材料成形原理123章
材料成型原理
材料成型原理
材料成型原理是指通过加工工艺将原始材料经过一定的变形、组合或者结合等方式,使其达到预期的形状、结构和性能的过程。
该原理涉及多种加工方式,如挤压、铸造、锻造、注塑等,每种方式都有自己独特的原理和应用领域。
挤压是一种常用的材料成型方式,通过将加热至熔融状态的材料通过模具的压力,使其在一定形状的模具孔中流动,并成型为所需的形状。
这种方式适用于制造管材、线材等长条状零件。
挤压的成型原理是利用材料在受到压力作用时的流动性,使其顺应模具的形状,并形成所需的截面形状。
铸造是一种将液态材料倒入铸型中形成所需形状的成型方式。
该方式适用于制造各种形状的零件。
铸造的成型原理是利用熔融态的材料具有流动性,通过将熔融金属或合金倒入模具中并冷却凝固,得到所需的形状。
锻造是一种通过加热金属材料至一定温度后施加压力使其塑性变形、改变原始形状、提高性能的成型方式。
该方式适用于制造各种形状的零件。
锻造的成型原理是通过应用压力改变材料的组织结构,使其粒子得到重新排列并获得更好的力学性能。
注塑是一种将熔融材料注入模具中形成所需形状的成型方式。
该方式适用于制造复杂形状的零件。
注塑的成型原理是将熔融态的材料注射进模具中,并通过冷却凝固,得到所需的形状。
以上是几种常见的材料成型方式及其成型原理,每种方式都有
其独特的应用领域和适用对象。
工程师们可以根据具体需求选择不同的成型方式,以实现材料的预期形状、结构和性能。
材料成型原理
1、什么是缩孔和缩松?请分别简述这两种铸造缺陷产生的条件和基本原因?
答:铸造合金在凝固过程中,由于液态收缩和凝固收缩的产生,往往在铸件最后凝固的部位出现孔洞,称为缩孔;其中尺寸细小而且分散的孔洞称为分散性缩孔,简称缩松。
缩孔产生的条件是:铸件由表及里逐层凝固;其产生的基本原因是:合金的液态收缩和凝固收缩值之和大于固态收缩值。
缩松产生的条件是:合金的结晶温度范围较宽,倾向于体积凝固。
其产生的基本原因是:合金的液态收缩和凝固收缩值之和大于固态收缩值。
2.简述提高金属塑性的主要途径。
答:一、提高材料的成分和组织的均匀性
二、合理选择变形温度和变形速度
三、选择三向受压较强的变形方式
四、减少变形的不均匀性。
材料成型原理
材料成型原理材料成型是制造业中一项非常重要的工艺过程,它涉及到原材料的加工和成型,对于产品的质量和性能起着至关重要的作用。
在材料成型过程中,需要考虑材料的性质、成型工艺、设备和模具等多个因素,以确保最终产品能够满足设计要求。
首先,材料成型的原理是基于材料的塑性变形特性。
大多数材料在一定条件下都具有塑性,即可以在外力作用下发生形变而不破坏。
利用这一特性,可以通过加工成型将材料变成所需形状。
塑性变形的原理是在外力作用下,材料分子间发生相对位移,从而形成新的结构,使材料发生形变。
这种形变可以通过压力、拉伸、弯曲等方式来实现,从而得到所需的产品形状。
其次,材料成型的原理还涉及到材料的流变性能。
流变性能是材料在加工过程中的变形行为和变形特性,包括材料的屈服点、流变应力、流变指数等参数。
了解材料的流变性能可以帮助选择合适的成型工艺和设备,并且可以预测材料在成型过程中可能出现的问题,从而采取相应的措施进行调整和优化。
另外,材料成型的原理还与成型工艺和设备密切相关。
不同的成型工艺和设备对于材料的成型过程有着不同的影响。
例如,压铸、注塑、挤压等成型工艺都有其独特的特点和适用范围,需要根据产品的要求和材料的性质选择合适的成型工艺。
同时,成型设备的性能和精度也会直接影响到产品的质量和成型效率。
最后,材料成型的原理还包括模具设计和制造。
模具是实现材料成型的重要工具,它的设计和制造质量直接关系到产品的成型质量和精度。
模具的设计需要考虑材料的流动性、收缩率、成型温度等因素,以确保产品能够满足设计要求。
同时,模具的制造精度和表面处理也对产品的外观和尺寸精度有着重要影响。
综上所述,材料成型的原理涉及到材料的塑性变形特性、流变性能、成型工艺和设备以及模具设计和制造等多个方面。
只有充分理解和把握这些原理,才能够有效地进行材料成型工艺的设计和优化,确保最终产品的质量和性能达到预期要求。
绪论材料成型原理ytzhang
27
材料成型原理-液态成形理论基础 ytzhang@
一重铸钢支承辊
28
材料成型原理-液态成形理论基础 ytzhang@
生产应用
金属所研发的大型铸钢支承辊在太钢不锈钢生产线上应用
材料成型原理-液态成形理论基础 ytzhang@
液态成形(铸造)
作业
1. 什么是液态成形(铸造) 2. 影响液态金属凝固过程的因素主要有哪些?
31
材料成型原理-液态成形理论基础 ytzhang@
3. 液态合金的结构和性质、冶金处理(如孕育处理、变质处理、
微合金化等)及外力(如电磁力、重力、机械力等)的作用,
对液态金属的凝固也有重要影响,如影响凝固组织、形貌、相
组成等。
16
材料成型原理-液态成形理论基础 ytzhang@
液态金属凝固学的发展
凝固过程的理论研究大体上经历了三个阶段:
材料成型原理-液态成形理论基础 ytzhang@
充型过程模拟
缩 孔
材料成型原理-液态成形理论基础 ytzhang@
温度场模拟
3625s
9013s
16237s
time
26
材料成型原理-液态成形理论基础 ytzhang@
一重铸钢支承辊的浇注过程
• 以经典凝固理论为指导,通过大量的实践研究,实现了凝 固组织和凝固过程的优化和控制,使得大型铸钢锭及铸件 的冶金质量得到很大提高。
• 出现了快速凝固、定向凝固、半固态铸造等先进的凝固技 术和材料成形方法。
18
材料成型原理-液态成形理论基础 ytzhang@
第三阶段:20世纪80年代~现在,凝固过程的理论研究进入 了新的时期。表现在:
sziialal3ni共晶合金宏观形貌凝固终a10mm空间材料成型原理液态成形理论基础ytzhangimraccn终端b10mm地面空间样品表面光洁内部均匀致密无明显缺陷地面样品表面粗糙和微小孔洞内部存在尺寸较大的气孔空间样品表面光洁内部均匀致密无明显缺陷地面样品表面粗糙和微小孔洞内部存在尺寸较大的气孔首先采用计算机模拟软件和现代铸造理论模拟铸件充型凝固过程以及锻件的锻造过程采用计算机模拟软件和现代铸造理论模拟铸件充型凝固过程以及锻件的锻造过程其次用x射线实时观察和监测浇注过程实时观察数值模拟可视化铸造技术材料成型原理液态成形理论基础ytzhangimraccn其次用x射线实时观察和监测浇注过程第三通过实际铸锻件生产并与模拟监测结果对比确定最佳的生产工艺通过实际铸锻件生产并与模拟监测结果对比确定最佳的生产工艺最后按工件形成软件包软件包企业试制软件包企业试制x射线实时观察和监测材料成型原理液态成形理论基础ytzhangimraccnrealtimexrayradiographyx射线实时监测系统计算机模拟40cr4铸钢支承辊新概念设计浇注系统?一重支承辊直径为1435mm高7m钢水重50吨?鞍重支承辊直径为1620mm高769m钢水重65吨材料成型原理液态成形理论基础ytzhangimraccn采用了平稳充型随流式浇注系统及计算机模拟技术全套工艺图纸
材料成型原理
材料成型原理材料成型是制造业中非常重要的一环,它涉及到材料的加工、塑性变形和成型工艺等多个方面。
在材料成型过程中,需要考虑材料的性能、成型工艺、成型设备等多个因素,以确保最终产品的质量和性能。
本文将就材料成型的原理进行详细介绍。
首先,材料成型的原理是基于材料的塑性变形特性。
在材料成型过程中,通过施加外力或者温度对材料进行塑性变形,使其产生所需形状和尺寸。
这需要材料具有一定的塑性,能够在外力作用下发生形变,而不会破坏其结构。
因此,材料的成型性能是材料成型的基础。
其次,材料成型的原理还与成型工艺密切相关。
不同的成型工艺对材料的成型原理有着不同的要求。
例如,在压铸工艺中,需要将熔化的金属注入模具中,通过高压使其充填模腔并形成所需的零件。
而在挤压工艺中,需要将金属坯料通过模具的缝隙挤压成所需形状的截面。
因此,不同的成型工艺对材料的成型原理有着不同的要求。
此外,成型设备也是影响材料成型原理的重要因素。
成型设备的性能和精度直接影响着材料的成型质量。
例如,对于注塑成型设备,需要具备一定的射出压力和温度控制能力,以确保熔化的塑料材料能够充分填充模腔并形成完整的产品。
因此,成型设备的选择和使用对材料成型原理具有重要影响。
综上所述,材料成型原理是基于材料的塑性变形特性,同时受到成型工艺和成型设备的影响。
只有充分理解材料成型的原理,才能够选择合适的工艺和设备,确保最终产品的质量和性能。
在实际生产中,需要根据不同的材料和产品要求,灵活运用各种成型原理,以满足不同的生产需求。
希望本文能够对材料成型原理有所启发,为相关领域的工作者提供一定的参考和帮助。
材料成型原理
绪论塑性变形要点:1,外力作用;2,永久变形;3,材料没有被破坏。
塑性成型:利用塑性,外力作用,获得尺寸形状,提高一定的力学性能。
特点:生产效率高,易于大批量生产;改善组织结构和性能,金属纤维不会被切断,可获得细小的晶粒;材料利用效率高;尺寸精度高;热成型:在再结晶温度以上的成型。
铅再结晶温度低于室温(20摄氏度)。
板料成型一般为冷成型(精度高),不是绝对的。
高强钢板成型,先热加工,再蘸火,改善组织。
还有温成型,等温成型(磨具温度与胚料温度一样。
)理论基础:屈服:弹性变形到塑性变形的初始阶段。
屈服准则:任务:阐明塑性成型的规律,学习工艺,金属学的基础,应力应变关系和屈服准则等;塑性成型时金属的流动规律和变形的特点,影响流动的因素;掌握几种简单的解法。
合金:两种或两种以上的金属构成,具备原来金属不具备的性质。
固溶体:单相合金,多相合金:单晶体:多晶体:许多的大小、位相不同的单晶组成,各向同性的,除非经过扎制等;各个晶粒变形不同,变形的不均匀性和协调性。
晶界和晶内:(晶界)室温强度较高,有杂质汇聚;扩散速度快,能量较高;熔点低于晶内;变形相互协调。
晶内变形:滑移、孪生。
滑移:变形由切应力产生,晶体的一部分与另一部分沿着一定的晶面和晶向产生相对的滑移。
滑移面:原子最密排面(密度大),面与面距离大,易沿着这个面滑移。
滑移系:滑移面和面上的一个滑移方向。
阻碍作用:晶界阻碍、相邻晶粒的阻碍。
取向因子:软取向:45°硬取向:临界值相同:同一材料孪生:滑移优先于孪生变形,孪生变形量小,为一个补充的变形方式。
晶间变形:晶粒转动晶界变形:外力大,利用来提高综合性能。
合金的变形:固溶体:化合物:滑移是一种基本的变形方式,孪生为其补充方式。
细化晶粒,晶粒增加,晶界增加,变形抗力增加;裂纹扩展较难;变形在更多的晶粒内出现,更均匀。
加工硬化:金属的热变形:温度的确定:与再结晶温度经行比较,铅在室温下成型为热成型。
《材料成型原理》教学大纲(金属凝固原理及塑性成形原理部分,基础知识点概括,考研必备)
§ 9–1 液态金属的脱氧 先期脱氧(焊接) 、预脱氧(熔炼) 、沉淀脱氧、扩散脱氧、真空脱氧;各种脱氧原理 的概念及优、缺点;锰、硅沉淀的脱氧的比较,温度、熔渣的性质对其脱氧效果的影响; § 9–2 液态金属的脱碳反应 液态金属的脱碳精炼反应原理、目的及工艺原则; § 9–3 液态金属的脱硫 液态金属的脱硫原理及脱硫效果的影响因素、目的及工艺原则; § 9–4 液态金属的脱磷 液态金属的脱磷原理及脱磷效果的影响因素、目的及工艺原则;
小于 180o,所以,非均质形核功Δ G he 远小于均质形核功Δ G ho , 越小,Δ G he 小,夹杂界面
的非均质形核能力越强,形核过冷度越小; §3-4 晶体长大 液-固界面自由能及界面结构类型、本质及其判据;晶体长大方式
第四章 单相及多相合金的结晶
本章从凝固过程溶质再分配的规律谈起,着重讨论所涉及到的“成分过冷”条件及其对 合金凝固组织的影响规律、 单相固溶体合金及多相合金的凝固。 并为后续章节的内容的讨论 奠定基础。 §4-1 凝固过程中溶质再分配
《材料成型原理》教学大纲
总学时: 96→ 总学分: 6 一、 课程的目的和任务 《材料成型原理》 是材料成形及控制专业主要的院定必修课之一。 本课程的任务是对材 料的凝固成形、塑性成形、焊接成形等近代材料成形技术中共同的物理现象、基本规律及各 成形技术的基本原理、理论基础、分析问题的方法加以阐述,使学生对材料成形过程及原理 有深入广泛的实质性理解,为后续的成形技术具体工艺方法、设备控制等课程的学习,为开 发新材料及其成形技术、分析和解决成形过程中的质量缺陷问题奠定理论基础。 二、 本课程的基本要求 1. 了解液态金属和合金的结构、性质,掌握液态金属与合金凝固结晶的基本规律及结 晶过程中的伴随现象,了解冶金处理对凝固组织与材料性能的影响。 2. 掌握材料成形过程中的物理、化学冶金现象及内部规律 。 3. 掌握塑性成形力学基础理论、塑性成形过程中的分析方法与原理。 三、 与其它课程的联系与分工 本课程的理论基础是数学、物理、物理化学、冶金传输原理、工程力学、金属学与热处 理。本课程重点在于阐述成形技术的理论基础、基本原理、分析问题的方法,而不涉及具体 成形工艺方法及参数。 各种具体的成形工艺方法、 原理过程及控制等将在后续专业课程中学 习。 四、 课程内容与学时分配 章次 一 二 三 四 五 六 七 八 九 十 十一 十二 十三 十四 十五 十六 十七 十八 十九 内容 绪论 液态金属的结构和性质 凝固温度场 金属凝固热力学与动力学 单相及多相合金的结晶 铸件宏观组织及其控制 特殊条件下的凝固与成形 液态金属与气相的相互作用 液态金属与渣相的相互作用 液态金属的净化与精炼 焊接热影响区的组织与性能 凝固缺陷及控制 粉末冶金原理 金属塑性成形的物理基础 应力分析 应变分析 屈服准则 材料本构关系 金属塑性变形与流动问题 塑性成形力学的工程应用 总学时数 2 4 6 4 4 2 4 4 4 4 4 12 4 4 6 4 3 8 4 9 课堂讲授学时数 2 4 4 4 4 2 4 4 4 4 4 8 4 4 6 4 3 6 2 9 2 2 4 2 实验时数
材料成型原理
材料成型原理材料成型是指将原材料通过一定的加工工艺,使其获得所需形状和尺寸的过程。
成型工艺是制造业中非常重要的一环,它直接影响着制品的质量、成本和生产效率。
在材料成型过程中,原材料经历了多种力的作用,使得其内部结构发生变化,最终形成所需的产品。
本文将围绕材料成型原理展开讨论。
首先,材料成型的原理可以分为两种基本类型,一种是塑性变形,另一种是非塑性变形。
塑性变形是指在材料受到外力作用下,其形状和尺寸发生永久性变化的过程。
而非塑性变形则是指在材料受到外力作用下,其形状和尺寸发生弹性变化,当外力消失后,材料会恢复到原来的形状和尺寸。
这两种变形方式在材料成型过程中起着至关重要的作用。
其次,材料成型的原理还涉及到材料的流变性质。
材料的流变性质是指在受到外力作用下,材料的形变和应力之间的关系。
不同材料的流变性质各不相同,这直接影响了材料在成型过程中的变形行为。
例如,金属材料通常具有良好的塑性,能够在一定条件下产生塑性变形,而陶瓷材料则通常具有较差的塑性,容易发生开裂和破碎。
另外,材料成型的原理还包括了成型工艺中的温度、压力和速度等因素。
这些因素直接影响着材料的变形行为和成型过程中的能量转化。
在成型过程中,适当的温度可以使材料更容易发生塑性变形,而过高或过低的温度则可能导致材料的不均匀变形或者开裂。
同时,适当的压力和速度也能够有效控制材料的成型过程,保证成型产品的质量。
总的来说,材料成型原理是一个涉及多方面知识的复杂系统工程,它需要结合材料科学、力学、热学等多个学科的知识。
只有深入理解材料成型的原理,才能够更好地掌握成型工艺,提高产品的质量和生产效率。
希望本文能够为您对材料成型原理有更深入的了解提供帮助。
材料成型原理
1实际液态金属的结构实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。
2液态金属表面张力的影响因素1)表面张力与原子间作用力的关系:原子间结合力u0↑→表面内能↑→表面自由能↑→表面张力↑2)表面张力与原子体积(δ3)成反比,与价电子数Z成正比3)表面张力与温度:随温度升高而下降4)合金元素或微量杂质元素对表面张力的影响。
向系统中加入削弱原子间结合力的组元,会使u0减小,使表面内能和表面张力降低3 . 铸件的凝固组织可分为几类,它们分别描述铸件凝固组织的那些特点?铸件的凝固组织可分为宏观和微观两方面。
宏观组织主要是指铸态晶粒的形状、尺寸、取向和分布情况;微观组织主要描述晶粒内部的结构形态,如树枝晶、胞状晶等亚结构组织等4氢致裂纹的形成机理及特征形成机理:接头中的扩散氢不仅使金属脆化,当金属内部存在显微裂纹等缺陷时,在应力的作用下,裂纹前沿会形成应力集中的三向应力区,诱使接头中的扩散氢向高应力区扩散并聚集为分子态氢,体积膨胀使裂纹内压力增高,裂纹向前扩展,在裂纹尖端形成新的三向应力区,这一过程周而复始持续进行。
当接头中的氢含量超过临界值时,显微裂纹将扩展成为宏观裂纹。
特征:氢致裂纹从潜伏、萌生、扩展直至开裂具有延迟特征;存在氢致延迟裂纹的敏感温度区间(Ms以下200℃至室温范围);常发生在刚性较大的低碳钢、低合金钢的焊接结构中。
5.综合分析熔渣的碱度对脱氧、脱磷、脱硫的影响。
脱氧在熔渣脱氧时,碱度高不利于脱氧,但在用硅沉淀脱氧时,碱度高可以提高硅的脱氧效果。
脱硫:熔渣的还原性和碱度渣中氧化钙的浓度高和氧化亚铁的浓度低都有利于反应的行因此,在还原期中脱硫是有利的。
熔渣碱度高也有利于脱硫。
脱磷脱磷的有利条件是高碱度和强氧化性的、粘度小的熔渣,较大的渣量和较低的温度。
6试述熔渣脱硫的原理及影响因素。
材料成型原理
材料成型原理
材料成型是指通过施加力使材料发生塑性变形,最终将其形成所需的形状和结构的加工过程。
材料成型原理主要包括塑性变形原理、流变性原理和热力学原理。
首先,塑性变形原理是指在加工过程中,通过施加外力,使材料的形状和结构发生塑性变化。
材料在外力作用下,内部的晶格结构发生变化,原子和分子之间的间距发生改变,从而使材料在塑性变形时能够保持一定的变形。
塑性变形的主要特点是具有可逆性和延展性,材料可以通过外力的作用重新回复到原来的形状。
其次,流变性原理是指材料在加工过程中具有流动性的特点。
材料的塑性变形是在材料内部原子和分子之间的相互作用力的作用下进行的,这种相互作用力与材料的成分、结构和处理状态等多种因素有关。
材料在受力作用下会发生流动,流变性的大小取决于材料的粘度和塑性变形时的应变速率。
最后,热力学原理是指在材料成型过程中,热量的传导和转化对塑性变形和流变性的影响。
材料在受力作用下会产生热量,而热量的传导和转化又会对塑性变形和流变性产生影响。
例如,在金属材料的锻造加工中,受力作用下会产生大量的热量,而热量的传导又会使材料的温度升高,从而影响材料的塑性变形和流变性。
总之,材料成型原理是在外力的作用下,通过塑性变形、流变性和热力学的相互关系,实现材料的形状和结构的加工过程。
了解和掌握材料成型原理,可以指导材料加工和制造过程的设计和优化,提高材料的性能和加工效率。
材料成型原理
晶界粘性流动:晶界处原子处于激活状态,以致能脱离晶粒表面而向邻近的晶粒跳跃,导致原有晶粒失去固定的形状和尺寸,晶粒间出现相对流动。
融化潜热:在熔点温度的固态变为同温度的液态时,金属吸收大量的热量。
影响液态金属粘度的主要因素:化学成分、温度↑、夹杂物。
粘度↑表面张力:表面上平行于表面切线方向且各方向大小相等的张力。
表面张力是由于物体在表面上的质点受力不均匀所致。
液态金属的充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力影响因素:1.影响金属与铸件之间热交换条件,从而改变金属液流动时间,2.影响金属液在铸型中的水力学条件,改变金属液的流速。
①金属性质方面的因素(流动性内因)②铸型性质方面的因素3.浇注条件方面因素④铸件结构方面的因素液态金属的流动性:是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。
温差和浓度差是引起自然对流的驱动力为什么在共晶成分时能保持恒温反应:因为铸件在凝固中会释放出大量的潜热,铸件凝固其实是铸件内部过热热量和潜热不断向外扩散的过程。
铸件凝固方式及影响因素:1.层状凝固方式:易补缩,组织致密,性能好。
2.体积凝固:不易补缩,易产生缩孔、缩松、夹杂、开裂性能差3.中间状凝固方式因素:1.合金的化学成分2.铸件断面上的温度梯度均质形核:在没有任何外来界面的均匀熔体中的形核过程异质形核:在不均匀的熔体中依靠外来杂质或形壁界面提供的衬底进行形核的过程(一般是此种)热过冷:金属凝固时所需的过冷度,若完全由热扩散控制铸件宏观组织:1.表面细晶粒区:紧靠铸型的激冷组织,由无规则的细小等轴晶组成(较大的过冷度)2.柱状晶区:垂直于型腔壁且彼此平行的柱状晶粒组成(单向热流)影响:择优生长的细长晶体,有明显的方向性,纵向性能好、横向性能差,一般不希望出现3.内部等轴晶区:各向同性的等轴晶组成,尺寸比较粗大。
影响:性能比较均匀,没有方向性,各向同性,需要的组织,再细化更好宏观组织的控制:1.加入强生核剂:直接作为外加晶核的生核剂;加入生核剂促进晶核生成2.控制浇注工艺和增大铸件冷却速度:采用较低的浇注温度;采用合适的浇注工艺;改善铸型结构3.动态下细化等轴晶:震动、搅拌孕育衰退:大多数生核剂的有效性均与在液态金属中存在的时间有关,随着时间的延长,生核效果减弱或消失。
材料成型原理
润湿角是衡量界面张力的标志。
1.1纯金属和实际合金的液态结构有何不同?举例说明纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子 这样的结构处于瞬息万变的状态 液体内部存在着能量起伏。
2 实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体 也就是说 实际的液态合金除了存在能量起伏外 还存在结构起伏。
充型能力中浇注条件方面的影响因素:1、浇注温度 2、充型压头 3、浇注系统的结构2.1液态合金的流动性和充型能力有何异同?如何提高液态金属的充型能力?(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。
系统吉布斯自由能G=H-TS H为焓、T为热力学温度、S为熵。
结构越混乱G越高。
G L 液相G s固相当T<Tm G L液相<G s固相金属结晶。
过冷度为金属结晶的驱动力。
成分起伏、相结构起伏、能量起伏。
对于外来固相的平面基地而言,凹>平>凸,凸界面,促进异质形核的能力随曲率增大而减小,凹界面,随增大而增大。
晶体宏观长大方式:平面方式长大,树枝晶方式生长。
3.1为什么过冷度是液态金属凝固的驱动力?由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即?G =GS-GL<0;只有当温度低于理论结晶温度Tm 时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。
3.2何谓热力学能碍和动力学能碍?凝固过程是如何克服这两个能碍的?热过冷:金属凝固时所需的过冷度,若完全由热扩散控制,这样的过冷称热过冷。
材料成型原理各章重点
第一章重点总结第一节了解即可,没有出过题。
第二节1.纯金属的液态结构(11页第三段)2.实际金属的液态结构(11页第四段第五行,从“因此,实际液态金属-----”到段末)3.名词解释温度起伏,结构起伏,能量起伏(11页三、四段中)4.13页第一段“X射线衍射-----”第三节5.影响液态金属粘度的因素(14页)(1)化学成分,难熔化合物的液体粘度较高,熔点低的共晶成分合金粘度低(2)温度,液体金属的粘度随温度的升高而降低。
(3)非金属夹杂物,非金属夹杂物使液态金属粘度增加6.粘度在材料成形过程中的意义1)对液态金属净化的影响(2)对液态合金流动阻力的影响(3)对凝固过程中对流的影响7.名词解释,表面张力(15页最下面一句“总之,一小部分---”)8.表面张力产生的原因,(16页第一段)9.影响表面张力的因素(见2005年A卷二大题1小题)第四节10.流变铸造及特点(21页第一段“即使固相体积分数达到---”至最后,及21页最后一段,22页第一段)11.半固态金属表观粘度的影响因素(21页2 3 4段)第二章重点总结1铸造概念(22页第一段第一句)第一节2.液态金属充型能力和流动性有何本质区别(见2006年A卷第2题)3.两种金属停止流动机理(1)纯金属和窄结晶温度范围合金的停止流动机理(22页最后一段)(2)款结晶温度范围合金停止流动机理(23页第二三段)4.影响充型能力的因素及促进措施(1)金属性质方面的因素1.合金成分2.结晶潜热3.金属比热容4液态金属粘度5表面张力(2)铸型性质方面的因素1铸型蓄热系数,蓄热系数越大,铸型的激冷能力就越强2.铸造温度(3)浇注条件方面因素1.浇注温度2充型压头3浇注系统结构(4)铸件结构方面因素1折算厚度2铸件复杂程度(每点后最好总结一句话)第二节5.金属凝固过程中的流动(第二节1、2段)第三节6.了解存在三种传热;对流传热,传导传热,辐射传热即可第四节7.了解存在三种计算凝固时间的方法1理论计算法2平方根定律3折算厚度法即可第三章重点第一节1为什么过冷是液态合金结晶的驱动力(见2006年A卷第1题)2. 何为热力学能障和动力学能障?凝固过程中是如何克服这两个能障的?(见2005年D卷第3题)第二节 3.形核条件(40页第一段)4.名词解释,匀质形核,非匀质形核(41页最上部)5,2007年B卷第1题6.记住公式3-17 7.2006年A卷第3题第三节8.晶体宏观长大方式晶体宏观长大方式取决于界面前方液体中的温度分布,即温度梯度(1)平面方式长大固-液界面前方液体中的温宿梯度大于0,液相温度高于界面温度,称为正温度梯度分布。
材料成型原理
材料成型原理材料成型是指通过一系列工艺操作,将原材料加工成具有特定形状和尺寸的产品的过程。
材料成型广泛应用于工业制造领域,包括金属制造、塑料加工、陶瓷制造等。
在材料成型过程中,材料经历了多个阶段,如加热、加压、冷却等,通过这些操作,材料的内部结构和形状得以改变,最终得到所需的产品。
材料成型的原理主要包括热成型、冷成型和粉末冶金等。
热成型是指在高温条件下,通过加热和加压使材料发生塑性变形,最终得到所需的形状和尺寸。
常见的热成型工艺包括锻造、深冲、热压缩等。
锻造是利用金属材料在高温下的塑性变形特性,通过对金属材料施加压力使其改变形状。
深冲是将金属板材放置在冲模上,通过冲击力使金属板材进一步变形,最终得到所需的形状。
热压缩是将金属材料放置在高温下,施加一定的压力使其塑性变形,通过控制温度和压力来控制材料的形状和尺寸。
冷成型是指在常温下,通过施加力量使材料发生塑性变形,最终得到所需的形状和尺寸。
常见的冷成型工艺包括冷压、拉伸、弯曲等。
冷压是将金属材料放置在冷模上,施加一定的压力使其发生塑性变形,最终得到所需的形状。
拉伸是将金属材料置于拉伸机上,施加拉力使其发生塑性变形,通过控制拉力和拉伸速度来控制材料的形状和尺寸。
弯曲是将金属材料置于弯曲机上,通过施加力矩使其发生塑性变形,最终得到所需的形状。
粉末冶金是指将金属或非金属材料的粉末混合后,通过压制和烧结等工艺,使其形成致密的坯体,最终得到所需的形状和性能。
粉末冶金的工艺流程包括粉末混合、压制、烧结和后处理等。
粉末混合是将金属或非金属粉末按一定比例混合均匀。
压制是将混合后的粉末放置在模具中,施加一定的压力使其形成致密坯体。
烧结是将压制后的坯体放置在高温条件下,使粉末颗粒之间发生结合,形成致密的材料。
后处理是对烧结后的材料进行表面处理和加工,以获得所需的性能和形状。
除了以上提到的热成型、冷成型和粉末冶金,还有其他一些材料成型原理,如注塑成型、挤压成型、铸造等。
材料成型原理材料成型技术
材料成型原理材料成型技术材料成型原理及材料成型技术材料成型原理材料成型是通过制造工艺将原材料转化为所需的形状和尺寸的过程。
在材料成型的过程中,需要了解和应用材料成型原理,以确保最终产品的质量和性能。
1. 塑性成型原理塑性成型是指通过在一定温度下施加力来改变金属材料形状的方法。
在塑性成型过程中,材料受到的作用力使其发生塑性变形,从而得到所需的形状。
常见的塑性成型方法包括轧制、挤压、拉伸、冷冲压等。
2. 粉末冶金原理粉末冶金是指将金属或非金属粉末经过成型和烧结等工艺制成所需产品的方法。
在粉末冶金过程中,首先将粉末与有机增塑剂混合,然后通过成型工艺将其压制成所需形状,最后进行烧结使其结合成整体。
3. 注塑成型原理注塑成型是将塑料通过加热溶融后,通过高压注入模具中,并通过冷却使其固化成为所需形状的方法。
注塑成型广泛应用于塑料制品的生产过程中,如塑料杯、塑料零件等。
4. 焊接成型原理焊接成型是通过热能使两个或多个工件相互结合的过程。
焊接成型可以分为熔化焊接和非熔化焊接两种类型。
熔化焊接是利用能量将工件加热至熔化状态,使其相互结合,如电弧焊、气焊等;非熔化焊接是通过压力或热传导使工件相互结合,如电阻焊、激光焊接等。
材料成型技术在材料成型的过程中,常用的成型技术有许多种类,以下是其中几种常见的成型技术。
1. 压力成型技术压力成型技术是通过施加压力改变材料形状的技术。
压力成型技术包括锻造、挤压、冲压等。
锻造是将金属材料置于模具中,并通过锤击、压力等力量改变其形状。
挤压是通过在模具中施加高压使材料产生塑性变形,并得到所需形状和尺寸。
冲压是通过模具的剪切和冲击力将金属材料剪切或冲击成所需的形状。
2. 热处理技术热处理技术是通过加热或冷却材料以改变其组织结构和性能的技术。
热处理技术包括退火、淬火、回火等。
退火是通过加热材料至一定温度后缓慢冷却至室温,以改变其组织结构和性能。
淬火是将材料加热至一定温度后迅速冷却,以使材料达到高强度和硬度。
材料成型原理
材料成型原理材料成型是指将原料通过一定的工艺方法,使其获得一定形状和尺寸的过程。
在工业生产中,材料成型是非常重要的一环,它直接影响着产品的质量和性能。
而材料成型的原理则是决定了整个成型过程的基础,下面我们将对材料成型原理进行详细的介绍。
首先,材料成型的原理包括物理原理和化学原理两个方面。
物理原理是指在成型过程中,材料受到外力作用下的形变规律和力学性能变化规律。
而化学原理则是指在成型过程中,材料的化学性能和结构性能的变化规律。
这两个方面相辅相成,共同决定了材料成型的整体过程。
其次,材料成型的原理还包括了温度、压力、时间等因素的影响。
温度是指在成型过程中,材料受热后的软化和流动性增强,从而更容易形成所需的形状。
压力则是指在成型过程中,外部施加的力量,使材料克服内部分子间的相互作用力而发生形变。
时间则是指在成型过程中,材料受力的持续时间,对于材料的形变和性能变化有着重要的影响。
另外,材料成型的原理还与材料的性质密切相关。
不同的材料具有不同的成型原理,比如金属材料的成型原理与塑料材料的成型原理就有很大的区别。
金属材料的成型原理主要是通过塑性变形来实现,而塑料材料的成型原理则是通过熔融和流动来实现。
因此,在进行材料成型时,需要根据材料的性质来选择合适的成型原理。
最后,材料成型的原理还与成型工艺密切相关。
不同的成型工艺有着不同的原理,比如锻造、压铸、注塑等成型工艺都有着各自的原理。
在进行材料成型时,需要根据具体的成型工艺来选择合适的原理,并进行相应的操作。
综上所述,材料成型的原理是一个复杂而又多方面的问题,它涉及了物理、化学、力学等多个学科的知识。
只有深入理解材料成型的原理,才能更好地掌握成型工艺,提高产品的质量和性能。
希望本文对材料成型原理有所帮助,谢谢阅读!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 12绪论材料成形:将材料加工成具有一定形状、尺寸和性能要求的零部件或毛坯的工艺方法。
材料成形主要方法:除去加工法、连接加工法、变形加工法、液态及粉末成形加工法。
液态金属的结构和性质在熔点附近,空穴数目可以达到原子总数的1% 金属由固态变为液态,体积膨胀为3%·5% 熔化潜热:在熔点温度的固态,变为同温度下的液态,金属要吸收大量的热量原子在固态的规则排列熔化后紊乱程度不大,液态金属原子间结合键只破坏了一部分,液态金属的结构应接近固态金属而远离气态金属(熔点和过热度不大时)。
纯金属的液态结构是由原子集团、游离原子和空穴组成的。
结构起伏:原子集团和空穴的变化现象。
实际合金熔体的结构是极其复杂的,包含各种化学成分的原子集团、游离原子、空穴、夹杂物及气泡等,是一种混浊的液体。
液态金属中存在温度起伏、相起伏和浓度起伏。
液态金属的粘度:粘度的本质是原子间的结合力。
2 / 12影响粘度的因素:化学成分、温度和夹杂物。
化学成分:难溶化合物的液体粘度较高,而熔点低的共晶成分的合金粘度低,对于共晶成分的合金,异类原子之间不发生结合,而同类原子聚合时,由于异类原子的存在而使它的聚合缓慢,晶坯的形成拖后,故粘度较非共晶成分低。
非金属夹杂物:夹杂物的存在使液态金属成为不均匀的多相体系,液相流动时的内摩擦力增加,粘度增加。
粘度意义:对液态金属净化的影响;对液态合金流动阻力的影响;对凝固过程中液态合金对流的影响。
液体以层流方式流动时,流动阻力大,金属液在浇注系统和型腔中的流动一般为紊流,有利于顺利充填型腔。
但在充型后期或狭窄的枝晶间的补缩和细薄铸件中呈现为层流。
温度差和浓度差产生的浮力,是液态合金对流的驱动力,粘度越大,对流强度越小。
表面张力:一小部分的液体在大气中单独存在时,力图保持球形状态,说明总有一个力使其趋向球状表面张力的实质是质点间的作用力,是由质点间的作用力不平衡引起的,指向液体内部的合力是表面张力产生的根源。
表面自由能即单位面积自由能,表面能或表面张力是界面能或界面张力的一个特例,对于液体来说,表面张力和表面能大小相等,只是单位不同,体现为从不同角度来描述同一现象。
3 / 12影响表面张力的因素:熔点、温度和溶质元素。
金属微粒的熔点随其尺寸减小而降低,熔点越高,表面张力越大。
表面活性元素:使表面张力降低的元素正吸附:溶质在界面层的浓度大于在溶液内部的浓度加入溶质改变表面张力的原理在于它改变了表面层质点的力场分布不对称程度。
正负吸附的原理在于自然界中系统的自由能总是自发降低表面张力意义:毛细管现象:将内径很细的玻璃管,插入能润湿玻璃管的液体中,则管内液面上升,且呈凹面状;...产生部位:狭窄管口,裂缝和细孔浇铸薄小铸件时必须提高浇注温度和压力,以克服附加压力的阻碍。
金属凝固后期,枝晶间存在的微小液膜小至微米时,表面张力对铸件的凝固过程的补缩状况对金属是否出现热裂缺陷具有重大影响。
熔焊过程中,熔渣和合金液两相应不润湿,否则不易将其从合金液去除,导致焊缝处夹渣缺陷的产生。
晶体的形核及生长、缩松、热裂、夹杂及气泡等铸造缺陷都与表面张力联系密切。
4 / 12液态成形中的流动与传热液态成形是将熔化的金属或合金在重力或其他外力作用下注入铸型的型腔中,待其冷却凝固后获得与型腔形状相同的铸件的一种成形方法或:液态成形是液态金属充满型腔并凝固后获得符合要求的毛坯或零件的工艺技术。
液态金属的充型能力首先取决于液态金属本身的流动能力,同时又与外界条件密切相关,是各种因素的综合反映,充型能力可以通过改变外界条件提高。
液态金属本身的流动能力称为流动性,是由金属的成分、温度、杂质含量决定的,可认为是确定条件下的充型能力。
流动性越好,气体和杂质越易于上浮,使金属得以净化,良好的流动性有利于防止缩孔缩松热裂等缺陷。
流动性越好,充型能力越强。
具有最大溶解度的合金,其流动性最小。
在液态金属前面析出15%~20%液相时,液态金属就停止流动。
影响充型能力的因素:1.金属性质方面的因素。
这类因素是内因,决定了金属本身的流动能力—流动性。
合金的成分:纯金属和共晶成分的地方出现最大值,即流动性最好。
结晶潜热:约占液态金属含热量的85%--90%,其余为过热量。
纯金属和共晶成分合金凝固过程释放的潜热越多,凝固过程进行的越缓慢,流动性越好。
金属的比热容、密度、热导率:5 / 12比热容和密度大的合金,因本身含有较多的热量,在相同的过热度下保持液态的时间较长,流动性好;热导率小的合金,热量散失慢,同时,凝固期间液固两相并存的两相区小,流动阻力小,流动性好。
金属中加入合金元素后,一般都使热导率明显下降,流动性上升。
粘度表面张力:对薄壁铸件、铸件的细薄部分、棱角的成形有影响,为克服附加压力的阻碍,必须在正常压头上增加一个附加压头h。
2.铸型性质方面的因素:铸型的蓄热系数:表示铸型从其中的金属中吸收并储存于自身中热量的能力。
蓄热系数越大,激冷能力越强,金属于其中保持液态的时间就越短,充型能力下降,可采用涂料调整蓄热系数。
铸型的温度:预热铸型能减小金属与铸型的温差,从而提高充型能力。
3.浇铸条件方面的因素: 浇注温度:具有决定性的影响,在比较低的浇注温度下,铸钢的流动性随含碳量的增加而提高。
对于薄壁铸件或流动性差的合金,通常采用提高浇注温度改善充型能力的措施,一般铸钢的浇注温度为1520~1620充型压头:增加金属静压头的方法提高充型能力,也可采用压力铸造、低压铸造、真空吸铸。
浇注系统的结构:6 / 12结构越复杂,流动阻力越大,在静压头相同的情况下充型能力越差。
设计浇注系统时,要合理安排内浇道在铸件上位置,选择恰当的浇注系统结构和组件的断面积。
4.铸件结构方面的因素:铸件的折算厚度:铸件壁越薄,折算厚度越小,越不容易被充满。
垂直壁易充满,要正确选择浇注位置。
铸件的复杂程度凝固过程中的液体流动:自然对流:由密度差和凝固收缩引起的液体流动。
浮力流:由密度差引起的流动。
双扩散对流:由传热、传质和溶质再分配引起的液态合金密度不均匀,密度小的液相上浮,密度大的液相下沉。
强迫对流:由液体受到各种方式的驱动力而产生,如压力头,机械搅动,铸型振动及外加电磁场等。
凝固收缩等引起的对流主要产生在枝晶之间。
枝晶间的液体流动就是在糊状区的补缩流动,宽结晶温度范围的合金,树枝晶发达,凝固过程最后的补缩往往得不到液流的补充,而形成缩松。
7 / 12凝固过程中的热量传输,传导传热、对流换热、辐射换热。
热传导为主要方式。
铸件冷却凝固过程实质上是铸件内部过热热量和潜热不断向外散失的过程。
测温法测温度场是通过向被测件内安放热电偶实现的,主要技术是放置热电偶的位置的选择和数据的处理。
动态凝固曲线的水平距离很小或等于零时,这时铸件的凝固区很小或者没有,称这种凝固方式为层状凝固方式。
一般的,具有层状凝固方式的铸件,凝固过程容易补缩,组织致密,性能好;具有体积凝固方式的铸件,不易补缩,易产生缩松、夹杂、开裂等缺陷,铸件的性能差。
影响凝固方式的因素是合金的化学成分和铸件断面的温度梯度。
铸件的凝固时间是指液态金属充满铸型时刻至凝固完毕所需要的时间。
凝固速度:单位时间凝固层增长的厚度。
xx定律:铸件凝固层厚度与凝固时间的平方根成正比。
金属型的凝固系数一般较大。
折算厚度法则考虑到了铸件形状这个因素,因而它更接近实际,是对平方根定律的修订和发展。
液态金属的凝固形核及生长方式液态金属的凝固过程决定着凝固后的显微组织,并影响随后冷却过程中的相变、过饱和相的析出、铸件的热处理过程及凝固过程中的偏析、气体析出、8 / 12补缩过程和裂纹形成等,对铸件的质量、性能以及工艺过程都有极其重要的作用。
由于结构高度紊乱的液相具有更高的熵值,液相自由能将以更大的速率随着温度的升高而降低。
对于给定金属,结晶潜热与平衡结晶温度是定值,故自由能差仅与过冷度有关,因此液态金属的凝固过程的驱动力是由过冷度提供的,过冷度越大,驱动力也越大。
晶核的形成和长大是同时进行的,即在晶核长大的同时又会产生新的结晶核心。
凝固过程总的来说是由于体系自由能减低自发进行的,但在形核时,体系自由能的变化是由体积自由能的降低和界面自由能的升高组成的,当能量以降低为主时,就发生凝固现象。
高能态区:固态晶粒与液态间的界面。
生核或晶体的长大,是液态中的原子不断晶面向固态晶粒堆积的过程,是固液界面不断的向前推进的过程。
热力学能障与动力学能障都与界面状态密切相关。
热力学能障是由被迫处于高自由能过渡状态的界面原子产生的,它能直接影响到系统自由能的大小,界面自由能即属于这种情况;动力学能障是由金属原子穿越界面过程引起的,它与结晶驱动力无关,仅取决于界面的结构和性质,激活自由能即属于这种情况。
液态金属在成分、温度、能量上是不均匀的,正是由于存在这三个起伏,才能克服凝固过程中的两个能障,使凝固过程不断的进行下去。
液态金属在一定的过冷度下,临界晶核必由相起伏提供,临界形核功由能量起伏提供。
凝固过程中产生的固液界面使体系的自由能增加,导致凝固过程不可能瞬时完成,也不可能同时在很大的范围内进行,只能逐渐的形核生长,逐渐的克服两个能障,才能完成液体到固体的转变。
同时,界面的形态与特征又影响着9 / 12晶体的形核和生长,因此,高能态的界面范围不断缩小,至凝固结束成为范围很小的晶界。
形核:亚稳态的液态金属通过起伏作用在某些微观小区域内形成稳定存在的晶态小质点的过程。
形核的首要条件是系统必须处于亚稳态以提供相变驱动力,其次,要通过起伏作用克服能障才能形成稳定存在的晶核并确保其进一步生长。
均质形核:在没有任何外来界面的均匀熔体中的形核过程。
晶核的全部固液界面都由形核过程产生,因此热力学能障打,所需驱动力也较大。
异质形核:在不均匀的熔体中依靠外来杂质或型壁界面提供的衬底进行形核的过程。
形核速率:单位时间、单位体积生成固相核心的数目。
过冷度开始增大时,形核速率随其增加急剧增大,但当过冷度过大时,由于液体粘度迅速增大,原子活动能力迅速降低,形核速率下降。
均质形核过冷度约为金属熔点的0.18~0.2倍,实际金属结晶的过冷度远小于这个数值。
当结晶相完全不润湿基底时,球冠晶核实际上时一个与均质形核无异的球体,基底不起任何促进形核作用,液态金属只能进行均质形核,形核所需临界过冷度最大。
当结晶相与基底完全润湿时,球冠晶核已不复存在,基底时现成的晶面,结晶可以不必通过形核直接在基底上生长,所需形核功为零,基底具有最大促进形核作用。
10 / 12异质形核的临界过冷度随润湿角的减小而迅速降低。
同一物质的基底,促进形核的能力也随曲率的方向和大小而异,凹面基底形核能力最强,平面底次之,凸面底最弱,对凸界面基底而言,形核能力随曲率的增大而减小。
异质形核影响因素:过冷度:过冷度越大形核速率越大界面:若夹杂物基底与晶核润湿,则形核速率大液态金属的过热及持续时间的影响:当液态金属的过热温度接近或超过异质核心的熔点时,异质核心将会熔化或其表面活性消失,失去了夹杂物应有特性,从而减少了活性夹杂物数量,形核速率降低。