高中数学必修三《均匀随机数的产生》教学设计

合集下载

人教版高中数学必修三(教案) 3.3.2均匀随机数的产生

人教版高中数学必修三(教案)  3.3.2均匀随机数的产生

第二课时 3.3.2均匀随机数的产生
教学要求:让学生知道如何利用计算机Excel软件产生均匀随机数关利用随机模拟方法估计求知量.
教学重点:体会随机模拟中的统计思想.
教学难点:如何把求未知量的问题转化为几何概型概率的问题. 教学过程:
一、复习准备:
1. 回忆:几何概型的定义,以及相关的古典概型中的随机模拟方法.
二、讲授新课:
1.教学:均匀随机数的产生操作方法与整数值随机数产生的方
法相同,前面学生有了基础这里易掌握只要老师在课堂是带学生操作一次就行。

例2. 假设你家订了一份报纸,送报工人可能在早上6:30至7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00至8:00之间,问你父亲在离开家之前能得到报纸的概率是多少?
分析:计算该事件的概率有两种方法.
利用几何概型的公式:找到试验的全部结果构成的区域及父亲离开家前能拿到报纸的区域.
用随机模拟的方法:
例3:在正方形中随机撒一把豆子,用随机模拟方法估计圆周率的值.(试验模拟:真的撒一把豆子)
分析:首先判断每个豆子落在正方形的区域是否是等可能的,是等可能的,就数圆内的豆子数和方形内的豆子数.
3. 小结:如何利用几何概型事件和随机模拟方法来求一些求知量?
三、巩固练习:
1.如图在墙上挂着一块边长为16cm的正方形木板,。

高中数学必修三《均匀随机数的产生》优秀教学设计

高中数学必修三《均匀随机数的产生》优秀教学设计

均匀随机数的产生
1、教学任务分析
(1)通过本节课的学习让学生知道如何利用计算器或计算机Excel软件产生均匀随机数,并会利用随机模拟方法估计未知量.
(2)通过本节课学习让学生学会建立严格的几何模型来解决多元的几何概型问题。

(3)这是概率必修章节的最后一个知识点,前面已经学过了(整数值)随机数的产生和用蒙特卡罗模拟方法估计概率值.本节的主要思路是对照前面学过的知识让学生自主思考、设计方案。

(4)用随机模拟法估计未知量.例3是圆周率的估计,例4则是不规则平面图形面积的估计.
(5)建立严格的几何模型,解决例1中涉及到的两元几何概型问题.
2.教学重点与难点
重点:
(1) 均匀随机数的产生,设计模型并运用随机模拟法估计未知量;
(2) 转化为严格的几何概型再分析上述问题.
难点:
(1) 如何设计随机模拟法;(2) 如何转化为严格的几何概型问题.
3.教学流程
4.教学情境设计。

高中数学必修三《均匀随机数的产生》优秀教学设计

高中数学必修三《均匀随机数的产生》优秀教学设计

均匀随机数的产生一、教学内容解析本课选自人民教育出版社(数学必修3)A版第三章《概率》中“几何概型”的第二课时《3.3.2均匀随机数的产生》。

均匀随机数是在学生已经掌握几何概型的基础上,来学习解决几何概型问题的又一方法,本节课的教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑的习惯,对于学生辩证思想的进一步形成,具有良好的作用. 通过对本节例题的模拟试验,认识用计算机模拟试验解决概率问题的方法,体会到用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识。

在教学过程中有意识地让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,同时使学生认识数学的实用价值和科学价值。

本节课的教学重难点:重点是掌握使用EXCEL软件产生[0,1]及[a,b]上均匀随机数;学会采用适当的随机模拟法去估算几何概率.难点是二、教学目标设置1、通过模拟试验,了解均匀随机数的概念;了解利用计算器(计算机)产生均匀随机数的方法。

2、培养学生自己动手,主动思考,发现创新的好习惯。

通过学习体会数形结合的思想方法。

3、通过学习使学生经历设计和运用模拟方法来近似计算概率,让学生深刻体会频率和概率的区别,通过大量模拟实验,充分感受“大数规律”,从而理解频率估计概率的科学性。

进而提高分析实际问题的能力,增强数学应用意识。

4、营造和谐的课堂氛围,通过独立思考,合作交流使学生获得学习数学的成功体验,培养良好的学习习惯及严谨的思维方式。

三、学生学情分析学生已有的认知基础是古典概型的概念,初步认识到几何概型是解决概率的另一种数学模型,并且能区分两种不同概率模型,学生在学习完古典概型后,已经了解利用随机模拟的方法解决概率问题,能设计方案通过产生整数随机数解决古典概型的概率.教学中,通过古典概型与几何概型的对比,引导学生探索利用计算机如何产生某区间上均匀随机数,并通过实验操作,经历讨论、交流、计算机验证使学生经历从直观到抽象、具体到一般的形成知识的过程.四、教学策略分析1.根据学生情况,本课采用计算机产生均匀随机数,使用学生熟悉的软件EXCEL这样符合学生的认知规律,可以有效提高学生数学思维的参与度,利于新课的学习。

高中数学必修3教案3.3.2 均匀随机数的产生

高中数学必修3教案3.3.2  均匀随机数的产生

§3.3.2 几何概型的应用与均匀随机数的产生1.理解并掌握几何概型的概率公式和其应用解题的关键;2.掌握利用计算器(计算机)产生均匀随机数的方法;3.会利用均匀随机数解决具体的有关概率的问题.重点: 1.应用几何概型概率公式解决几何概型问题;2.掌握利用计算器(计算机)产生均匀随机数的方法难点: 利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.学法指导通过例题和练习在应用中巩固几何概型概率公式解题的关键(即时刻明确构成事件A 的基本要素是“点”,而试验的全部结果是一个几何图形);通过模拟试验,感知应用数字解决问题的方法。

几何概型的定义,以及相关的古典概型中的随机模拟方法.例2在区间(01),上随机取两个数m n,,求关于x的一元二次方程20x m+=有实根的概率.分析:题目中有两个随机变量,这时一般构造二维几何模型(即利用直角坐标系),将问题转化为面积型的几何概率问题求解.注:要注意对“等可能”的理解.【探究新知】我们可以利用计算器或计算机产生整数值随机数,还可以通过随机模拟方法求古典概型的概率近似值,对于几何概型,我们也可以进行上述工作.一个人到单位的时间可能是8:00~9:00之间的任何一个时刻,若设定他到单位的时间为8点过X分种,则X可以是0~60之间的任何一刻,并且是等可能的.我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.思考1:一般地,X为[a,b]上的均匀随机数的含义如何?X的取值是离散的,还是连续的?我们常用的是[0,1]上的均匀随机数,可以利用计算器产生(见教材P137).思考2:如何利用计算机产生0~1之间的均匀随机数?计算机只能产生[0,1]上的均匀随机数,如果试验的结果是区间[a,b]上等可能出现的任何一个值,那么就需要产生[a,b]上的均匀随机数.思考3:请问你有什么好办法利用计算机来产生[2,6]上的均匀随机数?[a,b]上的均匀随机数又如何产生呢?(行胜于言,试一试吧!)【理论迁移】认真阅读思考教材137~138P例2的解析,尤其是方法二.例3在正方形中随机撒一把豆子,如何用随机模拟的方法估计圆周率的值.提示:每个豆子落在正方形内任何一点是等可能的,那么落在每个。

3.3.2 均匀随机数的产生教案

3.3.2 均匀随机数的产生教案

3.3.2均匀随机数的产生教学目标通过模拟试验,了解均匀随机数的概念;了解利用计算器(计算机)产生均匀随机数的方法。

1、培养学生自己动手,主动思考,发现创新的好习惯。

通过学习体会数形结合的思想方法。

2、通过学习使学生经历设计和运用模拟方法来近似计算概率,让学生深刻体会频率和概率的区别,通过大量模拟实验,充分感受“大数规律”,从而理解频率估计概率的科学性。

进而提高分析实际问题的能力,增强数学应用意识。

3、营造和谐的课堂氛围,通过独立思考,合作交流使学生获得学习数学的成功体验,培养良好的学习习惯及严谨的思维方式。

教学重点掌握使用EXCEL软件产生[0,1]及[a,b]上均匀随机数;学会采用适当的随机模拟法去估算几何概率.教学难点用适当的随机模拟法去估算几何概率.教学过程(一)创设情境,引入新知问题1:父亲离开家去工作的时间在早上7:00—8:00之间 ,求父亲在7:30之后离开家上班的概率?问题2:如何判断这个问题是一个几何概型的?几何概型特点是什么?【师生活动】:学生思考、发言,教师补充.【设计意图】:引导学生把实际问题转化为数学问题,同时在几何概型中要把一个变量问题转化为长度比来解决问题,同时为例题《订报纸》,两个变量问题做铺垫。

问题3:假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?问题4:对比上一个问题,都是时间问题,都是几何概型,怎么上一个是长度比,这道题用面积比,有什么区别?【师生活动】:教师引导学生通过类比、观察、交流后,得出方法。

帮助学生分析问题,引导学生将实际问题转化为数学问题,并用数学符号语言表达,解题过程由学生思考陈述,教师板书过程,师生共同总结本题特点。

【设计意图】:这是本节课的难点,通过问题引发学生思考一个变量可否解决问题,自然是学生分析出需要设两个变量。

人教版高中必修33.3.2均匀随机数的产生教学设计

人教版高中必修33.3.2均匀随机数的产生教学设计

人教版高中必修3 3.3.2 均匀随机数的产生教学设计
一、教学目标
1.了解均匀随机数的定义和特点;
2.掌握利用计算机生成均匀随机数的方法;
3.培养学生的计算机编程能力和创新意识。

二、教学内容
1.均匀随机数的定义及其特点;
2.利用计算机生成均匀随机数的方法;
3.计算机编程实现产生均匀随机数。

三、教学过程
步骤一:导入
1.引导学生回顾前面所学的概率知识,特别是随机事件和概率的概念;
2.引导学生思考,如果需要产生大量的随机数,应该如何实现。

步骤二:均匀随机数的定义和特点
1.通过例子引导学生了解均匀随机数的定义和特点;
2.给学生示范如何计算均匀随机数的概率。

步骤三:计算机产生均匀随机数的方法
1.引导学生了解计算机产生均匀随机数的算法;
2.讲解线性同余法生成随机数的原理和实现方法;
3.配合案例进行演示。

步骤四:计算机编程实现
1.列出程序框架,包括主程序和子程序;
2.引导学生编写主程序和子程序的伪代码;
3.学生自主编写程序,并进行测试。

步骤五:总结
1.引导学生总结均匀随机数的特点和计算机产生随机数的方法;
2.引导学生思考如何利用随机数进行实际应用。

四、教学重点与难点
1.掌握计算机产生均匀随机数的算法和程序实现方法;
2.能够熟练地运用计算机产生随机数。

五、教学评价
1.观察学生的课堂表现,包括参与度、思维活跃度、编写程序功底等;
2.组织小组讨论,分享编程体会;
3.通过作业、期末考试等方式进行考核。

高中数学人教A版必修3第三章3.3.2均匀随机数的产生 教学设计

高中数学人教A版必修3第三章3.3.2均匀随机数的产生 教学设计
5
x 是区间[0,1]的均匀随机数,a+(b-a)x 为区间[a,b]的均匀随机数
演示:用计算器和 Excel 表格演示产生[0,1]的均匀随机数。 问 1:在已经产生[0,1]之间的均匀随机数的基础上如何得到[2,5]之间的 均匀随机数?请同学回答 问 2:问题一般化,要产生任意指定区间 [a,b]上的均匀随机数可以如何变换呢?
编写时间: 年 月 日 第二学期
总第 课时
编写人:
3.3.2 均匀随机数的
课题
授课班级 高二 班 授课时间
产生
1、通过模拟试验,感知应用数学解决问题的方法,了解均匀随机数的概念;掌握
学习目标 利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯. 2、会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用
送报时间确定为 7:15,送报时间为 7:15 至 8:00 即可
A 发生的条件是送报时间≤离家时间。 3.2.两个时间均随机,确定概率模型
件。
3.3 设量建系,量化面积,计算概率 邮递员送报纸时间为 x, 则 6.5 x 7.5 ,爸爸离家时间为 y,则 7 y 8 ,
爸爸离家前取得报纸, 只需送报时间早于离家时间,则 y x :
活动:学生动手操作,产生 10 个[2,5]之间的均匀随机数,并记录在学案
பைடு நூலகம்
1
上。 二、典例探究 1. 问题引入及解析 例 2:假设你家订了一份报纸,邮递员可能在早上 6:30-7:30 之间把报纸送到 你家,你父亲离开家去工作的时间在早上 7:00-8:00 之间,问你父亲在离开家 前能得到报纸(称为事件 A)的概率是多少? 2.“Excel 表格”模拟试验
频率估计概率,学习时养成勤学严谨的学习习惯,提升逻辑思维能力和探索创新能

《均匀随机数的产生》教案.doc

《均匀随机数的产生》教案.doc

《均匀随机数的产生》教案教学目标1.了解均匀随机数的意义,会利用计算器(计算机)产生均匀随机数.2.会用模拟方法(包括•计算器产生随机数进行模拟)估计概率.3.理解用模拟方法估计概率的实质,会利用均匀随机数解决具体的有关概率的问题.教学重点1.均匀随机数的产生⑴计算器上产生011的均匀随机数的函数是RAND函数.(2)Excel软件产生[0,1]区间上均匀随机数的函数为“nrndO”.2.用模拟的方法近似计算某事件概率的方法(1)试验模拟的方法:制作两个转盘模型,进行模拟试验,并统计试验结杲.(2)计•算机模拟的方法:用Excel软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤.3.[a, b]上均匀随机数的产生.利用计算器或计算机产生[0,1]上的均匀随机数x = RAND,然后利用伸缩和平移交换,x = xj就可以得到[a, b]内的均匀随机数,试验的结果是[a, b]上的任何一个实数,并且任何一个实数都是等可能的.教学过程[情境导学]在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数來模拟试验呢?如果能,我们又如何产生随机数呢?这就是本节课要解决的问题.探究点一均匀随机数的产生思考1我们常用的是[0,1]上的均匀随机数,如何利用讣算器产生0〜1之间的均匀随机数?如何利用计算机产生o〜1 Z间的均匀随机数?答用计算器产生0〜1之间的均匀随机数的方法见教材;用计算机的方法如下:用Excel 演示.(1)选定A1格,键入“=rand()”,按Enter键,则在此格中的数是随机产生的[0,1]上的均匀随机数;(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2〜A100,点击粘贝乩则在A1〜A100的数都是[0,1]上的均匀随机数.这样我们就很快就得到了100个0〜1 Z间的均匀随机数,相当于做了100次随机试验.思考2计算机只能产生[0,1]上的均匀随机数,如果试验的结果是区间[a, b]上等可能出现的任何一个值,则需要产生[a, b]上的均匀随机数,对此,你有什么办法解决?答首先利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,然后利用伸缩和平移变换:Y = X*(b—a)+a计算Y的值,则Y为[a, b]上的均匀随机数.思考3利用计算机产生100个[2,6]上的均匀随机数,具体如何操作?答⑴在A1〜A100产生100个0〜1之间的均匀随机数;(2)选定B1格,键入“=A1]例1取一根长度为5m的绳子,拉直后在任意位置剪断,用均匀随机模拟方法估计剪得两段的长都不小于2 m的概率有多大?解设剪得两段的长都不小于2 m为事件A.(1)利用计算器或计算机产生n个0〜1之间的均匀随机数,x = RAND.(2)作伸缩变换:y = x*(5—0),转化为[0,5]上的均匀随机数.(3)统计出[2,3]内均匀随机数的个数m.(4)则概率P(A)的近似值为芈反思与感悟通过模拟试验求某事件发生的概率,不同于古典概型和几何概型试验求概率,前者只能得到概率的近似值,后者求得的是准确值.跟踪训练1如图所示,向边长为2的正方形内投飞镖,用计算机随机模拟这个试验,求飞镖落在中央边长为1的正方形内的概率.解用计算机随机模拟这个试验,步骤如下:(1)利用计算器或计算机产生两组[0,1]上的均匀随机数ai = RAND, b^RAND.⑵经过伸缩平移变换,a=(a|-0.5)*4, b = (bi—0.5)*4得到两组[一2,2]上的均匀随机数.(3)统计出试验总次数N,落在阴影部分的次数N,⑷计算频率f“(A)=畔就是飞镖落在小正方形内的概率的近似值.探究点二随机模拟方法例2假设你家订了一份报纸,送报人可能在早上6:30〜7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00-8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A,则事件A的概率是多少?思考1设X、Y为[0,1]上的均匀随机数,6.5+X表示送报人到达你家的时间,7+ Y表示父亲离开家的时间,若事件A发生,则X、Y应满足什么关系?答7+Y>6.5+X,即Y>X-0.5.思考2设送报人到达你家的时间为x,父亲离开家的时间为y,若事件A发生, 则x、y应满足什么关系?不等式組表示的平面區域如何?6.5<x<7.5, 答17<y<8,、yNx.思考3根据儿何概型的概率计算公式,事件A发生的概率为多少?答试验的全部结果所构成的区域的面积为边长为1的正方形,面积为1;图屮的7111 *7 Q n阴影部分面积为1— H X2 = 8,所以P(A)=T=8-思考4你能设计一种随机模拟的方法近似计算上面事件A发生的概率吗?答方法一(随机模拟的方法)做两个只带有分针的圆盘,标上时间,分别旋转两个圆盘,记下父亲在离家前能得到报纸的次数,则P(A)= 父亲在离家前能得到报纸的次数试验的总次数方法二用计算机产生随机数模拟试验.X是0〜1 Z间的均匀随机数,Y也是0〜1之间的均匀随机数.如果Y + 7>X+6.5,即Y>X—0.5,那么父亲在离开家前能得到报纸.在计算机上做M次试验,查一下Y>X—0.5的Y的个数,如果为N,则所求概率为N/M.反思与感悟用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围.用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大.随机数模拟的关键是把实际问题屮事件A及基本事件总体对应的区域转化为随机数的范围.用计-算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果, 同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.跟踪训练2在右图的正方形屮随机撒一把豆子,计算落在圆屮的豆子数与落在正方形屮的豆子数之比并以此估计圆周率的值.87O 6.5 7.5 x解 随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域 的豆子数与这个区域的面积近似成正比,即圆的面积:正方形的面积U 落在圆屮的豆子 数:落在正方形屮的豆子数.每个区域的豆子数是可以数出来的,所以就得到了兀的近似值.探究点三 用模拟法估计面积型的几何概率例3利用随机模拟方法计算由y=l 和y=x?所围成的图形的面积.解 以直线x=l, X= —1, y=0, y=l 为边界作矩形,(1) 利用计算器或计算机产生两组0〜1区间的均匀随机数,a t =RAND, b 【= RAND ;(2) 进行平移和伸缩变换,a=2(a )-0.5);(3) 数出落在阴影内的样本点数M ,用儿何概型公式计算阴影部分的而积.例如做1 ()()()次试验,即N =100(),模拟得到N ] = 698,別以F —矩形而积—I 000'即阴影而积$ =矩形而积X 盎=2x 鵠 =1.396.反思与感悟解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概 率,然后通过解方程求得阴影部分面积的近似值,解决此类问题时注意两点:一是选収 合适的对应图形,二是由几何概型正确计算概率.跟踪训练3利用随机模拟的方法近似计算图中阴影部分(y=2 —2x —X?与x 轴围成的图形)的面积. 解 ⑴利用计算机产生两组[0,1]上的均匀随机数,ai = RAND, b|=RAND ・⑵经过平移和伸缩变换就是点落在阴影部分的概率的近似值.设正方形的边长为2,则圆半径为1,所以魯I 册治.由于落在(5)设阴影部分面积为S.由几何概型概率公式得点落在阴影部分的概率为令.・・・S 芒1即为阴彫部分面积的近似值. 【当堂测、查疑缺】1. 将[0,1]内的均匀随机数转化为[ — 3,4]内的均匀随机数,需要实施的变换为()A. a=ai*7B.a=ai*7+3C.a= ap 7-3D.a=ai*4答案c解析根据伸缩和平移变换 a=a 1* [4-(・3)] + (-3) =a 1*7-3.2. 用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,贝U()A. m>nB ・ m<n C. m=nD. m 是n 的近似值答案D解析 随机摸拟法求其概率,只是对概率的估计. 3. 在区间[—1,1]上随机任取两个数x, y,贝9满足x 2+y 2<|的概率为 ___________ . 答案令解析 当x, yW [—l,l ]时,点(x, y)构成的区域是一个边长为2的正方形,其面积 等于2x2=4,而满足x 2+y 2<|的点(x, y)构成的区域是一个半径为|的圆的内部,其面11积等于务所以所求概率p=#=壽4. 某汽车站每隔10分钟有一班汽车通过,求乘客候车时I'可不超过4分钟的概率, 并尝试用计算机模拟该实验.解 因为乘客到达车站的时间是随机的,设乘客候车时I'可不超过4分钟为事件A.随机模拟试验的步骤:⑴利用计算机产生[0,1]上的均匀随机数,a 】=RAND.(2)经过伸缩变换:3=1O ]M,N),即为所求概率的近似值.作业:练习1,2 由题意,可得P(A) = 区间 区间的长度 2 的长度一了。

人教版高中数学《均匀随机数的产生》教学设计(全国特等奖)

人教版高中数学《均匀随机数的产生》教学设计(全国特等奖)

3.3.2均匀随机数的产生教学设计教材:人教A版必修3 第三章概率 3.3几何概型教材地位分析在现实生活中,很多随机问题无法用公式求得准确概率,于是在高中数学的概率模块学习中,新增了随机模拟这一重要内容。

本课作为概率必修的章节的尾声,在掌握了概率定义,古典概型整数值随机数的产生及几何概型公式计算的基础上,学习均匀随机数的产生方法,并运用于随机模拟试验中,为解决现实生活中的随机问题,提供了另一个实用可操作的途径。

教学内容分析本课教学的主要内容是:学习用计算器(机)产生均匀随机数的一般方法;探究例2,一方面用随机模拟的方法统计事件发生的频率,并估计为概率,另一方面用几何概型的公式计算得到准确的概率,并验证随机模拟结果的可靠性;最后通过例3圆周率的估计问题来巩固随机模拟的思想方法。

●教学重点:学习用计算器(机)产生均匀随机数的一般方法;用随机模拟的方法解决例2的送报纸问题。

●教学难点:随机模拟试验的设计过程。

教学目标设置通过本课的学习,希望学生能达到以下三个层次的目标●知识目标:了解均匀随机数的特点;熟练掌握用计算器和计算机产生均匀随机数方法;通过例2和例3,学会设计随机模拟试验。

●能力目标:提升数据处理能力,实践操作能力和归纳总结能力●思想目标:巩固和深化频率估计概率的随机模拟思想。

学生学情分析本节课教学对象是高二学生,具备以下知识和能力:●已学习概率的定义,理解随着试验次数的增加,频率会越来越接近概率;●在古典概型的学习中,已初步接触了随机模拟试验;●已经学习几何概型的公式计算方法,并基本能识别不同几何测度的概率问题;教学策略分析在高考中,随机模拟试验的内容较少涉及,传统授课中,例2送报纸问题常以几何概型公式计算的方法为教学重点。

但在数学核心素养的培养中,数学建模与数据处理是重要的部分,而随机模拟是此能力培养的重点内容之一,教学中需提供大量实践操作的机会。

故本课采用数学试验的教学策略,从试验原理的引入到试验工具的学习,从设计试验的方案到体验试验的操作,应用理论对试验结果进行论证,最后提炼出试验的主要思路,并加以巩固运用,让学生体验随机模拟试验的全过程。

高中数学 (3.3.2 均匀随机数的产生)教案 新人教A版必修3

高中数学 (3.3.2 均匀随机数的产生)教案 新人教A版必修3

课题:3.3.2 均匀随机数的产生教学目标:1.通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯.2.会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率.学习时养成勤学严谨的学习习惯,培养逻辑思维能力和探索创新能力.教学重点:掌握[0,1]上均匀随机数的产生及[a,b]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率.教学难点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.教学方法:讲授法课时安排1课时教学过程:一、导入新课1、复习提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?2、在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生.二、新课讲授:提出问题(1)请说出古典概型的概念、特点和概率的计算公式?(2)请说出几何概型的概念、特点和概率的计算公式?(3)给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢?(4)请你根据整数值随机数的产生,用计算器模拟产生[0,1]上的均匀随机数.(5)请你根据整数值随机数的产生,用计算机模拟产生[0,1]上的均匀随机数.(6)[a,b]上均匀随机数的产生.活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导.讨论结果:(1)在一个试验中如果a.试验中所有可能出现的基本事件只有有限个;(有限性)b.每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.古典概型计算任何事件的概率计算公式为:P(A)=基本事件的总数数所包含的基本事件的个A.(2)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (3)我们可以用计算机或计算器模拟试验产生整数值随机数来近似地得到所求事件的概率,对于几何概型应当也可.(4)我们常用的是[0,1]上的均匀随机数.可以利用计算器来产生0—1之间的均匀随机数(实数),方法如下:试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟.(5)a.选定A1格,键入“=RAND()”,按Enter 键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.b.选定A1格,按Ctrl+C 快捷键,选定A2—A50,B1—B50,按Ctrl+V 快捷键,则在A2—A50, B1—B50的数均为[0,1]之间的均匀随机数.(6)[a,b ]上均匀随机数的产生:利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,然后利用伸缩和平移变换,X=X*(b-a)+a 就可以得到[a,b ]上的均匀随机数,试验结果是[a,b ]内任何一实数,并且是等可能的.这样我们就可以通过计算机或计算器产生的均匀随机数,用随机模拟的方法估计事件的概率.三、例题讲解:例1 假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?活动:用计算机产生随机数模拟试验,我们可以利用计算机产生0—1之间的均匀随机数,利用计算机产生B 是0—1的均匀随机数,则送报人送报到家的时间为B+6.5,利用计算机产生A 是0—1的均匀随机数,则父亲离家的时间为A+7,如果A+7>B+6.5,即A >B-0.5时,事件E={父亲离家前能得到报纸}发生.也可用几何概率的计算公式计算.解法一:1.选定A1格,键入“=RAND ()”,按Enter 键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.2.选定A 1格,按Ctrl+C 快捷键,选定A2—A50,B1—B50,按Ctrl+V 快捷键,则在A2—A50,B1—B50的数均为[0,1]之间的均匀随机数.用A 列的数加7表示父亲离开家的时间,B 列的数加6.5表示报纸到达的时间.这样我们相当于做了50次随机试验.3.如果A+7>B+6.5,即A-B>-0.5,则表示父亲在离开家前能得到报纸.4.选定D1格,键入“=A1-B1”;再选定D1,按Ctrl+C,选定D2—D50,按Ctrl+V.5.选定E1格,键入频数函数“=FREQUENCY(D1:D50,-0.5)”,按Enter键,此数是统计D 列中,比-0.5小的数的个数,即父亲在离开家前不能得到报纸的频数.6.选定F1格,键入“=1-E1/50”,按Enter键,此数是表示统计50次试验中,父亲在离开家前能得到报纸的频率.解法二:(见教材138页)例2 在如下图的正方形中随机撒一把豆子,用计算机随机模拟的方法估算圆周率的值.解法1:(见教材139页)解法2:(1)用计算机产生两组[0,1]内均匀随机数a 1=RAND (),b 1=RAND ().(2)经过平移和伸缩变换,a=(a 1-0.5)*2,b=(b 1-0.5)*2.(3)数出落在圆x 2+y 2=1内的点(a,b )的个数N 1,计算π=NN 14(N 代表落在正方形中的点(a,b )的个数).点评:可以发现,随着试验次数的增加,得到圆周率的近似值的精确度会越来越高,利用几何概型并通过随机模拟的方法可以近似计算不规则图形的面积.例3 利用随机模拟方法计算下图中阴影部分(y=1和y=x 2所围成的部分)的面积.解:(略)四、课堂练习:教材140页练习:1、2五、课堂小结:均匀随机数在日常生活中有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.六、课后作业:1、课本习题3.3B 组题.2、复习本章板书设计教学反思:。

人教A版高中数学必修三均匀随机数的产生教案

人教A版高中数学必修三均匀随机数的产生教案

高一数学专用学案 3.3.2 均匀随机数的产生学而不思则罔,思而不学则殆【学习目标】1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率2.进一步体会几何概型的意义【知识回顾】1.几何概型的特点:⑴⑵2.在几何概型中,P(A)= —————————————————————————3.甲、乙两辆货车停靠站台后卸货时间分别是6小时和4小时,求有一辆货车停靠站台是必须等待一段时间的概率。

【探索新知】1.如何用计算器能产生[0,1]之间的均匀随机数,怎样产生[2,10]之间的均匀随机数呢?2.写出用计算器产生[a,b]之间的均匀随机数的过程【例题学习】1.认真阅读研究例2、例3、例4,完成下列问题:①例2中如何用随机模拟的方法计算事件A的概率②在例3中是怎样用计算器随机模拟方法求π的近似值的③仿照例3中用计算器随机模拟方法写出解题过程【巩固练习】1.甲、乙两辆货车停靠站台后卸货时间分别是6小时和4小时,用随机模拟方法求有一辆货车停靠站台是必须等待一段时间的概率。

2.如图,在长为4宽为2的矩形中有一以矩形为直径的半圆,试用随机模拟法计算半圆的面积,并估计π的近似值3.P137练习T3【拓展提高】1.已知地铁列车每10分钟一班,在车站停1分钟,求乘客到达站台立即上车的概率2.箱子里装有5个黄球,5个白球,现在有放回的去球,求取出的是黄球的概率。

如果是用计算机模拟该试验,请写出算法3.利用随机模拟的方法近似计算图形的面积:y = x²+1与y = 6围成的图形的面积。

【总结归纳】【作业预习】1.作业:习题3.3 A组T3 B组T12.预习:回顾第三章内容,并加以复习小结。

人教A版数学必修三教案:§3.3.2均匀随机数的产生

人教A版数学必修三教案:§3.3.2均匀随机数的产生

wenjian§3.3.2 均匀随机数de产生一、教材分析本节在学生已经掌握几何概型de基础上,来学习解决几何概型问题de又一方法,本节课de教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑de习惯,对于学生辩证思想de进一步形成,具有良好de作用.通过对本节例题de模拟试验,认识用计算机模拟试验解决概率问题de方法,体会到用计算机产生随机数,可以产生大量de随机数,又可以自动统计试验de结果,同时可以在短时间内多次重复试验,可以对试验结果de随机性和规律性有更深刻de认识.二、教学目标1、知识与技能:(1)了解均匀随机数de概念;(2)掌握利用计算器(计算机)产生均匀随机数de方法;(3)会利用均匀随机数解决具体de有关概率de问题.2、过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识de形成,学会应用数学知识来解决问题,体会数学知识与现实世界de联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题de方法,自觉养成动手、动脑de良好习惯。

3、情感态度与价值观:本节课de主要特点是随机试验多,学习时养成勤学严谨de学习习惯。

三、重点难点教学重点:掌握[0,1]上均匀随机数de产生及[a,b]上均匀随机数de产生.学会采用适当de随机模拟法去估算几何概率.教学难点:利用计算器或计算机产生均匀随机数并运用到概率de实际应用中.四、课时安排1课时五、教学设计(一)导入新课思路1在古典概型中我们可以利用(整数值)随机数来模拟古典概型de问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型de试验呢?引出本节课题:均匀随机数de产生.思路2复习提问:(1)什么是几何概型?(2)几何概型de概率公式是怎样de?(3)几何概型de特点是什么?这节课我们接着学习下面de内容,均匀随机数de产生.(二)推进新课、新知探究、提出问题(1)请说出古典概型de概念、特点和概率de计算公式?(2)请说出几何概型de概念、特点和概率de计算公式?(3)给出一个古典概型de问题,我们除了用概率de计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样de处理方法呢?(4)请你根据整数值随机数de产生,用计算器模拟产生[0,1]上de均匀随机数.(5)请你根据整数值随机数de产生,用计算机模拟产生[0,1]上de均匀随机数.(6)[a,b]上均匀随机数de产生.wenjian 1。

高中数学新人教版A版精品教案《3.3.2 均匀随机数的产生》

高中数学新人教版A版精品教案《3.3.2 均匀随机数的产生》

3.3.2均匀随机数的产生一、教学目标:1、知识与技能(1)了解均匀随机数的概念;(2)掌握利用计算机产生均匀随机数的方法;(3)会利用均匀随机数解决具体的有关概率的问题。

2、过程与方法(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感与价值观本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。

二、教学重点、难点:教学重点:体会随机模拟中的统计思想教学难点:如何把求未知量的问题转化为几何概型概率的问题三、学法与教学用具:1、通过对本节知识的探究与学习,感知用随机模拟的方法解决几何概型问题的方法,掌握数学思想、算法思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.四、教学过程:(一)创设情景、导入课题[0,1](展示{试验模拟计算机模拟872121211=⨯⨯-871/87)(==AP试验的总次数纸的次数父亲在离家前能得到报1”x 3.3A的水中有一个草履虫,现从中随机取出2m 水样放到显微镜下观察,则发现草履虫的概率是()A.B.C.D.不能确定(2)平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.(3)某班有45个,现要选出1人去检查其他班的卫生,若每个人被选到的机会均等,则恰好选中学生甲主机会有多大?(4)曲线=-21与轴、轴围成一个区域A,直线=1、直线=1、轴围成一个正方形,向正方形中随机地撒一把芝麻,利用计算机来模拟这个试验,并统计出落在区域A内的芝麻数与落在正方形中的芝麻数。

人教版高中必修33.3.2均匀随机数的产生课程设计

人教版高中必修33.3.2均匀随机数的产生课程设计

人教版高中必修33.3.2均匀随机数的产生课程设计一、课程背景均匀随机数的产生是计算机科学和数学中的重要问题,在许多领域都有广泛的应用,比如模拟、数值计算、密码学、游戏、统计学等。

在高中数学中,均匀随机数的产生也是必修内容之一,是培养学生计算机思维和创新能力的重要途径。

二、教学目标1.掌握使用计算机生成均匀随机数的方法;2.理解均匀随机数的性质和应用;3.能够运用均匀随机数解决实际问题。

三、教学内容及教学方法1. 教学内容本课程主要涉及以下内容:1.均匀分布及其概率密度函数;2.伪随机数的产生方法;3.随机数序列的统计检验方法。

2. 教学方法本课程采用“讲授 + 实践”相结合的教学方法,具体为:1.讲解均匀分布的概念和性质;2.演示如何使用计算机生成伪随机数;3.手把手教学生编写生成均匀随机数的程序;4.引导学生进行随机数序列的统计检验。

四、实验设计1. 实验目的通过本实验,学生将掌握如何使用计算机生成均匀随机数,理解随机数的性质和应用,培养学生的计算机思维和创新能力。

2. 实验步骤Step 1. 模拟掷骰子的实验掷一颗六面骰子,将每个面出现的次数记录下来,并统计所有试验的次数和各面出现的频率。

根据频率统计结果和理论分布比较,探讨随机现象的规律性和数量特征,进而引出均匀随机数的概念。

代码实现:```python import randomcount = [0] * 6 for i in range(10000): point = random.choice([1, 2, 3, 4, 5, 6]) count[point-1] += 1for i in range(6): print(。

均匀随机数的产生教案

均匀随机数的产生教案

3.3.2 均匀随机数的产生设计思路:本课选自人民教育出版社(数学必修3)A版第三章《概率》中“几何概型”的第二课时《3.3.2均匀随机数的产生》。

本节设计思路是由例题引入,以问题形式帮助学生回忆旧知识,学习新知识,完成了从上节课到本节课的一个过渡。

通过两个例题,主要介绍了用计算器和计算机产生均匀随机数的方法,突出了在随机模拟实验的过程中用频率估计概率这一重要思想。

两个例题都是上节课刚学过的几何概型的问题,例1与长度有关,例2与面积有关,由浅入深,循序渐进。

由于考虑到课本中的例题涉及到了一些学生还未接触过的知识,比如例1,在用几何概型分析问题的时候,需要用到平面区域中线性规划的有关内容,所以用本案例中的剪绳试验代替了课本中的送报试验,将送报试验作为练习,让学生用计算机模拟实验解决该题,其实是对本节课内容的一个应用。

对于课本中的最后一个例题,因为和撒豆试验是同样的思路,所以留作课后作业让学生解决。

本节的设计思路仍以新课标中的教学理念为指导思想,让学生做数学,探究数学知识,发现数学知识的过程,自主建构知识体系。

让学生动起来,动起手来操作数学,动起笔来推演数学,动起脑来思考数学发现数学质疑权威,动起口来讲数学和与同学老师讨论数学;通过师生之间,同学之间的合作交往,促进学生个性的充分发展,使学生学会交往,逐步建立积极和谐的人际关系。

在教学过程中有意识地培养学生热爱数学,自觉地学习数学,培养学生严谨,认真,勤于思考钻研等科学态度,使学生认识数学的实用价值和科学价值。

教学分析本节是概率必修章节的最后一课,在学生已经掌握古典概型和几何概型的基础上,学习用适当的随机模拟法去估算几何概率。

通过对本节例题的模拟实验,认识用计算机或计算器产生均匀随机数,可以在短时间内多次重复试验,对试验结果的随机性和规律性有更深刻的认识。

对于培养学生自觉动手、动脑的习惯及辩证思想的进一步形成有良好的作用。

三维目标1、通过模拟试验,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.2 均匀随机数的产生教材分析本节内容是数学必修三第三章 概率 3.3.2均匀随机数的产生, 本节课在学生已经掌握几何概型的基础上,来学习解决几何概型问题的又一方法,本节课的教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑的习惯,对于学生辩证思想的进一步形成,具有良好的作用.通过对本节课例题的模拟试验,认识用计算机模拟试验解决概率问题的方法,体会到用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识。

课时分配本节内容用1课时的时间完成,主要讲解利用计算器(计算机)产生均匀随机数的方法;利用均匀随机数解决具体的有关概率的问题。

教学目标重 点: 掌握[0,1]上均匀随机数的产生及[a,b ]上均匀随机数的产生。

学会采用适当的随机模拟法去估算几何概率。

难 点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中。

知识点:通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法。

能力点:利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率。

教育点:通过随机模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯,培养逻辑 思维能力和探索创新能力。

自主探究点:在信息技术环境下,通过算法解决大量重复模拟试验中的数据统计问题,得出问题的解的估计值,并由此进一步体会随机模拟方法、算法思想以及从特殊到一般的数学研究过程。

易错易混点:在计算器上用rand()产生(0,1)之间的随机数不是什么难事,但产生任意区间(a,b )上的 随机数涉及线性变换,这是学生不易处理的问题,容易出错。

教具准备 多媒体课件一、引入新课复习提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?(4)列举几个简单的几何概型例子?【师生活动】(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.(3)几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A (4)几何概型例子:长3米的绳子被剪刀随机剪一次,问两段长度都不小于1米的概率?在这个几何概型中,随机剪绳子可以抽象成数学模型:从区间(0,3)中随机取一个数,由此引出今天的学习的内容,均匀随机数。

(5)均匀随机数:对于区间[a,b],实验结果X 是该区间内的任何一个实数,且是等可能出现。

则X 为[a,b]上的均匀随机数。

【设计意图】通过复习几何概型,很自然的引入课题。

二、探究新知问题1:请你用计算器模拟产生[0,1]上的均匀随机数。

问题2:请你用计算器模拟产生[0,3]上的均匀随机数。

问题3:请你用计算器模拟产生[1,3]上的均匀随机数。

问题4:请你用计算器模拟产生[-1,3]上的均匀随机数。

问题5:请你用计算器模拟产生[a,b ]上的均匀随机数。

【师生活动】利用计算机来产生0—1之间的均匀随机数(实数),方法:打开excel ,任意选定一格,键入“=RAND ()”,按Enter 键或点击屏幕其它位置,则在此格中的数是随机产生的[0,1]之间的均匀随机数。

通过对2-5个问题的分析总结可以得出:[a,b ]上均匀随机数的产生方法:利用计算器或计算机产生[0,1]上的均匀随机数X=RAND ,然后利用伸缩和平移变换,X=X*(b-a)+a 就可以得到[a,b ]上的均匀随机数,试验结果是[a,b ]内任何一实数,并且是等可能的。

这样我们就可以通过计算机或计算器产生的均匀随机数,用随机模拟的方法估计事件的概率。

【设计意图】通过问题串让学生对随机数的概念和随机数的产生有了一个全面的认识,通过学生自己实际操作加深了学生对随机数理解,同时也为几何概型的概率计算提供了一种新的思路.三、运用新知例1:假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少? 问题6:复习回顾已学过的解法。

问题7:探索模拟试验的方法;如何用计算机产生随机数进行模拟求概率。

【师生活动】(1)复习回顾原来解法:解:设报纸送到的时间为x ,父亲出门时间为y ;则全体基本事件可以表示为集合:}875.75.6|),{(≤≤≤≤=Ωy x y x 且;父亲在出门前可以收到报纸的事件可以表示为集合:}875.75.6|),{(x y y x y x A ≥≤≤≤≤=且且;作图得:根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A 发生,所以P(A)=8712121211=⨯⨯-。

(2)探索模拟试验进行求解:【分析】用计算机产生随机数模拟试验,我们可以利用计算机产生0—1之间的均匀随机数,利用计算机产生x 是6.5—7.5的均匀随机数,利用计算机产生y 是7-8的均匀随机数,如果y >=x 时,事件A={父亲离家前能得到报纸}发生。

1.选定A2格,键入“=RAND ()+6.5”,按Enter 键,则在此格中的数是随机产生的[6.5,7.5]之间的均匀随机数。

2.选定B 2格,键入“=RAND ()+7”,按Enter 键,则在此格中的数是随机产生的[7,8]之间的均匀随机数。

则A 列数x 表示父亲离开家的时间,B 列的数y 表示报纸到达的时间。

往下拖动鼠标,复制已产生随机数50次,这样我们相当于做了50次随机试验。

3.选定C 列,计算y-x ,如果大于等于0,则表示父亲在离开家前能得到报纸。

送报时间X 父亲出门时间Y Y-X6.568100097.72248226 1.1543826.7376683637.3213722630.5837047.0676838597.699890360.6322076.5403129087.0564198760.5161076.7069120847.726281632 1.019377.368759817.4794603560.1107016.6761624337.739871485 1.0637097.029*******.2661917310.2371566.6506892267.799120152 1.1484317.0411603517.3669561890.3257966.7679511287.3391986790.5712484.选定E1格,键入“=countif(c2:c51;>=0)”;计算出父亲出门前能收到报纸次数。

5.选定E2格,键入试验总次数。

6.选定E3格,键入“=E1/E2”,计算的结果就是表示统计50次试验中,父亲在离开家前能得到报纸的频率。

【总结】用随机数模拟的关键是把实际问题中事件A 及基本事件总体对应的区域转化为随机数的范围。

计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识。

例2:在如下图边长为2的正方形中随机撒一把豆子,用计算机随机模拟的方法估算圆周率的值。

问题8:如何利用几何概型求圆周率?问题9:计算机如何模拟试验求解?【师生活动】(1)问题中“几何概型与面积”有联系,而“面积与圆周率”有联系,从而建立了几何概型求圆周率的桥梁。

随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即落在正方形中的豆子数落在圆中的豆子数正方形的面积圆的面积≈; 假设正方形的边长为2,则422ππ=⨯=正方形的面积圆的面积; 由于落在每个区域的豆子数是可以数出来的,所以π≈落在正方形中的豆子数落在圆中的豆子数×4; 这样就得到了π的近似值。

(2)计算机模拟:1用计算机产生两组[-1,1]内均匀随机数a 1=2*RAND ()-1,b 1=2*RAND ()-1;2数出落在圆x 2+y 2=1内的点(a,b )的个数N 1,计算π=NN 14(N 代表落在正方形中的点(a,b )的个数)。

【总结】可以发现,随着试验次数的增加,得到圆周率的近似值的精确度会越来越高,利用几何概型并通过随机模拟的方法可以近似计算不规则图形的面积。

例3:利用随机模拟方法计算由y=1和y=x 2所围成的图形的面积。

【设计意图】了解学生对随机模拟方法的掌握程度,让学生用随机模拟的方法估计不规则图形的面积。

解题步骤:(1)利用计算机产生两组[0,1]上的均匀随机数,X 1=RAND( ), Y =RAND( ) ;(2)进行伸缩变换:X =X 1 2-1;(3)统计试验总数N 和落在阴影内的样本点数N 1,用几何概型的概率公式计算阴影部分的面积. 四、课堂小结教师提问:通过本节课的学习,你有哪些收获?留给你印象最深的是什么?(引导学生从知识点、思想方法两方面进行总结)学生总结:1.均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数 )有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.2.利用计算器或计算机能产生均匀随机数这一功能,可以用模拟的方法近似计算某些事件的概 率,估计圆周率的值,求某些不规则图形的面积,以及破译密码和反破译密码.3.思 想:从特殊到一般、近似逼近和算法的思想的思想.4. 计算机随机模拟法是研究随机事件概率的重要方法.此试验可从以下几方面考虑:(1)根据影响随机事件结果的量的个数确定需要产生的随机数的组数,如长度、角度型只用一组即可;而面积型需要两组随机数, 体积型需要三组随机数;(2)根据试验对应的区域确定产生随机数的范围;(3)根据事件A 发生的条件确定随机数所应满足的关系式(4)用计算机模拟试验计算结果(5)需要注意的是用模拟的方法得到的计算结果是近似的,是估计值.【设计意图】让学生通过小结,反思学习过程,提升对所学知识的理解和应用意识,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力.五、布置作业1.书面作业142P A 组3 ; B 组 1.[设计意图]通过适量的课后作业,复习巩固所学知识,通过学生亲手练习,巩固所学知识,并能在练习中发现学生存在的问题,及时补救,培养当堂问题当堂解决的好习惯.设计选做题使不同学生都得到提高到提高,可以使学生在完成基本学习任务的同时,又能得到符合自身实践的感悟,使不同层次的学生都能获得成功的喜悦,加强学习的自信心,从而激发学生的学习兴趣.六、教后反思1.在本节课的教学中,根据问题的需要利用一组随机数进行模拟试验,也利用两组随机数进行模拟试验。

相关文档
最新文档