浙江绍兴中考数学试题及答案

合集下载

2022浙江绍兴中考数学试卷+答案解析

2022浙江绍兴中考数学试卷+答案解析

2022年浙江绍兴中考数学一、选择题(本大题有10小题,每小题4分,共40分。

请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.实数―6的相反数是()A.―16B.16C.―6D.62. 2022年北京冬奥会3个赛区场馆使用绿色电力,减排320 000吨二氧化碳.数字320 000用科学记数法表示是()A.3.2×106B.3.2×105C.3.2×104D.32×1043.由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A B C D4.在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A.34B.12C.13D.145.下列计算正确的是()A.(a2+ab)÷a=a+bB.a2·a=a2C.(a+b)2=a2+b2D.(a3)2=a56.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1= ()A.30°B.45°C.60°D.75°7.已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A.0,4B.1,5C.1,―5D.―1,58.如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点。

下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF,其中正确的个数是()A.1B.2C.3D.49.已知(x1,y1),(x2,y2),(x3,y3)为直线y=―2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>010.将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能...是()A.252B.454C.10D.354二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:x2+x=.12.关于x的不等式3x―2>x的解集是.13. 元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之。

历年浙江省绍兴市中考数学试题(含答案)

历年浙江省绍兴市中考数学试题(含答案)

2016年绍兴市初中毕业生学业考试数 学卷I (选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选.均不给分) 1.-8的绝对值是A .8B .-8C D 2了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化. 窗框一部分如图2,它是一个轴对称图形,其对称轴有 A .1条 B .2条 C .3条 D .4条4.如图是一个正方体,则它的表面展开图可以是5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6.投掷一次,朝上一A B C D 6是⊙O 的直径,点A ,C 在⊙O 上,⌒AB =⌒BC ,∠AOB =60º,则∠BDC 的 A .60º B .45º C .35º D .30º7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③8.如图,在Rt△ABC中,∠B=90º,∠A=30º.以点A为圆心,BC长为半径画弧交AB 于点D,分别以点A,D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠A B9.抛物线)过点A(2y=O (l≤x≤3)有交点,则c的值不可能是A.4 B.6 C.8 D.1010.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是A.84 B.336C.510 D.1326卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11=_____________.12+ 2的解是___________ .13.如图12是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为l0cm,则该脸盆的半径为_____ cm.14.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠}②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_______ 元.15.如图,已知直线l:y=-x,双曲线y.在l上取一点A(a,-a)(a>0),过A 作x轴的垂线交双曲线于点B,过B作轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD.若原点O在正方形ABCD的对角线上且分这条对角线为1∶2的两条线段,则a的值为__________ .16.如图,矩形ABCD 中,AB =4,BC =2,E 是AB 的中点,直线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2,点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠,使点A 恰好落在直线l 上,则DF 的长为 __________ .三、解答题(本大题有8小题.第17 -ZO 小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤17.(1)5-(2-)º+-2.(2)=4. 18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A 市七年级部分学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A 市七年级部分学生参加社会 A 市七年级部分学生参加社会 实践活动天数的频数分布表 实践活动天数的条形统计图根据以上信息,解答下列问题:(l)求出频数分布表中a 的值,并补全条形统计图.(2)A 市有七年级学生20 000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.19.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:OO打开排水孑L开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东450方向,然后向西走60m到达C点,测得点B在点C的北偏东60。

2020年浙江省绍兴市中考数学试题及参考答案(word解析版)

2020年浙江省绍兴市中考数学试题及参考答案(word解析版)

2020年浙江省绍兴市中考数学试题及参考答案与解析(满分150分,考试时间120分钟)卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.实数2,0,2-,2中,为负数的是()A.2 B.0 C.2-D.22.某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为()A.100.20210⨯B.92.0210⨯C.820.210⨯D.82.0210⨯3.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是() A.B.C.D.4.如图,点A,B,C,D,E均在O上,15BAC∠=︒,30CED∠=︒,则BOD∠的度数为()A.45︒B.60︒C.75︒D.90︒5.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cmC.8cm D.3.2cm6.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.12B.13C.14D.167.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( ) A .4B .5C .6D .78.如图,点O 为矩形ABCD 的对称中心,点E 从点A 出发沿AB 向点B 运动,移动到点B 停止,延长EO 交CD 于点F ,则四边形AECF 形状的变化依次为( ) A .平行四边形→正方形→平行四边形→矩形 B .平行四边形→菱形→平行四边形→矩形 C .平行四边形→正方形→菱形→矩形 D .平行四边形→菱形→正方形→矩形9.如图,等腰直角三角形ABC 中,90ABC ∠=︒,BA BC =,将BC 绕点B 顺时针旋转(090)θθ︒<<︒,得到BP ,连结CP ,过点A 作AH CP ⊥交CP 的延长线于点H ,连结AP ,则PAH ∠的度数( )A .随着θ的增大而增大B .随着θ的增大而减小C .不变D .随着θ的增大,先增大后减小10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120km B .140kmC .160kmD .180km卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分) 11.分解因式:21x -= .12.若关于x ,y 的二元一次方程组2,0x y A +=⎧⎨=⎩的解为1,1,x y =⎧⎨=⎩则多项式A 可以是 (写出一个即可).13.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为 .14.如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连结BD .若BD 的长为23,则m 的值为 .15.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是 元.16.将两条邻边长分别为2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号). ①2,②1,③21-,④3,⑤3. 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(8分)(1)计算:202084cos 45(1)-︒+-. (2)化简:2()(2)x y x x y +-+.18.(8分)如图,点E 是ABCD 的边CD 的中点,连结AE 并延长,交BC 的延长线于点F . (1)若AD 的长为2,求CF 的长.(2)若90BAF ∠=︒,试添加一个条件,并写出F ∠的度数.19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表. 4月份生产的羽毛球重量统计表(1)求表中m 的值及图中B 组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?20.(8分)我国传统的计重工具--秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据.x (厘米)1 2 4 7 11 12 y (斤)0.751.001.502.753.253.50组别重量x (克) 数量(只)A 5.0x <mB5.0 5.1x < 400 C5.1 5.2x <550 D5.2x30(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC上下移动,AF EF FG m===.1(1)若移动滑块使AE EF∠的度数和棚宽BC的长.=,求AFE(2)当AFE∠由60︒变为74︒时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m,参考数据:3 1.73︒≈≈,sin370.60︒≈,tan370.75)︒≈,cos370.8022.(12分)问题:如图,在ABD=.在BD的延长∆中,BA BD线上取点E,C,作AECB∠=︒,45∠=︒,∆,使EA ECBAE=.若90求DAC∠的度数.答案:45DAC∠=︒.思考:(1)如果把以上“问题”中的条件“45∠=︒”去掉,其余B条件不变,那么DAC∠的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“45∠=︒”,B∠=︒”改为“BAE nBAE∠=︒”去掉,再将“90其余条件不变,求DAC∠的度数.23.(12分)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即 2.88OB m=,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,=,这时水平距离7BA m如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度()x m之间的函数关y m与水平距离()系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5)m,问发球点O在底线上的哪个位置?(参考数据:2取1.4)24.(14分)如图1,矩形DEFG 中,2DG =,3DE =,Rt ABC ∆中,90ACB ∠=︒,2CA CB ==,FG ,BC 的延长线相交于点O ,且FG BC ⊥,2OG =,4OC =.将ABC ∆绕点O 逆时针旋转(0180)αα︒<︒得到△A B C '''.(1)当30α=︒时,求点C '到直线OF 的距离. (2)在图1中,取A B ''的中点P ,连结C P ',如图2.①当C P '与矩形DEFG 的一条边平行时,求点C '到直线DE 的距离.②当线段A P '与矩形DEFG 的边有且只有一个交点时,求该交点到直线DG 的距离的取值范围.参考答案与解析卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.实数2,0,2-( )A .2B .0C .2-D 【知识考点】实数【思路分析】根据负数定义可得答案.【解答过程】解:实数2,0,2-中,为负数的是2-, 故选:C .【总结归纳】此题主要考查了实数,关键是掌握负数定义.2.某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为( ) A .100.20210⨯B .92.0210⨯C .820.210⨯D .82.0210⨯【知识考点】科学记数法-表示较大的数【思路分析】科学记数法的表示形式为10na<,n为整数.确定n的值时,a⨯的形式,其中1||10要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:9=⨯,2020000000 2.0210故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.【知识考点】多边形;中心对称图形;七巧板【思路分析】根据中心对称的定义,结合所给图形即可作出判断.【解答过程】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.【总结归纳】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180︒后能够重合.4.如图,点A,B,C,D,E均在O上,15∠=︒,则BODCED∠的度数为()BAC∠=︒,30A.45︒B.60︒C.75︒D.90︒【知识考点】圆周角定理;圆心角、弧、弦的关系【思路分析】首先连接BE,由圆周角定理即可得BEC∠的度数,然后由∠的度数,继而求得BED圆周角定理,求得BOD∠的度数.【解答过程】解:连接BE,15BEC BAC ∠=∠=︒,30CED ∠=︒, 45BED BEC CED ∴∠=∠+∠=︒,290BOD BED ∴∠=∠=︒.故选:D .【总结归纳】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.5.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm .则投影三角板的对应边长为( )A .20cmB .10cmC .8cmD .3.2cm【知识考点】相似三角形的应用;中心投影【思路分析】根据对应边的比等于相似比列式进行计算即可得解. 【解答过程】解:设投影三角尺的对应边长为xcm , 三角尺与投影三角尺相似, 8:2:5x ∴=,解得20x =. 故选:A .【总结归纳】本题主要考查相似三角形的应用.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题. 6.如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( )A .12B .13C .14D .16【知识考点】概率公式【思路分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B、C、D 处都是等可能情况,从而得到在四个出口E、F、G、H也都是等可能情况,然后概率的意义列式即可得解.【解答过程】解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以小球从E出口落出的概率是:14;故选:C.【总结归纳】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.7.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4 B.5 C.6 D.7【知识考点】三角形三边关系【思路分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【解答过程】解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.【总结归纳】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.8.如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【知识考点】矩形的性质;菱形的性质;正方形的性质;全等三角形的判定与性质;平行四边形的判定与性质;中心对称【思路分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况.【解答过程】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.【总结归纳】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据EF与AC的位置关系即可求解.9.如图,等腰直角三角形ABC 中,90ABC ∠=︒,BA BC =,将BC 绕点B 顺时针旋转(090)θθ︒<<︒,得到BP ,连结CP ,过点A 作AH CP ⊥交CP 的延长线于点H ,连结AP ,则PAH ∠的度数( )A .随着θ的增大而增大B .随着θ的增大而减小C .不变D .随着θ的增大,先增大后减小【知识考点】旋转的性质;等腰直角三角形;三角形的外角性质【思路分析】由旋转的性质可得BC BP BA ==,由等腰三角形的性质和三角形内接和定理可求135BPC BPA CPA ∠+∠=︒=∠,由外角的性质可求1359045PAH ∠=︒-︒=︒,即可求解.【解答过程】解:将BC 绕点B 顺时针旋转(090)θθ︒<<︒,得到BP , BC BP BA ∴==,BCP BPC ∴∠=∠,BPA BAP ∠=∠,180CBP BCP BPC ∠+∠+∠=︒,180ABP BAP BPA ∠+∠+∠=︒,90ABP CBP ∠+∠=︒,135BPC BPA CPA ∴∠+∠=︒=∠, 135CPA AHC PAH ∠=∠+∠=︒,1359045PAH ∴∠=︒-︒=︒,PAH ∴∠的度数是定值,故选:C .【总结归纳】本题考查了旋转的性质,等腰三角形的性质,三角形的外角性质,灵活运用这些性质解决问题是本题的关键.10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km【知识考点】二元一次方程组的应用【思路分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【解答过程】解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB xkm =,AC ykm =,根据题意得:222102210x y x y x +=⨯⎧⎨-+=⎩, 解得:14070x y =⎧⎨=⎩.∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km .故选:B .【总结归纳】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分) 11.分解因式:21x -= . 【知识考点】因式分解-运用公式法【思路分析】分解因式21x -中,可知是2项式,没有公因式,用平方差公式分解即可. 【解答过程】解:21(1)(1)x x x -=+-. 故答案为:(1)(1)x x +-.【总结归纳】本题考查了因式分解-运用公式法,熟练掌握平方差公式的结构特点是解题的关键. 12.若关于x ,y 的二元一次方程组2,0x y A +=⎧⎨=⎩的解为1,1,x y =⎧⎨=⎩则多项式A 可以是 (写出一个即可).【知识考点】二元一次方程组的解【思路分析】根据方程组的解的定义,为11x y =⎧⎨=⎩应该满足所写方程组的每一个方程.因此,可以围绕为11x y =⎧⎨=⎩列一组算式,然后用x ,y 代换即可.【解答过程】解:关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为11x y =⎧⎨=⎩,而110-=,∴多项式A 可以是答案不唯一,如x y -.故答案为:答案不唯一,如x y -.【总结归纳】考查了二元一次方程组的解,本题是开放题,注意方程组的解的定义.13.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为 .【知识考点】正方形的性质【思路分析】根据题意和图形,可以得到直角三角形的一条直角边的长和斜边的长,从而可以得到直角三角形的另一条直角边长,再根据图形,可知阴影部分的面积是四个直角三角形的面积,然后代入数据计算即可.【解答过程】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,=,4=故答案为:【总结归纳】本题考查正方形的性质、勾股定理、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.14.如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为m的值为.【知识考点】勾股定理;等边三角形的性质【思路分析】由作图知,点D在AC的垂直平分线上,得到点B在AC的垂直平分线上,求得BD垂直平分AC,设垂足为E,得到BE,当点D、B在AC的两侧时,如图,当点D、B在AC的同侧时,如图,解直角三角形即可得到结论.【解答过程】解:由作图知,点D在AC的垂直平分线上,ABC∆是等边三角形,∴点B在AC的垂直平分线上,∴垂直平分AC,BD设垂足为E,==,2AC AB∴=BE当点D、B在AC的两侧时,如图,2BD=∴=,BE DE∴==,AD AB2∴=;2m当点D、B在AC的同侧时,如图,BD'=∴'=D E∴',AD∴=m综上所述,m的值为2或故答案为:2或【总结归纳】本题考查了勾股定理,等边三角形的性质,线段垂直平分线的性质.正确的作出图形是解题的关键.15.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.【知识考点】一元一次方程的应用【思路分析】可设所购商品的标价是x元,根据小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,分①所购商品的标价小于90元;②所购商品的标价大于90元;列出方程即可求解.【解答过程】解:设所购商品的标价是x元,则①所购商品的标价小于90元,20150x x -+=,解得85x =;②所购商品的标价大于90元, 2030150x x -+-=,解得100x =.故所购商品的标价是100或85元. 故答案为:100或85.【总结归纳】考查了一元一次方程的应用,属于商品销售问题,注意分两种情况进行讨论求解.161的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号).,②11 【知识考点】三角形三边关系;矩形的性质;等腰三角形的性质【思路分析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解. 【解答过程】解:如图所示:,②11 故答案为:①②③④.【总结归纳】考查了矩形的性质,等腰三角形的判定与性质,根据题意作出图形是解题的关键. 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(120204cos 45(1)︒+-. (2)化简:2()(2)x y x x y +-+.【知识考点】特殊角的三角函数值;实数的运算;完全平方公式;单项式乘多项式【思路分析】(1)直接利用特殊角的三角函数值以及二次根式的性质分别化简得出答案; (2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案. 【解答过程】解:(1)原式41=+1=1=;(2)2()(2)x y x x y +-+22222x xy y x xy =++-- 2y =.【总结归纳】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.18.(8分)如图,点E 是ABCD 的边CD 的中点,连结AE 并延长,交BC 的延长线于点F . (1)若AD 的长为2,求CF 的长.(2)若90BAF ∠=︒,试添加一个条件,并写出F ∠的度数.【知识考点】平行四边形的性质;全等三角形的判定与性质【思路分析】(1)由平行四边形的性质得出//AD CF ,则DAE CFE ∠=∠,ADE FCE ∠=∠,由点E 是CD 的中点,得出DE CE =,由AAS 证得ADE FCE ∆≅∆,即可得出结果;(2)添加一个条件当60B ∠=︒时,由直角三角形的性质即可得出结果(答案不唯一). 【解答过程】解:(1)四边形ABCD 是平行四边形, //AD CF ∴,DAE CFE ∴∠=∠,ADE FCE ∠=∠,点E 是CD 的中点, DE CE ∴=,在ADE ∆和FCE ∆中,DAE CFEADE FCE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE FCE AAS ∴∆≅∆, 2CF AD ∴==;(2)90BAF ∠=︒,添加一个条件:当60B ∠=︒时,906030F ∠=︒-︒=︒(答案不唯一).【总结归纳】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表. 4月份生产的羽毛球重量统计表(1)求表中m 的值及图中B 组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只? 【知识考点】用样本估计总体;频数(率)分布表;扇形统计图【思路分析】(1)图表中“C 组”的频数为550只,占抽查总数的55%,可求出抽查总数,进而求出“A 组”的频数,即m 的值;求出“B 组”所占总数的百分比,即可求出相应的圆心角的度数; (2)计算“B 组”“ C 组”的频率的和即为合格率,求出“不合格”所占的百分比,即可求出不合格的数量.【解答过程】解:(1)55055%1000÷=(只),10004005503020---=(只) 即:20m =, 4003601441000︒⨯=︒, 答:表中m 的值为20,图中B 组扇形的圆心角的度数为144︒; (2)40055095095%100010001000+==, 1210(195%)1205%6⨯⨯-=⨯=(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.【总结归纳】考查统计表、扇形统计图的意义和制作方法,理解图表中的数量和数量之间的关系,是正确计算的前提.20.(8分)我国传统的计重工具--秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据.x (厘米)1 2 4 7 11 12 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?组别重量x (克) 数量(只)A 5.0x <mB5.0 5.1x < 400 C5.1 5.2x < 550 D5.2x30【知识考点】一次函数的应用【思路分析】(1)利用描点法画出图形即可判断.(2)设函数关系式为y kx b =+,利用待定系数法解决问题即可. 【解答过程】解:(1)观察图象可知:7x =, 2.75y =这组数据错误.(2)设y kx b =+,把1x =,0.75y =,2x =,1y =代入可得0.7521k b k b +=⎧⎨+=⎩,解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩,1142y x ∴=+, 当16x =时, 4.5y =,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.【总结归纳】本题考查一次函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E ,H 可分别沿等长的立柱AB ,DC 上下移动, 1AF EF FG m ===.(1)若移动滑块使AE EF =,求AFE ∠的度数和棚宽BC 的长.(2)当AFE ∠由60︒变为74︒时,问棚宽BC 是增加还是减少?增加或减少了多少?(结果精确到0.1m 1.73≈,sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈ 【知识考点】菱形的性质;等腰三角形的性质;解直角三角形的应用【思路分析】(1)根据等边三角形的性质得到60AFE ∠=︒,连接MF 并延长交AE 于K ,则2FM FK =,求得FK ==,于是得到结论; (2)解直角三角形即可得到结论. 【解答过程】解:(1)1AE EF AF ===,AEF ∴∆是等边三角形,60AFE ∴∠=︒,连接MF 并延长交AE 于K ,则2FM FK =,AEF ∆是等边三角形,12AK ∴=,FK ∴==,2FM FK ∴=4 6.92 6.9()BC FM m ∴==≈≈;(2)74AFE ∠=︒, 37AFK ∴∠=︒,cos370.80KF AF ∴=︒≈, 2 1.60FM FK ∴==,4 6.40 6.92BC FM ∴==<, 6.92 6.400.520.5-=≈,答:当AFE ∠由60︒变为74︒时,棚宽BC 是减少了,减少了0.5m .【总结归纳】本题考查了解直角三角形的应用,菱形的性质,等边三角形的性质,正确的理解题意是解题的关键.22.(12分)问题:如图,在ABD ∆中,BA BD =.在BD 的延长线上取点E ,C ,作AEC ∆,使EA EC =.若90BAE ∠=︒,45B ∠=︒,求DAC ∠的度数. 答案:45DAC ∠=︒.思考:(1)如果把以上“问题”中的条件“45B ∠=︒”去掉,其余条件不变,那么DAC ∠的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“45B ∠=︒”去掉,再将“90BAE ∠=︒”改为“BAE n ∠=︒”,其余条件不变,求DAC ∠的度数. 【知识考点】等腰三角形的性质【思路分析】(1)根据等腰三角形的性质得到2AED C ∠=∠,①求得9090(45)45DAE BAD C C ∠=︒-∠=︒-︒+∠=︒-∠,②由①,②即可得到结论;(2)设ABC m ∠=︒,根据三角形的内角和定理和等腰三角形的性质即可得到结论. 【解答过程】解:(1)DAC ∠的度数不会改变; EA EC =,2AED C ∴∠=∠,① 90BAE ∠=︒,1[180(902)]452BAD C C ∴∠=︒-︒-∠=︒+∠,9090(45)45DAE BAD C C ∴∠=︒-∠=︒-︒+∠=︒-∠,②由①,②得,45DAC DAE CAE ∠=∠+∠=︒; (2)设ABC m ∠=︒,则11(180)9022BAD m m ∠=︒-︒=︒-︒,180AEB n m ∠=︒-︒-︒,1902DAE n BAD n m ∴∠=︒-∠=︒-︒+︒,EA EC =,11190222CAE AEB n m ∴∠=∠=︒-︒-︒,111190902222DAC DAE CAE n m n m n ∴∠=∠+∠=︒-︒+︒+︒-︒-︒=︒.【总结归纳】本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键. 23.(12分)如图1,排球场长为18m ,宽为9m ,网高为2.24m ,队员站在底线O 点处发球,球从点O 的正上方1.9m 的C 点发出,运动路线是抛物线的一部分,当球运动到最高点A 时,高度为2.88m ,即 2.88BA m =,这时水平距离7OB m =,以直线OB 为x 轴,直线OC 为y 轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x 轴垂直于底线),求球运动的高度()y m 与水平距离()x m 之间的函数关系式(不必写出x 取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P (如图1,点P 距底线1m ,边线0.5)m ,问发球点O 取1.4)【知识考点】二次函数的应用【思路分析】(1)求出抛物线表达式;再确定9x =和18x =时,对应函数的值即可求解;(2)当0y =时,21(7) 2.88050y x =--+=,解得:19x =或5-(舍去5)-,求出8.4PQ ==,即可求解.【解答过程】解:(1)设抛物线的表达式为:2(7) 2.88y a x =-+, 将0x =, 1.9y =代入上式并解得:150a =-, 故抛物线的表达式为:21(7) 2.8850y x =--+; 当9x =时,21(7) 2.88 2.8 2.2450y x =--+=>, 当18x =时,21(7) 2.880.64050y x =--+=>, 故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ 、OQ 交于点Q ,在Rt OPQ ∆中,18117OQ =-=, 当0y =时,21(7) 2.88050y x =--+=,解得:19x =或5-(舍去5)-, 19OP ∴=,而17OQ =,故8.4PQ ==, 98.40.50.1--=,∴发球点O 在底线上且距右边线0.1米处.【总结归纳】本题考查的是二次函数综合运用,关键是弄清楚题意,明确变量的代表的实际意义.。

2023年浙江绍兴中考数学真题(解析版)

2023年浙江绍兴中考数学真题(解析版)

数学卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分1.计算23-的结果是()A.1- B.3- C.1D.3【答案】A 【解析】【分析】根据有理数的减法法则进行计算即可.【详解】解:231-=-,故选:A .【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.2.据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是()A.727.410⨯B.82.7410⨯ C.90.27410⨯ D.92.7410⨯【答案】B 【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中1||10,a n ≤<为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,由此进行求解即可得到答案.【详解】解:8274000000 2.7410=⨯,故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.3.由8个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形,故选:D.【点睛】本题考查了三视图的知识,要求同学们掌握主视图是从物体的正面看得到的视图.4.下列计算正确的是()A.623a a a÷= B.()52a a-=- C.()()2111a a a+-=- D.22(1)1a a+=+【答案】C【解析】【分析】根据同底数幂相除法则判断选项A;根据幂的乘方法则判断选项B;根据平方差公式判断选项C;根据完全平方公式判断选项D即可.【详解】解:A.6243a a a a÷=≠,原计算错误,不符合题意;B.()5210a a a-=-≠-,原计算错误,不符合题意;C.()()2111a a a+-=-,原计算正确,符合题意;D.222(1)211a a a a+=++≠+,原计算错误,不符合题意;故选:C.【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.5.在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.25 B.35 C.27D.57【答案】C【解析】【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.6.《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是()A.5352x y x y +=⎧⎨+=⎩ B.5352x y x y +=⎧⎨+=⎩ C.5352x y x y =+⎧⎨=+⎩ D.5253x y x y =+⎧⎨=+⎩【答案】B 【解析】【分析】设大容器的容积为x 斛,小容器的容积为y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x 、y 的二元一次方程组.【详解】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩.故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键.7.在平面直角坐标系中,将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A.()2,1m n -- B.()2,1m n -+ C.()2,1m n +- D.()2,1m n ++【答案】D 【解析】【分析】把(),m n 横坐标加2,纵坐标加1即可得出结果.【详解】解:将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()2,1m n ++.故选:D .【点睛】本题考查点的平移中坐标的变换,把(),a b 向上(或向下)平移h 个单位,对应的纵坐标加上(或减去)h ,,把(),a b 向右上(或向左)平移n 个单位,对应的横坐标加上(或减去)n .掌握平移规律是解题的关键.8.如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形【答案】A 【解析】【分析】根据题意,分别证明四边形1212E E F F 是菱形,平行四边形,矩形,即可求解.【详解】∵四边形ABCD 是矩形,∴AB CD ∥,90BAD ABC ∠=∠=︒,∴60BDC ABD ∠=∠=︒,906030ADB CBD ∠=∠=︒-︒=︒,∵OE OF =、OB OD =,∴DF EB =∵对称,∴21DF DF BF BF ==,,21,BE BE DE DE ==∴1221E F E F =∵对称,∴260F DC CDF ∠=∠=︒,130EDA E DA ∠=∠=︒∴160E DB ∠=︒,同理160F BD ∠=︒,∴11DE BF ∥∴1221E F E F ∥∴四边形1212E E F F 是平行四边形,如图所示,当,,E F O 三点重合时,DO BO =,∴1212DE DF AE AE ===即1212E E EF =∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==,在Rt △ABD 中,2,AB AD ==,连接AE ,AO ,∵602ABO BO AB ∠=︒==,,∴ABO 是等边三角形,∵E 为OB 中点,∴AE OB ⊥,1BE =,∴AE =,根据对称性可得1AE AE ==∴2221112,9,3AD DE AE ===,∴22211AD AE DE =+,∴1DE A 是直角三角形,且190E ∠=︒,∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形∴在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A .【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.9.已知点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,则这个函数图象可能是()A. B. C.D.【答案】B 【解析】【分析】点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,可得N 、P 关于y 轴对称,当0x <时,y 随x 的增大而增大,即可得出答案.【详解】解:∵()()2,,2,N a P a -,∴得N 、P 关于y 轴对称,∴选项A 、C 错误,∵()()4,2,2,M a N a ---在同一个函数图象上,∴当0x <时,y 随x 的增大而增大,∴选项D 错误,选项B 正确.故选:B .10.如图,在ABC 中,D 是边BC 上的点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出()A.AFE △的面积B.BDF V 的面积C.BCN △的面积D.DCE △的面积【答案】D 【解析】【分析】如图所示,连接ND ,证明FBD EDC ∽,得出FB FD ED EC =,由已知得出NF BFME DE=,则FD NFEC ME=,又NFD MEC ∠=∠,则NFD MEC ∽,进而得出MCD NDB ∠=∠,可得MC ND ∥,结合题意得出1122EMC DMC MNC S S S == ,即可求解.【详解】解:如图所示,连接ND ,∵DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=.∴FBD EDC ∽,NFD MEC ∠=∠.∴FB FDED EC=.∵2DM ME =,2BN NF =,∴11,33NF BF ME DE ==,∴NF BFME DE =.∴FD NFEC ME=.又∵NFD MEC ∠=∠,∴NFD MEC ∽.∴ECM FDN ∠=∠.∵FDB ECD ∠=∠∴MCD NDB ∠=∠.∴MC ND ∥.∴MNC MDC S S = .∵2DMME =,∴1122EMC DMC MNC S S S == .故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ND ∥是解题的关键.卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:m 2﹣3m =__________.【答案】()3m m -【解析】【分析】题中二项式中各项都含有公因式m ,利用提公因式法因式分解即可得到答案.【详解】解:()233m m m m -=-,故答案为:()3m m -.【点睛】本题考查整式运算中的因式分解,熟练掌握因式分解的方法技巧是解决问题的关键.12.如图,四边形ABCD 内接于圆O ,若100D ∠=︒,则B ∠的度数是________.【答案】80︒##80度【解析】【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于O ,∴180BD �邪=,∵100D ∠=︒,∴18080B D ∠︒∠︒=﹣=.故答案为:80︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.13.方程3911x x x =++的解是________.【答案】3x =【解析】【分析】先去分母,左右两边同时乘以()1x +,再根据解一元一次方程的方法和步骤进行解答,最后进行检验即可.【详解】解:去分母,得:39x =,化系数为1,得:3x =.检验:当3x =时,10x +≠,∴3x =是原分式方程的解.故答案为:3x =.【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的方法和步骤,正确找出最简公分母,注意解分式方程要进行检验.14.如图,在菱形ABCD 中,40DAB ∠=︒,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则AEC ∠的度数是________.【答案】10︒或80︒【解析】【分析】根据题意画出图形,结合菱形的性质可得1202CAD DAB ∠=∠=︒,再进行分类讨论:当点E 在点A 上方时,当点E 在点A 下方时,即可进行解答.【详解】解:∵四边形ABCD 为菱形,40DAB ∠=︒,∴1202CAD DAB ∠=∠=︒,连接CE ,①当点E 在点A 上方时,如图1E ,∵1AC AE =,120CAE ∠=︒,∴()1118020802AE C ∠=︒-︒=︒,②当点E 在点A 下方时,如图2E ,∵1AC AE =,120CAE ∠=︒,∴211102AE C CAE ∠=∠=︒,故答案为:10︒或80︒.【点睛】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为180︒;三角形的一个外角等于与它不相邻的两个内角之和.15.如图,在平面直角坐标系xOy 中,函数k y x=(k 为大于0的常数,0x >)图象上的两点()()1122,,,A x y B x y ,满足212x x =.ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.【答案】2【解析】【分析】过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,利用6AFO ABO BOE FABEO S S S S k =++=+ 五边形,AFOD FABEO ADEB ADEB S S S k S =+=+矩形五边形梯形梯形,得到6ADEB S =梯形,结合梯形的面积公式解得11=8x y ,再由三角形面积公式计算2112111111111()()22224ABC S AC BC x x y y x y x y =×=-×-=×=,即可解答.【详解】解:如图,过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E,6AFO ABO BOE FABEO S S S S k =++=+ 五边形AFOD FABEO ADEB ADEBS S S k S =+=+矩形五边形梯形梯形6ADEB S ∴=梯形2121()()62y y x x +-∴= 212x x =2112y y ∴=11112121111()(2)()()32==6224y y x x y y x x y x +-+-∴=11=8x y ∴8k ∴=21121111111111()()82222244ABC S AC BC x x y y x y x y =×=-×-=×==´=故答案为:2.【点睛】本题考查反比例函数中k 的几何意义,是重要考点,掌握相关知识是解题关键.16.在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________.【答案】712或2512-【解析】【分析】根据题意求得点()3,0A ,()3,4B ,()0,4C,根据题意分两种情况,待定系数法求解析式即可求解.【详解】由()2(2)03y x x =-≤≤,当0x =时,4y =,∴()0,4C ,∵()3,0A ,四边形ABCO 是矩形,∴()3,4B ,①当抛物线经过O B ,时,将点()0,0,()3,4B 代入()21034y x bx c x =++≤≤,∴019344c b c =⎧⎪⎨⨯++=⎪⎩解得:712b =②当抛物线经过点,A C 时,将点()3,0A ,()0,4C 代入()21034y x bx c x =++≤≤,∴419304c b c =⎧⎪⎨⨯++=⎪⎩解得:2512b =-综上所述,712b =或2512b =-,故答案为:712或2512-.【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:0(1)π---.(2)解不等式:324x x ->+.【答案】(1)1;(2)3x >【解析】【分析】(1)根据零指数幂的性质、二次根式的化简、绝对值的性质依次解答;(2)先移项,再合并同类项,最后化系数为1即可解答.【详解】解:(1)原式1=-+1=.(2)移项得36x x ->,即26x >,∴3x >.∴原不等式的解是3x >.【点睛】本题考查实数的混合运算、零指数幂、二次根式的化简和解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.18.某校兴趣小组通过调查,形成了如下调查报告(不完整).调查目的1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式随机抽样调查调查对象部分初中生调查内容你最喜爱的一个球类运动项目(必选)A .篮球B .乒乓球C .足球D .排球E .羽毛球调查结果建议……结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100(2)360(3)答案不唯一,见解析【解析】【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.【小问1详解】被抽查学生数:3030%100÷=,答:本次调查共抽查了100名学生.【小问2详解】被抽查的100人中最喜爱羽毛球的人数为:1005%5⨯=,∴被抽查的100人中最喜爱篮球的人数为:100301015540----=,∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.【小问3详解】答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.19.图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上, 2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin 320.53,cos320.85,tan 320.62︒≈︒≈︒≈)【答案】(1)58︒(2)该运动员能挂上篮网,理由见解析【解析】【分析】(1)根据直角三角形的两个锐角互余即可求解;(2)延长,OA ED 交于点M ,根据题意得出32ADM ∠=︒,解Rt ADM △,求得AM ,根据OM OA AM =+与3比较即可求解.【小问1详解】解:∵CG CD ⊥,∴90ACG ∠=︒,∵32AGC ∠=︒,∴903258GAC ∠=︒-︒=︒.【小问2详解】该运动员能挂上篮网,理由如下.如图,延长,OA ED 交于点M ,∵,OA OB DE OB ⊥∥,∴90DMA ∠=︒,又∵58DAM GAC ∠=∠=︒,∴32ADM ∠=︒,在Rt ADM △中,sin 320.80.530.424AM AD =︒≈⨯=,∴ 2.50.424 2.9243OM OA AM =+=+=<,∴该运动员能挂上篮网.【点睛】本题考查了解直角三角形的应用,直角三角形的两个锐角互余,熟练掌握三角函数的定义是解题的关键.20.一条笔直的路上依次有,,M P N 三地,其中,M N 两地相距1000米.甲、乙两机器人分别从,M N 两地同时出发,去目的地,N M ,匀速而行.图中,OA BC 分别表示甲、乙机器人离M 地的距离y (米)与行走时间x (分钟)的函数关系图象.(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到P 地,求,P M 两地间的距离.【答案】(1)200y x=(2)出发后甲机器人行走103分钟,与乙机器人相遇(3),P M 两地间的距离为600米【解析】【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求出BC 所在直线的表达式,再列方程组求出交点坐标,即可;(3)列出方程即可解决.【小问1详解】∵()()0,0,5,1000O A ,∴OA 所在直线的表达式为200y x =.【小问2详解】设BC 所在直线的表达式为y kx b =+,∵()()0,1000,10,0B C ,∴10000,010,b k b =+⎧⎨=+⎩解得100,1000k b =-⎧⎨=⎩.∴1001000y x =-+.甲、乙机器人相遇时,即2001001000x x =-+,解得103x =,∴出发后甲机器人行走103分钟,与乙机器人相遇.【小问3详解】设甲机器人行走t 分钟时到P 地,P 地与M 地距离200y t =,则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.21.如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.【答案】(1)115︒(2)CE =【解析】【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=︒,在Rt OCD △中,勾股定理求得CD 根据OC AE ∥,可得CD OD CE OA=,进而即可求解.【小问1详解】解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.【小问2详解】∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴CD ==.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CD OD CE OA =,即32CE =,∴CE =.【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.22.如图,在正方形ABCD 中,G 是对角线BD 上的一点(与点,B D 不重合),,,,GE CD GF BC E F ⊥⊥分别为垂足.连接,EF AG ,并延长AG 交EF 于点H .(1)求证:DAG EGH ∠=∠.(2)判断AH 与EF 是否垂直,并说明理由.【答案】(1)见解析(2)AH 与EF 垂直,理由见解析【解析】【分析】(1)由正方形的性质,得到AD CD ⊥,结合垂直于同一条直线的两条直线平行,可得AD GE ∥,再根据平行线的性质解答即可;(2)连接GC 交EF 于点O ,由SAS 证明ADG CDG ≌,再根据全等三角形对应角相等得到DAG DCG ∠=∠,继而证明四边形FCEG 为矩形,最后根据矩形的性质解答即可.【小问1详解】解:在正方形ABCD 中,AD CD⊥GE CD⊥ ∴AD GE ∥,∴DAG EGH ∠=∠.【小问2详解】AH 与EF 垂直,理由如下.连接GC 交EF 于点O .∵BD 为正方形ABCD 的对角线,∴45ADG CDG ∠=∠=︒,又∵,DG DG AD CD ==,∴ADG CDG ≌,∴DAG DCG ∠=∠.在正方形ABCD 中,ECF ∠=︒,又∵,GE CD GF BC ⊥⊥,∴四边形FCEG 为矩形,∴OE OC =,∴OEC OCE ∠=∠,∴DAG OEC ∠=∠.又∵DAG EGH ∠=∠,∴90EGH GEH OEC GEH GEC ∠+∠=∠+∠=∠=︒,∴90GHE ∠=°,∴AH EF ⊥.【点睛】本题考查正方形的性质、平行线的性质、全等三角形的判断与性质、矩形的判定与性质等知识,综合性较强,是重要考点,掌握相关知识是解题关键.23.已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.【答案】(1)①()2,7;②当13x -≤≤时,27y -≤≤(2)222y x x =-++【解析】【分析】(1)①将4,3b c ==代入解析式,化为顶点式,即可求解;②已知顶点()2,7,根据二次函数的增减性,得出当2x =时,y 有最大值7,当=1x -时取得最小值,即可求解;(2)根据题意0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,得出抛物线的对称轴2b x =在y 轴的右侧,即0b >,由抛物线开口向下,0x ≤时,y 的最大值为2,可知2c =,根据顶点坐标的纵坐标为3,求出2b =,即可得解.【小问1详解】解:①当4,3b c ==时,2243(2)7y x x x =-++=--+,∴顶点坐标为()2,7.②∵顶点坐标为()2,7.抛物线开口向下,当12x -≤≤时,y 随x 增大而增大,当23x ≤≤时,y 随x 增大而减小,∴当2x =时,y 有最大值7.又()2132-->-∴当=1x -时取得最小值,最小值=2y -;∴当13x -≤≤时,27y -≤≤.【小问2详解】∵0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,∴抛物线的对称轴2b x =在y 轴的右侧,∴0b >,∵抛物线开口向下,0x ≤时,y 的最大值为2,∴2c =,又∵()()241341c b ⨯-⨯-=⨯-,∴2b =±,∵0b >,∴2b =,∴二次函数的表达式为222y x x =-++.【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.24.在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列),12,10,AB AD B ==∠为锐角,且4sin 5B =.(1)如图1,求AB 边上的高CH 的长.(2)P 是边AB 上的一动点,点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''.①如图2,当点C '落在射线CA 上时,求BP 的长.②当AC D ''△是直角三角形时,求BP 的长.【答案】(1)8(2)①347BP =;②6BP =或8±【解析】【分析】(1)利用正弦的定义即可求得答案;(2)①先证明PQC CHP '△≌△,再证明AQC AHC '△∽△,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C '为直角顶点;第二种:A 为直角顶点;第三种,D ¢为直角顶点,但此种情况不成立,故最终有两个答案.【小问1详解】在ABCD Y 中,10BC AD ==,在Rt BCH 中,4sin 1085CH BC B ==⨯=.【小问2详解】①如图1,作CH BA ⊥于点H ,由(1)得,6BH ==,则1266AH =-=,作C Q BA '⊥交BA 延长线于点Q ,则90CHP PQC ∠'=∠=︒,∴90C PQ PC Q '∠+∠='︒.∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,∴PQC CHP '△≌△.设BP x =,则8,6,4PQ CH C Q PH x QA PQ PA x ====-=-=-'.∵,C Q AB CH AB '⊥⊥,∴C Q CH '∥,∴AQC AHC '△∽△,∴C Q QA CH HA =',即6486x x --=,∴347x =,∴347BP =.②由旋转得,PCD PC D CD C D '''='△≌△,CD C D ⊥'',又因为AB CD ,所以C D AB ''⊥.情况一:当以C '为直角顶点时,如图2.∵C D AB ''⊥,∴C '落在线段BA 延长线上.∵PC PC ⊥',∴PC AB ⊥,由(1)知,8PC =,∴6BP =.情况二:当以A 为直角顶点时,如图3.设C D ''与射线BA 的交点为T ,作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,∴CPH PC T ∠=∠'.又∵90,CHP PTC PC C P ∠=∠=='︒',∴CPH PC T '△≌△,∴,8C T PH PT CH '===.设C T PH t '==,则6AP t =-,∴2AT PT PA t=-=+∵90,C AD C D AB ∠=︒''⊥'',∴ATD C TA '' ∽,∴AT C T TD TA='',∴2AT C T TD '=⋅',∴()2(2)12t t ι+=-,化简得2420t t -+=,解得2t =±∴8BP BH HP =+=±情况三:当以D ¢为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,6BP =或8±【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.。

历年浙江省绍兴市初三数学中考试题及答案

历年浙江省绍兴市初三数学中考试题及答案

绍兴市中考数学试题总分150分一.选择题(本大题有12小题,满分48分)下面每题给出的四个选项中只有一个选项是正确的1.学校篮球场的长是28米,宽是( )(A )5米 (B )15米 (C ) 28米 (D )34米2.反比例函数2y x =的图象在( ) (A )第一、三象限 (B )第二、四象限 (C )第一、二象限 (D )第三、四象限3.下列各式中运算不正确的是( )(A )235ab ab ab += (B )23ab ab ab -=-(C )236ab ab ab =g (D )2233ab ab ÷= 4.已知圆柱的侧面积为10π,则它的轴截面面积为( )(A ) 5 (B ) 10 (C ) 12 (D ) 205.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想方法叫做( )(A )代入法 (B )换元法 (C )数形结合 (D )分类讨论6.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156m ,则这个数用科学记数法表示是( )(A )50.15610-⨯ (B )50.15610⨯ (C )61.5610-⨯ (D )61.5610⨯ 7.不等式组中的两个不等式的解在数轴上表示不如图所示,则此不等式组可以是( ) (A )01x x ≥⎧⎨≥⎩ (B )01x x ≤⎧⎨≤⎩ (C )01x x ≥⎧⎨≤⎩ (D )01x x ≤⎧⎨≥⎩8.将一张正方形纸片,沿图的虚线对折,得图,然后剪去一个角,展开铺平后的图形如右图所示,则图中沿虚线的剪法是( )9.化简()2244123x x x -+--得 (A ) 2 (B )44x -+ (C )-2 (D )44x -10.钟老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为1”,小聪回答:“方程有一根为2”。

则你认为( )(A )只有小敏回答正确 (B )只有小聪回答正确(C )小敏、小聪回答都正确 (D )小敏、小聪回答都不正确11.如图,已知AB 是⊙O 的直径,CD 是弦且CD ⊥AB ,BC =6,AC =8,则sin ∠ABD 的值是( )(A )43 (B ) 34 (C ) 35 (D )4512.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.5 4.9h t t =-(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )(A )0.71s (B ) 0.70s (C )0.63s (D )0.36s二.填空题(本大题有6小题,满分30分)将答案直接填在各填横线上13.在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。

(中考精品)浙江省绍兴市中考数学真题(解析版)

(中考精品)浙江省绍兴市中考数学真题(解析版)

2022年浙江省绍兴市中考数学真题一、选择题1. 实数-6的相反数是( ) A. 16- B. 16 C. -6 D. 6【答案】D【解析】【分析】根据只有符号不同的两个数是互为相反数求解即可.【详解】解:-6的相反数是6,故选:D .【点睛】本题考查相反数,掌握相反数的定义是解题的关键.2. 2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是( )A. 63.210⨯B. 53.210⨯C. 43.210⨯D. 43210⨯【答案】B【解析】【分析】根据科学记数法“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫科学记数法”即可得.【详解】解:5320000 3.210=⨯,故选B .【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法.3. 由七个相同的小立方块搭成的几何体如图所示,则它的主视图是( )A. B. C. D.【答案】B【解析】【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B .【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.4. 在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( ) A. 34 B. 12 C. 13 D. 14【答案】A【解析】【分析】根据概率公式计算,即可求解. 【详解】解:根据题意得:从袋中任意摸出一个球为红球的概率是33314=+. 故选:A【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键.5. 下列计算正确的是( )A. 2()a ab a a b +÷=+B. 22a a a ⋅=C. 222()a b a b +=+D. 325()a a = 【答案】A【解析】【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确;B 、23a a a ⋅=,原式计算错误;C 、222()2a b a b ab +=++,原式计算错误;D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.6. 如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A. 30°B. 45°C. 60°D. 75°【答案】C【解析】 【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解.【详解】解: 30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.7. 已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A. 0,4B. 1,5C. 1,-5D. -1,5【答案】D【解析】【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可.【详解】 抛物线2y x mx =+的对称轴为直线2x =, 221m ∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8. 如图,在平行四边形ABCD 中,22AD AB ==,60ABC ∠=︒,E ,F 是对角线BD 上的动点,且BE DF =,M ,N 分别是边AD ,边BC 上的动点.下列四种说法:①存在无数个平行四边形MENF ;②存在无数个矩形MENF ;③存在无数个菱形MENF ;④存在无数个正方形MENF .其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据题意作出合适的辅助线,然后逐一分析即可.【详解】如图,连接AC 、与BD 交于点O ,连接ME ,MF ,NF ,EN ,MN ,∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD∵BE =DF∴OE =OF∵点E 、F 时BD 上的点,∴只要M ,N 过点O ,那么四边形MENF 就是平行四边形∴存在无数个平行四边形MENF ,故①正确;只要MN =EF ,MN 过点O ,则四边形MENF 是矩形,∵点E 、F 是BD 上的动点,∴存在无数个矩形MENF ,故②正确;只要MN ⊥EF ,MN 过点O ,则四边形MENF 是菱形;∵点E 、F 是BD 上的动点,∴存在无数个菱形MENF ,故③正确;只要MN =EF ,MN ⊥EF ,MN 过点O ,则四边形MENF 是正方形,而符合要求的正方形只有一个,故④错误;故选:C【点睛】本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定、解答本题的关键时明确题意,作出合适的辅助线.9. 已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A. 若120x x >,则130y y >B. 若130x x <,则120y y >C. 若230x x >,则130y y >D. 若230x x <,则120y y >【答案】D【解析】【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y =−2x +3∴y 随x 增大而减小,当y =0时,=1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.10. 将一张以AB 为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD ,其中90A ∠=︒,9AB =,7BC =,6CD =,2AD =,则剪掉的两个直角三角形的斜边长不可能是( )A. 252B. 454C. 10D. 354【答案】A【解析】【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.【详解】解:当△DFE ∽△ECB 时,如图,∴DF FE DE EC CB EB==, 设DF =x ,CE =y , ∴9672x y y x +==+,解得:274214x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴2145644DE CD CE =+=+=,故B 选项不符合题意; ∴2735244EB DF AD =+=+=,故选项D 不符合题意;如图,当△DCF ∽△FEB 时,∴DC CF DF FE EB FB==, 设FC =m ,FD =n , ∴6927m n n m ==++,解得:810m n =⎧⎨=⎩, ∴FD =10,故选项C 不符合题意;8614BF FC BC =+=+=,故选项A 符合题意;故选:A【点睛】本题考查相似三角形的性质、矩形的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.二、填空题11. 分解因式:2x x + = ______【答案】(1)x x +【解析】【分析】利用提公因式法即可分解.【详解】2(1)x x x x +=+,故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.12. 关于x 的不等式32x x ->的解是______.【答案】1x >【解析】【分析】将不等式移项,系数化为1即可得.【详解】解:32x x ->32x x ->22x >1x >,故答案为:1x >.【点睛】本题考查了解一元一次不等式,解题的关键是掌握解一元一次不等式的方法. 13. 元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.” 其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是______.【答案】20【解析】【分析】设良马x 天追上劣马,根据良马追上劣马所走路程相同可得:240x =150(x +12),即可解得良马20天追上劣马.【详解】解:设良马x 天追上劣马,根据题意得:240x =150(x +12),解得x =20,答:良马20天追上劣马;故答案为:20.【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.14. 如图,在ABC 中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD BCD ∠的度数是______.【答案】10°或100°【解析】【分析】分两种情况画图,由作图可知得AC AD =,根据等腰三角形的性质和三角形内角和定理解答即可.【详解】解:如图,点D 即为所求;在ABC ∆中,40ABC ∠=︒,80BAC ∠=︒,180408060ACB ∴∠=︒-︒-︒=︒,由作图可知:AC AD =,1(18080)502ACD ADC ∴∠=∠=︒-︒=︒, 605010BCD ACB ACD ∴∠=∠-∠=︒-︒=︒;由作图可知:AC AD =',ACD AD C ∴∠'=∠',80ACD AD C BAC ∠'+∠'=∠=︒ ,40AD C ∴∠'=︒,1801804040100BCD ABC AD C ∴∠'=︒-∠-∠'=︒-︒-︒=︒.综上所述:BCD ∠的度数是10︒或100︒.故答案为:10︒或100︒.【点睛】本题考查了作图-复杂作图,三角形内角和定理,等腰三角形的判定与性质,解题的关键是掌握基本作图方法.15. 如图,在平面直角坐标系xOy 中,点A (0,4),B (3,4),将ABO 向右平移到CDE △位置,A 的对应点是C ,O 的对应点是E ,函数(0)k y k x=≠的图象经过点C 和DE 的中点F ,则k 的值是______.【答案】6【解析】【分析】作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,设AC=EO=BD =a ,表示出四边形ACEO 的面积,再根据三角形中位线的性质得出FG ,EG ,即可表示出四边形HFGO 的面积,然后根据k 的几何意义得出方程,求出a ,可得答案.【详解】过点F 作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,根据题意,得AC=EO=BD ,设AC=EO=BD =a ,∴四边形ACEO 的面积是4a .∵F 是DE 的中点,FG ⊥x 轴,DQ ⊥x 轴,∴FG 是△EDQ 的中位线, ∴122FG D Q ==,1322E G E Q ==, ∴四边形HFGO 的面积为32()2a +, ∴342()2k a a ==+, 解得32a =, ∴k=6.故答案为:6.【点睛】本题主要考查了反比例函数中k 的几何意义,正确的作出辅助线构造矩形是解题的关键.16. 如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或354【解析】 【分析】过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =3x ,由△ACN ≌△CDM 可得AN =CM =10+x ,CN =DM =3x ,由点C 、M 、D 、E 四点共圆可得△NME 是等腰直角三角形,于是NE =10-2x ,由勾股定理求得AC 可得CE ,在Rt △CNE 中由勾股定理建立方程求得x ,进而可得BE ;【详解】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =,Rt △ECD 中,CD =AC ,CE CD , Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54, ∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.三、解答题17. 计算(1)计算:6tan30°+(π+1)0(2)解方程组242.x y x y -=⎧⎨+=⎩, 【答案】(1)1(2)20x y =⎧⎨=⎩【解析】 【分析】(1)根据特殊角的三角函数值,零指数幂,二次根式的性质化简,然后进行计算即可;(2)利用加减消元法解二元一次方程组即可.【小问1详解】解:原式611=-=+-1; 【小问2详解】242x y x y -=⎧⎨+=⎩①②, ①+②得3x =6,∴x =2,把x =2代入②,得y =0,∴原方程组的解是20x y =⎧⎨=⎩. 【点睛】本题考查了特殊角的三角函数值,零指数幂,二次根式的性质,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.18. 双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x (单位:小时)情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题..的八年级学生每日完成书面作业所需时长情况的统计表 组别 所需时长(小时) 学生人数(人)A 00.5x <≤ 15B 0.51x <≤ mC 1 1.5x <≤ nD 1.52x <≤5(1)求统计表中m ,n 的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5 1.5x <≤的共有多少人.【答案】(1)m 为60,n 为20(2)640人【解析】【分析】(1)先求出被调查总人数,再根据扇形统计图求出m ,用总人数减去A 、B 、D 的人数,即可得n 的值;(2)用被调查情况估计八年级800人的情况,即可得到答案.【小问1详解】解:被调查总人数:1515%100÷=(人), 10060%60m ∴=⨯=(人),1001560520n =---=(人),答:m 为60,n 为20;【小问2详解】解: 当0.5 1.5x <…时,在被调查的100人中有602080+=(人),∴在该校八年级学生800人中,每日完成书面作业所需时长满足0.5 1.5x <…的共有80800640100⨯=(人), 答:估计共有640人.【点睛】本题考查统计图和统计表,解题的关键是掌握从图表中寻找“完整信息”从而求出被调查的总数.19. 一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米). x0 0.5 1 1.5 2 y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x . 【答案】(1)y =x +1(0≤x ≤5),图见解析(2)4小时【解析】【分析】(1)观察表格数据,y 的增长量是固定的,故符合一次函数模型,建立模型待定系数法求解析式,画出函数图象即可求解;(2)根据5y =,代入解析式求得x 的值即可求解.小问1详解】(1)选择y =kx +b ,将(0,1),(1,2)代入,得12b k b =⎧⎨+=⎩,,解得11.k b =⎧⎨=⎩, ∴y =x +1(0≤x ≤5).【小问2详解】当y =5时,x +1=5,∴x =4.答:当水位高度达到5米时,进水用时x 为4小时.【点睛】本题考查了一次函数的性质,画一次函数图象,求一次函数的解析式,根据题意建立模型是解题的关键.20. 圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” )和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC 垂直圭BC ,已知该市冬至正午太阳高度角(即)ABC ∠为37︒,夏至正午太阳高度角(即)ADC ∠为84︒,圭面上冬至线与夏至线之间的距离(即DB 的【长)为4米.(1)求∠BAD 度数.(2)求表AC 的长(最后结果精确到0.1米).(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,tan84°≈192) 【答案】(1)47°(2)3.3米 【解析】【分析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;(2)分别求出ADC ∠和ABC ∠的正切值,用AC 表示出CD 和CB ,得到一个只含有AC 的关系式,再解答即可.【小问1详解】解:84ADC ∠=︒ ,37ABC ∠=︒,47BAD ADC ABC ∴∠=∠-∠=︒,答:BAD ∠的度数是47︒.【小问2详解】解:在Rt △ABC 中,tan 37AC BC ︒=, ∴tan 37AC BC =︒. 同理,在Rt △ADC 中,有tan84AC DC =︒. ∵4BD =, ∴4tan 37tan84AC AC BC DC BD -=-==︒︒. ∴424319AC AC -≈,的∴ 3.3AC ≈(米).答:表AC 的长是3.3米.【点睛】本题主要考查了三角形外角的性质和三角函数,解题的关键是熟练掌握建模思想来解决.21. 如图,半径为6的⊙O 与Rt △ABC 的边AB 相切于点A ,交边BC 于点C ,D ,∠B=90°,连接OD ,A D .(1)若∠ACB=20°,求 AD 的长(结果保留π). (2)求证:AD 平分∠BDO .【答案】(1)43π (2)见解析【解析】【分析】(1)连接OA ,由20ACB ∠=︒,得40AOD ∠=︒,由弧长公式即得 AD 的长为43π; (2)根据AB 切O 于点A ,90B ∠=︒,可得//OA BC ,有OAD ADB ∠=∠,而OA OD =,即可得ADB ODA ∠=∠,从而AD 平分BDO ∠.【小问1详解】解:连接OA ,∵∠ACB =20°,∴∠AOD =40°,∴ 180n rAD π=,18040⨯π⨯6=43π=. 【小问2详解】证明:OA OD = ,OAD ODA ∠=∠∴,AB Q 切O 于点A ,OA AB ∴⊥,90B ∠=︒ ,//OA BC ∴,OAD ADB ∴∠=∠,ADB ODA ∴∠=∠,AD ∴平分BDO ∠.【点睛】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.22. 如图,在△ABC 中,∠ABC=40°, ∠ACB=90°,AE 平分∠BAC 交BC 于点E .P 是边BC 上的动点(不与B ,C 重合),连结AP ,将△APC 沿AP 翻折得△APD ,连结DC ,记∠BCD=α.(1)如图,当P 与E 重合时,求α的度数.(2)当P 与E 不重合时,记∠BAD=β,探究α与β的数量关系.【答案】(1)25° (2)①当点P 在线段BE 上时,2α-β=50°;②当点P 在线段CE 上时,2α+β=50°【解析】【分析】(1)由∠B =40°,∠ACB =90°,得∠BAC =50°,根据AE 平分∠BAC ,P 与E 重合,可得∠ACD ,从而α=∠ACB −∠ACD ;(2)分两种情况:①当点P 在线段BE 上时,可得∠ADC =∠ACD =90°−α,根据∠ADC +∠BAD =∠B +∠BCD ,即可得2α−β=50°;②当点P 在线段CE 上时,延长AD 交BC于点F,由∠ADC=∠ACD=90°−α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90°−α=40°+α+β,即2α+β=50°.【小问1详解】解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=1∠BAC=25°,2∵P与E重合,∴D在AB边上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;【小问2详解】①如图1,当点P在线段BE上时,∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;②如图2,当点P在线段CE上时,延长AD交BC于点F,∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,∴90°-α=40°+α+β,∴2α+β=50°.【点睛】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形外角的性质. 23. 已知函数2y x bx c =-++(b ,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b ,c 的值.(2)当﹣4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.【答案】(1)b =-6,c =-3(2)x =-3时,y 有最大值为6(3)m =-2或3--【解析】【分析】(1)把(0,-3),(-6,-3)代入y =2x bx c -++,即可求解;(2)先求出抛物线的顶点坐标为(-3,6),再由-4≤x ≤0,可得当x =-3时,y 有最大值,即可求解;(3)由(2)得当x >-3时,y 随x 增大而减小;当x ≤-3时,y 随x 的增大而增大,然后分两种情况:当-3<m≤0时,当m≤-3时,即可求解.【小问1详解】解:把(0,-3),(-6,-3)代入y =2x bx c -++,得∶33663c b c =-⎧⎨--+=-⎩,解得:63b c =-⎧⎨=-⎩; 【小问2详解】解:由(1)得:该函数解析式为y =263x x ---=2(3)6x -++,∴抛物线的顶点坐标为(-3,6),∵-1<0∴抛物线开口向下,又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.【小问3详解】解:由(2)得:抛物线的对称轴为直线x =-3,∴当x >-3时,y 随x 的增大而减小;当x ≤-3时,y 随x 的增大而增大,①当-3<m≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为263m m ---,∴263m m ---+(-3)=2, 的∴m =-2或m =-4(舍去).②当m≤-3时,当x =-3时,y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴2(3)6m -++=-4,∴m =3-或m =3-+(舍去).综上所述,m =-2或3--.【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用分类讨论思想解答是解题的关键.24. 如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN .(1)如图,当E 在边AD 上且2=时,求AEM ∠的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.【答案】(1)∠AEM =90°;(2)DE =103;MN ∥BD ,证明见解析;(3)DE 的长为 【解析】 【分析】(1)由DE =2知,AE =AB =6,可知∠AEB =∠MEB =45°,从而得出答案; (2)根据对称性得,∠ENC =∠BDC ,则cos ∠ENC =2610EN =,得EN =103,利用SSS 证明△BMN ≌△DCB ,得∠DBC =∠BNM ,则MN ∥BD ;(3)当点E 在边AD 上时,若直线MN 过点C ,利用AAS 证明△BCM ≌△CED ,得DE =MC;当点E在边CD上时,证明△BMC∽△CNE,可得BM MCCN EN=,从而解决问题.【小问1详解】解:∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°,由对称性知∠BEM=45°,∴∠AEM=∠AEB+∠BEM=90°;【小问2详解】如图1,∵AB=6,AD=8,∴由勾股定理得BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=2610 EN=,∴EN=10 3,∴DE=EN=10 3;直线MN与直线BD的位置关系是MN∥BD.由对称性知BM=AB=CD,MN=AD=BC,又∵BN=BD,∴△BMN≌△DCB(SSS),∴∠DBC=∠BNM,所以MN∥BD;【小问3详解】①情况1:如图2,当E在边AD上时,直线MN过点C,∴∠BMC=90°,∴MC=.∵BM=AB=CD,∠DEC=∠BCE,∠BMC=∠EDC=90°,∴△BCM≌△CED(AAS),∴DE=MC=;②情况2:如图3,点E在边CD上时,∵BM=6,BC=8,∴MC=,CN=8-,∵∠BMC=∠CNE=∠BCD=90°,∴∠BCM+∠ECN=90°,∵∠BCM+∠MBC=90°,∴∠ECN=∠MBC,∴△BMC∽△CNE,∴BM MC CN EN=,∴ENMC CNBM⋅==∴DE=EN.综上所述,DE的长为【点睛】本题是四边形综合题,主要考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,根据题意画出图形,并运用分类讨论思想是解题的关键。

2022年浙江省绍兴市中考数学原题试卷附解析

2022年浙江省绍兴市中考数学原题试卷附解析

2022年浙江省绍兴市中考数学原题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个不透明的袋中装有除颜色外均相同的5个红球和 3 个黄球,从中随机摸出一个,摸到黄球的概率是()A.18B.13C.38D.352.如果x:4=7:3,那么x=()A.283B.127C.214D.733.下面语句中,命题的个数是()(1)同角的补角相等.(2)两条直线相交,有几个交点?(3)相等的两个角是对顶角.(4)若a>0,b>0,则ab>0.A.1个 B 2个 C.3个D.4个4.关于x的一元二次方程22(3)60a x x a a-++--=的一个根是 0,则a 的值为()A.2- B.3 C.-2 或 3 D.-1或 65.某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是()A. 30吨B. 31 吨C. 32吨D. 33吨6.足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为()A.1条B.2条C.3条D.4条7.下列事件中,不可能事件是()A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,•向上一面的点数是“5”B.任意选择某个电视频道,正在播放动画片C.肥皂泡会破碎D.在平面内,度量一个三角形的内角度数,其和为360°8.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.下列说法中正确的是( )A .从所有的质数中任取一个数是偶数是不可能事件B .如果一件事不是必然发生,那么它就不可能发生C .抛掷四枚普通硬币,掷得四个正面朝上和掷得四个反面朝上的概率一样大D .投掷一枚普通正方体骰子,“掷得的数是奇数”是必然发生的,因为骰子上有奇数10.使分式221a a a ++的值为零的a 的值是( ) A .1 B .-1 C .0 D .0 或-111.已知二元一次方程组1941175x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩的解为x a y b =⎧⎨=⎩,则||a b -的值为( ) A . -11B . 11C . 13D . 16 12.54表示( )A .4个5 相乘B . 5个4相乘C .5与4的积D . 5个4相加的和 13.3.1449精确到百分位的近似数是 ( )A .3.14B .3.15C .3.20D .3.145 14. 下列说法正确的是( )A .两个负数相加,绝对值相减B. 正数加负数,和为正数;负数加正数,和为负数C .两正数相加,和为正数;两负数相加,和为负数D .两个有理数相加等于它们的绝对值相加15.若1aa =,则a ( )A .是正数或负数B .是正数C .是有理数D .是正整数二、填空题16.某同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时,与他相邻的一棵小树的影长为3.6米,则这棵树的高度为 米.17.用正十二边形与三角形组合能够铺满地面,每个顶点周围有 个三角形和个正十二边形.18.在:①有两边和一角对应相等的两个三角形全等;②两边和其中一边上的高对应相等的两个三角形全等;③斜边相等的两个等腰直角三角形全等中,正确的命题是 .19.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是 .20.观察下列各式:111 =233+ ;112 =344+ ;113 =455+;…… 请将你猜想到的规律用含自然数n (n≥1)代数式表示出来: .21.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________.22.22()49x y -+÷( )=23x y +. 23.已知∠A=40°,则∠A 的余角是 .24.一 只蜘蛛有 8 条腿,n 只蜘蛛有 条腿.三、解答题25.如图,它是实物与其三种视图,在三种视图中缺少一些线(包括实线和虚线),请将它们补齐,让其成为一个完整的三种视图.26.画出图中几何体的三种视图.27.近年来某市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加,从2004年底到2006年底城市绿地面积变化如图所示,那么绿地面积的年平均增长率是 .28.根据下列关系列不等式:(1)x 的2倍大于一5;(2)4 减去 2x 的差是负数;(3)y 与 3 的和不大于0. 5.29.某服装店的老板,在广州看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用 17 600元购进同种衬衫,数量是第一次的 2倍,但这次每件进价比第一次多4元,服装店仍接每件58元出售,全部售完,问:该服装店这笔生意是否盈利,若盈利,请你求出盈利多少元?30.如图所示,把两张宽度都是 lcm 的纸条交错地叠在一起,相交成角α, 问:(1)试判断重叠部分的四边形的形状;(2)求重叠部分的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.A5.C6.B7.D8.D9.C10.D11.BB13.A14.C15.B二、填空题16.4.217.1,218.②③19.2k <且1k ≠20. 21)1(21++=++n n n n 21. 23㎝22.32y x -23. 50°24.8n三、解答题25.26.27.10%28.(1)2x>-5;(2)4-2x<0;(3)y+3≤0.5 29.设第一次购进衬衫x件. 根据题意,得80001760042x x+=,解得200x=,经检验200x=是原方程的解.当200x=时,服装店这笔生意盈利= 58×(200+400)-(17600+8000)=9200(元)>0. 答:该服装店这笔生意是盈利的,盈利920030.(1)菱形. 过A作AE⊥ BC 于 E,AF ⊥CD于 F,由 AE=AF,∠BEA=∠DFA= 90°,∠EAB=∠DAF=90°-α,∴△AEB∽△AFD(ASA)∴AB=AD,而易知四边形 ABCD 是平行四边形. ∴四边形 ABCD 是菱形(2)在 Rt△AEB 中,AE= 1,∠EBA=α, 由sinAEEBAAB∠=,得1sinABa=,∴重叠要部分的面积=111sin sin AB AFa a⋅=⋅=。

2021年浙江省绍兴市中考数学试卷附解析

2021年浙江省绍兴市中考数学试卷附解析

2021年浙江省绍兴市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知:如图,⊙O 的两弦 AB 、CD 相交于点M ,直径 PQ 过点 M ,且 MP 平分∠AMC ,则图中相等的线段有( ) A .1对B .2对C .3对D .4对2.在□ABCD 中,对角线AC 与BD 相交于点0,那么能通过绕点0旋转达到重合的三角形有 ( ) A .2对B .3对C 4对D .5对3.下列等式:⑴632=⨯;⑵2221=;⑶252322=+;⑷27=33; ⑸=+9494+;⑹32)32(2-=-.成立的个数有( ) A .2个B .3个C .4个D .5个4.下列各式中,是一元一次不式的为( ) A .5x x≥B . 2212x x >-C .21x y +<D .2x 13x +≤5. 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:尺码/厘米 22 22.5 23 23.5 24 24.5 25 销售量/双12512631.合适..的是( ) A .20双 B .30双C .50双D .80双6.下列多项式不是完全平方式的是( ) A .214m m ++B .2269a ab b ++C .24129t t -+D .224x xy y --7.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x x D .c b a x c bx ax ++=++)( 8.如图,已知BE=CF ,且∠B=∠DEF, ∠A=∠D ,那么△ABC 和△DEF 是( )A .一定全等B .一定不全等C . 无法判定D .不一定全等9.当25x >时,分式|25|52x x --的值是( ) A .-1B .0C .1D .2310.如图,每个正方形均由边长为l 的小正方形组成,则下列图形中的三角形(阴影部分)是 △ABC 经相似变换后得到的像是 ( )二、填空题11.如果抛物线21y x ax =-+的对称轴是y 轴,那么a 的值为 . 12.已知函数2m-21y x m =+-是关于x 的反比例函数,则m= .13.命题“角平分线上的点到角两边的距离相等”的题设是 , 结论是 . 14.若一个多边形内角和为900°,那么这多边形是_______边形.15. 一元二次方程22410x x +-=二次项系数是 ,一次项系数是 ,常数项是 . 16.已知点P(a ,b)在第二象限,则直线y=ax+b 不经过第 象限. 17.如图,如果_____,那么a ∥b .18.化简211222a a a ÷-的结果是 . 19.如图,在△ABC 中,∠A=90°,BE 平分∠ABC ,DE ⊥BC ,垂足为 D ,若DE= 3cm ,则AE= cm.20.箱子中有6个红球和2个白球,它们除颜色外都相同.摇匀后,若随意摸出一球,摸到红球的概率是_____ _.21.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到如图②所示的4张扑克牌,他很快确定哪一张牌被旋转过,到底哪一张?答:.22.体育老师在操场上画l00 m的跑道,如果画5条跑道,需要画条线,这些线的位置关系是.23.已知 9×l+0=9,9×2+1=19,9×3+2=29,9×4+3=39,……. 根据前面式子构成的规律写出第n个式子是 (n是正整数)24.把139 500四舍五人取近似数,保留 3个有效数字是 .三、解答题25.已知二次函数y=-x2+4x.(1)用配方法把该函数化为y=a(x-h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x轴的交点坐标.26.解方程:(1)2-=;x x231(2)(5)(7)13-+=.x x27.小敏暑假到某一名山旅游,从科学课上知道山区气温随着海拔高度的增加而下降,沿途她利用随身所带的登山表检测气温,气温y(℃)与海拔高度x(m)存在着下列关系:海拔高度x(m)400500600700…气想y(℃)3231.430.830.2…点画图探究y与x之间的函数关系,并求出函数解析式;(2)若小敏到达山巅时,测得当时气温为19.4℃,请求出这里的海拔高度.28.有个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个面标有“5”,其余面标有“6”,将这个骰子掷出后:(1)掷出“6”朝上的的可能性有多大?(2)哪些数字朝上的可能性一样大?(3)哪些数字朝上的可能性最大?29.找出下列解方程过程中的错误之处,并予以纠正.解方程:1.2031030.2x x-⋅=+⋅解:101231032x x-=+…第一步2010369x x=+-…第二步2091036x x-=+…第三步1146x=…第四步1146x=…第五步30.先化简,再求值:3x2+4x-(2x2+x)+(x2-3x-1) 其中x=-3.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.D5.B6.D.7.C8.A9.C10.A二、填空题11. 012.113.一个点在角的平分线上,这个点到角两边的距离相等14.715.2,4,1-16.三17.∠1=∠2(∠1=∠3或∠2+∠4=180)18.1a -19.320.4321. 第一张方块422.6,平行23.9(1)101n n n +-=-24.51.4010⨯三、解答题 25.(1)4)2(2+--=x y ,对称轴直线2=x ,顶点坐标(2,4)(2))0,4(),0,0(.26.(1)1x =,2x ;(2)18x =-,26x = 27.(1)描点画图略,图象是直线,所以此函数为一次函数,此一次函数解析式为334.4500y x =-+ (2)2500m28.(1)41;(2)1和5,2和4,3和6;(3)3和6. 29.共有四步错误,第一步中10应为l ;第二步漏乘了不含分母的项10;第三步移项没有变号;第五步中除数和被除数关系颠倒.正确解为4229x =30.原式=2x 2-1,当x=-3时,原式=17。

2022年浙江省绍兴市中考数学真题试卷附解析

2022年浙江省绍兴市中考数学真题试卷附解析

2022年浙江省绍兴市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列成语所描述的事件是必然发生的是( ) A .水中捞月B .拔苗助长C .守株待免D .瓮中捉鳖2. 平行光照在竖立地面的两标杆上,产生影子,标杆 CD 长为 lm ,其影子长为 2m ,若标杆 AB 的影子长为 4m ,则 AB 长为( ) A .O.5mB .lmC .2mD .8m如图,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A .4.5米B .6米C .7.2米D .8米4.二次函数22,,04y ax bx c b ac x y =++===-且时,则( ) A .=4y -最大 B .=4y -最小 C .=3y -最大 D .=3y -最小 5.函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( ) 6.函数ky x=的图象经过点(1,-2),则k 的值为( ) A .12 B . 12-C . 2D . -27.等腰三角形是轴对称图形,它的对称轴是( ) A .过顶点的直线 B .底边上的高所在的直线 C .顶角平分线所在的直线 D .腰上的高所在的直线8. 根据图中所给数据,能得出( ) A .a ∥b ,c ∥dB .a ∥b ,但c 与d 不平行C .c ∥d ,但a 与b 不平行D .a 与b ,c 与d 均不互相平行9.用放大镜将图形放大,应该属于( ) ) A .相似变换B .平移变换C .对称变换D .旋转变换二、填空题10.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .11.物体沿一个斜坡下滑,它的速度v(m /s)与其下滑时间t(s)的关系如图所示: (1)下滑2s 时物体的速度为 .(2)v(m /s)与t(s)之间的函数解析式为 . (3)下滑3s 时物体的速度为 .12.某初级中学八年级(1)班若干名同学(不足20人)星期日去公园游览,公园售票窗口标明票价:每人10元,团体票20人以上(含 20人)八折优惠. 他们经过核算,买团体票比买单人票便宜,则它们至少有 人.13.某机构要调查某厂家生产的手机质量,从中抽取了20只手机进行试验检查,其中样本 容量是 .14.在如图所示方格纸中,已知△DEF 是由△ABC 经相似变换所得的像,那么△DEF 的每条边都扩大到原来的__________倍.15.如图,在△ABC 中,∠BAC=45O ,现将△ABC 绕点A 旋转30O 至△ADE 的位置.则∠DAC = .16.在数轴上,在原点的左边与表示1-的点的距离是2的点所表示的数是 . 17.a 的 2倍的立方与b 的5倍的平方的差可表示为 . 18.计算:(1)5+(-3)= ; (2)(-4)+(-5)= ; (3)(-2)+6= ; (4)11()()23-++= ;A BCDMND ′(5)1(0.125)()8-+= ;(6)0+ (-9.7)= .三、解答题19.如图,在水平桌面上的两个“E ”,当点 P 1、P 2、0在一条直线上时,在点0处用①号“E ”测得的视力与用②号“E ”测得的视图相同. (1)图中 b l ,b 2,1l ,2l 满足怎样的关系式?(2)若b l =3.2㎝, b 2=2㎝, ①号“E ”的测试距离1l =8㎝,要使测得的视力相同,则②号“E ”的测试距离2l 应为多少?20.解方程: (1)2231x x -=; (2)(5)(7)13x x -+=.21.已知:如图,在□ABCD 中,AB =4,∠ABC =60°,对角线AC ⊥AB ,将□ABCD 对折,使点C 与点A 重合,折痕为MN , 试判断△AMD ′的形状,并说明理由.22.如图,已知∠B=∠AEF=40°,∠C=58°,求∠BAC与∠F的度数.23.如图,△ACB、△ECD都是等腰直角三角形,且点C在AD上,AE的延长线与BD交于点F.请你在图中找出一对全等三角形,并写出证明它们全等的过程.24.计算题:(1)10⨯ (2)332)156⨯25.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例关系.当x=20时,y=1600,当x=30时,y=2000.(1)求y与x之间的函数解析式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?26.如图,已知△ABC的三个顶点分别是A(-1,4),B(-4,-l.5),C(1,1).(1)小明在画好图后,发现BC边上有一点D(-1,0),请你帮助小明计算△ABC的面积;(2)小王将△ABC的图形向左平移1个单位,得到△A′B′C′,发现原点0在B′C′边上,请你帮助小王写出△A′B′C′的三个顶点的坐标并计算△A′B′C′的面积.27.如图,DC ∥AB ,∠ADC=∠ABC ,BE ,DF 分别平分∠ABC 和∠ADC ,请判断BE 和DF 是否平行,并说明理由.28.解方程组2345y x x y =⎧⎨-=⎩和124223x y x y ⎧-=⎪⎨⎪+=⎩各用什么方法解比较简便?求出它们的解.29.某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广.A 35%B20% C 20%D各型号种子数的百分比图1图2A B C D型号800 600400200630 370 470发芽数/粒30.如图,用字母表示阴影部分的面积.222111()()()222222x y x y πππ+--【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.C5.B6.D7.C8.B9.A二、填空题10.1011.(1)5 m /s ;(2)u=2.5t ;(3)7.5 m /s12.1713.2014.215.15°16.-317.32(2)(5)a b -18.(1)2 (2)-9 (3)4 (4)16- (5)0 (6)-9.7三、解答题 19. (1)1212b b l l =.(2) 1212b b l l =,∴23.228l =,25l =㎝ 20.(1)1x =,2x ;(2)18x =-,26x = 21.△AMD ′是正三角形.22.∠BAC=82°,∠F= 42°23.△ACE ≌△BCD (SAS ).24.⑴30;⑵-1.25.(1)y=40x+800;(2)56元26.(1)10;(2)1027.BE ∥DF ,理由略28.对于方程组2345y x x y =⎧⎨-=⎩,用代入法解得12x y =-⎧⎨=-⎩;对于方程组124223x y x y ⎧-=⎪⎨⎪+=⎩,用加减法解得5412x y ⎧=⎪⎪⎨⎪=⎪⎩29.解:(1)500; (2)如图; (3)A 型号发芽率为90%,B 型号发芽率为92.5%,D 型号发芽率为94%,C 型号发芽率为95%.∴应选C 型号的种子进行推广.30.222111()()()222222x y x y πππ+--。

2022年浙江省绍兴市中考数学试卷(解析版)

2022年浙江省绍兴市中考数学试卷(解析版)

2022年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)实数﹣6的相反数是()A.B.C.﹣6D.62.(4分)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是()A.3.2×106B.3.2×105C.3.2×104D.32×1043.(4分)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(4分)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A.B.C.D.5.(4分)下列计算正确的是()A.(a2+ab)÷a=a+b B.a2•a=a2C.(a+b)2=a2+b2D.(a3)2=a56.(4分)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°7.(4分)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A.0,4B.1,5C.1,﹣5D.﹣1,58.(4分)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1B.2C.3D.49.(4分)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>010.(4分)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10D.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)分解因式:x2+x=.12.(5分)关于x的不等式3x﹣2>x的解集是.13.(5分)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是.14.(5分)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是.15.(5分)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C 和DE的中点F,则k的值是.16.(5分)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:6tan30°+(π+1)0﹣.(2)解方程组:.18.(8分)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题.八年级学生每日完成书面作业所需时长情况的统计表组别所需时长(小时)学生人数(人)A0<x≤0.515B0.5<x≤1mC1<x≤1.5nD 1.5<x≤25(1)求统计表中m,n的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5<x≤1.5的共有多少人.19.(8分)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k ≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.20.(8分)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC垂直圭BC,已知该市冬至正午太阳高度角(即∠ABC)为37°,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至线与夏至线之间的距离(即DB的长)为4米.(1)求∠BAD的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)21.(10分)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求的长(结果保留π).(2)求证:AD平分∠BDO.22.(12分)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.23.(12分)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.24.(14分)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC 向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.2022年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)实数﹣6的相反数是()A.B.C.﹣6D.6【分析】根据相反数的定义即可得出答案.【解答】解:﹣6的相反数是6,故选:D.【点评】本题考查了相反数,掌握只有符号不同的两个数互为相反数是解题的关键.2.(4分)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是()A.3.2×106B.3.2×105C.3.2×104D.32×104【分析】把较大的数写成a×10n(1≤a<10,n为正整数)的形式即可.【解答】解:320000=3.2×105,故选:B.【点评】本题考查了科学记数法﹣表示较大的数,掌握10的指数比原来的整数位数少1是解题的关键.3.(4分)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】根据题目中的图形,可以画出主视图,本题得以解决.【解答】解:由图可得,题目中图形的主视图是,故选:B.【点评】本题考查简单组合体的三视图,解答本题的关键是画出相应的图形.4.(4分)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A.B.C.D.【分析】根据红球可能出现的结果数÷所有可能出现的结果数即可得出答案.【解答】解:∵总共有4个球,其中红球有3个,摸到每个球的可能性都相等,∴摸到红球的概率P=,故选:A.【点评】本题考查了概率公式,掌握P(摸到红球的概率)=红球可能出现的结果数÷所有可能出现的结果数是解题的关键.5.(4分)下列计算正确的是()A.(a2+ab)÷a=a+b B.a2•a=a2C.(a+b)2=a2+b2D.(a3)2=a5【分析】根据多项式除以单项式判断A选项;根据同底数幂的乘法判断B选项;根据完全平方公式判断C选项;根据幂的乘方判断D选项.【解答】解:A选项,原式=a2÷a+ab÷a=a+b,故该选项符合题意;B选项,原式=a3,故该选项不符合题意;C选项,原式=a2+2ab+b2,故该选项不符合题意;D选项,原式=a6,故该选项不符合题意;故选:A.【点评】本题考查了整式的除法,同底数幂的乘法,幂的乘方与积的乘方,完全平方公式,掌握(a+b)2=a2+2ab+b2是解题的关键.6.(4分)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°【分析】根据平行线的性质,可以得到∠CBF的度数,再根据∠ABC=90°,可以得到∠1的度数.【解答】解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.【点评】本题考查直角三角形的性质、平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.7.(4分)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A.0,4B.1,5C.1,﹣5D.﹣1,5【分析】根据抛物线y=x2+mx的对称轴为直线x=2,可以得到m的值,然后解方程即可.【解答】解:∵抛物线y=x2+mx的对称轴为直线x=2,∴﹣=2,解得m=﹣4,∴方程x2+mx=5可以写成x2﹣4x=5,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,解得x1=5,x2=﹣1,故选:D.【点评】本题考查二次函数的性质、解一元二次方程,解答本题的关键是明确题意,求出m的值.8.(4分)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1B.2C.3D.4【分析】根据题意作出合适的辅助线,然后逐一分析即可.【解答】解:连接AC,MN,且令AC,MN,BD相交于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,只要OM=ON,那么四边形MENF就是平行四边形,∵点E,F是BD上的动点,∴存在无数个平行四边形MENF,故①正确;只要MN=EF,OM=ON,则四边形MENF是矩形,∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,OM=ON,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,OM=ON,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C.【点评】本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定,解答本题的关键是明确题意,作出合适的辅助线.9.(4分)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y=﹣2x+3,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意;故选:D.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.10.(4分)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10D.【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.【解答】解:如右图1所示,由已知可得,△DFE∽△ECB,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+6=14,故选:A.【点评】本题考查相似三角形的性质、矩形的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)分解因式:x2+x=x(x+1).【分析】直接提取公因式x,进而分解因式得出即可.【解答】解:x2+x=x(x+1).故答案为:x(x+1).【点评】此题主要考查了提取公因式分解因式,正确提取公因式是解题关键.12.(5分)关于x的不等式3x﹣2>x的解集是x>1.【分析】根据解一元一次不等式步骤即可解得答案.【解答】解:∵3x﹣2>x,∴3x﹣x>2,即2x>2,解得x>1,故答案为:x>1.【点评】本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.13.(5分)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是20.【分析】设良马x天追上劣马,根据良马追上劣马所走路程相同可得:240x=150(x+12),即可解得良马20天追上劣马.【解答】解:设良马x天追上劣马,根据题意得:240x=150(x+12),解得x=20,答:良马20天追上劣马;故答案为:20.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.14.(5分)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是10°或100°.【分析】分两种情况画图,由作图可知得AC=AD,根据等腰三角形的性质和三角形内角和定理解答即可.【解答】解:如图,点D即为所求;在△ABC中,∠ABC=40°,∠BAC=80°,∴∠ACB=180°﹣40°﹣80°=60°,由作图可知:AC=AD,∴∠ACD=∠ADC=(180°﹣80°)=50°,∴∠BCD=∠ACB﹣∠ACD=60°﹣50°=10°;由作图可知:AC=AD′,∴∠ACD′=∠AD′C,∵∠ACD′+∠AD′C=∠BAC=80°,∴∠AD′C=40°,∴∠BCD′=180°﹣∠ABC﹣∠AD′C=180°﹣40°﹣40°=100°.综上所述:∠BCD的度数是10°或100°.故答案为:10°或100°.【点评】本题考查了作图﹣基本作图,三角形内角和定理,等腰三角形的判定与性质,解决本题的关键是掌握基本作图方法.15.(5分)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C 和DE的中点F,则k的值是6.【分析】根据反比例函数k的几何意义构造出矩形,利用方程思想解答即可.【解答】解:过点F作FG⊥x轴,DQ⊥x轴,FH⊥y轴,根据题意可知,AC=OE=BD,设AC=OE=BD=a,∴四边形ACEO的面积为4a,∵F为DE的中点,FG⊥x轴,DQ⊥x轴,∴FG为△EDQ的中位线,∴FG=DQ=2,EG=EQ=,∴四边形HFGO的面积为2(a+),∴k=4a=2(a+),解得:a=,∴k=6.故答案为:6.【点评】本题主要考查了反比例函数中k的几何意义,正确作出辅助线构造出矩形是解决本题的关键.16.(5分)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是5或.【分析】如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.由tan∠CBT=3=,可以假设BT=k,CT=3k,证明△ATC≌△CJD(AAS),推出DJ=CT=3k,AT=CJ=10+k,再利用勾股定理,构建方程求解即可.【解答】解:如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.∵tan∠CBT=3=,∴可以假设BT=k,CT=3k,∵∠CAT+∠ACT=90°,∠ACT+∠JCD=90°,∴∠CAT=∠JCD,在△ATC和△CJD中,,∴△ATC≌△CJD(AAS),∴DJ=CT=3k,AT=CJ=10+k,∵∠CJD=∠CED=90°,∴C,E,D,J四点共圆,∵EC=DE,∴∠CJE=∠DJE=45°,∴ET=TJ=10﹣2k,∵CE2=CT2+TE2=(CD)2,∴(3k)2+(10﹣2k)2=[•]2,整理得4k2﹣25k+25=0,∴(k﹣5)(4k﹣5)=0,∴k=5和,∴BE=BT+ET=k+10﹣2k=10﹣k=5或,故答案为:5或.【点评】本题考查全等三角形的判定和性质,四点共圆,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:6tan30°+(π+1)0﹣.(2)解方程组:.【分析】(1)根据特殊角的三角函数值,实数的运算,零指数幂,二次根式的性质与化简进行计算即可;(2)根据加减法解二元一次方程组即可.【解答】解:(1)原式=6×+1﹣2==1;(2),①+②得:3x=6,解得x=2,把x=2代入②,得:y=0,∴原方程组的解是.【点评】本题考查了特殊角的三角函数值,实数的运算,零指数幂,二次根式的性质与化简,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.18.(8分)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题.八年级学生每日完成书面作业所需时长情况的统计表组别所需时长(小时)学生人数(人)A0<x≤0.515B0.5<x≤1mC1<x≤1.5nD 1.5<x≤25(1)求统计表中m,n的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5<x≤1.5的共有多少人.【分析】(1)先求出被调查总人数,再根据扇形统计图求出m,用总人数减去A、B、D 的人数,即可得n的值;(2)用被调查情况估计八年级800人的情况,即可得到答案.【解答】解:(1)被调查总人数:15÷15%=100(人),∴m=100×60%=60(人),n=100﹣15﹣60﹣5=20(人),答:m为60,n为20;(2)∵当0.5<x≤1.5时,在被调查的100人中有60+20=80(人),∴在该校八年级学生800人中,每日完成书面作业所需时长满足0.5<x≤1.5的共有800×=640(人),答:估计共有640人.【点评】本题考查统计图和统计表,解题的关键是掌握从图表中寻找“完整信息”从而求出被调查的总数.19.(8分)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k ≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.【分析】(1)根据表格数对画出函数图象即可;然后利用待定系数法即可求出相应的函数表达式;(2)结合(1)的函数表达式,代入值即可解决问题.【解答】解:(1)函数的图象如图所示:根据图象可知:选择函数y=kx+b,将(0,1),(1,2)代入,得解得∴函数表达式为:y=x+1(0≤x≤5);(2)当y=5时,x+1=5,∴x=4.答:当水位高度达到5米时,进水用时x为4小时.【点评】本题考查了一次函数的应用,解决本题的关键是掌握一次函数的图象和性质.20.(8分)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC垂直圭BC,已知该市冬至正午太阳高度角(即∠ABC)为37°,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至线与夏至线之间的距离(即DB的长)为4米.(1)求∠BAD的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)【分析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;(2)分别求出∠ADC和∠ABC的正切值,用AC表示出CD和CB,得到一个只含有AC 的关系式,再解答即可.【解答】解:(1)∵∠ADC=84°,∠ABC=37°,∴∠BAD=∠ADC﹣∠ABC=47°,答:∠BAD的度数是47°.(2)在Rt△ABC中,,∴.在Rt△ADC中,,∵BD=4,∴,∴,∴AC≈3.3(米),答:表AC的长是3.3米.【点评】本题主要考查了三角形外角的性质和三角函数,熟练掌握建模思想是解决本题的关键.21.(10分)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求的长(结果保留π).(2)求证:AD平分∠BDO.【分析】(1)连结OA,由∠ACB=20°,得∠AOD=40°,由弧长公式即得的长为;(2)根据AB切⊙O于点A,∠B=90°,可得OA∥BC,有∠OAD=∠ADB,而OA=OD,即可得∠ADB=∠ODA,从而AD平分∠BDO.【解答】(1)解:连结OA,如图:∵∠ACB=20°,∴∠AOD=40°,∴==;(2)证明:∵OA=OD,∴∠OAD=∠ODA,∵AB切⊙O于点A,∴OA⊥AB,∵∠B=90°,∴OA∥BC,∴∠OAD=∠ADB,∴∠ADB=∠ODA,∴AD平分∠BDO.【点评】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.22.(12分)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.【分析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根据AE平分∠BAC,P 与E重合,即得∠ACD=∠ADC=65°,从而α=∠ACB﹣∠ACD=25°;(2)分两种情况:①当点P在线段BE上时,可得∠ADC=∠ACD=90°﹣α,根据∠ADC+∠BAD=∠B+∠BCD,即可得2α﹣β=50°;②当点P在线段CE上时,延长AD 交BC于点F,由∠ADC=∠ACD=90°﹣α,又∠ADC=∠AFC+∠BCD,∠AFC=∠ABC+∠BAD可得90°﹣α=40°+α+β,2α+β=50°.【解答】解:(1)∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,P与E重合,∴D在AB边上,AC=AD,∴∠ACD=∠ADC=(180°﹣∠BAC)÷2=65°,∴α=∠ACB﹣∠ACD=25°;答:α的度数为25°;(2)①当点P在线段BE上时,如图:∵将△APC沿AP翻折得△APD,∴AC=AD,∵∠BCD=α,∠ACB=90°,∴∠ADC=∠ACD=90°﹣α,又∵∠ADC+∠BAD=∠B+∠BCD,∠BAD=β,∠B=40°,∴(90°﹣α)+β=40°+α,∴2α﹣β=50°,②如图2,当点P在线段CE上时,延长AD交BC于点F,如图:∵将△APC沿AP翻折得△APD,∴AC=AD,∵∠BCD=α,∠ACB=90°,∴∠ADC=∠ACD=90°﹣α,又∵∠ADC=∠AFC+∠BCD,∠AFC=∠ABC+∠BAD,∴∠ADC=∠ABC+∠BAD+∠BCD=40°+β+α,∴90°﹣α=40°+α+β,∴2α+β=50°;综上所述,当点P在线段BE上时,2α﹣β=50°;当点P在线段CE上时,2α+β=50°.【点评】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形内角和定理.23.(12分)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y的最大值即可;(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.【点评】此题主要考查了待定系数法求二次函数解析式以及二次函数的性质等知识,正确分类讨论得出m的取值范围是解题关键.24.(14分)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.【分析】(1)由DE=2知,AE=AB=6,可知∠AEB=∠MEB=45°,从而得出答案;(2)根据对称性得,∠ENC=∠BDC,则cos∠ENC=,得EN=,利用HL 证明Rt△BMN≌Rt△DCB,得∠DBC=∠BNM,则MN∥BD;(3)当E在边AD上时,若直线MN过点C,利用AAS证明△BCM≌△CED,得DE=MC,当点E在边CD上时,利用△BMC∽△CNE,则,从而解决问题.【解答】解:(1)∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°.由对称性知∠BEM=45°,∴∠AEM=90°.(2)如图2,∵AB=6,AD=8,∴BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=,得EN=,∴DE=EN=.∵BM=AB=CD,MN=AD=BC,∴Rt△BMN≌Rt△DCB(HL),∴∠DBC=∠BNM,∴MN∥BD.(3)如图3,当E在边AD上时,∴∠BMC=90°,∴MC=.∵BM=AB=CD,∠DEC=∠BCE,∴△BCM≌△CED(AAS),∴DE=MC=.如图4,点E在边CD上时,∵BM=6,BC=8,∴MC=,CN=8﹣.∵∠BMC=∠CNE=∠BCD=90°,∴△BMC∽△CNE,∴,∴EN=,∴DE=EN=.综上所述,DE的长为或.【点评】本题是四边形综合题,主要考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,根据题意画出图形,并运用分类讨论思想是解题的关键.。

2020年浙江省绍兴市中考数学试卷(解析版)

2020年浙江省绍兴市中考数学试卷(解析版)

2020年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)实数2,0,﹣2,中,为负数的是( )A.2 B.0 C.﹣2 D.【分析】根据负数定义可得答案.【解答】解:实数2,0,﹣2,中,为负数的是﹣2,故选:C.2.(4分)某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为( )A.0.202×1010B.2.02×109C.20.2×108D.2.02×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:2020000000=2.02×109,故选:B.3.(4分)将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是( )A.B.C.D.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.4.(4分)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为( )A.45° B.60° C.75° D.90°【分析】首先连接BE,由圆周角定理即可得∠BEC的度数,继而求得∠BED的度数,然后由圆周角定理,求得∠BOD的度数.【解答】解:连接BE,∵∠BEC=∠BAC=15°,∠CED=30°,∴∠BED=∠BEC+∠CED=45°,∴∠BOD=2∠BED=90°.故选:D.5.(4分)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为( )A.20cm B.10cm C.8cm D.3.2cm【分析】根据对应边的比等于相似比列式进行计算即可得解.【解答】解:设投影三角尺的对应边长为xcm,∵三角尺与投影三角尺相似,∴8:x=2:5,解得x=20.故选:A.6.(4分)如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是( )A.B.C.D.【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B、C、D处都是等可能情况,从而得到在四个出口E、F、G、H也都是等可能情况,然后概率的意义列式即可得解.【解答】解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以小球从E出口落出的概率是:;故选:C.7.(4分)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A.4 B.5 C.6 D.7【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【解答】解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.8.(4分)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( )A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况.【解答】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.9.(4分)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠P AH的度数( )A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小【分析】由旋转的性质可得BC=BP=BA,由等腰三角形的性质和三角形内接和定理可求∠BPC+∠BP A=135°=∠CP A,由外角的性质可求∠P AH=135°﹣90°=45°,即可求解.【解答】解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,∴BC=BP=BA,∴∠BCP=∠BPC,∠BP A=∠BAP,∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BP A=180°,∠ABP+∠CBP=90°,∴∠BPC+∠BP A=135°=∠CP A,∵∠CP A=∠AHC+∠P AH=135°,∴∠P AH=135°﹣90°=45°,∴∠P AH的度数是定值,故选:C.10.(4分)同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地( )A.120km B.140km C.160km D.180km【分析】设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,根据题意得关于x和y的二元一次方程组,求解即可.【解答】解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:,解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.故选:B.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)分解因式:1﹣x2= (1+x)(1﹣x) .【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).12.(5分)若关于x,y的二元一次方程组的解为则多项式A可以是 答案不唯一,如x﹣y(写出一个即可).【分析】根据方程组的解的定义,为应该满足所写方程组的每一个方程.因此,可以围绕为列一组算式,然后用x,y代换即可.【解答】解:∵关于x,y的二元一次方程组的解为,而1﹣1=0,∴多项式A可以是答案不唯一,如x﹣y.故答案为:答案不唯一,如x﹣y.13.(5分)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为 4.【分析】根据题意和图形,可以得到直角三角形的一条直角边的长和斜边的长,从而可以得到直角三角形的另一条直角边长,再根据图形,可知阴影部分的面积是四个直角三角形的面积,然后代入数据计算即可.【解答】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:=,故阴影部分的面积是:=4,故答案为:4.14.(5分)如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为2,则m的值为 2或2.【分析】由作图知,点D在AC的垂直平分线上,得到点B在AC的垂直平分线上,求得BD垂直平分AC,设垂足为E,得到BE=,当点D、B在AC的两侧时,如图,当点D、B在AC的同侧时,如图,解直角三角形即可得到结论.【解答】解:由作图知,点D在AC的垂直平分线上,∵△ABC是等边三角形,∴点B在AC的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=,当点D、B在AC的两侧时,如图,∵BD=2,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=2,∴D′E=3,∴AD′==2,∴m=2,综上所述,m的值为2或2,故答案为:2或2.15.(5分)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是 100或85元.【分析】可设所购商品的标价是x元,根据小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,分①所购商品的标价小于90元;②所购商品的标价大于90元;列出方程即可求解.【解答】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为:100或85.16.(5分)将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 ①②③④ (填序号).①,②1,③﹣1,④,⑤.【分析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解.【解答】解:如图所示:则其中一个等腰三角形的腰长可以是①,②1,③﹣1,④,不可以是.故答案为:①②③④.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:﹣4cos45°+(﹣1)2020.(2)化简:(x+y)2﹣x(x+2y).【分析】(1)直接利用特殊角的三角函数值以及二次根式的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:(1)原式=2﹣4×+1=2﹣2+1=1;(2)(x+y)2﹣x(x+2y)=x2+2xy+y2﹣x2﹣2xy=y2.18.(8分)如图,点E是▱ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F.(1)若AD的长为2,求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.【分析】(1)由平行四边形的性质得出AD∥CF,则∠DAE=∠CFE,∠ADE=∠FCE,由点E是CD的中点,得出DE=CE,由AAS证得△ADE≌△FCE,即可得出结果;(2)添加一个条件当∠B=60°时,由直角三角形的性质即可得出结果(答案不唯一).【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E是CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴CF=AD=2;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0 mB 5.0≤x<5.1 400C 5.1≤x<5.2 550D x≥5.2 30(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?【分析】(1)图表中“C组”的频数为550只,占抽查总数的55%,可求出抽查总数,进而求出“A组”的频数,即m的值;求出“B组”所占总数的百分比,即可求出相应的圆心角的度数;(2)计算“B组”“C组”的频率的和即为合格率,求出“不合格”所占的百分比,即可求出不合格的数量.【解答】解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)+==95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.20.(8分)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米) 1 2 4 7 11 12y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【分析】(1)利用描点法画出图形即可判断.(2)设函数关系式为y=kx+b,利用待定系数法解决问题即可.【解答】解:(1)观察图象可知:x=7,y=2.75这组数据错误.(2)设y=kx+b,把x=1,y=0.75,x=2,y=1代入可得,解得,∴y=x+,当x=16时,y=4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∠AFE的度数和棚宽BC的长.(2)当∠AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】(1)根据等边三角形的性质得到∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,求得FK ==,于是得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)∵AE=EF=AF=1,∴△AEF是等边三角形,∴∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵△AEF是等边三角形,∴AK=,∴FK==,∴FM=2FK=,∴BC=4FM=4≈6.92≈6.9(m);(2)∵∠AFE=74°,∴∠AFK=37°,∴KF=AF•cos37°≈0.80,∴FM=2FK=1.60,∴BC=4FM=6.40<6.92,6.92﹣6.40=0.5,答:当∠AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.22.(12分)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【分析】(1)根据等腰三角形的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠AED=2∠C,①∵∠BAE=90°,∴∠BAD=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.23.(12分)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)【分析】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;(2)当y=0时,y=﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6=8.4,即可求解.【解答】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣7)2+2.88;当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,当x=18时,y=﹣(x﹣7)2+2.88=0.64>0,故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,y=﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.24.(14分)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC 的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.【分析】(1)如图1中,过点C′作C′H⊥OF于H.解直角三角形求出CH即可.(2)①分两种情形:如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.分别求出C′M,C′N即可.②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.结合图象可得结论.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2﹣2,即d=2﹣2,如图6中,当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ交OB′于R,连接OP.求出QG可得结论.第三种情形:当A′P经过点F时,如图7中,显然d=3.综上所述可得结论.【解答】解:(1)如图1中,过点C′作C′H⊥OF于H.∵∠HC′O=α=30°,∴C′H=C′O•cos30°=2,∴点C′到直线OF的距离为2.(2)①如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,∴C′M=2,∴点C′到直线DE的距离为2﹣2.如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴C′N=2,∴点C′到直线DE的距离为2+2.②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OA′=2,OM=2,∠OMA′=90°,∴A′M===4,∴A′D=2,即d=2,如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.∵PQ=1,OQ=5,∴OP==,∴PM==,∴PD=﹣2,∴d=﹣2,∴2≤d≤﹣2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2﹣2,即d=2﹣2,如图6中,当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ交OB′于R,连接OP.∵OP=,OF=5,∴FP===1,∵OF=OT,PF=PT,∠F=∠PTO=90°,∴Rt△OPF≌Rt△OPT(HL),∴∠FOP=∠TOP,∵PQ∥OQ,∴∠OPR=∠POF,∴∠OPR=∠POR,∴OR=PR,∵PT2+TR2=PR2,∴12+(5﹣PR)2=PR2,∴PR=2.6,RT=2.4,∵△B′PR∽△B′QO,∴=,∴=,∴OQ=,∴QG=OQ﹣OG=,即d=∴2﹣2≤d<,第三种情形:当A′P经过点F时,如图7中,显然d=3.综上所述,2≤d≤﹣2或d=3.。

2020年浙江省绍兴市中考数学试卷含答案解析

2020年浙江省绍兴市中考数学试卷含答案解析

2020年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.实数2,0,﹣2,中,为负数的是()A.2B.0C.﹣2D.2.某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为()A.0.202×1010B.2.02×109C.20.2×108D.2.02×1083.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.4.如图.点A,B,C,D,E均在⊙O上.∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°5.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cm C.8cm D.3.2cm6.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.B.C.D.7.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.78.如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B 停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形9.如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:1﹣x2=.12.若关于x,y的二元一次方程组的解为,则多项式A可以是(写出一个即可).13.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.14.如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为2,则m的值为.15.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.16.将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的(填序号).①,②1,③﹣1,④,⑤.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:﹣4cos45°+(﹣1)2020.(2)化简:(x+y)2﹣x(x+2y).18.(8分)如图,点E是▱ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F.(1)若AD的长为2.求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验.并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?20.(8分)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC 上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∠AFE的度数和棚宽BC的长.(2)当∠AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m.参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(12分)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.23.(12分)如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A 时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC 为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)24.(14分)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O 逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.2020年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.实数2,0,﹣2,中,为负数的是()A.2B.0C.﹣2D.解:实数2,0,﹣2,中,为负数的是﹣2,故选:C.2.某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为()A.0.202×1010B.2.02×109C.20.2×108D.2.02×108解:2020000000=2.02×109,故选:B.3.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.4.如图.点A,B,C,D,E均在⊙O上.∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°解:连接BE,∵∠BEC=∠BAC=15°,∠CED=30°,∴∠BED=∠BEC+∠CED=45°,∴∠BOD=2∠BED=90°.故选:D.5.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cm C.8cm D.3.2cm解:设投影三角尺的对应边长为xcm,∵三角尺与投影三角尺相似,∴8:x=2:5,解得x=20.故选:A.6.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.B.C.D.解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以小球从E出口落出的概率是:;故选:C.7.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.7解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.8.如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B 停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.9.如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,∴BC=BP=BA,∴∠BCP=∠BPC,∠BP A=∠BAP,∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BP A=180°,∠ABP+∠CBP=90°,∴∠BPC+∠BP A=135°=∠CP A,∵∠CP A=∠AHC+∠P AH=135°,∴∠P AH=135°﹣90°=45°,∴∠P AH的度数是定值,故选:C.10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:,解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.故选:B.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)分解因式:1﹣x2=(1+x)(1﹣x).解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).12.(5分)若关于x,y的二元一次方程组的解为,则多项式A可以是答案不唯一,如x﹣y(写出一个即可).解:∵关于x,y的二元一次方程组的解为,而1﹣1=0,∴多项式A可以是答案不唯一,如x﹣y.故答案为:答案不唯一,如x﹣y.13.(5分)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为4.解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:=,故阴影部分的面积是:=4,故答案为:4.14.(5分)如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为2,则m的值为2或2.解:由作图知,点D在AC的垂直平分线上,∵△ABC是等边三角形,∴点B在AC的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=,当点D、B在AC的两侧时,如图,∵BD=2,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=2,∴D′E=3,∴AD′==2,∴m=2,综上所述,m的值为2或2,故答案为:2或2.15.(5分)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是100或85元.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为:100或85.16.(5分)将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的①②③④(填序号).①,②1,③﹣1,④,⑤.解:如图所示:则其中一个等腰三角形的腰长可以是①,②1,③﹣1,④,不可以是.故答案为:①②③④.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:﹣4cos45°+(﹣1)2020.(2)化简:(x+y)2﹣x(x+2y).解:(1)原式=2﹣4×+1=2﹣2+1=1;(2)(x+y)2﹣x(x+2y)=x2+2xy+y2﹣x2﹣2xy=y2.18.(8分)如图,点E是▱ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F.(1)若AD的长为2.求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.解:(1)∵四边形ABCD是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E是CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴CF=AD=2;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验.并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)+==95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.20.(8分)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?解:(1)观察图象可知:x=7,y=2.75这组数据错误.(2)设y=kx+b,把x=1,y=0.75,x=2,y=1代入可得,解得,∴y=x+,当x=16时,y=4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC 上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∠AFE的度数和棚宽BC的长.(2)当∠AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m.参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:(1)∵AE=EF=AF=1,∴△AEF是等边三角形,∴∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵△AEF是等边三角形,∴AK=,∴FK==,∴FM=2FK=,∴BC=4FM=4≈6.92≈6.9(m);(2)∵∠AFE=74°,∴∠AFK=37°,∴KF=AF•cos37°≈0.80,∴FM=2FK=1.60,∴BC=4FM=6.40<6.92,6.92﹣6.40=0.5,答:当∠AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.22.(12分)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠AED=2∠C,①∵∠BAE=90°,∴∠BAD=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.23.(12分)如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A 时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC 为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣7)2+2.88;当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,当x=18时,y=﹣(x﹣7)2+2.88=0.64>0,故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,y=﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.24.(14分)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O 逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.解:(1)如图1中,过点C′作C′H⊥OF于H.∵∠HC′O=α=30°,∴C′H=C′O•cos30°=2,∴点C′到直线OF的距离为2.(2)①如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,∴C′M=2,∴点C′到直线DE的距离为2.如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴′N=2,∴点C′到直线DE的距离为2+2.②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OA′=2,OM=2,∠OMA′=90°,∴A′M===4,∴A′D=2,即d=2,如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.∵PQ=1,OQ=5,∴OP==,∴PM==,∴PD=﹣2,∴d=﹣2,∴2≤d≤﹣2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2﹣2,即d=2﹣2,如图6中,当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ交OB′于R,连接OP.∵OP=,OF=5,∴FP===1,∵OF=OT,PF=PT,∠F=∠PTO=90°,∴Rt△OPF≌Rt△OPT(HL),∴∠FOP=∠TOP,∵PQ∥OQ,∴∠OPR=∠POF,∴∠OPR=∠POR,∴OR=PR,∵PT2+TR2=PR2,∴12+(5﹣PR)2=PR2,∴PR=2.6,RT=2.4,∵△B′PR∽△B′QO,∴=,∴=,∴OQ=,∴QG=OQ﹣OG=,即d=∴2﹣2≤d<,第三种情形:当A′P经过点F时,如图7中,显然d=3.综上所述,2≤d≤﹣2或d=3.。

历年浙江省绍兴市中考数学试卷(含答案)

历年浙江省绍兴市中考数学试卷(含答案)

2017 年浙江省绍兴市中考数学试卷一、选择题(本大题共 10 小题,每小题 4 分,共 40 分。

请选出每小题中一个 最符合题意的选项,不选、多选、错选,均不给分) 1.(4分)﹣5 的相反数是( )B .5C .﹣D .﹣5 2.(4 分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已 探明的可燃冰存储量达 150000000000立方米,其中数字 150000000000 用科学 记数法可表示为( )A .15×1010B .0.15×1012C . 1.5× 1011D .1.5×10123.(4 分)如图的几何体由五个相同的小正方体搭成,它的主视图是( )4.(4分)在一个不透明的袋子中装有 4个红球和 3 个黑球,它们除颜色外其他 均相同,从中任意摸出一个球,则摸出黑球的概率是( ) A . B . C . D .5.(4 分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平 均数和方差: 甲乙 丙 丁 平均数(环) 9.149.15 9.14 9.15 方差6.6 6.8 6.7 6.6 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A . A .A.甲B.乙C.丙D.丁6.(4 分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7 米,顶端距离地面 2.4 米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面 2 米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4 米7.(4 分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是)D8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ ACB=2°1,则∠ ECD的度数是()A.7° B.21°C.23°D.24°9.(4 分)矩形ABCD的两条对称轴为坐标轴,点 A 的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点 C 重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.( 4 分)一块竹条编织物,先将其按如图MN 翻转180°,再将它所示绕直线按逆时针方向旋转90°,所得的竹条编织物是()二、填空题(本大题共 6 小题,每小题5分,共30 分)11.( 5 分)分解因式:x2y﹣y= .12.(5 分)如图,一块含45°角的直角三角板,它的一个锐角顶点A 在⊙O上,边AB,AC分别与⊙ O交于点D,E,则∠ DOE的度数为.13.(5 分)如图,Rt△ABC的两个锐角顶点A,B 在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5 分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G 在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→ A→ D→ E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ ADB=6°0 ,点D到AC的距离为2,则AB 的长为.16.(5 分)如图,∠ AOB=45°,点M,N 在边OA上,OM=x,ON=x+4,点P 是边OB上的点,若使点P,M,N 构成等腰三角形的点P 恰好有三个,则x 的值是.三、解答题(本大题共8小题,第17-20小题每小题8分,第21题10分,第22,23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:(2 ﹣π)0+|4﹣3 | ﹣.(2)解不等式:4x+5≤2(x+1)18.(8 分)某市规定了每月用水18 立方米以内(含18 立方米)和用水18 立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18 立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(8 分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图 2 两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在 3 小时以内(不含 3 小时)的人数.20.(8 分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口 C 测得教学楼顶部 D 的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠ BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20 °≈0.36,tan1821.(10 分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.22.(12 分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ ABC=9°0,①若AB=CD=1,AB∥CD,求对角线BD 的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P 是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE 的长.23.(12 分)已知△ ABC,AB=AC,D 为直线BC上一点,E为直线AC 上一点,AD=AE,设∠ BAD=α,∠ CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ ABC=6°0,∠ ADE=7°0,那么α=°,β= °,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知?ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点 D 的坐标为(﹣3,4),点 B 在第四象限,点P 是?ABCD边上的一个动点.(1)若点P 在边BC上,PD=CD,求点P 的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1 上,求点P 的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y 轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x 轴的平行线GM,它们相交于点M,将△ PGM 沿直线PG翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标.(直接写出2017 年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10 小题,每小题 4 分,共40 分。

2023年浙江省绍兴市中考数学真题卷(含答案与解析)

2023年浙江省绍兴市中考数学真题卷(含答案与解析)

2023年浙江省初中毕业生学业考试(绍兴卷)数学试题卷注意事项:1. 答卷前, 考生务必将自己的姓名、准考证号填写在试题卷和答题卡上, 并将准考证号条形码粘贴在答题卡上的指定位置。

2. 选择题每小题选出答案后, 用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动, 用橡皮擦擦干净后, 再选涂其他答案标号。

答在试题卷上无效。

3. 非选择题的作答用0. 5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试题卷上无效。

4. 考生必须保持答题卡的整洁。

考试结束后, 请将本试题卷和答题卡一并上交。

卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分1. 计算23-的结果是( )A. 1-B. 3-C. 1D. 32. 据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是( )A. 727.410⨯B. 82.7410⨯C. 90.27410⨯D. 92.7410⨯ 3. 由8个相同的立方体搭成的几何体如图所示,则它的主视图是( )A. B. C. D. 4. 下列计算正确的是( )A. 623a a a ÷=B. ()52a a -=-C. ()()2111a a a +-=- D. 22(1)1a a +=+5. 在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是( ) A. 25 B. 35 C. 27 D. 576. 《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A. 5352x y x y +=⎧⎨+=⎩B. 5352x y x y +=⎧⎨+=⎩C. 5352x y x y =+⎧⎨=+⎩D. 5253x y x y =+⎧⎨=+⎩7. 在平面直角坐标系中,将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( )A. ()2,1m n --B. ()2,1m n -+C. ()2,1m n +-D. ()2,1m n ++ 8. 如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是( )A. 菱形→平行四边形→矩形→平行四边形→菱形B. 菱形→正方形→平行四边形→菱形→平行四边形C. 平行四边形→矩形→平行四边形→菱形→平行四边形D. 平行四边形→菱形→正方形→平行四边形→菱形9. 已知点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,则这个函数图象可能是( )A. B. C.D.10. 如图,在ABC 中,D 是边BC 上的点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF 上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出( )A. AFE △的面积B. BDF V 的面积C. BCN △面积D. DCE △的面积卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:m 2﹣3m =__________.12. 如图,四边形ABCD 内接于圆O ,若100D ∠=︒,则B ∠的度数是________.13. 方程3911x x x =++的解是________.的14. 如图,在菱形ABCD 中,40DAB ∠=︒,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则AEC ∠的度数是________.15. 如图,在平面直角坐标系xOy 中,函数k y x=(k 为大于0的常数,0x >)图象上的两点()()1122,,,A x y B x y ,满足212x x =.ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.16. 在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)计算:0(1)2π--+-(2)解不等式:324x x ->+.18. 某校兴趣小组通过调查,形成了如下调查报告(不完整). 调查目的1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式 随机抽样调查 调查对象 部分初中生调查内容你最喜爱一个球类运动项目(必选)A .篮球B .乒乓球C .足球D .排球E .羽毛球调查结果建议 ……结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请你向该校提一条合理建议.19. 图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上, 2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.的(2)某运动员准备给篮筐挂上篮网,如果他站発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin 320.53,cos320.85,tan 320.62︒≈︒≈︒≈) 20. 一条笔直的路上依次有,,M P N 三地,其中,M N 两地相距1000米.甲、乙两机器人分别从,M N 两地同时出发,去目的地,N M ,匀速而行.图中,OA BC 分别表示甲、乙机器人离M 地的距离y (米)与行走时间x (分钟)的函数关系图象.(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到P 地,求,P M 两地间的距离.21. 如图,AB 是O 直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.22. 如图,在正方形ABCD 中,G 是对角线BD 上的一点(与点,B D 不重合),,,,GE CD GF BC E F ⊥⊥分别为垂足.连接,EF AG ,并延长AG 交EF 于点H .在的(1)求证:DAG EGH ∠=∠.(2)判断AH 与EF 是否垂直,并说明理由.23. 已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.24. 在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列),12,10,AB AD B ==∠为锐角,且4sin 5B =.(1)如图1,求AB 边上高CH 的长.(2)P 是边AB 上的一动点,点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''.①如图2,当点C '落在射线CA 上时,求BP 的长.②当AC D ''△是直角三角形时,求BP 的长.参考答案一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分的1. 计算23-的结果是( )A. 1-B. 3-C. 1D. 3【答案】A【解析】【分析】根据有理数的减法法则进行计算即可.【详解】解:231-=-,故选:A .【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.2. 据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是( )A. 727.410⨯B. 82.7410⨯C. 90.27410⨯D. 92.7410⨯ 【答案】B【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中1||10,a n ≤<为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,由此进行求解即可得到答案.【详解】解:8274000000 2.7410=⨯,故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.3. 由8个相同的立方体搭成的几何体如图所示,则它的主视图是( )A. B. C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形, 故选:D .【点睛】本题考查了三视图的知识,要求同学们掌握主视图是从物体的正面看得到的视图.4. 下列计算正确的是( )A. 623a a a ÷=B. ()52a a -=-C. ()()2111a a a +-=-D. 22(1)1a a +=+ 【答案】C【解析】【分析】根据同底数幂相除法则判断选项A ;根据幂的乘方法则判断选项B ;根据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A . 6243a a a a ÷=≠,原计算错误,不符合题意;B . ()5210a a a -=-≠-,原计算错误,不符合题意;C . ()()2111a a a +-=-,原计算正确,符合题意;D . 222(1)211a a a a +=++≠+,原计算错误,不符合题意;故选:C .【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.5. 在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是( ) A. 25 B. 35 C. 27 D. 57【答案】C【解析】【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.6. 《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A. 5352x y x y +=⎧⎨+=⎩B. 5352x y x y +=⎧⎨+=⎩C. 5352x y x y =+⎧⎨=+⎩D. 5253x y x y =+⎧⎨=+⎩【答案】B【解析】 【分析】设大容器的容积为x 斛,小容器的容积为y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x 、y 的二元一次方程组.【详解】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩. 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键.7. 在平面直角坐标系中,将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( )A. ()2,1m n --B. ()2,1m n -+C. ()2,1m n +-D. ()2,1m n ++ 【答案】D【解析】【分析】把(),m n 横坐标加2,纵坐标加1即可得出结果.【详解】解:将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()2,1m n ++. 故选:D .【点睛】本题考查点的平移中坐标的变换,把(),a b 向上(或向下)平移h 个单位,对应的纵坐标加上(或减去)h ,,把(),a b 向右上(或向左)平移n 个单位,对应的横坐标加上(或减去)n .掌握平移规律是解题的关键.8. 如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是( )A. 菱形→平行四边形→矩形→平行四边形→菱形B. 菱形→正方形→平行四边形→菱形→平行四边形C. 平行四边形→矩形→平行四边形→菱形→平行四边形D. 平行四边形→菱形→正方形→平行四边形→菱形【答案】A【解析】【分析】根据题意,分别证明四边形1212E E F F 是菱形,平行四边形,矩形,即可求解.【详解】∵四边形ABCD 是矩形,∴AB CD ∥,90BAD ABC ∠=∠=︒,∴60BDC ABD ∠=∠=︒,906030ADB CBD ∠=∠=︒-︒=︒,∵OE OF =、OB OD =,∴DF EB =∵对称,∴21DF DF BF BF ==,,21,BE BE DE DE ==∴1221E F E F =∵对称,∴260F DC CDF ∠=∠=︒,130EDA E DA ∠=∠=︒∴160E DB ∠=︒,同理160F BD ∠=︒,∴11DE BF ∥∴1221E F E F ∥∴四边形1212E E F F 是平行四边形,如图所示,当,,E F O 三点重合时,DO BO =,∴1212DE DF AE AE ===即1212E E E F =∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==,在Rt △ABD 中,2,AB AD ==,连接AE ,AO ,∵602ABO BO AB ∠=︒==,,∴ABO 是等边三角形,∵E 为OB 中点,∴AE OB ⊥,1BE =,∴AE ==,根据对称性可得1AE AE ==, ∴2221112,9,3AD DE AE ===,∴22211AD AE DE =+,∴1DE A 是直角三角形,且190E ∠=︒,∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形∴在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形, 故选:A .【点睛】本题考查了菱形性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键. 9. 已知点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,则这个函数图象可能是( )的A. B. C.D.【答案】B【解析】【分析】点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,可得N 、P 关于y 轴对称,当0x <时,y 随x 的增大而增大,即可得出答案.【详解】解:∵()()2,,2,N a P a -,∴得N 、P 关于y 轴对称,∴选项A 、C 错误,∵()()4,2,2,M a N a ---在同一个函数图象上,∴当0x <时,y 随x 的增大而增大,∴选项D 错误,选项B 正确.故选:B .【点睛】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.10. 如图,在ABC 中,D 是边BC 上的点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF 上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出( )A. AFE △的面积B. BDF V 的面积C. BCN △的面积D. DCE △的面积【答案】D【解析】 【分析】如图所示,连接ND ,证明FBD EDC ∽,得出FB FD ED EC =,由已知得出NF BF ME DE =,则FD NF EC ME=,又NFD MEC ∠=∠,则NFD MEC ∽,进而得出MCD NDB ∠=∠,可得MC ND ∥,结合题意得出1122EMC DMC MNC S S S == ,即可求解. 【详解】解:如图所示,连接ND ,∵DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=.∴FBD EDC ∽,NFD MEC ∠=∠. ∴FB FD ED EC=. ∵2DM ME =,2BN NF =, ∴11,33NF BF ME DE ==, ∴NF BF ME DE=. ∴FD NF EC ME =.又∵NFD MEC ∠=∠,∴NFD MEC ∽.∴ECM FDN ∠=∠.∵FDB ECD ∠=∠∴MCD NDB ∠=∠.∴MC ND ∥.∴MNC MDC S S = .∵2DM ME =, ∴1122EMC DMC MNC S S S == . 故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ND ∥是解题的关键. 卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:m 2﹣3m =__________.【答案】()3m m -【解析】【分析】题中二项式中各项都含有公因式m ,利用提公因式法因式分解即可得到答案.【详解】解:()233m m m m -=-, 故答案为:()3m m -.【点睛】本题考查整式运算中的因式分解,熟练掌握因式分解的方法技巧是解决问题的关键.12. 如图,四边形ABCD 内接于圆O ,若100D ∠=︒,则B ∠的度数是________.【答案】80︒##80度【解析】【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于O ,∴180B D Ð+а=,∵100D ∠=︒,∴18080B D ∠︒∠︒=﹣=.故答案为:80︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键. 13. 方程3911x x x =++的解是________. 【答案】3x =【解析】【分析】先去分母,左右两边同时乘以()1x +,再根据解一元一次方程的方法和步骤进行解答,最后进行检验即可.【详解】解:去分母,得:39x =,化系数1,得:3x =.检验:当3x =时,10x +≠,∴3x =是原分式方程的解.故答案为:3x =.【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的方法和步骤,正确找出最简公分母,注意解分式方程要进行检验.14. 如图,在菱形ABCD 中,40DAB ∠=︒,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则AEC ∠的度数是________.【答案】10︒或80︒【解析】 【分析】根据题意画出图形,结合菱形的性质可得1202CAD DAB ∠=∠=︒,再进行分类讨论:当点E 在点A 上方时,当点E 在点A 下方时,即可进行解答.为【详解】解:∵四边形ABCD 为菱形,40DAB ∠=︒, ∴1202CAD DAB ∠=∠=︒, 连接CE ,①当点E 在点A 上方时,如图1E ,∵1AC AE =,120CAE ∠=︒, ∴()1118020802AE C ∠=︒-︒=︒, ②当点E 在点A 下方时,如图2E ,∵1AC AE =,120CAE ∠=︒, ∴211102AE C CAE ∠=∠=︒, 故答案为:10︒或80︒.【点睛】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为180︒;三角形的一个外角等于与它不相邻的两个内角之和.15. 如图,在平面直角坐标系xOy 中,函数k y x=(k 为大于0的常数,0x >)图象上的两点()()1122,,,A x y B x y ,满足212x x =.ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.【答案】2【解析】【分析】过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,利用6AFO ABO BOE FABEO S S S S k =++=+ 五边形,AFOD FABEO ADEB ADEB S S S k S =+=+矩形五边形梯形梯形,得到6ADEB S =梯形,结合梯形的面积公式解得11=8x y ,再由三角形面积公式计算2112111111111()()22224ABC S AC BC x x y y x y x y =×=-×-=×=,即可解答. 【详解】解:如图,过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,6AFO ABO BOE FABEO S S S S k =++=+ 五边形AFOD FABEO ADEB ADEB S S S k S =+=+矩形五边形梯形梯形6ADEB S ∴=梯形2121()()62y y x x +-∴= 212x x =2112y y ∴=11112121111()(2)()()32==6224y y x x y y x x y x +-+-∴= 11=8x y ∴8k ∴=21121111111111()()82222244ABC S AC BC x x y y x y x y =×=-×-=×=== 故答案为:2.【点睛】本题考查反比例函数中k 的几何意义,是重要考点,掌握相关知识是解题关键. 16. 在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________. 【答案】712或2512- 【解析】【分析】根据题意求得点()3,0A ,()3,4B ,()0,4C,根据题意分两种情况,待定系数法求解析式即可求解.【详解】由()2(2)03y x x =-≤≤,当0x =时,4y =, ∴()0,4C ,∵()3,0A ,四边形ABCO 是矩形,∴()3,4B ,①当抛物线经过O B ,时,将点()0,0,()3,4B 代入()21034y x bx c x =++≤≤, ∴019344c b c =⎧⎪⎨⨯++=⎪⎩ 解得:712b = ②当抛物线经过点,A C 时,将点()3,0A ,()0,4C 代入()21034y x bx c x =++≤≤, ∴419304c b c =⎧⎪⎨⨯++=⎪⎩ 解得:2512b =-综上所述,712b =或2512b =-, 故答案为:712或2512-. 【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)计算:0(1)2π--+-(2)解不等式:324x x ->+.【答案】(1)1;(2)3x >【解析】【分析】(1)根据零指数幂的性质、二次根式的化简、绝对值的性质依次解答;(2)先移项,再合并同类项,最后化系数为1即可解答.【详解】解:(1)原式1=-+1=.(2)移项得36x x ->,即26x >,∴3x >.x .∴原不等式的解是3【点睛】本题考查实数的混合运算、零指数幂、二次根式的化简和解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.18. 某校兴趣小组通过调查,形成了如下调查报告(不完整).1.了解本校初中生最喜爱的球类运动项目调查目的2.给学校提出更合理地配置体育运动器材和场地的建议调查方式随机抽样调查调查对象部分初中生你最喜爱的一个球类运动项目(必选)调查内容A.篮球B.乒乓球C.足球D.排球E.羽毛球调查结果建议……结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100 (2)360(3)答案不唯一,见解析【解析】【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.被抽查学生数:3030%100÷=,答:本次调查共抽查了100名学生.【小问2详解】被抽查的100人中最喜爱羽毛球的人数为:1005%5⨯=,∴被抽查的100人中最喜爱篮球的人数为:100301015540----=, ∴40900360100⨯=(人). 答:估计该校900名初中生中最喜爱篮球项目的人数为360.【小问3详解】答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题. 19. 图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上, 2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin 320.53,cos320.85,tan 320.62︒≈︒≈︒≈)【答案】(1)58︒(2)该运动员能挂上篮网,理由见解析【解析】【分析】(1)根据直角三角形的两个锐角互余即可求解;(2)延长,OA ED 交于点M ,根据题意得出32ADM ∠=︒,解Rt ADM △,求得AM ,根据OM OA AM =+与3比较即可求解.解:∵CG CD ⊥,∴90ACG ∠=︒,∵32AGC ∠=︒,∴903258GAC ∠=︒-︒=︒.【小问2详解】该运动员能挂上篮网,理由如下.如图,延长,OA ED 交于点M ,∵,OA OB DE OB ⊥∥,∴90DMA ∠=︒,又∵58DAM GAC ∠=∠=︒,∴32ADM ∠=︒,在Rt ADM △中,sin 320.80.530.424AM AD =︒≈⨯=,∴ 2.50.424 2.9243OM OA AM =+=+=<,∴该运动员能挂上篮网.【点睛】本题考查了解直角三角形的应用,直角三角形的两个锐角互余,熟练掌握三角函数的定义是解题的关键.20. 一条笔直的路上依次有,,M P N 三地,其中,M N 两地相距1000米.甲、乙两机器人分别从,M N 两地同时出发,去目的地,N M ,匀速而行.图中,OA BC 分别表示甲、乙机器人离M 地的距离y (米)与行走时间x (分钟)的函数关系图象.(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到P 地,求,P M 两地间的距离.【答案】(1)200y x =(2)出发后甲机器人行走103分钟,与乙机器人相遇 (3),P M 两地间的距离为600米【解析】【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求出BC 所在直线的表达式,再列方程组求出交点坐标,即可;(3)列出方程即可解决.【小问1详解】∵()()0,0,5,1000O A ,∴OA 所在直线的表达式为200y x =.【小问2详解】设BC 所在直线的表达式为y kx b =+,∵()()0,1000,10,0B C ,∴10000,010,b k b =+⎧⎨=+⎩解得100,1000k b =-⎧⎨=⎩. ∴1001000y x =-+.甲、乙机器人相遇时,即2001001000x x =-+,解得103x =, ∴出发后甲机器人行走103分钟,与乙机器人相遇. 【小问3详解】设甲机器人行走t 分钟时到P 地,P 地与M 地距离200y t =,则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.21. 如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.【答案】(1)115︒(2)CE =【解析】【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=︒,在Rt OCD △中,勾股定理求得CD ,根据OC AE ∥,可得CD OD CE OA=,进而即可求解. 【小问1详解】 解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.【小问2详解】∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴CD ==.∵90OCD AEC ∠=∠=︒,∴OC AE ∥∴CD OD CE OA =32=,∴CE =. 【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.22. 如图,在正方形ABCD 中,G 是对角线BD 上的一点(与点,B D 不重合),,,,GE CD GF BC E F ⊥⊥分别为垂足.连接,EF AG ,并延长AG 交EF 于点H .(1)求证:DAG EGH ∠=∠.(2)判断AH 与EF 是否垂直,并说明理由.【答案】(1)见解析(2)AH 与EF 垂直,理由见解析 【解析】【分析】(1)由正方形的性质,得到AD CD ⊥,结合垂直于同一条直线的两条直线平行,可得AD GE ∥,再根据平行线的性质解答即可;(2)连接GC 交EF 于点O ,由SAS 证明ADG CDG ≌,再根据全等三角形对应角相等得到DAG DCG ∠=∠,继而证明四边形FCEG 为矩形,最后根据矩形的性质解答即可.【小问1详解】解:在正方形ABCD 中,AD CD ⊥GE CD ⊥∴AD GE ∥,∴DAG EGH ∠=∠.小问2详解】AH 与EF 垂直,理由如下.连接GC 交EF 于点O .∵BD 为正方形ABCD 的对角线,【∴45ADG CDG ∠=∠=︒,又∵,DG DG AD CD ==,∴ADG CDG ≌,∴DAG DCG ∠=∠.在正方形ABCD 中,90ECF ∠=︒,又∵,GE CD GF BC ⊥⊥,∴四边形FCEG 为矩形,∴OE OC =,∴OEC OCE ∠=∠,∴DAG OEC ∠=∠.又∵DAG EGH ∠=∠,∴90EGH GEH OEC GEH GEC ∠+∠=∠+∠=∠=︒,∴90GHE ∠=°,∴AH EF ⊥.【点睛】本题考查正方形的性质、平行线的性质、全等三角形的判断与性质、矩形的判定与性质等知识,综合性较强,是重要考点,掌握相关知识是解题关键.23. 已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.【答案】(1)①()2,7;②当13x -≤≤时,27y -≤≤(2)222y x x =-++【解析】【分析】(1)①将4,3b c ==代入解析式,化为顶点式,即可求解;②已知顶点()2,7,根据二次函数的增减性,得出当2x =时,y 有最大值7,当=1x -时取得最小值,即可求解;(2)根据题意0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,得出抛物线的对称轴2b x =在y 轴的右侧,即0b >,由抛物线开口向下,0x ≤时,y 的最大值为2,可知2c =,根据顶点坐标的纵坐标为3,求出2b =,即可得解.【小问1详解】解:①当4,3b c ==时,2243(2)7y x x x =-++=--+,∴顶点坐标为()2,7.②∵顶点坐标为()2,7.抛物线开口向下,当12x -≤≤时,y 随x 增大而增大,当23x ≤≤时,y 随x 增大而减小,∴当2x =时,y 有最大值7.又()2132-->-∴当=1x -时取得最小值,最小值=2y -;∴当13x -≤≤时,27y -≤≤.【小问2详解】∵0x ≤时,y 的最大值为2;0x >时,y 的最大值为3, ∴抛物线的对称轴2b x =在y 轴的右侧, ∴0b >,∵抛物线开口向下,0x ≤时,y 的最大值为2,∴2c =, 又∵()()241341c b ⨯-⨯-=⨯-, ∴2b =±,∵0b >,∴2b =,∴二次函数的表达式为222y x x =-++.【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.24. 在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列),12,10,AB AD B ==∠为锐角,且4sin 5B =.(1)如图1,求AB 边上的高CH 的长.(2)P 是边AB 上的一动点,点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''.①如图2,当点C '落在射线CA 上时,求BP 的长.②当AC D ''△是直角三角形时,求BP 长.【答案】(1)8(2)①347BP =;②6BP =或8±【解析】【分析】(1)利用正弦的定义即可求得答案;(2)①先证明PQC CHP '△≌△,再证明AQC AHC '△∽△,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C '为直角顶点;第二种:A 为直角顶点;第三种,D ¢为直角顶点,但此种情况不成立,故最终有两个答案.【小问1详解】在ABCD Y 中,10BC AD ==,在Rt BCH 中,4sin 1085CH BC B ==⨯=. 小问2详解】①如图1,作CH BA ⊥于点H ,由(1)得,6BH ==,则1266AH =-=,的【作C Q BA '⊥交BA 延长线于点Q ,则90CHP PQC ∠'=∠=︒,∴90C PQ PC Q '∠+∠='︒.∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,∴PQC CHP '△≌△.设BP x =,则8,6,4PQ CH C Q PH x QA PQ PA x ====-=-=-'.∵,C Q AB CH AB '⊥⊥,∴C Q CH '∥,∴AQC AHC '△∽△, ∴C Q QA CH HA =',即6486x x --=, ∴347x =, ∴347BP =. ②由旋转得,PCD PC D CD C D '''='△≌△,CD C D ⊥'',又因为AB CD ,所以C D AB ''⊥.情况一:当以C '为直角顶点时,如图2.∵C D AB ''⊥,∴C '落在线段BA 延长线上.∵PC PC ⊥',∴PC AB ⊥,由(1)知,8PC =,∴6BP =.情况二:当以A 为直角顶点时,如图3.设C D ''与射线BA 的交点为T ,作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,。

2020年浙江省绍兴市中考数学试题(解析版)

2020年浙江省绍兴市中考数学试题(解析版)

2020年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)(2020•绍兴)实数2,0,﹣2,√2中,为负数的是()A.2B.0C.﹣2D.√2【分析】根据负数定义可得答案.【解答】解:实数2,0,﹣2,√2中,为负数的是﹣2,故选:C.【点评】此题主要考查了实数,关键是掌握负数定义.2.(4分)(2020•绍兴)某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为()A.0.202×1010B.2.02×109C.20.2×108D.2.02×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:2020000000=2.02×109,故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.(4分)(2020•绍兴)将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.4.(4分)(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°【分析】首先连接BE,由圆周角定理即可得∠BEC的度数,继而求得∠BED的度数,然后由圆周角定理,求得∠BOD的度数.【解答】解:连接BE,∵∠BEC=∠BAC=15°,∠CED=30°,∴∠BED=∠BEC+∠CED=45°,∴∠BOD=2∠BED=90°.故选:D.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.5.(4分)(2020•绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A .20cmB .10cmC .8cmD .3.2cm【分析】根据对应边的比等于相似比列式进行计算即可得解.【解答】解:设投影三角尺的对应边长为xcm ,∵三角尺与投影三角尺相似,∴8:x =2:5,解得x =20.故选:A .【点评】本题主要考查相似三角形的应用.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.6.(4分)(2020•绍兴)如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( )A .12B .13C .14D .16 【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B 、C 、D 处都是等可能情况,从而得到在四个出口E 、F 、G 、H 也都是等可能情况,然后概率的意义列式即可得解.【解答】解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等, 小球最终落出的点共有E 、F 、G 、H 四个,所以小球从E 出口落出的概率是:14; 故选:C .【点评】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.7.(4分)(2020•绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.7【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【解答】解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.【点评】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.8.(4分)(2020•绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况.【解答】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.【点评】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据EF与AC的位置关系即可求解.9.(4分)(2020•绍兴)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小【分析】由旋转的性质可得BC=BP=BA,由等腰三角形的性质和三角形内接和定理可求∠BPC+∠BP A=135°=∠CP A,由外角的性质可求∠P AH=135°﹣90°=45°,即可求解.【解答】解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,∴BC=BP=BA,∴∠BCP=∠BPC,∠BP A=∠BAP,∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BP A=180°,∠ABP+∠CBP=90°,∴∠BPC+∠BP A=135°=∠CP A,∵∠CP A=∠AHC+∠P AH=135°,∴∠P AH=135°﹣90°=45°,∴∠P AH的度数是定值,故选:C.【点评】本题考查了旋转的性质,等腰三角形的性质,三角形的外角性质,灵活运用这些性质解决问题是本题的关键.10.(4分)(2020•绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km【分析】设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【解答】解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB =xkm ,AC =ykm ,根据题意得:{2x +2y =210×2x −y +x =210, 解得:{x =140y =70. ∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km .故选:B .【点评】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2020•绍兴)分解因式:1﹣x 2= (1+x )(1﹣x ) .【分析】分解因式1﹣x 2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x 2=(1+x )(1﹣x ).故答案为:(1+x )(1﹣x ).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.12.(5分)(2020•绍兴)若关于x ,y 的二元一次方程组{x +y =2,A =0的解为{x =1,y =1,则多项式A 可以是 答案不唯一,如x ﹣y (写出一个即可).【分析】根据方程组的解的定义,为{x =1y =1应该满足所写方程组的每一个方程.因此,可以围绕为{x =1y =1列一组算式,然后用x ,y 代换即可. 【解答】解:∵关于x ,y 的二元一次方程组{x +y =2A =0的解为{x =1y =1, 而1﹣1=0,∴多项式A 可以是答案不唯一,如x ﹣y .故答案为:答案不唯一,如x ﹣y .【点评】考查了二元一次方程组的解,本题是开放题,注意方程组的解的定义.13.(5分)(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为 4√5 .【分析】根据题意和图形,可以得到直角三角形的一条直角边的长和斜边的长,从而可以得到直角三角形的另一条直角边长,再根据图形,可知阴影部分的面积是四个直角三角形的面积,然后代入数据计算即可.【解答】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:√32−22=√5,故阴影部分的面积是:2×√52×4=4√5, 故答案为:4√5.【点评】本题考查正方形的性质、勾股定理、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.14.(5分)(2020•绍兴)如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连结BD .若BD 的长为2√3,则m 的值为 2或2√7 .【分析】由作图知,点D 在AC 的垂直平分线上,得到点B 在AC 的垂直平分线上,求得BD 垂直平分AC ,设垂足为E ,得到BE =√3,当点D 、B 在AC 的两侧时,如图,当点D 、B 在AC 的同侧时,如图,解直角三角形即可得到结论.【解答】解:由作图知,点D 在AC 的垂直平分线上,∵△ABC 是等边三角形,∴点B 在AC 的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=√3,当点D、B在AC的两侧时,如图,∵BD=2√3,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=2√3,∴D′E=3√3,∴AD′=√(3√3)2+12=2√7,∴m=2√7,综上所述,m的值为2或2√7,故答案为:2或2√7.【点评】本题考查了勾股定理,等边三角形的性质,线段垂直平分线的性质.正确的作出图形是解题的关键.15.(5分)(2020•绍兴)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是100或85元.【分析】可设所购商品的标价是x元,根据小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,分①所购商品的标价小于90元;②所购商品的标价大于90元;列出方程即可求解.【解答】解:设所购商品的标价是x 元,则①所购商品的标价小于90元,x ﹣20+x =150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为:100或85.【点评】考查了一元一次方程的应用,属于商品销售问题,注意分两种情况进行讨论求解.16.(5分)(2020•绍兴)将两条邻边长分别为√2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 ①②③④ (填序号).①√2,②1,③√2−1,④√32,⑤√3. 【分析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解.【解答】解:如图所示:则其中一个等腰三角形的腰长可以是①√2,②1,③√2−1,④√32,不可以是√3. 故答案为:①②③④. 【点评】考查了矩形的性质,等腰三角形的判定与性质,根据题意作出图形是解题的关键.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(2020•绍兴)(1)计算:√8−4cos45°+(﹣1)2020.(2)化简:(x +y )2﹣x (x +2y ).【分析】(1)直接利用特殊角的三角函数值以及二次根式的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:(1)原式=2√2−4×√22+1=2√2−2√2+1=1;(2)(x +y )2﹣x (x +2y )=x 2+2xy +y 2﹣x 2﹣2xy=y 2.【点评】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.18.(8分)(2020•绍兴)如图,点E 是▱ABCD 的边CD 的中点,连结AE 并延长,交BC的延长线于点F .(1)若AD 的长为2,求CF 的长.(2)若∠BAF =90°,试添加一个条件,并写出∠F 的度数.【分析】(1)由平行四边形的性质得出AD ∥CF ,则∠DAE =∠CFE ,∠ADE =∠FCE ,由点E 是CD 的中点,得出DE =CE ,由AAS 证得△ADE ≌△FCE ,即可得出结果;(2)添加一个条件当∠B=60°时,由直角三角形的性质即可得出结果(答案不唯一).【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E是CD的中点,∴DE=CE,在△ADE和△FCE中,{∠DAE=∠CFE ∠ADE=∠FCE DE=CE,∴△ADE≌△FCE(AAS),∴CF=AD=2;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.19.(8分)(2020•绍兴)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?【分析】(1)图表中“C组”的频数为550只,占抽查总数的55%,可求出抽查总数,进而求出“A组”的频数,即m的值;求出“B组”所占总数的百分比,即可求出相应的圆心角的度数;(2)计算“B组”“C组”的频率的和即为合格率,求出“不合格”所占的百分比,即可求出不合格的数量.【解答】解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×4001000=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)4001000+5501000=9501000=95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.【点评】考查统计表、扇形统计图的意义和制作方法,理解图表中的数量和数量之间的关系,是正确计算的前提.20.(8分)(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【分析】(1)利用描点法画出图形即可判断.(2)设函数关系式为y =kx +b ,利用待定系数法解决问题即可. 【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{k +b =0.752k +b =1,解得{k =14b =12,∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.【点评】本题考查一次函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(10分)(2020•绍兴)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E ,H 可分别沿等长的立柱AB ,DC 上下移动,AF =EF =FG =1m .(1)若移动滑块使AE =EF ,求∠AFE 的度数和棚宽BC 的长.(2)当∠AFE 由60°变为74°时,问棚宽BC 是增加还是减少?增加或减少了多少?(结果精确到0.1m,参考数据:√3≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】(1)根据等边三角形的性质得到∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,求得FK=2−AK2=√32,于是得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)∵AE=EF=AF=1,∴△AEF是等边三角形,∴∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵△AEF是等边三角形,∴AK=1 2,∴FK=√AF2−AK2=√32,∴FM=2FK=√3,∴BC=4FM=4√3≈6.92≈6.9(m);(2)∵∠AFE=74°,∴∠AFK=37°,∴KF=AF•cos37°≈0.80,∴FM=2FK=1.60,∴BC=4FM=6.40<6.92,6.92﹣6.40=0.52≈0.5,答:当∠AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.【点评】本题考查了解直角三角形的应用,菱形的性质,等边三角形的性质,正确的理解题意是解题的关键.22.(12分)(2020•绍兴)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【分析】(1)根据等腰三角形的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD =90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠AED=2∠C,①∵∠BAE=90°,∴∠BAD=12[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°;(2)设∠ABC=m°,则∠BAD=12(180°﹣m°)=90°−12m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+12m°,∵EA=EC,∴∠CAE=12∠AEB=90°−12n°−12m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+12m°+90°−12n°−12m°=12n°.【点评】本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键.23.(12分)(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)【分析】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;(2)当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6√2=8.4,即可求解.【解答】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=−1 50,故抛物线的表达式为:y=−150(x﹣7)2+2.88;当x=9时,y=−150(x﹣7)2+2.88=2.8>2.24,当x=18时,y=−150(x﹣7)2+2.88=0.64>0,故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6√2=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.【点评】本题考查的是二次函数综合运用,关键是弄清楚题意,明确变量的代表的实际意义.24.(14分)(2020•绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB =90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.【分析】(1)如图1中,过点C′作C′H⊥OF于H.解直角三角形求出CH即可.(2)①分两种情形:如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.分别求出C′M,C′N即可.②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.结合图象可得结论.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2√5−2,即d=2√5−2,如图6中,当点P落在EF上时,设OF交A′B′于Q,过点P作PT ⊥B′C′于T,过点P作PR∥OQ交OB′于R,连接OP.求出QG可得结论.第三种情形:当A′P经过点F时,如图7中,显然d=3.综上所述可得结论.【解答】解:(1)如图1中,过点C′作C′H⊥OF于H.∵∠HC′O=α=30°,∴C′H=C′O•cos30°=2√3,∴点C′到直线OF的距离为2√3.(2)①如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,∴C′M=2√2,∴点C′到直线DE的距离为2√2−2.如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴C′N=2√2,∴点C′到直线DE的距离为2√2+2.②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OA′=2√5,OM=2,∠OMA′=90°,∴A′M=√A′O2−OM2=√(2√5)2−22=4,∴A′D=2,即d=2,如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.∵PQ=1,OQ=5,∴OP=√52+12=√26,∴PM=√26−4=√22,∴PD=√22−2,∴d=√22−2,∴2≤d≤√22−2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2√5−2,即d =2√5−2,如图6中,当点P 落在EF 上时,设OF 交A ′B ′于Q ,过点P 作PT ⊥B ′C ′于T ,过点P 作PR ∥OQ 交OB ′于R ,连接OP .∵OP =√26,OF =5,∴FP =√OP 2−OF 2=√26−25=1,∵OF =OT ,PF =PT ,∠F =∠PTO =90°,∴Rt △OPF ≌Rt △OPT (HL ),∴∠FOP =∠TOP ,∵PQ ∥OQ ,∴∠OPR =∠POF ,∴∠OPR =∠POR ,∴OR =PR ,∵PT 2+TR 2=PR 2,∴12+(5﹣PR )2=PR 2,∴PR =2.6,RT =2.4,∵△B ′PR ∽△B ′QO ,∴B′R B′O =PR QO ,∴3.46=2.6OQ, ∴OQ =7817,∴QG =OQ ﹣OG =4417,即d =4417∴2√5−2≤d<44 17,第三种情形:当A′P经过点F时,如图7中,显然d=3.综上所述,2≤d≤√22−2或d=3.【点评】本题属于四边形综合题,考查了矩形的性质,旋转变换,解直角三角形,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用特殊位置解决数学问题,属于中考压轴题.。

2022年浙江省绍兴市中考数学测试试卷附解析

2022年浙江省绍兴市中考数学测试试卷附解析

2022年浙江省绍兴市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.到△ABC 的三条边的距离相等的点是△ABC 的( ) A .三条中线的交点 B .三条角平分线的交点 C .三条高的交点 D .三条边的垂直平分线的交点2.在半径为50cm 的图形铁片上剪去一块扇形铁皮,用剩余部分制做成一个底面直径为80cm ,母线长为50cm 的圆锥形烟囱帽,则剪去的扇形的圆心角的度数为( ) A .288°B .144°C .72°D .36°3.二次函数2y ax bx c =++的图象如图,则点 M (b,ca)在( ) A . 第一象限B .第二象限C . 第三象限D . 第四象限4.一个三角形的三条中位线把这个三角形分成面积相等的三角形有( ) A .2个B .3个C .4 个D .5个5.如图所示,直线a ,b 被直线c 所截,现给出下面四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判定a ∥b 的条件的序号是( ) A .①②B .①③C .①④D .③④6.如图反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家,其中t 表示时间,s 表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是( ) A .35minB .45minC .50minD .60min7.若点P (m ,2)与点Q (3,n )关于y 轴对称,则m 、n 的值分别为( ) A . -3,2 B . 3,-2 C .-3,-2 D .3,2 8.已知,有一条直的宽纸带,按图所示折叠,则∠α等于( )A . 50°B .60°C . 75°D . 85°9.小明通常上学时走上坡路,途中的速度为m 千米/时,放学回家时,沿原路返回,速度为n 千米/时,则小明上学和放学路上的平均速度为( ) A .2nm +千米/时 B .n m mn +千米/时 C .n m mn +2千米/时 D .mnnm +千米/时 10.若2x <,则2|2|x x --的值为( ) A .-1B .0C .1D . 211.如果三角形的一个外角是锐角,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种都可能二、填空题12.已知⊙O 1和⊙O 2的圆心距为7,两圆半径是方程27120x x -+=的两根,则⊙O 1和⊙O 2的位置关系是__________.13.如图,两个同心圆的半径分别为2和1,∠AOB= 120°,则阴影部分的面积是 .14.如图,菱形ABCD 的对角线AC =24,BD =10,则菱形的周长L=________. 15.一个多边形的每个外角都等于45°,这个多边形的边数是 . 16.26x ++ =2(3)x +.17.若a 11的小数部分,则(6)a a += .18.一射击运动员连续射靶10次,其中2次命中10环,3次命中9环,5次命中8环,则他 平均每次命中 环.19.若)3)(5(-+x x 是二次三项式152--kx x 的因式,那么k = .20. 联系生活实际,给出一个能用方程(110%)1050x +=解决的实际问题的背景 .21.已知线段AB ,延长AB 到点C ,使BC=13AB ,反向延长线段AC 到点D ,使DA=12AC .若BC=3 cm ,则DC= .22.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为 .818204学生人数(人)(小时)体育锻炼时间1098725201510517 题图三、解答题23.随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD ,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)24.老师在同一直角坐标系中画了一个反比例函数的图象以及一个正比例函数y=-x 的图象,请同学们观察.同学甲、乙对反比例函数图象的描述如下: 同学甲:与直线y= 一x 有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为 5 请根据以上信息,写出反比例函数的解析式.25.如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.26.某青少年研究所随机调查了某市某校100名学生寒假中花零花钱的数量(钱取整数元),以便引导学生树立正确的消费观.根据调查制成了频率分布表(未完成).某校100名学生零花钱的频数分布表(1)补全频数分布表;(2)画出频数分布直方图;(3)该研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1200名学生中约多少名学生提出这项建议?27.化简:(1)249 ()77a a aa a a--⋅-+(2)12()11b bbb b+÷---.AB CDEFG28.(1)按要求在网格中画图:画出图形“”关于直线l 的对称图形,再将所画图形与原图形组成的图案向右平移2格;(2)根据以上构成的图案,请写一句简短、贴切的解说词:29.如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域内的概率为41.30.计算下列各式,结果用幂的形式表示: (1)25[()]a b -;(2)3322()a a ⋅;(3)535632()2()x x x x ⋅-⋅⋅【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.C5.A6.C7.A8.C9.C10.A11.B二、填空题 12. 外切13.π14.5215.816.917.218.8.719.-220.略21.18 cm22.17三、解答题 23.在 Rt △ADF 中,∠D=60°,tan AFD DF=,∴9tan AF DF D ===在 Rt △BEC 中,∵∠C=45°,∴△BEC 为等腰直角三角形∴EC= BE=9,在矩形 AFEB 中,FE=AB=10,∴DC DF FE EC ⋅=++10919=+=+24.∵反比例函数的图象与直线 y=一x 有两个交点,∴此图象必须经过四象限;∵图象上任意一点到两坐标轴的距离的积都为5,∴||5k =,∴k.=一5 (+5舍去). ∴5y x=-.25.(1) ΔAED ≌ΔDFC.∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º. 又∵ AE ⊥DG ,CF ∥AE ,∴ ∠AED=∠DFC=90º, ∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC. ∴ ΔAED ≌ΔDFC (AAS ).(2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. ∵ DF=DE+EF ,∴ AE=FC+EF26.(1) 某校100名学生零花钱的频数分布表组别(元) 组中值(元) 频数 频率 0.5~50.5 25.5 10 0.1 50.5~100.5 75.5 20 0.2 100.5~150.5 125.5 25 0.25 150.5 ~200.5 175.5 30 0.3 200.5~250.5 225.5 10 0.1 250.5~300.5 275.55 0.05 合计1001.00 (2)(3)(0.3+0.1+0.05)×1200=540(名)答:估计应对该校1200名学生中约540名学生提出这项建议.27.(1)14;(2)1b-28.(1)如图:(2)解说合理即可,如爱心传递或我们心连心等.频数(人)10203025.575.5125.5175.5225.5275.5某校100名学生零花钱的频数分布直方图1020253010529.略.30.(1)102a;(3)20x--;(2)9a b()。

2023年浙江省绍兴市中考数学真题(答案解析)

2023年浙江省绍兴市中考数学真题(答案解析)

数学卷Ⅰ(选择题)一、选择题1.【答案】A【解析】解:231-=-,故选:A .2.【答案】B【解析】解:8274000000 2.7410=⨯,故选B .3.【答案】D【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形,故选:D .4.【答案】C【解析】解:A 选项,6243a a a a ÷=≠,原计算错误,不符合题意;B 选项,()5210a a a -=-≠-,原计算错误,不符合题意;C 选项,()()2111a a a +-=-,原计算正确,符合题意;D 选项,222(1)211a a a a +=++≠+,原计算错误,不符合题意;故选:C .5.【答案】C【解析】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .6.【答案】B【解析】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩.故选:B .7.【答案】D【解析】解:将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()2,1m n ++.故选:D .8.【答案】A【解析】∵四边形ABCD 是矩形,∴AB CD ∥,90BAD ABC ∠=∠=︒,∴60BDC ABD ∠=∠=︒,906030ADB CBD ∠=∠=︒-︒=︒,∵OE OF =、OB OD =,∴DF EB=∵对称,∴21DF DF BF BF ==,,21,BE BE DE DE ==∴1221E F E F =∵对称,∴260F DC CDF ∠=∠=︒,130EDA E DA ∠=∠=︒∴160E DB ∠=︒,同理160F BD ∠=︒,∴11DE BF ∥∴1221E F E F ∥∴四边形1212E E F F 是平行四边形,如图所示,当,,E F O 三点重合时,DO BO =,∴1212DE DF AE AE ===即1212E E EF =∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==,在Rt △ABD 中,2,AB AD ==,连接AE ,AO ,∵602ABO BO AB ∠=︒==,,∴ABO 是等边三角形,∵E 为OB 中点,∴AE OB ⊥,1BE =,∴AE ==,根据对称性可得1AE AE ==∴2221112,9,3AD DE AE ===,∴22211AD AE DE =+,∴1DE A 是直角三角形,且190E ∠=︒,∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形∴在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A .9.【答案】B【解析】解:∵()()2,,2,N a P a -,∴得N 、P 关于y 轴对称,∴选项A 、C 错误,∵()()4,2,2,M a N a ---在同一个函数图象上,∴当0x <时,y 随x 的增大而增大,∴选项D 错误,选项B 正确.故选:B .10.【答案】D【解析】解:如图所示,连接ND ,∵DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=.∴FBD EDC ∽,NFD MEC ∠=∠.∴FB FD ED EC=.∵2DM ME =,2BN NF =,∴11,33NF BF ME DE ==,∴NF BF ME DE =.∴FD NF EC ME =.又∵NFD MEC ∠=∠,∴NFD MEC ∽.∴ECM FDN ∠=∠.∵FDB ECD∠=∠∴MCD NDB ∠=∠.∴MC ND ∥.∴MNC MDC S S = .∵2DM ME =,∴1122EMC DMC MNC S S S == .故选:D .卷Ⅱ(非选择题)二、填空题11.【答案】()3m m -【解析】解:()233m m m m -=-,故答案为:()3m m -.12.【答案】80︒##80度【解析】解:∵四边形ABCD 内接于O ,∴180B D �邪=,∵100D ∠=︒,∴18080B D ∠︒∠︒=﹣=.故答案为:80︒.13.【答案】3x =【解析】解:去分母,得:39x =,化系数为1,得:3x =.检验:当3x =时,10x +≠,∴3x =是原分式方程的解.故答案为:3x =.14.【答案】10︒或80︒【解析】解:∵四边形ABCD 为菱形,40DAB ∠=︒,∴1202CAD DAB ∠=∠=︒,连接CE ,①当点E 在点A 上方时,如图1E ,∵1AC AE =,120CAE ∠=︒,∴()1118020802AE C ∠=︒-︒=︒,②当点E 在点A 下方时,如图2E ,∵1AC AE =,120CAE ∠=︒,∴211102AE C CAE ∠=∠=︒,故答案为:10︒或80︒.15.【答案】2【解析】解:如图,过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,6AFO ABO BOE FABEO S S S S k =++=+ 五边形AFOD FABEO ADEB ADEBS S S k S =+=+矩形五边形梯形梯形6ADEB S ∴=梯形2121()()62y y x x +-∴= 212x x =2112y y ∴=11112121111()(2)()()32==6224y y x x y y x x y x +-+-∴=11=8x y ∴8k ∴=21121111111111()()82222244ABC S AC BC x x y y y y =×=-×-=×==´=故答案为:2.16.【答案】712或2512-【解析】由()2(2)03y x x =-≤≤,当0x =时,4y =,∴()0,4C ,∵()3,0A ,四边形ABCO 是矩形,∴()3,4B ,①当抛物线经过O B ,时,将点()0,0,()3,4B 代入()21034y x bx c x =++≤≤,∴019344c b c =⎧⎪⎨⨯++=⎪⎩解得:712b =②当抛物线经过点,A C 时,将点()3,0A ,()0,4C 代入()21034y x bx c x =++≤≤,∴419304c b c =⎧⎪⎨⨯++=⎪⎩解得:2512b =-综上所述,712b =或2512b =-,故答案为:712或2512-.三、解答题17.【答案】(1)1;(2)3x >【解析】解:(1)原式1=-1=.(2)移项得36x x ->,即26x >,∴3x >.∴原不等式的解是3x >.18.【答案】(1)100(2)360(3)答案不唯一,见解析【解析】(1)被抽查学生数:3030%100÷=,答:本次调查共抽查了100名学生.(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5⨯=,∴被抽查的100人中最喜爱篮球的人数为:100301015540----=,∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.19.【答案】(1)58︒(2)该运动员能挂上篮网,理由见解析【解析】(1)解:∵CG CD ⊥,∴90ACG ∠=︒,∵32AGC ∠=︒,∴903258GAC ∠=︒-︒=︒.(2)该运动员能挂上篮网,理由如下.如图,延长,OA ED 交于点M ,∵,OA OB DE OB ⊥∥,∴90DMA ∠=︒,又∵58DAM GAC ∠=∠=︒,∴32ADM ∠=︒,在Rt ADM △中,sin 320.80.530.424AM AD =︒≈⨯=,∴ 2.50.424 2.9243OM OA AM =+=+=<,∴该运动员能挂上篮网.20.【答案】(1)200y x =(2)出发后甲机器人行走103分钟,与乙机器人相遇(3),P M 两地间的距离为600米【解析】(1)∵()()0,0,5,1000O A ,∴OA 所在直线的表达式为200y x =.(2)设BC 所在直线的表达式为y kx b =+,∵()()0,1000,10,0B C ,∴10000,010,b k b =+⎧⎨=+⎩解得100,1000k b =-⎧⎨=⎩.∴1001000y x =-+.甲、乙机器人相遇时,即2001001000x x =-+,解得103x =,∴出发后甲机器人行走103分钟,与乙机器人相遇.(3)设甲机器人行走t 分钟时到P 地,P 地与M 地距离200y t =,则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.21.【答案】(1)115︒(2)CE =【解析】(1)解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.(2)∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴CD ==.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CD OD CE OA =,即32CE =,∴CE =.22.【答案】(1)见解析(2)AH 与EF 垂直,理由见解析【解析】(1)解:在正方形ABCD 中,AD CD ⊥GE CD ⊥∴AD GE ∥,∴DAG EGH ∠=∠.(2)AH 与EF 垂直,理由如下.连接GC 交EF 于点O .∵BD 为正方形ABCD 的对角线,∴45ADG CDG ∠=∠=︒,又∵,DG DG AD CD ==,∴ADG CDG ≌,∴DAG DCG ∠=∠.在正方形ABCD 中,90ECF ∠=︒,又∵,GE CD GF BC ⊥⊥,∴四边形FCEG 为矩形,∴OE OC =,∴OEC OCE ∠=∠,∴DAG OEC ∠=∠.又∵DAG EGH ∠=∠,∴90EGH GEH OEC GEH GEC ∠+∠=∠+∠=∠=︒,∴90GHE ∠=°,∴AH EF ⊥.23.【答案】(1)①()2,7;②当13x -≤≤时,27y -≤≤(2)222y x x =-++【解析】(1)解:①当4,3b c ==时,2243(2)7y x x x =-++=--+,∴顶点坐标为()2,7.②∵顶点坐标为()2,7.抛物线开口向下,当12x -≤≤时,y 随x 增大而增大,当23x ≤≤时,y 随x 增大而减小,∴当2x =时,y 有最大值7.又()2132-->-∴当=1x -时取得最小值,最小值=2y -;∴当13x -≤≤时,27y -≤≤.(2)∵0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,∴抛物线的对称轴2b x =在y 轴的右侧,∴0b >,∵抛物线开口向下,0x ≤时,y 的最大值为2,∴2c =,又∵()()241341c b ⨯-⨯-=⨯-,∴2b =±,∵0b >,∴2b =,∴二次函数的表达式为222y x x =-++.24.【答案】(1)8(2)①347BP =;②6BP =或8±【解析】(1)在ABCD Y 中,10BC AD ==,在Rt BCH 中,4sin 1085CH BC B ==⨯=.(2)①如图1,作CH BA ⊥于点H ,由(1)得,6BH ==,则1266AH =-=,作C Q BA '⊥交BA 延长线于点Q ,则90CHP PQC ∠'=∠=︒,∴90C PQ PC Q '∠+∠='︒.∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,∴PQC CHP '△≌△.设BP x =,则8,6,4PQ CHC Q PH x QA PQ PA x ====-=-=-'.∵,C Q AB CH AB '⊥⊥,∴C Q CH '∥,∴AQC AHC '△∽△,∴C Q QA CH HA =',即6486x x --=,∴347x =,∴347BP =.②由旋转得,PCD PC D CD C D '''='△≌△,CD C D ⊥'',又因为AB CD ,所以C D AB ''⊥.情况一:当以C '为直角顶点时,如图2.∵C D AB ''⊥,∴C '落在线段BA 延长线上.∵PC PC ⊥',∴PC AB ⊥,由(1)知,8PC =,∴6BP =.情况二:当以A 为直角顶点时,如图3.设C D ''与射线BA 的交点为T ,作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,∴CPH PC T ∠=∠'.又∵90,CHP PTC PC C P ∠=∠=='︒',∴CPH PC T '△≌△,∴,8C T PH PT CH '===.设C T PH t '==,则6AP t =-,∴2AT PT PA t=-=+∵90,C AD C D AB ∠=︒''⊥'',∴ATD C TA '' ∽,∴AT C T TD TA='',∴2AT C T TD '=⋅',∴()2(2)12t t ι+=-,化简得2420t t -+=,解得2t =±∴8BP BH HP =+=±情况三:当以D ¢为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,6BP =或8±。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2014年浙江绍兴)比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣3<1 C.1<﹣2<﹣3 D.1<﹣3<﹣2分析:本题是对有理数的大小比较,根据有理数性质即可得出答案.解答:解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选A.点评:本题主要考查了有理数大小的判定,难度较小.2.(4分)(2014年浙江绍兴)计算(ab)2的结果是()A.2ab B.a2b C. a2b2D.ab2考点:幂的乘方与积的乘方.专题:计算题.分析:根据幂的乘方法则:底数不变,指数相乘,进行计算即可.解答:解:原式=a2b2.故选C.点评:此题考查了幂的乘方及积的乘方,属于基础题,注意掌握幂的乘方法则:底数不变,指数相乘.3.(4分)(2014年浙江绍兴)太阳的温度很高,其表面温度大概有6000℃,而太阳中心的温度达到了℃,用科学记数法可将表示为()A.×106B.×107C.×108 D.×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将用科学记数法表示为:×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2014年浙江绍兴)由5个相同的立方体搭成的几何体如图,则它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中解答:解:从正面看第一层是三个正方形,第二层是左边一个正方形,点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(4分)(2014年浙江绍兴)一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为()A.B.C.D.考点:概率公式.分析:由一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,直接利用概率公式求解即可求得答案.解答:解:∵一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,∴从袋子中随机摸出一个球是白球的概率为:=.故选C.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.6.(4分)(2014年浙江绍兴)不等式3x+2>﹣1的解集是()A.x>﹣B.x<﹣ C.x>﹣1 D.x<﹣1考点:解一元一次不等式.分析:先移项,再合并同类项,把x的系数化为1即可.解答:解:移项得,3x>﹣1﹣2,合并同类项得,3x>﹣3,把x的系数化为1得,x>﹣1.故选C.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.7.(4分)(2014年浙江绍兴)如图,圆锥的侧面展开图使半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.考点:圆锥的计算.分析:根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.解答:解:设底面圆的半径为r,则:2πr==π.∴r=,∴圆锥的底面周长为,故选B.点评:本题考查的是弧长的计算,利用弧长公式求出弧长,然后根据扇形弧长与圆锥底面半径的关系求出底面圆的半径.8.(4分)(2014年浙江绍兴)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克考点:一元一次方程的应用.分析:根据天平仍然处于平衡状态列出一元一次方程求解即可.解答:解:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,根据题意得:m=n+40;设被移动的玻璃球的质量为x克,根据题意得:m﹣x=n+x+20,x=(m﹣n﹣20)=(n+40﹣n﹣20)=10.故选A.点评:本题考查了一元一次方程的应用,解题的关键是找到等量关系.9.(4分)(2014年浙江绍兴)将一张正方形纸片,按如图步骤①,②,沿虚线对着两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A.B.C.D.考点:剪纸问题.分析:按照题意要求,动手操作一下,可得到正确的答案.解答:解:由题意要求知,展开铺平后的图形是B.故选B.点评:此题主要考查了剪纸问题,此类问题应亲自动手折一折,剪一剪看看,可以培养空间想象能力.10.(4分)(2014年浙江绍兴)如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()A.50秒B.45秒C.40秒D.35秒考点:推理与论证.分析:首先求出汽车行驶各段所用的时间,进而根据红绿灯的设置,分析每次绿灯亮的时间,得出符合题意答案.解答:解:∵甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,∴两车的速度为:=(m/s),∵AB之间的距离为800米,BC为1000米,CD为1400米,∴分别通过AB,BC,CD所用的时间为:=96(s),=120(s),=168(s),∵这两辆汽车通过四个路口时都没有遇到红灯,∴当每次绿灯亮的时间为50s时,∵=1,∴甲车到达B路口时遇到红灯,故A选项错误;∴当每次绿灯亮的时间为45s时,∵=3,∴乙车到达C路口时遇到红灯,故B选项错误;∴当每次绿灯亮的时间为40s时,∵=5,∴甲车到达C路口时遇到红灯,故C选项错误;∴当每次绿灯亮的时间为35s时,∵=2,=6,=10,=4,=8,∴这两辆汽车通过四个路口时都没有遇到红灯,故D选项正确;则每次绿灯亮的时间可能设置为:35秒.故选:D.点评:此题主要考查了推理与论证,根据题意得出汽车行驶每段所用的时间,进而得出由选项分析得出是解题关键.二、填空题(本大题共6个小题,每小题5分,共30分)11.(5分)(2014年浙江绍兴)分解因式:a2﹣a= a(a﹣1).考点:因式分解-提公因式法.分析:这个多项式含有公因式a,分解因式时应先提取公因式.解答:解:a2﹣a=a(a﹣1).点评:本题考查了提公因式法分解因式,比较简单,注意不要漏项.12.(5分)(2014年浙江绍兴)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为 5 .考点:垂径定理的应用;勾股定理;切线的性质.分析:首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=16﹣r,然后在Rt△OFH中,r2﹣(16﹣r)2=82,解此方程即可求得答案.解答:解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8﹣r,在Rt△OFH中,r2﹣(8﹣r)2=42,解得r=5,故答案为:5.点评:此题考查了切线的性质、垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.13.(5分)(2014年浙江绍兴)如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x ﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4 .考点:二次函数的应用.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.14.(5分)(2014年浙江绍兴)用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是sin35°=或b≥a.考点:作图—复杂作图;切线的性质;解直角三角形.分析:首先画BC=a,再以B为顶点,作∠ABC=35°,然后再以点C为圆心b为半径交AB于点A,然后连接AC即可,①当AC⊥BC时,②当b≥a 时三角形只能作一个.解答:解:如图所示:若这样的三角形只能作一个,则a,b间满足的关系式是:①当AC⊥BC时,即sin35°=②当b≥a时.故答案为:sin35°=或b≥a.点评:此题主要考查了复杂作图,关键是掌握作一角等于已知角的方法.15.(5分)(2014年浙江绍兴)如图,边长为n 的正方形OABC 的边OA ,OC 在坐标轴上,点A 1,A 2…A n ﹣1为OA 的n 等分点,点B 1,B 2…B n ﹣1为CB 的n 等分点,连结A 1B 1,A 2B 2,…A n ﹣1B n ﹣1,分别交曲线y=(x >0)于点C 1,C 2,…,C n ﹣1.若C 15B 15=16C 15A 15,则n 的值为 17 .(n 为正整数)考点: 反比例函数图象上点的坐标特征.专题: 规律型.分析: 先根据正方形OABC 的边长为n ,点A 1,A 2…A n ﹣1为OA 的n 等分点,点B 1,B 2…B n ﹣1为CB 的n 等分点可知OA 15=15,OB 15=15,再根据C 15B 15=16C 15A 15表示出C 15的坐标,代入反比例函数的解析式求出n 的值即可.解答: 解:∵正方形OABC 的边长为n ,点A 1,A 2…A n ﹣1为OA 的n 等分点,点B 1,B 2…B n ﹣1为CB 的n 等分点∴OA 15=15,OB 15=15, ∵C 15B 15=16C 15A 15, ∴C 15(15,),∵点C在曲线y=(x>0)上,15∴15×=n﹣2,解得n=17.故答案为:17.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上k=xy为定值是解答此题的关键.16.(5分)(2014年浙江绍兴)把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是4+.考点:相似多边形的性质.分析:根据相似多边形对应边的比相等的性质分别求出所剪得的两个小矩形纸片的长与宽,进而求解即可.解答:解:∵在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,∴要使所剪得的两个小矩形纸片周长之和最大,则这两个小矩形纸片长与宽的和最大.∵矩形的长与宽之比为2:1,∴剪得的两个小矩形中,一个矩形的长为1,宽为=,∴另外一个矩形的长为2﹣=,宽为=,∴所剪得的两个小矩形纸片周长之和的最大值是2(1+++)=4+.故答案为4+.点评:本题考查了相似多边形的性质,分别求出所剪得的两个小矩形纸片的长与宽是解题的关键.三、解答题(本大题共8小题,第17-20小题每小题8分,第21小题10分,第22,23小题每小题8分,24小题14分,共80分)17.(8分)(2014年浙江绍兴)(1)计算:﹣4sin45°﹣+.(2)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣.考点:实数的运算;整式的混合运算—化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.分析:(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据去括号的法则,可去掉括号,根据合并同类项,可化简代数式,根据代数式求值,可得答案.解答:解:(1)原式=2﹣2﹣1+2=1;(2)原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2=1+=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(8分)(2014年浙江绍兴)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?考点:一次函数的应用.分析:(1)根据横轴CO与DE可得出A比B后出发1小时;由点C的坐标为(3,60)可求出B的速度;(2)利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可.解答:解:(1)由图可知,A比B后出发1小时;B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为y=kx,则3k=60,解得k=20,所以,y=20x,设DE的解析式为y=mx+n,则,解得,所以,y=45x﹣45,由题意得,解得,所以,B出发小时后两人相遇.点评:本题考查利用一次函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图并获取信息是解题的关键.19.(8分)(2014年浙江绍兴)为了解某校七,八年级学生的睡眠情况,随机抽取了该校七,八年级部分学生进行调查,已知抽取七年级与八年级的学生人数相同,利用抽样所得的数据绘制如下统计图表.组别睡眠时间xA x≤B ≤x≤C ≤x≤D ≤x≤E x≥根据图表提供的信息,回答下列问题:(1)求统计图中的a;(2)抽取的样本中,八年级学生睡眠时间在C组的有多少人?(3)已知该校七年级学生有755人,八年级学生有785人,如果睡眠时间x(时)满足:≤x≤,称睡眠时间合格,试估计该校七、八年级学生中睡眠时间合格的共有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表;扇形统计图.专题:计算题.分析:(1)根据扇形统计图,确定出a的值即可;(2)根据图1求出抽取的人数,乘以C占的百分比即可得到结果;(3)分别找出七八年级睡眠合格的人数,求出之和即可.解答:解:(1)根据题意得:a=1﹣(35%+25%+25%+10%)=5%;(2)根据题意得:(6+19+17+10+8)×35%=21(人),则抽取的样本中,八年级学生睡眠时间在C组的有21人;(3)根据题意得:755×+785×(25%+35%)=453+471=924(人),则该校七、八年级学生中睡眠时间合格的共有924人.点评:此题考查了条形统计图,用样本估计总体,频数(率)分布表,以及扇形统计图,弄清题中的数据是解本题的关键.20.(8分)(2014年浙江绍兴)课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.考点:相似三角形的应用;二次函数的最值.分析:(1)设PN=2ymm,则PQ=ymm,然后根据相似三角形对应高的比等于相似比列出比例式求出即可;(2)设PN=x,用PQ表示出AE的长度,然后根据相似三角形对应高的比等于相似比列出比例式并用x表示出PN,然后根据矩形的面积公式列式计算,再根据二次函数的最值问题解答.解答:解:(1)设矩形的边长PN=2ymm,则PQ=ymm,由条件可得△APN∽△ABC,∴=,即=,解得y=,∴PN=×2=(mm),答:这个矩形零件的两条边长分别为mm,mm;(2)设PN=xmm,由条件可得△APN∽△ABC,∴=,即=,解得PQ=80﹣x.∴S=PN?PQ=x(80﹣x)=﹣x2+80x=﹣(x﹣60)2+2400,∴S的最大值为2400mm2,此时PN=60mm,PQ=80﹣×60=40(mm).点评:本题考查了相似三角形的应用,二次函数的最值问题,根据相似三角形对应高的比等于对应边的比列式表示出正方形的边长与三角形的边与这边上的高的关系是解题的关键,此题规律性较强,是道好题.21.(10分)(2014年浙江绍兴)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF 的中点离地面FB的高度为米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到米).备用数据:tan60°=,tan30°=,=,=.考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:(1)根据∠α=2∠CDB即可得出答案;(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,根据EH=2MN即可求出E点离地面FB的高度;(3)延长AE,交PB于点C,设AE=x,则AC=x+,CQ=x﹣,根据=,得出x+﹣=3,求出x即可.解答:解:(1)∵BD=BC,∴∠CDB=∠DCB,∴∠α=2∠CDB=2×38°=76°.(2)设EF的中点为M,过M作MN⊥B F,垂足为点N,过点E作EH⊥BF,垂足为点H,∵MN∥AH,MN=,∴EH=2MN=(米),∴E点离地面FB的高度是米.(3)延长AE,交PB于点C,设AE=x,则AC=x+,∵∠APB=45°,∴PC=AC=x+,∵PQ=4,∴CQ=x+﹣4=x﹣,∵tan∠AQC==tan60°=,∴=,x=≈,∴AE≈(米).答;旗杆AE的高度是米.点评:此题考查了解直角三角形的应用,用到的知识点是仰角的定义,能作出辅助线借助仰角构造直角三角形是本题的关键.22.(12分)(2014年浙江绍兴)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?考点:二次函数图象与几何变换;二次函数的性质.专题:新定义.分析:(1)根据题意得出函数解析式,进而得出顶点坐标即可;(2)①首先得出函数解析式,进而利用函数平移规律得出答案;②分别求出两函数解析式,进而得出平移规律.解答:解:(1)由题意可得出:y=x2﹣2x+1=(x﹣1)2,∴此函数图象的顶点坐标为:(1,0);(2)①由题意可得出:y=x2+4x﹣1=(x+2)2﹣5,∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+1)2﹣4=x2+2x﹣3,∴图象对应的函数的特征数为:[2,﹣3];②∵一个函数的特征数为[2,3],∴函数解析式为:y=x2+2x+3=(x+1)2+2,∵一个函数的特征数为[3,4],∴函数解析式为:y=x2+3x+4=(x+)2+,∴原函数的图象向左平移个单位,再向下平移个单位得到.点评:此题主要考查了二次函数的平移以及配方法求函数解析式,利用特征数得出函数解析式是解题关键.23.(6分)(2014年浙江绍兴)(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)证△ADG≌△ABE,△FAE≌△GAF,根据全等三角形的性质求出即可;(2)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.解答:(1)证明:在正方形ABCD中,∴∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG(2)解:如图2,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=点评:本题主要考查正方形的性质,全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的综合应用.25.(14分)(2014年浙江绍兴)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.考点:相似形综合题;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;勾股定理;矩形的判定与性质;平行线分线段成比例;相似三角形的判定与性质.专题:压轴题.分析:(1)易得点P的坐标是(2,1),即可得到PA的长.(2)易证∠AOB=45°,由角平分线的性质可得PA=PC,然后通过证明△ANP≌△CMP即可求出PA:PC的值.(3)可分点P在线段OB的延长线上及其反向延长线上两种情况进行讨论.易证PA:PC=PN:PM,设OA=x,只需用含x的代数式表示出PN、PM 的长,即可求出PA:PC的值.解答:解:(1)∵点P与点B重合,点B的坐标是(2,1),∴点P的坐标是(2,1).∴PA的长为2.(2)过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,如图1所示.∵点A的纵坐标与点B的横坐标相等,∴OA=AB.∵∠OAB=90°,∴∠AOB=∠ABO=45°.∵∠AOC=90°,∴∠POC=45°.∵PM⊥x轴,PN⊥y轴,∴PM=PN,∠ANP=∠CMP=90°.∴∠NPM=90°.∵∠APC=90°.∴∠APN=90°﹣∠APM=∠CPM.在△ANP和△CMP中,∵∠APN=∠CPM,PN=PM,∠ANP=∠CMP,∴△ANP≌△CMP.∴PA=PC.∴PA:PC的值为1:1.(3)①若点P在线段OB的延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图2所示.∵∠APN=∠CPM,∠ANP=∠CMP,∴△ANP∽△CMP.∴.∵∠ACE=∠AEC,∴AC=AE.∵AP⊥PC,∴EP=CP.∵PM∥y轴,∴AF=CF,OM=CM.∴FM=OA.设OA=x,∵PF∥OA,∴△PDF∽△ODA.∴∵PD=2OD,∴PF=2OA=2x,FM=x.∴PM=x.∵∠APC=90°,AF=CF,∴AC=2PF=4x.∵∠AOC=90°,∴OC=x.∵∠PNO=∠NOM=∠OMP=90°,∴四边形PMON是矩形.∴PN=OM=x.∴PA:PC=PN:PM=x:x=.②若点P在线段OB的反向延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图3所示.同理可得:PM=x,CA=2PF=4x,OC=x.∴PN=OM=OC=x.∴PA:PC=PN:PM=x:x=.综上所述:PA:PC的值为或.点评:本题考查了角平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、矩形的判定与性质、等腰三角形的判定与性质、平行线等分线段定理、勾股定理等知识,综合性非常强.。

相关文档
最新文档