九年级数学下册圆周角教案新人教版
九年级数学下册《圆周角定理》教案、教学设计
![九年级数学下册《圆周角定理》教案、教学设计](https://img.taocdn.com/s3/m/c8d42ca3aff8941ea76e58fafab069dc5122477d.png)
希望同学们通过完成作业,进一步巩固圆周角定理的知识,为后续学习打下坚实基础。同时,也希望大家能够享受学习数学的过程,不断提高自己的几何素养。
2.新课:以问题驱动的形式,引导学生观察圆周角的特点,猜想圆周角定理,并进行证明。
3.例题:设计不同难度的例题,让学生运用圆周角定理进行求解,巩固所学知识。
4.练习:布置适量的练习题,让学生在解答过程中,进一步掌握圆周角定理的应用。
5.总结:对本节课的学习内容进行总结,强调圆周角定理的重要性,激发学生学习数学的兴趣。
1.请同学们完成课本第章节后的习题1、2、3,这些习题涵盖了圆周角定理的基础知识,旨在帮助大家巩固所学,提高解题能力。
2.选做课本第章节后的习题4、5,这两题难度较大,需要综合运用圆周角定理及其他几何知识。希望同学们在解答过程中,注意分析问题,逐步解决问题。
3.结合生活实际,设计一道与圆周角定理相关的实际问题,并尝试运用所学知识进行解答。此举旨在培养学生的几何直观和实际应用能力,激发学生学习数学的兴趣。
3.选取部分学生的解答进行展示,让学生互相学习,提高解题能力。
(五)总结归纳
1.对本节课的知识点进行总结,强调圆周角定理的重要性。
2.引导学生回顾学习过程,总结自己在学习圆周角定理时的收获和感悟。
3.提醒学生课后进行复习,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对圆周角定理的理解和应用,特布置以下作业:
九年级数学下册《圆周角定理》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握圆周角的概念,理解并掌握圆周角定理及其推论,能够灵活运用圆周角定理解决相关问题。
2.培养学生运用圆周角定理进行几何图形的求解能力,提高学生的逻辑思维能力和解决问题的能力。
九年级数学下册圆周角和圆心角的关系教案
![九年级数学下册圆周角和圆心角的关系教案](https://img.taocdn.com/s3/m/efbe8378f56527d3240c844769eae009581ba231.png)
课题:3.4.1圆周角和圆心角的关系教学目标:1.理解圆周角定义,掌握圆周角定理.会熟练运用定理解决问题.2.培养学生观察、分析及理解问题的能力.3.在学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.培养学生的探索精神和解决问题的能力.教学重难点:重点:圆周角定理及其应用.难点:圆周角定理证明过程中的“分类讨论”思想的渗透.教学过程:一、创设情境,导入新课活动内容:1.圆心角的定义?(顶点在圆心的角叫圆心角)2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB AB的度数.3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.处理方式:找三名学生直接回答.题 1是复习圆心角定义:顶点在圆心的角叫圆心角;题2和题3是复习定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.再特别向学生强调定理当中的前提条件“同圆或等圆”,同时要学生明白何为三组量中其中一组量相等,那么其余各组量也分别相等.设计意图:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.为本节课的学习做准备.二、合作学习,探究尝试活动内容1:问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?点A 在圆内点A 在圆外点A 在圆上.BOC A.B OC AO BC顶点在圆心.C .A OB圆心角 圆周角处理方式:学生根据上图的几种情况,类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.设计意图:本环节的设置,采用分类讨论和类比的思想方法得出圆周角的定义.问题当中的角的顶点位置发生变化可得到几种情况,其实是点和圆的位置关系知识点的应用,老师在此应注意知识之间的联系,达到触类旁通的目的.活动内容2: 练习巩固如图,指出图中的圆心角和圆周角. 解:圆心角有∠AOB 、∠AOC 、∠BOC圆周角有∠BAC 、∠ABC 、∠ACB处理方式:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO 没有延长,所以∠OAB 严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO 延长与圆相交后,就会形成圆周角了,所以这里要特别注意.设计意图:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动内容3:问题提出:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角:在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.设计意图:利用球员射门学生熟悉的问题引出一条弧所对的圆周角和圆心角之间有一定的关系.做一做:如图,∠AOB =80°,(1)请你画出几个AB 所对的圆周角,这几个圆周角的大小有什么关系?教师提示:(1)思考圆周角和圆心角有几种不同的位置关系?(2)这些圆周角与圆心角∠AOB 的大小有什么关系?(3)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗? (4)你是如何证明圆周角定理?处理方式:本活动环节,首先有一个情景引出探究的问题,然后通过类比得出探究圆周角定理的方法,再通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理. 问题(1)有三种情况:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.问题(2) 学生在①操作的基础上猜测得出∠AOB =2∠AC B ,猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.接着教师引导学生结合图形用符号语言表示.符号语言:12ACB AOB ∠=∠ .问题(4 )引导学生写出已知求证已知:如图,∠ACB 是AB 所对的圆周角,∠AOB 是AB 所对的圆心角,求证:12ACB AOB ∠=∠.分析:①.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系. 让学生到黑板板演.∵∠AOB 是△ACO 的外角 ∴∠AOB =∠C +∠A ∵OA=OC ∴∠A =∠C∴∠AOB =2∠C ,12ACB AOB ∠=∠即.当圆心(O )在圆周角(∠ACB )的内部或外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样? 能否转化为①的情况? 学生先独立思考,在此基础上再指导学生进行合作交流.时机成熟后找两名同学上黑板板演,师生共同纠错.②.当圆心(O )在圆周角(∠ACB )的内部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?过点C 作直径CD .由①可得:11,22ACD AOD BCD BOD ∠=∠∠=∠。
圆周角教案
![圆周角教案](https://img.taocdn.com/s3/m/75e1912f443610661ed9ad51f01dc281e53a5695.png)
圆周角教案圆周角教案篇1[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。
能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。
情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。
[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。
(2)顶点在圆心的角。
(3)圆上两点间的部分。
要求学生将他们和相对应的概念进行连线。
二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点A、B、C、D。
2、用橡皮筋两两连接A、B、C、D四个点。
3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。
5、完成后进行展示,持不同意见的小组可随时补充。
(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。
)三、提出问题,引入新课:问题1:这四大类12个圆周角中,弧所对的圆周角有多少个?问题2:弧ADC所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧ADC所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。
四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。
究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。
利用量角器量圆周角和圆心角的度数,并填写实验报告。
教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。
(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠AOB和∠ACB的度数,进一步验证学生的猜想。
《圆周角》教案(高效课堂)2022年人教版数学精品
![《圆周角》教案(高效课堂)2022年人教版数学精品](https://img.taocdn.com/s3/m/4fb63719aeaad1f347933f59.png)
OBA CE F 24.1 .4 圆教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90•°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题. 重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在. 教学过程 一、复习引入〔学生活动〕请同学们口答下面两个问题. 1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:〔1〕我们把顶点在圆心的角叫圆心角.〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚刚讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知问题:如下图的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在EF 所在的⊙O 其它位置射门,如下图的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠E CF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法答复下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化?3.同弧上的圆周角与圆心角有什么关系?〔学生分组讨论〕提问二、三位同学代表发言. 老师点评:O BACO BA C D 1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.〞〔1〕设圆周角∠ABC 的一边BC 是⊙O 的直径,如下图 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB∴∠ABO=∠BAO∴∠AOC=∠ABO ∴∠ABC=12∠AOC 〔2〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=12∠AOC 吗?请同学们独立完成这道题的说明过程. 老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .〔3〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=12∠AOC 吗?请同学们独立完成证明.老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的. 从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD 理由是:如图24-30,连接AD ∵AB 是⊙O 的直径∴∠ADB=90°即AD ⊥BC又∵AC=AB ∴BD=CDOBAD OBAC DOB ACD三、稳固练习1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展例2.如图,△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin c C=2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin cC=2R ,即sinA=2a R ,sinB=2b R ,sinC=2cR,因此,十清楚显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin aA同理可证:sin b B =2R ,sin cC =2R∴sin a A =sin b B =sin cC=2R五、归纳小结〔学生归纳,老师点评〕 本节课应掌握: 1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题. 六、布置作业1.教材P95 综合运用9、10、11 拓广探索12、13. 2.选用课时作业设计.第三课时作业设计 一、选择题1.如图1,A 、B 、C 三点在⊙O 上,∠AOC=100°,那么∠ABC 等于〔 〕. A .140° B .110° C .120° D .130°OBA 2143OB(1) (2) (3)2.如图2,∠1、∠2、∠3、∠4的大小关系是〔〕A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠23.如图3,AD是⊙O的直径,AC是弦,OB⊥AD,假设OB=5,且∠CAD=30°,那么BC 等于〔〕.A.3 B.3+3 C.5-123 D.5二、填空题1.半径为2a的⊙O中,弦AB的长为23a,那么弦AB所对的圆周角的度数是________.2.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,那么∠1+∠2=_______.•O BAC 21EDOBAC(4) (5)3.如图5,△ABC为⊙O内接三角形,BC=•1,•∠A=•60•°,•那么⊙O•半径为_______.三、综合提高题1.如图,弦AB把圆周分成1:2的两局部,⊙O半径为1,求弦长AB.OBA2.如图,AB=AC,∠APC=60°〔1〕求证:△ABC是等边三角形.〔2〕假设BC=4cm,求⊙O的面积.OBP3.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为〔0,4〕,M是圆上一点,∠BMO=120°.〔1〕求证:AB 为⊙C 直径.〔2〕求⊙C 的半径及圆心C 的坐标.OBA C y xM答案:一、1.D 2.B 3.D二、1.120°或60° 2.90° 3.33三、1.3 2.〔1〕证明:∵∠ABC=∠APC=60°,又AB AC ,∴∠ACB=∠ABC=60°,∴△ABC 为等边三角形. 〔2〕解:连结OC ,过点O 作OD ⊥BC ,垂足为D , 在Rt △ODC 中,DC=2,∠OCD=30°, 设OD=x ,那么OC=2x ,∴4x 2-x 2=4,∴OC=4333.〔1〕略 〔2〕4,〔-23,2〕15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习D CA BD CABDC A B〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C A BE DCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中, 12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP ,∴∠4=∠P .∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕A .某一条边上的高B .某一条边上的中线C .平分一角和这个角对边的直线D .某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕A .80°B .20°C .80°和20°D .80°或50°答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得2〔x+2〕+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解 〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
初中数学初三数学下册《圆周角》教案、教学设计
![初中数学初三数学下册《圆周角》教案、教学设计](https://img.taocdn.com/s3/m/f7823c45fd4ffe4733687e21af45b307e971f915.png)
本章节的学习对象为初三学生,他们在前两年的数学学习中,已经掌握了基本的几何知识和逻辑推理能力,具备了一定的图形观察能力和空间想象能力。在此基础上,学生对圆的性质和方程有一定了解,为学习圆周角奠定了基础。然而,圆周角涉及的概念和性质较为抽象,学生在理解上可能存在一定难度。此外,学生在解决与圆周角相关的问题时,可能缺乏有效的解题方法和技巧。因此,在教学过程中,教师应关注以下几点:
四、教学内容与过程
(一)导入新课
1.教学活动设计:利用多媒体展示生活中常见的圆形物体,如车轮、硬币、圆桌等,让学生观察并思考这些物体上的圆周角特点。
2.提问方式:教师提问:“大家知道什么是圆周角吗?圆周角有哪些特点?它在我们生活中有哪些应用?”
3.学生回答:鼓励学生积极回答,分享他们对圆周角的观察和认识。
2.提高题:选取一些涉及圆周角的几何图形,让学生独立完成求解。此类题目旨在培养学生的空间想象能力和逻辑推理能力。
设计意图:通过提高题目的练习,使学生能够将圆周角知识应用于实际问题中,提高解题技巧和思维水平。
3.拓展题:设计一些综合性的问题,让学生运用圆周角定理以及其他相关知识解决。此类题目有助于提高学生的综合运用能力和创新意识。
4.教师引导:根据学生的回答,教师总结圆周角的初步概念,并指出本节课将深入探讨圆周角的性质和应用。
(二)讲授新知
1.教学内容:讲解圆周角的定义,阐述圆周角与圆心角的关系,引入圆周角定理。
2.教学方法:采用直观演示、举例说明、推理证明等方式,让学生理解并掌握圆周角的性质。
3.教学步骤:
a.展示圆的图形,指出圆周角的定义。
1.注重启发式教学,引导学生通过观察、操作、推理等途径,发现圆周角的性质,提高学生的几何直观能力。
人教版九年级数学下册 圆。垂直于弦的直径,弧弦圆心角圆周角教案
![人教版九年级数学下册 圆。垂直于弦的直径,弧弦圆心角圆周角教案](https://img.taocdn.com/s3/m/86e5d4fbb8f3f90f76c66137ee06eff9aff84942.png)
24.1 圆的有关性质24.1.1 圆1.认识圆,理解圆的本质属性.2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.3.利用圆的有关概念进行简单的证明和计算.一、情境导入在我们日常生活中常常可以看到有许多圆形物体,例如茶碗的碗口、锅盖、太阳、车轮、射击用的靶子等都是圆的,怎样画出一个圆呢?木工师傅是用一根黑线来画圆的,给你一根细绳、一个图钉和一支铅笔,你能画出一个圆吗?二、合作探究探究点:圆的有关概念【类型一】圆的有关概念的理解有下列五个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆;⑤任意一条直径都是圆的对称轴.其中错误的说法个数是( ) A.1 B.2 C.3 D.4解析:根据圆、直径、弦、半圆等概念来判断.半径确定了,只能说明圆的大小确定了,但是位置没有确定;直径是弦,但弦不一定是直径;圆的对称轴是一条直线,每一条直径所在的直线是圆的对称轴,所以①③⑤的说法是错误的.故选C.方法总结:对称轴是直线,不能说成每条直径就是圆的对称轴;注意圆的对称轴有无数条.【类型二】圆中有关线段的证明如图所示,OA、OB是⊙O的半径,点C、D分别为OA、OB的中点,求证:AD=BC.解析:先挖掘隐含的“同圆的半径相等”、“公共角”两个条件,再探求证明△AOD ≌△BOC 的第三个条件,从而可证出△AOD ≌△BOC ,根据全等三角形对应边相等得出结论.证明:∵OA 、OB 是⊙O 的半径,∴OA =OB .∵点C 、D 分别为OA 、OB 的中点,∴OC =12OA ,OD =12OB ,∴OC =OD .又∵∠O =∠O ,∴△AOD ≌△BOC (SAS),∴BC =AD .方法总结:“同圆的半径相等”、“公共角”、“直径是半径的2倍”等都是圆中隐含的条件.在解决问题时,要充分利用图形的直观性挖掘出这些隐含的条件,从而使问题迎刃而解.【类型三】圆中有关角的计算如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于点E .已知AB=2DE ,∠E =18°,求∠AOC 的度数.解析:要求∠AOC 的度数,由图可知∠AOC =∠C +∠E ,故只需求出∠C 的度数,而由AB =2DE 知DE 与⊙O 的半径相等,从而想到连接OD 构造等腰△ODE 和等腰△OCD .解:连接OD ,∵AB 是⊙O 的直径,OC ,OD 是⊙O 的半径,AB =2DE ,∴OD =DE ,∴∠DOE =∠E =18°,∴∠ODC =∠DOE +∠E =36°.∵OC =OD ,∴∠C =∠ODC =36°,∠AOC =∠C +∠E =36°+18°=54°.三、板书设计教学过程中,强调学生自己动手画圆,了解圆形成的过程,同时讨论、交流各自发现的圆的有关的性质.24.1.2 垂直于弦的直径1.进一步认识圆是轴对称图形.2.能利用圆的轴对称性,通过探索、归纳、验证得出垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.3.认识垂径定理及推论在实际中的应用,会用添加辅助线的方法解决问题.一、情境导入你知道赵州桥吗?它又名“安济桥”,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代开皇大业年间(605~618)由著名将师李春建造的,是我国古代人民勤劳和智慧的结晶.它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径吗?二、合作探究探究点一:垂径定理【类型一】垂径定理的理解如图所示,⊙O 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的长是( )A .23cmB .32cmC .42cmD .43cm解析:∵直径AB ⊥DC ,CD =6,∴DP =3.连接OD ,∵P 是OB 的中点,设OP 为x ,则OD 为2x ,在Rt △DOP 中,根据勾股定理列方程32+x 2=(2x )2,解得x = 3.∴OD =23,∴AB =4 3.故选D.方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径造出直角三角形,然后应用勾股定理解决问题.【类型二】垂径定理的实际应用如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB ︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是________m.解析:本题考查垂径定理,∵OC ⊥AB ,AB =300m ,∴AD =150m.设半径为R ,根据勾股定理可列方程R 2=(R -50)2+1502,解得R =250.故答案为250.方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答.探究点二:垂径定理的推论【类型一】利用垂径定理的推论求角如图所示,⊙O 的弦AB 、AC 的夹角为50°,M 、N 分别是AB ︵、AC ︵的中点,则∠MON的度数是( )A .100°B .110°C .120°D .130°解析:已知M 、N 分别是AB ︵、AC ︵的中点,由“平分弧的直径垂直平分弧所对的弦”得OM ⊥AB 、ON ⊥AC ,所以∠AEO =∠AFO =90°,而∠BAC =50°,由四边形内角和定理得∠MON =360°-∠AEO -∠AFO -∠BAC =360°-90°-90°-50°=130°.故选D.【类型二】利用垂径定理的推论求边如图,点A 、B 是⊙O 上两点,AB =10cm ,点P 是⊙O 上的动点(与A 、B 不重合),连接AP 、BP ,过点O 分别作OE ⊥AP 于E ,OF ⊥PB 于F ,求EF 的长.解析:运用垂径定理先证出EF 是△ABP 的中位线,然后运用三角形中位线性质把要求的EF 与AB 建立关系,从而解决问题.解:在⊙O 中,∵OE ⊥AP ,OF ⊥PB ,∴AE =PE ,BF =PF ,∴EF 是△ABP 的中位线,∴EF =12AB =12×10=5cm. 方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.【类型三】动点问题如图,⊙O 的直径为10cm ,弦AB =8cm ,P 是弦AB 上的一个动点,求OP 的长度范围.解析:当点P 处于弦AB 的端点时,OP 最长,此时OP 为半径的长;当OP ⊥AB 时,OP 最短,利用垂径定理及勾股定理可求得此时OP 的长.解:作直径MN ⊥弦AB ,交AB 于点D ,由垂径定理,得AD =DB =12AB =4cm.又∵⊙O 的直径为10cm ,连接OA ,∴OA =5cm.在Rt △AOD 中,由勾股定理,得OD =OA 2-AD 2=3cm.∵垂线段最短,半径最长,∴OP 的长度范围是3≤OP ≤5(单位:cm).方法总结:解题的关键是明确OP 最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.三、板书设计教学过程中,强调垂径定理的得出跟圆的轴对称密切相关.在圆中求有关线段长时,可考虑垂径定理的应用.24.1.3 弧、弦、圆心角1.在实际操作中发现圆的旋转不变性.2.结合图形了解圆心角的概念,学会辨别圆心角.3.能发现圆心角、弦、弧之间的关系,并会初步运用这些关系解决有关的问题.一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究 探究点一:圆心角【类型一】圆心角的识别如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.探究点二:圆心角的性质【类型一】利用圆心角的性质求角如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.探究点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.三、板书设计教学过程中,强调弧、弦、圆心角及弦心距之间的关系,只要确定一组等量关系,其他三组也随之确定了.24.1.4 圆周角1.掌握圆周角定理及其推论并能应用其进行简单的计算与证明. 2.掌握圆内接多边形的有关概念及性质.3.在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法.一、情境导入你喜欢看足球比赛吗?你踢过足球吗?第十九届世界杯决赛于2014年在巴西举行,共有来自世界各地的32支球队参加赛事,共进行64场比赛决定冠军队伍.比赛中如图所示,甲队员在圆心O 处,乙队员在圆上C 处,丙队员带球突破防守到圆上C 处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究探究点一:圆周角定理如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,则∠D 等于( )A .25°B .30°C .35°D .50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC =130°,∠AOB =180°,∴∠BOC =50°,∴∠D =25°.故选A.探究点二:圆周角定理的推论【类型一】利用圆周角定理的推论求角如图,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B =( ) A .150° B .75° C .60° D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等”得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°,故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B.45° C .60° D .75°解析:由BD 是直径得∠BCD =90°.∵∠CBD =30°,∴∠BDC =60°.∵∠A 与∠BDC 是同弧所对的圆周角,∴∠A =∠BDC =60°.故选C.【类型二】利用圆周角定理的推论求线段长如图所示,点C 在以AB 为直径的⊙O 上,AB =10cm ,∠A =30°,则BC 的长为________.解析:由AB 为⊙O 的直径得∠ACB =90°.在Rt △ABC 中,因为∠A =30°,所以BC =12AB=12×10=5cm.【类型三】利用圆周角定理的推论进行有关证明如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C ,∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.探究点三:圆的内接四边形及性质【类型一】利用圆的内接四边形的性质进行计算如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=________度.解析:∵四边形ABCD是圆内接四边形,∴∠B+∠ADC=180°.∵四边形OABC为平行四边形,∴∠AOC=∠B.又由题意可知∠AOC=2∠ADC.∴∠ADC=180°÷3=60°.连接OD,可得AO=OD,CO=OD.∴∠OAD=∠ODA,∠OCD=∠ODC.∴∠OAD+∠OCD=∠ODA+∠ODC=∠D =60°.【类型二】利用圆的内接四边形的性质进行证明如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.解析:由已知易得∠E=∠BCE,由同角的补角相等,得∠A=∠BCE,则∠E=∠A.证明:∵BC=BE,∴∠E=∠BCE.∵四边形ABCD是圆内接四边形,∴∠A+∠DCB=180°.∵∠BCE+∠DCB=180°,∴∠A=∠BCE.∴∠A=∠E.∴AD=DE.∴△ADE是等腰三角形.方法总结:圆内接四边形对角互补.三、板书设计教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用.在圆中,利用圆周定理及其推论求相关的角度时,注意辅助线的添加及多种可能情况的考虑.。
人教版九年级数学圆的教案
![人教版九年级数学圆的教案](https://img.taocdn.com/s3/m/34caa3bbdc3383c4bb4cf7ec4afe04a1b071b0ef.png)
人教版九年级数学圆的教案人教版九年级数学圆的教案1一、教学目标知识技能:1.了解圆和圆的相关概念,知道圆实轴对称图形,理解并掌握垂直于弦的直径有哪些性质.2.了解弧、弦、圆心角、圆周角的定义,明确它们之间的联系.数学思考:1.在引入圆的定义过程中,明确与圆相关的定义,体会数学概念间的联系.2.在探究弧、弦、圆心角、圆周角之间的联系的过程中,培养学生的观察、总结及概括能力.问题解决:1.在明确垂直于弦的直径的性质后,能根据这个性质解决一些简单的实际问题.2.能根据弧、弦、圆心角、圆周角的相关性质解决一些简单的实际问题.情感态度:在引入圆的定义及运用相关性质解决实际问题的过程中,感悟数学源于生活又服务于生活.在探索过程中,形成实事求是的态度和勇于创新的精神.二、重难点分析教学重点:垂径定理及其推论;圆周角定理及其推论.垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法.所以垂径定理及其推论、圆周角定理及其推论是本小节的重点.对于垂径定理,可以结合圆的轴对称性和等腰三角形的轴对称性,引导学生去发现“思考”栏目图中相等的线段和弧,再利用叠合法推证出垂径定理.对于垂径定理的推论,可以按条件画出图形,让学生观察、思考,得出结论.要注意让学生区分它们的题设和结论,强调“弦不是直径”的条件.圆周角定理的证明,分三种情况进行讨论.第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决,转化的条件是添加以角的顶点为端点的直径为辅助线.这种由特殊到一般的思想方法,应当让学生掌握.教学难点:垂径定理及其推论;圆周角定理的证明.垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对于分类证明的必要性不易理解,所以这两部分内容是本节的难点.圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识.三、学习者学习特征分析圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识.四、教学过程(一)创设情境,引入新课圆是一种和谐、美丽的图形,圆形物体在生活中随处可见.在小学我们已经认识了圆这种基本的几何图形,并能计算圆的周长和面积.早在战国时期,《墨经》一书中就有关于“圆”的记载,原文为“圆,一中同长也”.这是给圆下的定义,意思是说圆上各点到圆心的距离都等于半径.现实生活中,路上行驶的各种车辆都是圆形的轮子,为什么车轮做成圆形的?为什么不做成椭圆形和四边形的呢?这一节我们就一起来学习圆的有关知识,并且来解决上述的疑问.(二)合作交流,探索新知1.观察图形,引入概念(1)圆是生活中常见的图形,许多物体都给我们以圆的形象.(多媒体图片引入)(2)观察画圆的过程,你能由此说出圆的形成过程吗?(3)圆的概念:让学生根据上面所找出的特点,描述什么样的图形是圆.(学生可以在讨论、交流的基础上自由发言;绝大部分学生能够比较准确的描述出圆的.定义,部分学生没有说准确,在其他学生带动下也能够说出)在学生充分交流的基础上得到圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.(多媒体动画引入)(4)圆的表示方法以点O为圆心的圆,记作“⊙O”,读作“圆O”.(5)从画圆的过程可以看出:①圆上各点到定点(圆心O)的距离都等于定长(半径r);②到定点的距离等于定长的点都在同一个圆上.因此,圆心为O、半径为r的圆可以看成是所有到定点O 的距离等于定长r 的点的集合.(把一个几何图形看成是满足某种条件的点的集合的思想,在几何中十分重要,因为这实际上就是关于轨迹的概念.圆,实际上是“到定点的距离等于定长的点”的轨迹.事实上,①保证了图形上点的纯粹性,即不杂;②保证了图形的完备性,即没有漏掉满足这种条件的点.①②同时符合,保证了图形上的点“不杂不漏”.)(6)由车轮为什么是圆形,让学生感受圆在生活中的重要性.问题1,车轮为什么做成圆形?问题2,如果做成正方形会有什么结果?(通过车轮实例,首先让学生感受圆是生活中大量存在的图形.教学时给学生展示正方形车轮在行走时存在的问题,使学生感受圆形的车轮运转起来最平稳.)把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.2.与圆有关的概念(1)连接圆上任意两点的线段(如线段AC)叫做弦.(2)经过圆心的弦(如图中的)叫做直径.(3)圆上任意两点间的部分叫做圆弧,简称弧.小于半圆的弧(如图中的ABC,)叫做优弧.(4)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.(5)能够重合的两个圆叫做等圆.(容易看出半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.) 叫做劣弧;大于半圆的弧(用三个字母表示,如图中的(6)在同圆或等圆中,能够互相重合的弧叫做等弧.(对于和圆有关的这些概念,应让学生借助图形进行理解,并弄清楚它们之间的联系和区别.例如,直径是弦,但弦不一定是直径.半圆是弧,但弧不一定是半圆;半圆即不是劣弧,也不是优弧.)3.垂直于弦的直径(1)创设情景引入新课问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m.你能求出赵州桥主桥拱的半径吗?)(2)圆的对称性的探究①活动:用纸剪一个圆,沿着圆的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(学生可能会找到1条,2条,3条?教师不要过早地去评判,应该把机会留给学生,让他们在互相交流中,认识到圆的对称轴有无数多条,要鼓励学生表达自己的想法)②得到结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.(3)垂径定理及其逆定理①垂径定理的探究如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)圆是轴对称图形吗?如果是,它的对称轴是什么?? (2)你能发现图中有哪些相等的线段和弧吗?为什么?(旨在通过这样复合图形的轴对称性探索垂径定理,教学时应鼓励学生探索方式的多样性.引导学生理解,证明垂径定理的基本思路是:先构造等腰三角形,由垂直于弦得出平分弦;然后将直径看做圆的对称轴,利用轴对称图形对应元素相等的性质得出平分弧的结论)(多媒体动画引入)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.②垂径定理的逆定理的探究(仿照前面的证明过程,鼓励学生独立探究,然后通过同学间的交流得出结论)垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③解决求赵州桥拱半径的问题4.弧,弦,圆心角(1)通过实验探索圆的另一个特性如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现哪些等量关系?为什么?(多媒体图片引入)(教科书展示了一种证明方法——叠合法,教学时要鼓励学生用多种方法探索图形的性质,学生的想法未必完善,但只要有合理的成分就应给予肯定和鼓励.)结论:在同圆或等圆中,相等的圆心角所的弧相等,所对的弦也相等.(2)对(1)中结论的逆命题的探究在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角_____,所对的弦_____;在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角______,所对的弧_____.(教学时仍要鼓励学生用多种方法进行探索)(3)应用新知,体验成功例. 如图,在⊙O中,= ,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.5.圆周角(1)创设情境引入概念如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物,同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙,丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?概念:顶点在圆上,并且两边都与圆相交的角叫做圆周角.(意在引出同弧所对的圆心角与圆周角,同弧所对的圆周角之间的大小关系.教学时要引导学生分析圆周角有两个特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦.)(2)圆的相关性质①动手实践活动一:分别量一下所对的两个圆周角的度数,比较一下,再变动点C在圆周上的位置,圆周角的度数有没有变化?你能发现什么规律?活动二:再分别量出图中所对的圆周角和圆心角的度数,比较一下,你有什么发现?(利用一些计算机软件,可以很方便的度量圆周角,圆心角,有条件的话可以试一试)得到结论:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.②为了进一步研究上面发现的结论,在⊙O任取一个圆周角∠BAC,将圆对折,使折痕经过圆心O和∠BAC的顶点A.由于A的位置的取法可能不同,这时折痕可能会:在圆周角的一条边上;在圆周角的内部;在圆周角的外部.(学生解决这一问题是有一定难度的,应给学生留有时间和空间,让他们进行思考.引导学生观察后两种情况,让学生思考:这两种情况能否转化为第一种情况?如何转化?当解决一个问题有困难时,我们可以首先考虑其特殊情形,然后再设法解决一般问题.这是解决问题时常用的策略.)由此得到圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.进一步我们还可以得到下面的推论:半径(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.由圆周角定理可知:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.(3)圆内接多边形的定义及其相关性质① 定义:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②利用圆周角定理,我们的得到关于圆内接四边形的一个性质:圆内接四边形的对角互补.(三)应用新知,体验成功利用资源库中的“典型例题”进行教学.(四)课堂小结,体验收获(PPT显示)这堂课你学会了哪些知识?有何体会?(学生小结)1.圆的有关概念;2.垂径定理及其逆定理;3.弧,弦,圆心角的相关性质;4.圆周角的概念及相关性质;(五)拓展延伸,布置作业利用资源库中或手头的相关材料进行布置.五、学习评价:(一)选择题1.如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,?错误的是( )(A)CE=DE. (B). (C)∠BAC=∠BAD . (D)AC>AD.1题图 2题图3题图2.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,?则下列结论中不正确的是()(A)AB⊥CD . (B)∠AOB=4∠ACD. (C)3.如图,⊙O中,如果=2,那么( ) . (D)PO=PD.(A)AB=AC. (B)AB=AC. (C)AB<2ac. ab="">2AC.4.如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC 等于( )(A)140°. (B)110°.(C)120°.(D)130°.4题图 5题图 6题图5.如图,∠1、∠2、∠3、∠4的大小关系是( )(A)∠4<∠1<∠2<∠3 . (B)∠4<∠1=∠3<∠2.(C)∠4<∠1<∠3∠2 . (D)∠4<∠1<∠3=∠2.6.如图,AD是⊙O的直径,AC是弦,OB⊥AD,若OB=5,且∠CAD=30°,则BC等于()人教版九年级数学圆的教案2一. 本周教学内容:圆三圆和圆的位置关系[学习目标]1. 掌握圆和圆的各种位置关系的概念及判定方法;2. 理解并掌握两圆相切的性质定理;3. 掌握相交两圆的性质定理,并完成相关的计算和证明;4. 理解圆的内、外公切线概念,会计算内、外公切线长及两公切线夹角;并能根据公切线的条数确定两圆的位置关系;5. 通过两圆位置关系的学习,进一步理解事物之间是相互联系和运动变化的观点,学会在变化中寻找规律,培养综合运用知识的能力。
九年级数学下册《圆周角定理及其推论》教案、教学设计
![九年级数学下册《圆周角定理及其推论》教案、教学设计](https://img.taocdn.com/s3/m/44768a0aac02de80d4d8d15abe23482fb4da02c7.png)
2.在解决综合性的几何问题时,缺乏系统的解题思路和方法。
3.部分学生对几何图形的观察和分析能力较弱,影响了解题效果。
针对以上情况,教师应关注以下几点:
1.注重启发引导,帮助学生建立圆周角定理的知识体系,提高学生的理解能力。
2.通过典型例题的讲解和练习,培养学生分析问题、解决问题的能力。
3.学生独立完成练习题,教师巡回辅导,解答学生疑问。
4.选取部分学生的作业进行展示和点评,表扬优秀作业,指出不足之处,并提出改进建议。
(五)总结归纳
1.引导学生回顾本节课所学内容,总结圆周角定理及其推论的核心要点。
2.帮助学生梳理解题思路和方法,强调几何图形在解题过程中的作用。
3.鼓励学生提出本节课的收获和疑问,组织全班同学进行交流讨论。
2.鼓励小组成员积极发表见解,共同探讨解决问题的策略和方法。
3.教师巡回指导,针对每个小组的讨论情况进行点评,引导学生深入思考。
4.各小组汇报讨论成果,分享解题心得,促进全班同学共同提高。
(四)课堂练习
1.设计具有梯度性的练习题,让学生分层练习,巩固所学知识。
2.练习题涵盖圆周角定理及其推论的应用,包括基础题、提高题和拓展题。
-采用多元化的评价方式,如课堂问答、小组讨论、课后作业和阶段测试,全面评估学生的学习效果。
-关注学生在解题过程中的思维过程,鼓励创新和灵活运用知识。
-定期对学生的学习情况进行反馈,指导学生改进学习方法,提高学习效率。
四、教学内容与过程
(一)导入新课
1.复习圆的基本概念和性质,如圆心、半径、直径等,为学生学习圆周角定理做好铺垫。
-总结反馈:引导学生总结学习收获,对易错点进行梳理和讲解,巩固学习成果。
九年级数学圆周角第一课时教案
![九年级数学圆周角第一课时教案](https://img.taocdn.com/s3/m/753c2372f011f18583d049649b6648d7c1c7089b.png)
九年级数学圆周角第一课时教案一、教学目标1. 知识与技能:理解圆周角的概念,掌握圆周角定理及其推论,并能运用其解决一些简单的问题。
2. 过程与方法:通过观察、操作、推理、交流等活动,培养学生的合情推理能力以及初步的演绎推理能力。
同时,通过解决圆周角问题,培养学生用动态的观点来分析问题。
3. 情感态度与价值观:在探索圆周角的过程中,感受数学的严谨性和图形的对称美;在与同学的合作中体验数学的乐趣,激发学生的学习兴趣,增强学生学好数学的信心。
二、教学重点和难点重点:圆周角定理的证明及初步应用。
难点:圆周角定理的理解与证明。
三、教学过程1. 导入:通过实物展示和生活中的实例,引出圆周角的概念。
比如,展示一个时钟的表盘,指出其上的圆周角。
2. 新知探究:首先,引导学生观察圆周角与对应的圆心角,探究它们之间的关系。
然后,通过推理和证明,得出圆周角定理及其推论。
3. 课堂活动:设计一些与圆周角相关的问题,让学生自行解答或小组讨论。
例如,让学生自己画图、分析并证明一些特殊的圆周角定理推论。
4. 知识运用:选取一些具有代表性的例题,引导学生分析并解答。
通过实例,让学生进一步理解并掌握圆周角定理的应用。
5. 课堂小结:总结本节课的主要内容,强调圆周角定理的重要性,以及在解题过程中需要注意的问题。
6. 布置作业:根据学生的学习情况,布置适当的作业,巩固所学知识。
同时,要求学生预习下一节内容,为下节课的学习做好准备。
四、教学方法和手段本节课主要采用直观演示法、讨论法、讲解法等教学方法,通过多媒体课件展示图形和动画,帮助学生更好地理解圆周角的概念和定理。
同时,采用小组讨论的方式,引导学生自主探究和合作学习,提高他们的数学思维能力。
五、课堂练习、作业与评价方式1. 课堂练习:设计一些与圆周角相关的问题,让学生在课堂上思考并回答。
教师可以根据学生的答题情况,及时调整教学策略。
2. 作业:布置一些具有代表性的习题,要求学生独立完成。
九年级数学圆周角教案
![九年级数学圆周角教案](https://img.taocdn.com/s3/m/631cf0f2951ea76e58fafab069dc5022aaea46be.png)
word格式-可编辑-感谢下载支持九年级数学圆周角教案(1)学习目标:1、理解圆周角的概念。
2、经历探索圆周角的有关性质的过程,并能运用相关性质解决有关问题。
3、体会分类、转化等数学思想方法,学会数学地思考问题。
学习重点:理解圆周角的概念及其相关性质,并能运用相关性质解决有关问题。
学习难点:体会分类、转化等数学思想方法,学会数学地思考问题.学习过程:一、认识圆周角。
1、还记的什么是圆心角?如图,∠BAC是圆心角吗?归纳得出结论:顶点在_______,并且两边________________________的角叫做圆周角。
2、指出下图哪些是圆周角。
二、探索圆周角的有关性质。
1、如图1,∠BOC、∠BAC有什么共同的地方,猜想他们的大小有什么关系?请你量一量验证一下。
2、你会证明吗?设BC所对的圆周角为∠BAC,圆心O与∠BAC有以下3种位置关系?(1)圆心O在∠BAC的一边上,(2)圆心O在∠BAC内,(3)圆心O在∠BAC外。
试通过三种情况证明你的猜想.得出结论:一条弧所对的圆周角等于它所对的圆心角的_______。
三、巩固练习。
练习册第28页第4、5、6、7、8、10、11、16、19、20、21题四、小结:1、顶点在_______,并且两边________________________的角叫做圆周角。
2、一条弧所对的圆周角等于它所对的圆心角的_______。
五、作业:六、反思:九年级数学圆周角教案(2)学习目标:1、掌握圆周角定理的推论,并会熟练运用这些知识进行有关的计算和证明;2、进一步培养观察、分析及解决问题的能力及逻辑推理能力;3、培养添加辅助线的能力和思维的广阔性。
学习重点:圆周角定理的推论及其推论的应用。
学习难点:熟练应用圆周角定理及其推论以及辅助线的添加。
学习过程:一、课前复习1、什么叫做圆周角?它的定理是什么?2、填空:(1)如图,∠BOC=50,∠BAC=_______。
(2)如图,∠BAC=120,∠BOC=_______。
九年级下册3.1.2圆周角1教案
![九年级下册3.1.2圆周角1教案](https://img.taocdn.com/s3/m/5c893b06da38376bae1faeb1.png)
3.1.2 圆周角教学 过 程(一)创设学习情境问题1:画一个圆,以B 、C 为弧的端点能画多少个圆周角?它们有什么关系?问题2:在⊙O 中,若 =,能否得到∠C=∠G 呢?根据什么?反过来,若∠C=∠G ,是否得到=呢?(二)分析、研究、交流、归纳同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等. 问题1: “同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)问题2:(1)一个特殊的圆弧——半圆,它所对的圆周角是什么样的角?如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?学生通过以上两个问题的解决,在教师引导下得推论定理: 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.(三)应用、反思例1: 如图,已知在⊙O 中,直径AB 为10厘米,弦AC 为6厘米,∠ACB 的平分线交⊙O 于D ; 求BC ,AD 和BD 的长.让学生分析、研究,并充分交流.注意:①问题解决,只要构造圆心角进行过渡即可;②若 =,则∠C=∠G ;但反之不成立.同弧说明是“同一个圆”; 等弧说明是“在同圆或等圆中”教学过程说明:充分利用直径所对的圆周角为直角,解直角三角形.例2:如图,AD 是△ABC 的高,AE 是△ABC 的外接圆直径.求证:AB·AC =AE·AD .交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).教师引导学生思考:(1)此题还有其它证法吗? (2)比较以上证法的优缺点.变式练习1:如图,△ABC 内接于⊙O ,∠1=∠2.求证:AB·AC =AE·AD .指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形. (四)小结(指导学生共同小结)知识:本节课主要学习了圆周角定理,该定理在今后的学习中应用十分广泛,应熟练掌握. 能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握. (五)作业学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.在解圆的有关问题时, 常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.。
《圆周角》公开课教案 (省一等奖)2022年人教版
![《圆周角》公开课教案 (省一等奖)2022年人教版](https://img.taocdn.com/s3/m/b10befb733687e21ae45a931.png)
圆周角【知识与技能】理解圆周角的概念.探索圆周角与同弧所对的圆心角之间的关系,并会用圆周角定理及推论进行有关计算和证明.【过程与方法】经历探索圆周角定理的过程,初步体会分类讨论的数学思想,渗透解决不确定的探索型问题的思想和方法,提高学生的发散思维能力.【情感态度】通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验.【教学重点】圆周角定理及其推论的探究与应用.【教学难点】圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用.一、情境导入,初步认识如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物,同学甲站在圆心O的位置.同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角〔∠AOB和∠ACB〕有什么关系?如果同学丙、丁分别站在其他靠墙的位置D 和E,他们的视角〔∠ADB和∠AEB〕和同学乙的视角相同吗?[相同,2∠ACB=2∠AEB=2∠ADB=∠AOB]【教学说明】教师出示海洋馆图片,引导学生思考,引出课题,学生观察图形、分析,初步感知角的特征.二、思考探究,获取新知探究1 观察以下各图,图〔1〕中∠APB的顶点P在圆心O的位置,此时∠APB叫做圆心角,这是我们上节所学的内容.图〔2〕中∠APB的顶点P在⊙O上,角的两边都与⊙O相交,这样的角叫圆周角.请同学们分析〔3〕、〔4〕、〔5〕、〔6〕是圆心角还是圆周角. 【教学说明】设计这样的一个判断角的问题,是再次强调圆周角的定义,让学生深刻体会定义中的两个条件缺一不可.【归纳结论】圆周角必须具备两个条件:①顶点在圆上;②角的两边都与圆相交.二者缺一不可.探究2如图,〔1〕指出⊙O中所有的圆心角与圆周角,并指出这些角所对的是哪一条弧?〔2〕量一量∠D、∠C、∠AOB的度数,看看它们之间有什么样的关系?〔3〕改变动点C在圆周上的位置,看看圆周角的度数有没有变化?你发现其中有规律吗?假设有规律,请用语言表达.解:〔1〕圆心角有:∠AOB圆周角有:∠C、∠D,它们所对的都是AB〔2〕∠C=∠D=1/2∠AOB.〔3〕改变动点C在圆周上的位置,这些圆周角的度数没有变化,并且圆周角的度数恰好等于同弧所对圆心角度数的一半.【教学说明】教师利用几何画板测量角的大小,移动点C,让学生观察当C点位置发生改变过程中,图中有哪些不变,从而交流总结,找出规律,同时引导学生观察圆心与圆周角的位置关系,为定理分情况证明作铺垫.为了进一步研究上面发现的结论,如图,在⊙O上任取一个圆周角∠ACB,将圆对折,使折痕经过圆心O和∠ACB的顶点C.由于点C的位置的取法可能不同,这时折痕可能会:〔1〕在圆周角的一条边上;〔2〕在圆周角的内部;〔3〕在圆周角的外部.:在⊙O中,AB所对的圆周角是∠ACB,圆心角是∠AOB,求证:∠ACB=1/2∠AOB. [提示分析:我们可按上面三种图形、三种情况进行证明.]如图〔1〕,圆心O在∠ACB的边上,∵OB=OC,∴∠B=∠C,而∠BOA=∠B+∠C,∴∠B=∠C=1/2∠AOB.图〔2〕〔3〕的证明方法与图〔1〕不同,但可以转化成〔1〕的根本图形进行证明,证明过程请学生们讨论完成.得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.注意:①定理应用的条件是“同圆或等圆中〞,而且必须是“同弧或等弧〞,如以以下图〔1〕.②假设将定理中的“同弧或等弧〞改为“同弦或等弦〞结论就不成立了.因为一条弦所对的圆周角有两种情况,它们一般不相等〔而是互补〕.如以以下图〔2〕.【教学说明】在定理的证明过程中,要使学生明确,要不要分情况来证明.假设要分情况证明,必须要明白按什么标准来分情况,然后针对各种不同的情况逐个进行证明.在证明过程中,第〔1〕种情况是特殊情况,是比拟容易证明的,经过添加直径这条辅助线将〔2〕、〔3〕种情况转化为第〔1〕种情况,表达由一般到特殊的思想方法。
九年级数学教案:圆周角(全3课时)
![九年级数学教案:圆周角(全3课时)](https://img.taocdn.com/s3/m/c49a1e3fae45b307e87101f69e3143323868f540.png)
课时NO: 主备人:审核人用案时间:年月日星期教学课题 2.4 圆周角(1))教学目标1.了解圆周角的概念.2.经历圆周角与圆心角关系的探索过程,培养动手操作、自主探索和合作交流的能力.3.能用圆周角与圆心角的关系进行简单的说理,掌握说理的基本方法,从而提高数学素养.教学重点⑴圆周角、圆心角的概念、性质及其应用。
⑵如何应用圆心角、圆周角的关系解决问题。
教学难点如何应用圆心角、圆周角的关系解决问题教学方法教具准备教学过程个案补充一.预学作业:1.阅读课本,回答下列问题:(1). 叫做圆周角;叫做圆心角。
圆心角的度数等于。
(2).在同圆或等圆中,同弧或等弧所对的相等,都等于。
(3). 同一段弧所对的圆周角是圆心角的。
2、预学质疑:通过对本节课的预习你还有哪有疑惑?3.预学检测:(1)、图中那些角是圆周角?(2)、如图:图中是圆周角,是圆周角,它们都对着弧。
(3)、画出图中弧BC所对的圆心角,画出图中弧BC所对的圆周角(圆周角不少于三个)(4)、如图:在⊙O中,∠BOC=50°,则∠A= 。
(5)、如图:弦AB分⊙O为1:4两部分,则弦AB所对的圆周角的度数是二.探究交流问题一:如何运用圆周角与圆心角的关系解决问题?1.如图:点A、B、C在⊙O上,点D在⊙O内,点A与点D在点B、C 所在直线的同侧。
比较∠BAC与∠BDC的大小,并说明理由。
2.如图,AB是圆O的直径,弦CD与AB相交与点E,∠ACD=60°,∠CAD=50°求∠CEB的度数。
三.交流展示1.圆周角既要顶点在圆周上,又要两边于圆相交,两个条件缺一不可。
2、注意圆周角和圆心角的区别。
圆心于圆周角的关系,有三种:圆心在角的一边上,圆心在角的内部,圆心在角的外部。
运用圆周角性质的前提是“在同圆或等圆中”3.如图:A、B、C、D四点都在⊙O上,∠BOD=80°。
则∠BAD= ,∠BCD= 。
4、如图:点A、B、C在⊙O上,∠ABC的邻补角∠ABD=n°,则么∠AOC= .5.如图:⊙O中,弦AB、CD的延长线交于E外一点P,∠AOC=100°。
九年级数学下册《圆周角和圆心角的关系》教案、教学设计
![九年级数学下册《圆周角和圆心角的关系》教案、教学设计](https://img.taocdn.com/s3/m/e8e6e68f29ea81c758f5f61fb7360b4c2e3f2aed.png)
在本章节的教学过程中,学生将通过以下过程与方法提升自身能力:
1.通过观察、猜想、验证、总结等环节,培养学生的逻辑思维能力。
2.以小组合作的形式,进行讨论、交流、分享,提高学生的合作意识和沟通能力。
3.运用数形结合的思想,将抽象的数学问题具体化,培养学生的空间想象能力。
4.引导学生运用已学知识解决新问题,提高学生的知识迁移能力和问题解决能力。
2.定理推导:教师通过几何画板等工具,动态展示圆周角和圆心角之间的关系,引导学生发现圆周角定理。
3.例题解析:教师针对圆周角定理,给出典型例题,讲解解题思路和方法。
4.知识拓展:教师介绍圆周角和圆心角在其他学科领域的应用,如圆周率在物理学、天文学等方面的运用。
(三)学生小组讨论,500字
在学生小组讨论环节,教师组织学生进行以下活动:
1.基础题:针对圆周角和圆心角的基本概念,设计一些填空题、选择题,让学生巩固所学。
2.提高题:设计一些需要运用圆周角定理的题目,让学生在解决问题中提高自己的能力。
3.实践题:结合生活实际,设计一些应用题,让学生将所学知识运用到实际问题中。
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下活动:
4.实践应用,巩固提高
(1)教师设计具有梯度的问题,让学生运用所学知识解决,巩固所学。
(2)学生进行课堂练习,教师巡回指导,及时发现问题,进行针对性辅导。
(3)课后作业布置,注重知识拓展和实际应用,提高学生的解决问题的能力。
5.总结反思,评价反馈
(1)教师引导学生总结本节课所学内容,强化重点知识。
(2)学生自我评价,反思学习过程中的优点和不足。
(一)教学重难点
1.重点:圆周角和圆心角的概念及其关系,圆周角定理及其推论。
最新九年级数学圆的教案5篇
![最新九年级数学圆的教案5篇](https://img.taocdn.com/s3/m/557e54c1afaad1f34693daef5ef7ba0d4a736d8d.png)
最新九年级数学圆的教案5篇进一步知道圆及有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系,是每个老师的责任,今天作者在这里整理了一些九年级数学圆的教案5篇最新范文,我们一起来看看吧!九年级数学圆的教案1定理推论: (1)圆弧或等弧所对的圆周角相等;相等的`圆周角所对的弧也相等。
(2)半圆(或直径)所对的圆周角是直角; 的圆周角所对的弦是直径。
(3)如果三角形一边上中线等于这边的一半,那么这个三角形是直角三角形。
(4)圆周角的度数等于它所对的弧的度数的一半。
说明:①圆周角定理给出了圆弧所对的圆周角与圆心角之间关系,从而可把圆周角、弧、弦、弦心距联系起来。
②推论1是证明两角相等,两线段相等,两弧相等的根据。
③推论2指出一条常用的辅助线,连直径上圆周角构成直角。
九年级数学圆的教案21、教材分析(1)知识结构(2)重点、难点分析重点:①点和圆的三种位置关系,圆的有关概念,由于它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深入知道,二为今后立体几何、解析几何的学习作重要的准备.难点:①圆的集合定义,学生不容易知道为何必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.2、教法建议本节内容需要4课时第一课时:圆的定义和点和圆的位置关系(1)让学生自己画圆,自己给圆下定义,进行交换,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));(2)点和圆的位置关系,让学生自己视察、分类、探究,在“数形”的进程中,学习新知识.第二课时:圆的有关概念(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.第三、四课时:点的轨迹条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的知道,一样学校可让学生动手画图,使学生在动手、动脑、视察、摸索、知道的进程中,逐渐从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵守学生是学习的主体这一原则.第一课时:圆(一)教学目标:1、知道圆的描写性定义,了解用集合的观点对圆的定义;2、知道点和圆的位置关系和肯定圆的条件;3、培养学生通过动手实践发觉问题的能力;4、渗透“视察→分析→归纳→概括”的数学思想方法.教学重点:点和圆的关系教学难点:以点的集合定义圆所具有的两个条件教学方法:自主探讨式教学进程设计(总框架):一、创设情境,展开学习活动1、让学生画圆、描写、交换,得出圆的第一定义:定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.2、让学生视察、摸索、交换,并在老师的指导下,得出圆的第二定义.从旧知识中发觉新问题视察:共性:这些点到O点的距离相等想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?(1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);(2) 到定点距离等于定长的点都在圆上.定义2:圆是到定点距离等于定长的点的集合.3、点和圆的位置关系问题三:点和圆的位置关系怎样?(学生自主完成得出结论)如果圆的半径为r,点到圆心的距离为d,则:点在圆上d=r;点在圆内d点在圆外d r.“数”“形”二、例题分析,变式练习练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A 在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.已知(略)求证(略)分析:四边形ABCD是矩形A=OC,OB=OD;AC=BDOA=OC=OB=OD要证A、B、C、D 4个点在以O为圆心的圆上证明:∵四边形ABCD是矩形∴ OA=OC,OB=OD;AC=BD∴ OA=OC=OB=OD∴ A、B、C、D 4个点在以O为圆心,OA为半径的圆上.符号“”的运用(要求学生了解)证明:四边形ABCD是矩形OA=OC=OB=ODA、B、C、D 4个点在以O为圆心,OA为半径的圆上.小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)练习1 求证:菱形各边的中点在同一个圆上.(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)练习2 设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点A的距离等于2cm的点的集合;(2)和点B的距离等于2cm的点的集合;(3)和点A,B的距离都等于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)三、课堂小结问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;(2)在用点的集合定义圆时,必须注意应具有两个条件,二者缺一不可;(3)重视对数学能力的培养四、作业 82页2、3、4.九年级数学圆的教案3教学目标1、使学生知道弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判定真假命题。
2021版九年级数学下册27.1圆的认识27.1.3圆周角导学案新版人教版
![2021版九年级数学下册27.1圆的认识27.1.3圆周角导学案新版人教版](https://img.taocdn.com/s3/m/d14806fdb4daa58da1114a38.png)
案新版人教版年级九学科数学课型新授授课人学习内容圆的认识--圆周角1.知道什么样的角是圆周角学习目标学习重点能应用圆心角和圆周角的关系、直径所对的圆周角的特征解决相关问题。
学习难点对圆心角和圆周角关系的探索,分类思想的应用。
导学过程复备栏【温故互查】1.圆是什么对称图形?2.在同圆或等圆中,圆心角,弧,弦有怎样的关系?3.垂径定理的内容是什么?【设问导读】1、圆周角的概念如下图:观察各个圆中的角有何特点?圆周角:顶点在圆,并且角的两边与圆的角叫做圆周角。
2、圆周角与圆心角的区别:如图:指出圆周角、圆心角3.半圆或直径所对的圆周角等于多少度?而90 的圆周角所对的弦是否是直径?如图,线段AB是⊙O的直径,点C是⊙O上任意一点(除点A、B),那么,∠ACB就是直径AB所对的圆周角.想想看,∠ACB会是怎么样的角?为什么呢?结论:半圆或直径所对的圆周角都相等,都等于°(角)。
反之过来也成立,即90°的圆周角所对的弦是圆的,所对的弧是4.探究同一条弧所对的圆周角和圆心角的关系(1)分别量一量图中弧AB所对的两个圆周角的度数比较一下. 再变动点C在圆周上的位置,看看圆周角的度数有没有变化. 你发现其中有什么规律吗?结论:圆周角的度数变化(2)分别量出图中弧AB所对的圆周角和圆心角的度数,比较一下,你发现什么?我们可以发现,圆周角的度数没有变化. 并且圆周角的度数恰好为同弧所对的的度数的。
由上述操作可以猜想:在一个圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心角的一半。
为了验证这个猜想,如图所示,可将圆对折,使折痕经过圆心O和圆周角的顶点C,这时可能出现三种情况:(1)折痕是圆周角的一条边,(2)折痕在圆周角的内部,(3)折痕在圆周角的外部。
证明过程见教材5、多边形的外接圆与圆的内接多边形【自学检测】1、找出右图中相等的圆周角。
2、在同一个圆中,一条弧所对的圆心角和圆周角分别为(2x +100)°和 (5x -30)°,求这条弧所对的圆心角和圆周角的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆周角》
教学目标:
(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.
教学重点:圆周角的概念和圆周角定理
教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.
教学过程:
(一)诊断补偿:
1。
圆心角的概念
2。
圆心角、弧、弦和弦心距间关系
(二)探究释疑:回忆圆心角,引出圆周角;观察下图,找出圆周角
B
A
C
O
思考:
①请同学考虑一条弦所对的圆周角有几个;
②画出直径所对的圆周角,并试着找出直径所对的圆周角的特殊性结论:
①半圆或直径所对的圆周角都相等,都等于90º(直角)
②90º的圆周角所对的弦是圆的直径
二、讲解等弧圆周角的关系以及同弧(等弧)所圆周角与圆心角之间的关系。
请同学们各自画一条弧的圆心角和圆周角,分别测量两种角的度数,并找出两种角的关系。
(分三种情况给以说明,得出结论)
结论:
在同一圆内,同弧(等弧)所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等。
三、精讲提炼:
例2、已知AB为⊙O的直径,C为⊙O外一点,BC交⊙O于E,AC交⊙O于D,∠DOE=60º,求∠C的度数。
A
B
O
D
E
C
四题组训练:
如图,CD是⊙O的直径,CD=22,∠BAC=45°,求BC的长度。
五交流评价:
知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.
思想方法:一种方法和一种思想:
在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.。