录每次摸得的牌面数字,并根据实
验结果填写下面的表格:
牌面数字和 2 3 4
频数
频率
(3)根据上表,制作相应的频数分布直方图
(4)你认为哪种情况的频率最大?
(5)两张牌的牌面数字和等于3的频率是多少?
(6)汇总各个小组的数据,填写下表,并绘制相应的的频率折线统
计图
实验次数60 90 120 150 180
两张牌的牌
面数字和等
于3的频数
两张牌的牌
面数字和等
于3的频率
二、议一议
(1)在上面的实验中,你发现了什么?如果继续增加实验次数呢?
与其他小组交流所绘制的图表和发现的结论
(2)当实验次数很大的时候,你估计两张牌的牌面数字和等于3的频率大约是多少?你是怎么估计的?
三、做一做
将各组的数据集中起来,求出两张牌的牌面数字和等于3的频率,它
与你们的估计相近吗?
结论:我们可以通过多次实验,用一个事件发生的频率来估计这一事
件发生的概率.
四、随堂练习
五、作业
1.你能设计一个方案估计某鱼塘中鱼的数目吗?
2.利用这个方法还可以解决生活中的哪些问题?请举例。

五、课堂总结、提高认识
本节课的模型选择,注意了模型的递进性,现实性和趣味性,激发学生的学习兴趣,学习中应注意思维的多样性,培养学生的合作意识。

六、布置作业课本习题6.6 l、2。

板书设计:
课后反思:。

相关文档
最新文档