图形的平移与旋转的几何题型难

合集下载

中考数学易错题系列之几何变换错综复杂的旋转平移与对称易错点解析

中考数学易错题系列之几何变换错综复杂的旋转平移与对称易错点解析

中考数学易错题系列之几何变换错综复杂的旋转平移与对称易错点解析几何变换是中考数学中的重要考点之一,其中旋转、平移和对称是较为常见的几何变换类型。

但由于错综复杂的变换方式,很多学生在解题时容易出现错误。

本文将通过解析中考中常见的几何变换易错点,帮助大家更好地理解和掌握这一知识点。

一、旋转错综复杂旋转是一种将图形绕着某一固定的点旋转一定角度后得到的新图形。

在中考中,常见的旋转易错点包括角度的计算和旋转中心的确定。

1. 角度的计算有时,题目中已给出旋转的角度,但学生在计算旋转角度时容易出现错误。

例如,题目给出旋转角度为60°,学生可能会直接以为是九十度,导致计算错误。

解决这个问题的关键是认真阅读题目,并将给出的角度正确运用到计算中。

2. 旋转中心的确定旋转中心是旋转变换中的关键概念。

在一些题目中,旋转中心可能没有明确给出,需要根据已知条件或者图形特点来确定。

如何准确确定旋转中心呢?一种常用的方法是找到图形中的对称性质。

例如,如果题目给出两个对称的点,并告知图形经过某一旋转后仍然相互对称,那么旋转中心必定位于对称轴上。

二、平移易错点解析平移是指将图形沿着某一直线方向移动一定距离,得到的新图形与原图形形状相同,大小相等,仅位置改变。

在中考中,平移的易错点主要集中在平移方向和平移距离的计算上。

1. 平移方向的确定对于平移题目,平移方向的确定是至关重要的。

在实际解题过程中,学生可能对平移方向的表示方式不熟悉,导致答案错误。

为了避免这种错误,学生可以通过画图等方式将平移方向明确表示出来,并进行准确计算。

2. 平移距离的计算平移距离的计算同样是平移题目中的易错点。

在计算平移距离时,学生可能会出现计算错误或者对单位换算不熟悉的情况。

为了避免这种错误,学生在解题时应当将平移距离的单位进行统一,并注意计算过程中的精度,避免舍入误差。

三、对称易错点解析对称是指图形经过某一中心或者某一直线变换后,得到的新图形与原图形完全相同。

初中数学图形的平移,对称与旋转的难题汇编附解析

初中数学图形的平移,对称与旋转的难题汇编附解析
D.一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,
故选C.
【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.
12.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()
C.( +672 , )D.(2020+674 ,0)
【答案】B
【解析】
【分析】
根据题意可知三角形在 轴上的位置每三次为一个循环,又因为 ,那么 相当于第一个循环体的 即可算出.
【详解】
由题意知, , ,
则 , , ,
结合图形可知,三角形在 轴上的位置每三次为一个循环,



故选 .
【点睛】
考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′= = =5.故选B.
16.下列说法中正确的是()
①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形
A.30°B.60°C.72°D.90°
【答案】C
【解析】
【分析】
紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.
【详解】
解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,

初中数学《几何旋转》重难点模型汇编(四大题型)含解析

初中数学《几何旋转》重难点模型汇编(四大题型)含解析

专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。

图形的平移,对称与旋转的难题汇编附答案解析

图形的平移,对称与旋转的难题汇编附答案解析
16.下列所给图形是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
【答案】D
【解析】
A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;
B.此图形是中心对称图形,也是轴对称图形,故B选项错误;
C.此图形不是中心对称图形,是轴对称图形,故D选项错误.
D.此图形是中心对称图形,不是轴对称图形,故C选项正确;
12.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
B、可以通过平移得到,不符合题意;
【详解】
解:连接 ,如图所示:
∵四边形 为菱形,
∴ ,
∵ ,
∴ 为等边三角形, , ,
∵ 为 的中点,
∴ 为 的平分线,即 ,
∴ ,
∴由折叠的性质得到 ,
在 中, .
故选:D
【点睛】
此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.

∴AF=AC=2,FC=4
∴BF=
∴BE=EF= BF=
故选:B
【点睛】
本题考查了旋转的性质,平行线的判定和性质.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】

初中数学解题技巧迅速解决复杂的平移与旋转题目

初中数学解题技巧迅速解决复杂的平移与旋转题目

初中数学解题技巧迅速解决复杂的平移与旋转题目平移与旋转是初中数学中常见的几何变换题型,对于一些复杂的平移与旋转题目,学生常常感到束手无策。

然而,只要掌握了一些解题技巧,这些题目也能够迅速得到解决。

本文将介绍一些初中数学解题技巧,帮助学生迅速解决复杂的平移与旋转题目。

1. 理解平移与旋转的基本概念在解决平移与旋转题目之前,首先要确保自己对平移与旋转的基本概念有清晰的理解。

平移是指平面上的一点或者图形在平面上沿着某个方向移动一段距离,保持其形状不变。

旋转是指平面上的一点或者图形绕着某个中心点旋转一定的角度,保持其形状不变。

了解这些基本概念将有助于我们理解和解决与平移与旋转相关的题目。

2. 理解平移与旋转的性质在解题过程中,要善于运用平移与旋转的性质。

平移的性质是保持形状不变,所以在解题时可以运用平移将题目中的一些图形移动到更容易处理的位置。

旋转的性质是保持形状和大小不变,所以在解题时可以运用旋转将图形转到更加有利于解题的角度。

3. 运用平移与旋转的等价性另一个重要的解题技巧是通过运用平移与旋转的等价性来简化问题。

当我们遇到一道复杂的平移与旋转题目时,可以尝试将图形通过平移或旋转变换到与原图形等价的形状。

再进行问题的求解。

这种方法可以大大简化问题,提高解题效率。

4. 运用坐标系辅助解题在解决平移与旋转题目时,运用坐标系是一种常用的解题方法。

通过引入坐标系,可以将题目中的几何变换问题转化为坐标运算问题,从而更加方便计算。

我们可以通过选取合适的坐标系,确定各个点的坐标,在进行平移与旋转变换后,根据坐标的变化进行求解。

5. 注意几何变换后的对称性在解题过程中,应该注意几何变换后图形的对称性。

平移与旋转不改变图形的对称性,所以我们可以通过观察图形的对称性来验证解题结果的正确性。

如果在进行平移或旋转后,图形的对称性改变了,说明解题结果是错误的,需要重新检查。

总结:通过掌握平移与旋转的基本概念和性质,运用平移与旋转的等价性,运用坐标系辅助解题,以及注意几何变换后的对称性,我们可以更加迅速地解决复杂的平移与旋转题目。

四年级几何学习中常见的难点有哪些

四年级几何学习中常见的难点有哪些

四年级几何学习中常见的难点有哪些在小学四年级的数学学习中,几何部分开始逐渐占据重要地位。

对于孩子们来说,几何知识的学习可能会遇到一些挑战和难点。

接下来,让我们一起探讨一下四年级几何学习中常见的那些难点。

一、角度的度量与计算角度是几何中一个重要的概念,四年级的孩子在学习角度的度量和计算时,常常会感到困惑。

首先,量角器的使用就是一个难题。

孩子们可能不太容易理解如何将量角器的中心点与角的顶点重合,零刻度线与角的一边重合,然后再读取刻度。

其次,对于角度的计算,比如已知一个角的度数,求另一个与之相关的角的度数,或者多个角的度数之和或差,孩子们可能会出现计算错误或者思路混乱的情况。

例如,在一个三角形中,已知其中两个角的度数分别为 30 度和 60 度,让孩子求第三个角的度数。

有些孩子可能会忘记三角形的内角和是 180 度这个关键知识点,从而无法正确计算出第三个角的度数。

二、图形的认识与分类四年级的孩子需要认识各种各样的图形,如三角形、四边形、圆形等,并能够对它们进行分类。

这其中的难点在于,有些图形的特征比较相似,孩子们容易混淆。

比如,等腰三角形和等边三角形,平行四边形和长方形、正方形,孩子们可能会在判断图形的类别时出现错误。

另外,对于一些不规则的图形,孩子们可能难以准确地描述其特征和归属类别。

这需要他们具备较强的观察能力和空间想象力。

三、图形的周长和面积计算周长和面积的计算是四年级几何学习中的重点和难点。

对于长方形和正方形的周长和面积计算,孩子们相对容易掌握。

但是,当遇到一些复杂的图形,如组合图形或者不规则图形时,计算周长和面积就会变得困难。

例如,一个由两个长方形组合而成的图形,让孩子计算其周长和面积。

孩子们可能会忽略重叠部分的长度或面积,导致计算结果错误。

而且,在计算面积时,对于单位的换算,如平方米和平方厘米之间的换算,孩子们也容易出错。

四、图形的平移、旋转和轴对称图形的运动是四年级几何学习中的新内容,对于孩子们来说,理解和掌握这些概念具有一定的难度。

图形的平移和旋转(教案和习题)

图形的平移和旋转(教案和习题)

图形的平移和旋转教学目标:1. 理解平移和旋转的概念。

2. 学会用平移和旋转的方法来变换图形。

3. 能够判断图形是否发生了平移或旋转。

教学重点:1. 平移和旋转的定义。

2. 平移和旋转的方法。

3. 平移和旋转的性质。

教学难点:1. 理解平移和旋转的本质区别。

2. 学会用平移和旋转的方法来变换复杂图形。

教学准备:1. 教学PPT。

2. 图形卡片。

3. 练习题。

教学过程:第一章:平移的概念和性质1.1 引入平移的概念教师展示一些平移的实例,如滑滑梯、电梯等,引导学生感受平移的特点。

1.2 学习平移的性质学生通过观察和操作,发现平移不改变图形的形状和大小,只改变图形的位置。

1.3 练习平移学生分组合作,用图形卡片进行平移操作,体会平移的方法。

第二章:旋转的概念和性质2.1 引入旋转的概念教师展示一些旋转的实例,如旋转门、风车等,引导学生感受旋转的特点。

2.2 学习旋转的性质学生通过观察和操作,发现旋转不改变图形的大小,只改变图形的位置和方向。

2.3 练习旋转学生分组合作,用图形卡片进行旋转操作,体会旋转的方法。

第三章:平移和旋转的判定3.1 学习平移的判定方法学生通过观察和操作,学会判断图形是否发生了平移。

3.2 学习旋转的判定方法学生通过观察和操作,学会判断图形是否发生了旋转。

3.3 练习判断学生独立完成判断题目,巩固平移和旋转的判定方法。

第四章:平移和旋转的应用4.1 学习用平移和旋转的方法来变换图形学生通过观察和操作,学会用平移和旋转的方法来变换图形。

4.2 练习变换学生独立完成变换题目,巩固平移和旋转的变换方法。

第五章:总结与拓展5.1 总结平移和旋转的概念、性质和判定方法学生通过回顾本节课的内容,总结平移和旋转的概念、性质和判定方法。

5.2 拓展平移和旋转的应用学生分组合作,用平移和旋转的方法来创作有趣的图形图案。

教学评价:1. 通过课堂观察,评价学生对平移和旋转概念的理解程度。

2. 通过练习题,评价学生对平移和旋转性质的掌握程度。

专题 图形的平移与旋转章末重难点题型(举一反三)(原卷版)

专题  图形的平移与旋转章末重难点题型(举一反三)(原卷版)

A.9B.8C.6D.4上移加,下移减.)则a+b的值为()C.4D.5【变式2-1】(江岸区期中)已知AABC内任意一点P(a,b)经过平移后对应点P1(c,d), 在经过此次平移后对应点A1(2,-3+m).则a+b-c-d的值为()已知A(-1,2+m)章末重难点题型专题图形的平移与旋转【考点1平移的性质】【方法点拨】经过平移,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等、对应角相等。

注意:平移后,原图形与平移后的图形全等。

【例1】(济宁校级期末)如图,把周长为10的△ABC沿BC方向平移1个单位得到ADEF,贝四边形ABFD的周长为()A.14B.12C.10D.8【变式1-1】(西湖区校级月考)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到ADEF 的位置,AB=10,DH=4,BC=15,平移距离为6,则阴影部分的面积()A.40B.42C.45D.48【变式1-2】(江西校级期末)如图,将AABC沿直线AB向右平移后到达ABDE的位置,连接CD、CE,若A ACD 的面积为10,则ABCE的面积为()A.5B.6C.10D.4【变式1-3】(碑林区校级期末)如图,点I为A ABC角平分线交点,AB=8,AC=6,BC=4,将ZACB平移使其顶点C与I重合,则图中阴影部分的周长为()【考点2坐标系中的平移规律】【方法点拨】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,【例2】(武汉校级期末)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,A.8+mB.-8+mC.2D.-2【变式2-2】(江岸区期中)如图,在平面直角坐标系中,已知A(-2,0),B(5,0),C(0,3),平移线段AC至线段BD,点P在四边形OBDC内,满足S^PCD=S^PBD,S“POB:S^POC=5:6,则点P的坐标为()【变式2-3】(江岸区校级月考)如图,在平面直角坐标系中,已知A(0,4),B(6,0),C(0,-10),平移线段AB至线段CD,点Q在四边形OCDB内,满足S“QOC:S^QOB=5:6,S^QCD=S^QBD,则点Q的坐标为()A.(2,-4)B.(3,-5)C.(3,-6)D.(4,-8)【考点3旋转的性质】【方法点拨】一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等。

图形的平移旋转与轴对称中考真题精选(部分难题有答案)

图形的平移旋转与轴对称中考真题精选(部分难题有答案)

图形的平移旋转与轴对称中考真题精选(部分难题有答案)一、选择题1.(2022甘肃兰州)观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()A.1个【答案】B2.(2022湖南益阳)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.【答案】D3.(2022江苏南通)如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()AOB(第3题)B.2个C.3个D.4个图1DCB.3πcmA.4πcmC.2πcm【答案】CD.πcm4.(2022江苏盐城)以下图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.矩形【答案】B5.(2022辽宁丹东市)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()3cmC.等腰梯形D.平行四边形3cm第5题图A.(10+213)cmB.(10+13)cmC.22cmD.18cm【答案】A6.(2022山东青岛)下列图形中,中心对称图形有().【答案】C7.(2022山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2022个图案是【答案】B8.(2022四川凉山)下列图案中,只要用其中一部分平移一次就可以得到的是()A.B.C.D.【答案】B9.(2022台湾)将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图(七)所示。

最后将图(七)的色纸剪下一纸片,如图(八)所示。

若下列有一图形为图(八)的展开图,则此图为何?()图(六)【答案】B(A)图(七)(B)图(八)(C)(D)10.(2022浙江杭州)如图,在△ABC中,CAB70.在同一平面内,将△ABC绕点A旋转到△AB/C/的位置,使得CC///AB,则BAB/()A.30B.35C.40D.50【答案】C11.(2022浙江宁波)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是()(A)【答案】C12.(2022浙江义乌)下列几何图形中,即是中心对称图形又是轴对称图形的是(▲)A.正三角形B.等腰直角三角形C.等腰梯形D.正方形【答案】D13.(2022重庆)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()OOOO(B)(C)(D)图①图②图③图④…A.图①B.图②C.图③D.图④【答案】B14.(2022重庆市潼南县)如图,△ABC经过怎样的平移得到△DEF()A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位DABEC14题图F【答案】C15.(2022浙江义乌)如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥的个数是(▲)BC,下列结论中,一定正确..①BDF是等腰三角形②DE1BC2③四边形ADFE是菱形④BDFFEC2AADBFECA.1B.2C.3D.4【答案】C16.(2022江苏连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④【答案】C17.(2022山东济南)如图,ΔABC与ΔA’B’C’关于直线l对称,lCA50A'BB'30C'第17题则∠B的度数为()A.50°B.30°C.100°D.90°【答案】C18.(2022福建福州)下面四个中文艺术字中,不是轴对称图形的是()A.B.C.D.【答案】C19.(2022江苏无锡)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】B20.(2022河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是向右翻滚90°逆时针旋转90°图6-1图6-2D.2A.6【答案】BB.5C.321.(2022山东省德州)下面的图形中,既是轴对称图形又是中心对称图形的是(A)【答案】B22.(2022山东莱芜)在下列四个图案中既是轴对称图形,又是中心对称图形的是(B)(C)(D)A.B.C.D.【答案】B23.(2022广东珠海)现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()A.BCD【答案】B24.(2022福建宁德)下列四张扑克牌图案,属于中心对称的是().【答案】B25.(2022浙江湖州)一个正方体的表面展开图如图所示,则正方体中的“★”所在面的对面所标的字是()A.上B.海C.世D.博A.B.C.D.图1图2【答案】B.26.(2022浙江湖州)如图,如果甲、乙关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.【答案】C.27.(2022湖南常德)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()D.!ABC图4【答案】D28.(2022湖南怀化)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】B29.(2022江苏扬州)在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为()A.1个【答案】BB.2个C.3个D.4个30.(2022北京)美术课上,老师要求同学们将右图所示的白纸只沿虎虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是....【答案】B31.(2022四川乐山)下列图形中,是轴对称图形的是()【答案】B32.(2022山东泰安)下列图形:其中,既是轴对称图形,又是中心对称图功的个数是()A.1个【答案】B33.(2022黑龙江哈尔滨)一列图形中,是中心对称图形的是()B.2个C.3个D.4个【答案】D34.(2022江苏徐州)下列四个图案中,是轴对称图形,但不是中心对称图形的是A【答案】ABCD35.(2022江苏徐州)如图,在6某4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是A.点MB.格点NC.格点PD.格点Q【答案】B36.(2022四川内江)学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那么在图③中剪下△ABC时,应使∠ABC的度数为A.126°【答案】AB.108°C.100°D.90°37.(2022湖北襄樊)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个【答案】B38.(2022山东东营)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生......活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的......性质是()(A)对应点连线与对称轴垂直(B)对应点连线被对称轴平分(C)对应点连线被对称轴垂直平分(D)对应点连线互相平行B.3个C.2个D.1个【答案】B39.(2022四川绵阳)对右图的对称性表述,正确的是().A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【答案】B40.(2022山东淄博)如图,△A′B′C′是由△ABC经过变换得到的,则这个变换过程是(A)平移(B)轴对称(C)旋转(D)平移后再轴对称AA′BC′(第5题)B′【答案】D41.(2022天津)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为(A)(B)(C)(D)【答案】B42.(2022内蒙古包头)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B43.(2022贵州贵阳)如图3是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为(图3)(A)(B)(C)(D)【答案】C44.(2022湖北十堰)如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于()A.50°B.60°C.70°D.80°AA′B(第44【答案】A45.(2022广西玉林、防城港)下列图形中,既是轴对称图形又是中心对称图形的是:()A.等边三角形B.平行四边形C.菱形D.正五边形【答案】C46.(2022青海西宁)如图9,下列汉字或字母中既是轴对称图形,又是中心对称图形的有A.1个B.2个C.3个D.4个CB′【答案】B47.(2022广西梧州)下列图形中是轴对称图形的是()①④A.①②B.③④C.②③D.①④【答案】D48.(2022云南昭通)下列图形是轴对称图形的是()ABCD【答案】B49.(2022贵州遵义)下列图形既是中心对称图形,又是轴对称图形的是【答案】B50.(2022广东深圳)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】A51.(2022广东佛山)如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是A.对称B.平移C.相似(相似比不为1)C.旋转【答案】C52.(2022湖北宜昌)如图,正六边形ABCDEF关于直线l的轴对称图形是六边形的是()。

平移与旋转的练习题

平移与旋转的练习题

平移与旋转的练习题平移与旋转的练习题平移和旋转是几何学中常见的基本操作,它们在解决各种问题时起着重要作用。

本文将给出一些关于平移和旋转的练习题,以帮助读者更好地理解和掌握这两个概念。

一、平移练习题1. 将一个正方形沿着横轴向右平移3个单位,再向上平移4个单位,最后沿着纵轴向下平移2个单位。

求平移后正方形的坐标。

2. 已知点A(2, 3)和B(-1, 5),将线段AB沿着横轴向右平移5个单位,再向上平移2个单位。

求平移后线段AB的两个端点坐标。

3. 将一个三角形ABC沿着纵轴向下平移3个单位,再向右平移4个单位。

已知点A(1, 2),B(3, 4),C(5, 6),求平移后三角形ABC的三个顶点坐标。

二、旋转练习题1. 将一个正方形绕原点逆时针旋转90°,再沿着横轴向右平移2个单位。

已知正方形的一个顶点坐标为(1, 1),求旋转后正方形的四个顶点坐标。

2. 将一个矩形绕点(2, 3)逆时针旋转180°,再沿着纵轴向下平移4个单位。

已知矩形的四个顶点坐标分别为A(1, 2),B(3, 2),C(3, 4),D(1, 4),求旋转后矩形的四个顶点坐标。

3. 将一个三角形绕点(0, 0)逆时针旋转60°,再沿着横轴向右平移3个单位。

已知三角形的三个顶点坐标为A(1, 1),B(2, 3),C(3, 2),求旋转后三角形的三个顶点坐标。

通过以上练习题,我们可以巩固平移和旋转的基本概念,并理解它们在几何学中的应用。

平移是指将图形在平面上沿着指定的方向移动一定的距离,而旋转是指将图形围绕某一点旋转一定角度。

这两个操作在计算机图形学、机器人控制、航空航天等领域都有广泛的应用。

在解决实际问题时,我们需要根据具体情况确定平移和旋转的坐标变换公式,以便准确地描述和计算图形的位置和形状变化。

通过练习题的训练,我们可以提高对平移和旋转的理解和运用能力,为解决更复杂的几何问题打下基础。

需要注意的是,在进行平移和旋转操作时,我们要注意坐标系的选择和变换的顺序,以确保结果的准确性。

几何图形平移、对称与旋转题型归纳

几何图形平移、对称与旋转题型归纳

几何图形的平移、旋转与对称题型归纳图形变换之平移题型一、简单平移【例1】 如图,已知ABC △的面积为16,8BC =.现将ABC △沿直线BC 向右平移a 个单位到DEF △的位置.(1)当4a =时,求ABC △所扫过的面积;(2)连结AE 、AD ,设5AB =,当ADE △是以DE 为一腰的等腰三角形时,求a 的值.FE DCBA【答案】(1)设AC 与DE 交于点G ,∵AB DE ∥,E 为BC 中点⇒G 为AC 中点. 又∵AD EC ∥,∴AGD CGE S S =△△.∴ABC △所扫过面积232ABC ACFD ABC S S S =+==△△. (2)①当AD DE =时,5a =.②当AE DE =时,取BE 中点M ,则AM BC ⊥.∵16ABC S =△,∴1162BC AM ⨯⨯=.∴18162AM ⨯⨯=.∴4AM =.在Rt AMB △中,2222543BM AB AM =--.此时,26a BM ==,综上可知,5a =或6a =.【例2】 如图,一个横截面为Rt ABC ∆的物体,90ACB ∠=︒,30CAB ∠=︒,1BC =米,师傅要把此物体搬到墙边,先将AB 边放在地面(直线m 上),再按顺时针方向绕点B 翻转到11A BC △的位置(1BC 在m 上),最后沿射线1BC 的方向平移到222A B C △的位置,其平移距离为线段AC 的长度(此时,22A C 恰好靠在墙边). (1)直接写出AB 、AC 的长;(2)画出在搬动此物体的整个过程中A 点所经过的路径,并求出该路径的长度.2A 221A 1Cm2A 221A 1Cm【答案】(1)2AB =米,3AC =米.(2)A 点的路径如图中的粗线所示,路径长为4(3)3π+米.题型三、平移与几何证明【例3】 AD 是ABC ∆的中线,F 是AD 的中点,BF 的延长线交AC 于E .求证:13AE AC =. FA DE CBFA DE G CB【答案】取EC 的中点G ,连接DG易得DG BE ∥,F 为AD 的中点,所以AE EG =,从而可证得:13AE AC =. 【例4】 如图,已知ABC ∆(1)请你在BC 边上分别取两点D 、E (BC 的中点除外),连结AD 、AE ,写出使此图中只存在两对.....面积相等的三角形的相应条件,并表示出面积相等的三角形; (2)请你根据使(1)成立的相应条件,证明AB AC AD AE +>+.CB A⑴DE CB A【答案】(1)如图(1)相应的条件是:BD CE DE =≠;两对面积相等的三角形分别是:ABD ∆和ACE ∆,ABE ∆和ACD ∆.(2)(方法1):如图(2),分别过点D 、B 作CA 、EA 平行线,两线交于F 点,DF 与AB 交于G 点.⑵DF EG CBA所以ACE FDB ∠=∠,AEC FBD ∠=∠在AEC ∆和FBD ∆中,又CE BD =,可证AEC FBD ∆∆≌,所以AC FD =,AE FB = 在AGD ∆中,AG DG AD +>在BFG ∆中,BG FG FB +>,所以AG DG BG FG AD FB +++>+ 即AB FD AD FB +>+,所以AB AC AD AE +>+【例5】 如图所示,两条长度为1的线段AB 和CD 相交于O 点,且60AOC ∠=,求证:1AC BD +≥.ODCBAODB‘CBA【答案】考虑将AC 、BD 和AB 集中到同一个三角形中,以便运用三角形的不等关系 作CB AB '∥且CB AB '=,则四边形ABB C '是平行四边形,从而AC BB '= 在BB D '∆中可得BB BD B D ''+≥,即AC BD B D '+≥. 由于1CD AB CB '===,60B CD AOC '∠=∠=,所以B CD '∆是等边三角形,故1B D '=,所以1AC BD +≥.【例6】 已知:矩形ABCD 内有定点M ,试证:2222AM CM BM DM +=+.MDCB AMF EDCB A【答案】过点B 、点M 分别作AM 、AB 的平行线,交于点E ,连接CE ,ME ,BC 交ME 于点F . ∵AB ∥EM ,AM ∥BE (根据定义可知其为平行四边形),∴AM BE =,AB EM = ∵AB CD =,AB CD ∥,∴EM CD ∥,EM CD = ,∴ECDM 为平行四边形 ,∴CE DM = ∵EM BC ⊥ ,∴222BM BF FM =+,222CE EF CF =+,222CM CF FM =+,222BE BF EF =+ ∴2222AM CM BM DM +=+【例7】 如图所示,在六边形ABCDEF 中,AB ED ∥,AF CD ∥,BC FE ∥,AB ED =,AF CD =,BC FE =.又知对角线FD BD ⊥,24FD =厘米,18BD =厘米.请你回答:六边形ABCDEF 的面积是多少平方厘米?FABCDE【答案】本题初看似乎无法下手求解,但仔细观察,题中彼此平行且相等的线段有三组,于是我们可将图形平移,使其拼成一个长方形,且FD BD ⊥、24FD =厘米、18BD =厘米的条件可以得到利用.为此,如图所示,将DEF ∆平移到BAG ∆的位置;将BCD ∆平移到GAF ∆的位置,FABCDEG则长方形BDFG 的面积等于六边形ABCDEF 的面积.易知长方形BDFG 的面积等于2418432⨯=(平方厘米),所以,六边形ABCDEF 的面积是432平方厘米.【例8】 如图,在等腰△ABC 中,延长边AB 到点D ,延长边CA 到点E ,连接DE ,恰有AD BC CE DE ===.求证:100BAC ∠=︒.【答案】平移BC 使B 的对应点为D .【例9】 如图所示,在ABC ∆中,90B ∠=︒,M 为AB 上的一点,且AM BC =;N 为BC 上的一点,且CN BM =.连接AN 、CM 交于点P ,求证:45APM ∠=︒.PN M CB A KPNM CBA【答案】如图所示,过点C 作CK MA ∥且使CK MA =.连接AK ,则AKCM 为平行四边形, 所以90KCN B ∠=∠=︒,CK AM BC ==.又因为CN BM =,连接KN ,则NCK MBC ∆∆≌, 故KN CM KA ==.而MCB NKC ∠=∠,因此90NKC MCK MCB MCK ∠+∠=∠+∠=︒, 则KN CM ⊥,KN KA ⊥,所以KAN ∆为等腰直角三角形. 因为45KAP ∠=︒,故45APM KAP ∠=∠=︒.【例10】 在ABC △中,AB AC =,30A ∠=︒,将线段BC 绕点B 逆时针旋转60︒得到线段BD ,再将线段BD平移到EF ,使点E 在AB 上,点F 在AC 上.(1)如图1,直接写出ABD ∠和CFE ∠的度数; (2)在图1中,证明:AE CF =;(3)如图2,连接CE ,判断CEF △的形状并加以证明.图1B图2B【答案】(1)15ABD ∠=︒,45CFE ∠=︒. (2)证明:连结CD 、DF .∵线段BC 绕点B 逆时针旋转60︒得到线段 BD ,∴BD BC =,60CBD ∠=︒. ∴BCD △是等边三角形.∴CD BD =. ∵线段BD 平移到EF ,∴EF BD ∥,EF BD =. ∴四边形BDFE 是平行四边形,EF CD =. ∵AB AC =,30A ∠=︒,∴75ABC ACB ∠=∠=︒. ∴15ABD ABC CBD ACD ∠=∠-∠=︒=∠∴15DFE ABD ∠=∠=︒,15AEF ABD ∠=∠=︒.∴15AEF ACD ∠=∠=︒. ∵301545CFE A AEF ∠=∠+∠=︒+︒=︒,∴451530CFD CFE DFE ∠=∠-∠=︒-︒=︒.∴30A CFD ∠=∠=︒. ∴AEF FCD ≅△△.∴AE CF =. (3)解:CEF △是等腰直角三角形. 证明:过点E 作EG CF ⊥于G ,∵45CFE ∠=︒,∴45FEG ∠=︒.∴EG FG =. ∵30A ∠=︒,90AGE ∠=︒,∴12EG AE =. ∵AE CF =,∴12EG CF =.∴12FG CF =.∴G 为CF 的中点.∴EG 为CF 的垂直平分线.∴EF EC =.∴290CEF FEG ∠=∠=︒.∴CEF △是等腰直角三角形.图形变换之对称一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

图形的平移与旋转

图形的平移与旋转

图形的平移与旋转(1)知识概述1、生活中的平移.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2、简单的平移作图.二、重点知识归纳及讲解1、图形的平移是日常生活中比较常见的几何图形变换形式,属全等变化的一种情况.平移不改变图形的大小和形状,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2、对于简单的平移作图,要注意选好一个“基本图形”,把基本图形中的每一个点都沿着相同的方向平行移动相同的距离,再连结相应线段,就可得到平移后的图形.三、难点知识剖析1、如图(1),将△ABC在图中平移,(平移时△ABC的三个顶点一定落在图中两线交点上),最多能平移几次?分析:抓住将三角形ABC平移,就是将顶点A、B、C向同一方向平移相同的单位.解答:能平移三次,具体做法见图(2).将△ABC先向下移一个单位得到△AˊBˊCˊ,再沿AˊCˊ向左上方平移到△A"B"C"处,然后向下平移到△位置.2、如图,经过平移,四边形的顶点A移到了点E,作出平移后的四边形EFGH.分析:根据平移的对应线为平行且相等的性质作图.解答:分别过B、C、D三点向右方作AE的平行线,并依次截取BH=AE,CG=AE,DF=AE,再连接成四边形EFGH,即为平移后的四边形.一、选择题1、如图,A、B、C、D是视力表中一行图案,可以通过平移图形①得到的是()A.B.C.D.2、下列各商标图案是利用平移来设计的个数是()A.1个B.2个C.3个D.4个3、在图中,由△ABC平移而得到的三角形共有()个A.2个B.3个C.4个D.5个4、下面A、B、C、D四个图案,那么平移图案(1),得到图案()A.B.C.D.5、如图,下列哪一项的右边图形是由左边图形平移而得()A.B.C.D.6、如图的图案中,可由一个“基本图案”平移而成的是()A.B.C.D.7、如图,△ABE沿射线XY的方向平移一定距离后成为△CDF,那么下面结论:①△CDF≌ABE;②AC∥EF;③∠AEB=∠CFD;④BD=EF,其中正确的有()A.1个B.2个C.3个D.4个B 卷二、解答题1、将图中的图案的一个顶点A移到了点F,请作出平移后的图案.2、将图中的正方形ABCD平移,顶点A移到了点E,作出平移后的正方形.3、如图,能由△AOB平移而得的图形是哪个?4、如图在正方体ABCD——AˊBˊCˊDˊ中,哪些线段可看做是由C ˊDˊ平移得到的?哪些线段可看做是由B Bˊ平移得到的?AˊDˊ是否也可由CˊDˊ或B Bˊ平移得到?5、如图,图中由△ABC平移而得的三角形共有多少个?如果照这个图沿AB、AC方向延伸平移下去,第n排有多少个平移而得的三角形?6、观察下面两幅图案,分析这两个图案是通过怎样的“基本图案”变化而成.答案:1、略2、向左边的方向,过B、C、D点分别作AE的平行线,依次截取与AE等长的线段为BF、CG、DH,则正方形EFGH是平移后的正方形.3、△EOF和△COD4、AB、AˊBˊ,CD可以看作是由CˊDˊ平移得到的,AAˊ,CC ˊ,DDˊ可以看作是由BBˊ平移得到的,AˊDˊ无法由CˊDˊ或BB ˊ平移得到5、9个,n个6、如图(1)(2)中的阴影部分分别向上、下、左、右平移就可以得到整个图案.图形的平移与旋转(2)知识概述1、生活中的旋转在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.2、简单的旋转作图3、简单的图案设计二、重点知识归纳及讲解1、旋转之后得到的图形与原来的图形全等,即旋转不改变图形的大小和形状.2、画旋转后的图形时,首先必须明确旋转中心,其次要注意对应点到旋转中心的距离相等,还要注意,在同一个图形中的旋转角相等.3、在认识图形变化时,要根据我们已掌握的对称的性质,平移和旋转的特征去仔细观察、分析,同时要注意“基本图案”是经过怎样的变化形成美观的图案.4、学习简单的图案设计,学会利用平移、旋转的知识,画出精美的几何图案,培养创新意识,创意美丽作品。

人教版初中数学图形的平移,对称与旋转的难题汇编附答案解析

人教版初中数学图形的平移,对称与旋转的难题汇编附答案解析

人教版初中数学图形的平移,对称与旋转的难题汇编附答案解析一、选择题1.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重本题考查了轴对称图形的概念合.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.4.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A2B3C.22D3【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE=22AD,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=2AEAE=2.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.5.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60︒得到线段AQ,连接BQ.若6PA=,8PB=,10PC=,则四边形APBQ的面积为()A.2493+B.483+C.243+D.48183+【答案】A【解析】【分析】连结PQ,先根据等边三角形的性质和旋转的性质证明△APQ为等边三角形,则P Q=AP=6,再证明△APC≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式求出面积,最后利用S四边形APBQ=S△BPQ+S△APQ即可解答.【详解】解:如图,连结PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,∵在△APC和△ABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ ∴△APC≌△AQB,∴PC=QB=10,在△BPQ中, PB2=82=64,PQ2=62=36,BQ2=102=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∴∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12×6×8+34×62=24+93故答案为A..【点睛】本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.6.如图,周长为16的菱形ABCD中,点E,F分别在边AB,AD上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )A.3 B.4 C.5 D.6【答案】B【解析】试题分析:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG 的长就是EP+FP的最小值,据此即可求解.解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.∵AE=DG,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=4.故选B.7.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.【详解】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B .【点睛】此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握8.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( )A .俯视图B .主视图C .俯视图和左视图D .主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.11.下列几何图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故本选项错误;B 、是中心对称图形,不是轴对称图形,故本选项错误;C 、是中心对称图形,也是轴对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误;故选:C .【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.13.如图,若将线段AB 平移至A 1B 1,则a+b 的值为( )A .﹣3B .3C .﹣2D .0【答案】A【解析】【分析】 根据点的平移规律即点A 平移到A 1得到平移的规律,再按此规律平移B 点得到B 1,从而得到B 1点的坐标,于是可求出a 、b 的值,然后计算a+b 即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A 1(a ,﹣1),点B(2,0)向左平移1个单位,得到点B 1(1,b),∴线段AB 向下平移2个单位,向左平移1个单位得到线段A 1B 1,∴A 1(﹣1,﹣1),B 1(1,﹣2),∴a =﹣1,b =﹣2,∴a+b =﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.14.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B 那么()2, 5A -的对应点'A 的坐标是 ( )A .()5,2B .()2,5C .()2,5-D .()5,2-【答案】A【解析】【分析】 根据旋转的性质和点A (-2,5)可以求得点A′的坐标.【详解】作AD ⊥x 轴于点D ,作A′D′⊥x 轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,△OAD≌△A′OD′(SSS),∵A(-2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选:A.【点睛】此题考查坐标与图形变化-旋转,解题的关键是明确题意,找出所求问题需要的条件.15.如图,圆柱形玻璃杯高为8cm,底面周长为48cm,在杯内壁离杯底3cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm且与蜂蜜相对的A处,则蚂蚁从外壁A处走到内壁B处,至少爬多少厘米才能吃到蜂蜜()A.24 B.25 C.3713D.382【答案】B【解析】【分析】将圆柱形玻璃杯的侧面展开图为矩形MNPQ,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁A处走到内壁B处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ,则E、F分别是MQ,NP的中点,AM=2cm,BF=3cm,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁A处走到内壁B处的最短距离.过点B作BC⊥MN于点C,则BC=ME=24cm,A′C=8+2-3=7cm,∴在Rt∆A′BC中,2222+=+=′cm.A C BC72425故选B.【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.16.如图,将△ABC 绕点A 顺时针旋转60°得到△ADE ,点C 的对应点E 恰好落在BA 的延长线上,DE 与BC 交于点F ,连接BD .下列结论不一定正确的是( )A .AD=BDB .AC ∥BD C .DF=EF D .∠CBD=∠E【答案】C【解析】【分析】 由旋转的性质知∠BAD=∠CAE=60°、AB=AD ,△ABC ≌△ADE ,据此得出△ABD 是等边三角形、∠C=∠E ,证AC ∥BD 得∠CBD=∠C ,从而得出∠CBD=∠E .【详解】由旋转知∠BAD=∠CAE=60°、AB=AD ,△ABC ≌△ADE ,∴∠C=∠E ,△ABD 是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD ,∴AC ∥BD ,∴∠CBD=∠C ,∴∠CBD=∠E ,则A 、B 、D 均正确,故选C .【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.17.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【答案】C【解析】【分析】 先利用平移的性质求出AD 、CF ,进而完成解答.【详解】解:将△ABC 沿BC 方向平移1个单位得到△DEF ,∴AD=CF=1,AC=DF ,又∵△ABC 的周长等于9,∴四边形ABFD 的周长等于9+1+1=11.故答案为C .【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.18.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )A .1B .2C .3D .22【答案】C【解析】【分析】 根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.19.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A.102+B.26C.5 D.26【答案】B【解析】【分析】过点P作PD∥x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,PA+PB的值最小,根据勾股定理求出A B'的长即可.【详解】如图,过点P作PD∥x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,PA+PB的值最小,∵等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,∴AE=BE=1,∵P(0,3) ,∴A A´=4,∴A´E=5,∴A B'=故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A关于直线PD的对称点,找出PA+PB的值最小时三角形ABC的位置.20.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1 B.﹣7 C.1 D.7【答案】A【解析】【分析】【详解】∵点A(m﹣1,3)与点B(2,n+1)关于x轴对称,∴m-1=2,n+1+3=0,∴m=3,n=-4,∴m+n=3+(﹣4)=﹣1.故选A.【点睛】本题考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,纵坐标互为相反数,横坐标相等.。

图形的平移与旋转较难题

图形的平移与旋转较难题
11.如图①,在 中, 为斜边 上的一点, ,且四边形 是正方形,在求阴影部分面积时,小明运用图形旋转的方法,将 绕点 逆时针旋转90°,得到 (如图②所示),小明一眼就看出答案,请你写出阴影部分的面积:.
如图③,在四边形 中, ,过点 作 ,垂足为点 ,小明仍运用图形旋转的方法,将 绕点 逆时针旋转 ,得到 (如图④所示),则:
有一电子青蛙从点pi处开始依次关于点关于点a的对称点p2处接着跳到点p2关于点的对称点f3处第三次再跳到点关于点c的对称点r处第四次再跳到点关于点a的对称点p5f3r的坐标分别为求出点r012的坐标并直接写出在轴上与点p2012点c构成等腰三角形的点的坐标如图在abcbac12o0以bc为边向外作等边三角形厶bcd把厶abd绕着顺时针方向旋转600后得到ecd若ab3ac2bad的度数与ad如图3两个相同的正方形纸片abcd和efgh将纸片efgh勺一个顶点e放在纸片abcd角线的交点o处那么正方形纸片efgh如图点p是边长为a的正方形abc呐的一点连papbpc且pb顺时针旋转90到厶pcb的位置
(4)若PA2+PC2=2PB2,请说明点P必在对角线AC上。
7.如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示)
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
6.如图,点P是边长为a的正方形ABCD内的一点,连PA、PB、PC,且PB=b( b <a),将△PAB绕点 B顺时针旋转90°到△P′CB的位置。
(1)求旋转过程中边PA所扫过区域(图中阴影部分)的面积。

《图形的平移与旋转》全章重点题型-提高

《图形的平移与旋转》全章重点题型-提高

《图形的平移与旋转》全章复习与巩固(提高)知识讲解【学习目标】1.了解平移、旋转、中心对称,探索它们的基本性质;2.能够按要求作出简单平面图形经过平移、旋转后的图形,能作出简单平面图形经过一次或两次图形变换后的图形;3.利用平移、旋转、中心对称、轴对称及其组合进行图案设计;4.认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【要点梳理】要点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.要点诠释:(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的形状和大小.2.平移的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.要点诠释:(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行(或在一条直线上)且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.3. 平移与坐标变换:(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的变化引起的点相应的平移变换.(2)图形的平移平移是图形的整体运动.在平面直角坐标系内,一个图形进行了平移变化,则它上面的所有点的坐标都发生了同样的变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.要点诠释:(1)上述结论反之亦成立,即如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(2)一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.●要点二、旋转变换1.旋转概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.要点诠释:(1)旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定能通过旋转得到. (2)旋转的角度一般小于360°.(3)旋转的三个要素:旋转中心、旋转角度和旋转方向(即顺时针或逆时针方向)2.旋转变换的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.3.旋转作图步骤:①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.●要点三、中心对称与图案设计1.中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心,这两个图形称为成中心对称的.要点诠释:中心对称的性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.2. 中心对称图形:把一个图形绕着某点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做它的对称中心.要点诠释:中心对称作图步骤:①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.3.图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.4.平移、轴对称、旋转三种变换的关系:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的.【典型例题】➢类型一、平移变换1. 阅读理解题.(1)两条直线a,b相交于一点O,如图①,有两对不同的对顶角;(2)三条直线a,b,c相交于点O,如图②,则把直线平移成如图③所示的图形,可数出6对不同的对顶角;(3)四条直线a,b,c,d相交于一点O,如图④,用(2)的方法把直线c平移,可数出对不同的对顶角;(4)n条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角;(5)2013条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角.【思路点拨】(3)画出图形,根据图形得出即可;(4)根据以上能得出规律,有n(n-1)对不同的对顶角;(5)把n=2013代入求出即可.【答案与解析】解:(3)如图有12对不同的对顶角,故答案为:12.(4)有n(n-1)对不同的对顶角,故答案为:n(n-1);(5)把n=2013代入得:2013×(2013-1)=4050156,故答案为:4050156.【总结升华】本题考查了平移与对顶角的应用,关键是能根据题意得出规律.举一反三:【变式】(2017·莒县模拟)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为().A.6 B.8 C.10 D.12【答案】C2.(2015春•召陵区期中)如图①,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分),在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用阴影表示;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积(设长方形水平方向长均为a,竖直方向长均为b):S1= ,S2= ,S3= ;(3)如图④,在一块长方形草地上,有一条弯曲的小路(小路任何地方的水平宽度都是2个单位),请你求出空白部分表示的草地面积是多少?(4)如图⑤,若在(3)中的草地又有一条横向的弯曲小路(小路任何地方的度都是1个单位),请你求出空白部分表示的草地的面积是多少?【思路点拨】(1)根据题意,直接画图即可,注意答案不唯一,只要画一条有两个折点的折线,得到一个封闭图形即可.(2)结合图形,根据平移的性质可知,①②③中阴影部分的面积都可看作是以a﹣1为长,b为宽的长方形的面积.(3)结合图形,通过平移,阴影部分可平移为以a﹣2米为长,b米为宽的长方形,根据长方形的面积可得小路部分所占的面积.(4)结合图形可知,小路部分所占的面积=a米为长,b米为宽的长方形的面积﹣a米为长,1米为宽的长方形的面积﹣2米为长,b米为宽的长方形的面积+2米为长,1米为宽的长方形的面积.【答案与解析】解:(1)画图如下:(2)S1=ab﹣b,S=ab﹣b,S2=ab﹣b,S3=ab﹣b猜想:依据前面的有关计算,可以猜想草地的面积仍然是ab﹣b方案:1、将“小路”沿着左右两个边界“剪去”;2、将左侧的草地向右平移一个单位;3、得到一个新的矩形理由:在新得到的矩形中,其纵向宽仍然是b.其水平方向的长变成了a﹣1,所以草地的面积就是:b(a﹣1)=ab﹣b.(3)∵小路任何地方的水平宽度都是2个单位,∴空白部分表示的草地面积是(a﹣2)b;(4)∵小路任何地方的宽度都是1个单位,∴空白部分表示的草地面积是ab﹣a﹣2b+2.【总结升华】本题主要考查了利用平移设计图案,用到的知识点是矩形的性质和平移的性质,能利用平移的性质把不规则的图形拆分或拼凑为简单图形来计算草地的面积是解题的关键.举一反三:【变式】如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移距离是边BC长的两倍,则图中四边形ACED的面积为().A.24cm2 B.36cm2 C.48cm2 D.无法确定【答案】B.四边形ABED是平行四边形且S四边形ABED=S四边形ACFD,而S四边形ACED=S四边形ABED-S△ABC.➢类型二、旋转变换3.正方形ABCD中对角线AC、BD相交于点O,E是AC上一点,F是OB上一点,且OE=OF,回答下列问题:(1)在图中1,可以通过平移、旋转、翻折中的哪一种方法,使△OAF变到△OBE的位置.请说出其变化过程.(2)指出图(1)中AF和BE之间的关系,并证明你的结论.(3)若点E、F分别运动到OB、OC的延长线上,且OE=OF(如图2),则(2)中的结论仍然成立吗?若成立,请证明你的结论;若不成立,请说明你的理由.【思路点拨】(1)根据图形特点即可得到答案;(2)延长AF交BE于M,根据正方形性质求出AB=BC,∠AOB=∠BOC,证△AOF≌△BOE,推出AF=BE,∠FAO=∠EBO,根据三角形内角和定理证出即可;(3)延长EB交AF于N,根据正方形性质推出∠ABD=∠ACB=45°,AB=BC,得到∠ABF=∠BCE,同法可证△ABF ≌△BCE,推出AF=BE,∠F=∠E,∠FAB=∠EBC,得到∠E+∠FAB+∠BAO=90°即可.【答案与解析】解:(1)旋转,以点O为旋转中心,逆时针旋转90度.(2)图(1)中AF和BE之间的关系:AF=BE;AF⊥BE.证明:延长AF交BE于M,∵正方形ABCD,∴AC⊥BD,OA=OB,∴∠AOB=∠BOC=90°,在△AOF和△BOE中∴△AOF≌△BOE(SAS),∴AF=BE,∠FAO=∠EBO,∵∠EBO+∠OEB=90°,∴∠FAO+∠OEB=90°,∴∠AME=90°,∴AF⊥BE,即AF=BE,AF⊥BE.(3)成立;证明:延长EB交AF于N,∵正方形ABCD,∴∠ABD=∠ACB=45°,AB=BC,∵∠ABF+∠ABD=180°,∠BCE+∠ACB=180°,∴∠ABF=∠BCE,∵AB=BC,BF=CE,∴△ABF≌△BCE,∴AF=BE,∠F=∠E,∠FAB=∠EBC,∵∠F+∠FAB=∠ABD=45°,∴∠E+∠FAB=45°,∴∠E+∠FAB+∠BAO=45°+45°=90°,∴∠ANE=180°-90°=90°,∴AF ⊥BE ,即AF=BE ,AF ⊥BE .【总结升华】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的内角和定理,旋转的性质等知识点的连接和掌握,综合运用这些性质进行推理是解此题的关键.4.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接 EF.将△EOF 绕点O 逆时针旋转角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明;(2)当=30°时,求证:△AOE 1为直角三角形.【思路点拨】(1)要证AE 1=BF 1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE 1为直角三角形,就要考虑证∠E 1AO =90°.【答案与解析】解:(1)AE 1=BF 1,证明如下:∵O 为正方形ABCD 的中心,∴OA=OB =OD.∴OE=OF .∵△E 1OF 1是△EOF 绕点O 逆时针旋转角得到,∴OE 1=OF 1.∵ ∠AOB=∠EOF=900, ∴ ∠E 1OA =900-∠F 1OA =∠F 1OB. 在△E 1OA 和△F 1OB 中,, ∴△E 1OA≌△F 1OB (SAS ).∴ AE 1=BF 1.(2)取OE 1中点G ,连接AG.∵∠AOD=900,=30° ,∴ ∠E 1OA =900-=60°. ααα1111OE OF E OA FOB O A OB⎧⎪∠∠⎨⎪⎩===αα∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】在等边三角形ABC中有一点P,已知PC=2, PA=4,PB=APB=.【答案】90°➢类型三、中心对称与图形设计5.如图,方格纸中四边形ABCD的四个顶点均在格点上,将四边形ABCD向右平移5格得到四边形A1B1C1D1.再将四边形A1B1C1D1,绕点A逆时针旋转180°,得到四边形A1B2C2D2.(1)在方格纸中画出四边形A1B1C1D1和四边形A1B2C2D2.(2)四边形ABCD与四边形A1B2C2D2.是否成中心对称?若成中心对称,请画出对称中心;若不成中心对称,请说明理由.【思路点拨】(1)首先把各个顶点平移,以及作出对称点,然后顺次连接各个对称点即可作出对称图形;(2)观察所作图形,对称点连线的交点就是对称中心.【答案与解析】解:(1)(2)两个图形关于点O对称中心.【总结升华】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.举一反三:【变式】(罗平县校级期末)每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,①写出A、B、C的坐标.②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1.【答案】解:①A(1,﹣4),B(5,﹣4),C(4,﹣1);②A1(﹣1,4),B1(﹣5,4),C1(﹣4,1),如图所示:6.如图,这两幅图是怎样利用旋转、平移或轴对称进行设计的?你能依照其中的图案自己设计一个图案吗?【答案与解析】解:(1)答案不惟一,可以看作是一个小正方形图案连续平移48次,平移前后所有的图形共同组成的图案.(2)答案不唯一,可以看作是一组竖条线组成的等腰直角三角形,以直角顶点为中心、按同一个方向分别旋转,旋转前后的四个图形共同组成的图案.【总结升华】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,对于不同的基本图形需要作的几何变换也不同.举一反三:90180270、、(1)(2)【变式】下列图形中,能通过某个基本图形平移得到的是().A. B. C. D. 【答案】D.。

(易错题精选)初中数学图形的平移,对称与旋转的经典测试题含解析(1)

(易错题精选)初中数学图形的平移,对称与旋转的经典测试题含解析(1)

(易错题精选)初中数学图形的平移,对称与旋转的经典测试题含解析(1)一、选择题1.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=6,则AC=BC=32同理可求得:AO=OC=3.在Rt△AOD1中,OA=3,OD1=CD1-OC=4,由勾股定理得:AD1=5.故选B.2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A.1个 B.2个 C.3个 D.4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C.【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.a a>,那么3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.故选D.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.干行四边形C.正六边形D.圆【答案】A【解析】【分析】【详解】解: A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选A.【点睛】本题考查中心对称图形;轴对称图形.5.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q 分别是BD,AB上的动点,则AP+PQ的最小值为()A.4 B.42C.2 D.22【答案】D【解析】【分析】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,P′Q′=P′H,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴AH=BH=22.故选:D.【点睛】考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.6.如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点 .将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,B(2,32)点C′的坐标为()A﹣1)B1)C)D﹣1)【答案】D 【解析】【分析】作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE=12 BC=,BC=AB,得出AB=2,OA,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'1=12AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO=,求出OD=AO﹣AD﹣1,即可得出答案.【详解】解:作C'D⊥OA于D,设AO交BC于E,如图所示:则∠C'DA=90°,∵∠CAB=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠B=45°,∵BC∥x轴,点B),∴AE=12BC,BC=AB,∴AB=2,OA,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,∴OB'1=12AB',∴∠OAB'=30°,∴∠C'AD=∠AB'O=60°,在△AC'D和△AB'O中,''''''C DA AOBC AD AB OAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AC'D≌△B'AO(AAS),∴AD=OB'=1,C'D=AO,∴OD=AO﹣AD1,∴点C′1);故选:D.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.7.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.8.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.10.如图所示的网格中各有不同的图案,不能通过平移得到的是()A.B.C.D.【答案】C【解析】【分析】根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.【详解】A、可以通过平移得到,不符合题意;B、可以通过平移得到,不符合题意;C、不可以通过平移得到,符合题意;D、可以通过平移得到,不符合题意.故选C.【点睛】本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.,若将△ABO绕点O沿顺时针方向旋转90°12.如图,平面直角坐标系中,已知点B(3,2)后得到△A1B1O,则点B的对应点B1的坐标是( )A.(3,1)B.(3,2)C.(1,3)D.(2,3)【答案】D【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B 1的坐标即可.【详解】解:△A 1B 1O 如图所示,点B 1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.13.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.14.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )A .102+B .26C .5D .26【答案】B【解析】【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.15.如图,将ABC V 沿射线BC 方向平移2 cm 得到DEF V .若ABC V 的周长为13 cm ,则四边形ABFD 的周长为( )A .12 cmB .15 cmC .17 cmD .21 cm【答案】C【解析】【分析】 根据平移的特点得AD=BE=CF=2,将四边形ABFE 的周长分解为AB+BC+DF+AD+CF 的形式,其中AB+BC+DF=AB+BC+AC 为△ABC 的周长.【详解】∵△DEF 是△ABC 向右平移2个单位得到∴AD=CF=BE=2,AC=DF四边形ABFD 的周长为:AB+BC+DF+AD+CF=(AB+BC+AC)+(AD+CF)=13+2+2=17故选:C .【点睛】本题考查平移的性质,需要注意,平移前后的图形是完全相同的,且对应点之间的线段长即为平移距离.16.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.17.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C 选项正确;故选D.18.下列图形中,是轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A 、B 、C 都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D 、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.19.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.20.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.。

图形的平移与旋转练习题

图形的平移与旋转练习题

图形的平移与旋转练习题在几何学中,平移和旋转是两个基本的变形操作。

平移是指将图形沿着给定的方向移动一定的距离,而旋转则是指将图形绕着一个固定的点旋转一定的角度。

这两种操作在解决几何问题以及设计和建筑领域中都起着至关重要的作用。

为了更好地理解和掌握图形的平移和旋转,下面将给出一些练习题,通过实践来提高我们的技巧和思维能力。

练习题1:平移给定一个图形ABC,其中A(-1, 2),B(2, 4),C(4, 1)。

请将该图形沿x轴平移3个单位和沿y轴平移-1个单位,然后画出平移后的图形。

解答:首先,我们需要将原始图形ABC的坐标分别进行平移操作。

沿x轴平移3个单位后,A的坐标变为A'(-1+3, 2),即A'(2, 2);同理,B的坐标变为B'(2+3, 4),即B'(5, 4);C的坐标变为C'(4+3, 1),即C'(7, 1)。

然后,我们将平移后的坐标连接起来,得到平移后的图形A'B'C'。

详细计算过程如下:A' = (2, 2)B' = (5, 4)C' = (7, 1)接下来,我们将平移后的图形绘制出来:(在此处绘制图形A'B'C',具体形状可根据自己的判断和计算结果进行绘制)练习题2:旋转给定一个图形PQR,其中P(1, 1),Q(3, 3),R(5, 1)。

请将该图形绕点P逆时针旋转45度,并画出旋转后的图形P'Q'R'。

解答:首先,我们需要将原始图形PQR的坐标进行旋转操作。

绕点P逆时针旋转45度后,Q和R的坐标分别为:Q' = (1 + (3-1)*cos(45度) - (3-1)*sin(45度), 1 + (3-1)*cos(45度) + (3-1)*sin(45度))R' = (1 + (5-1)*cos(45度) - (1-1)*sin(45度), 1 + (5-1)*cos(45度) + (1-1)*sin(45度))计算结果如下:Q' = (1 + (3-1)*√2/2 - (3-1)*√2/2, 1 + (3-1)*√2/2 + (3-1)*√2/2)= (1, 3)R' = (1 + (5-1)*√2/2 - (1-1)*√2/2, 1 + (5-1)*√2/2 + (1-1)*√2/2)= (5, 1)然后,我们将旋转后的坐标连接起来,得到旋转后的图形P'Q'R'。

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析一、选择题1.如图,圆柱形玻璃杯高为8cm ,底面周长为48cm ,在杯内壁离杯底3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm 且与蜂蜜相对的A 处,则蚂蚁从外壁A 处走到内壁B 处,至少爬多少厘米才能吃到蜂蜜( )A .24B .25C .23713+D .382【答案】B【解析】【分析】 将圆柱形玻璃杯的侧面展开图为矩形MNPQ ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ ,则E 、F 分别是MQ ,NP 的中点,AM=2cm ,BF=3cm ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离.过点B 作BC ⊥MN 于点C ,则BC=ME=24cm ,A′C=8+2-3=7cm , ∴在Rt∆A′BC 中,A′B=222272425A C BC +=+=′cm .故选B .【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P(-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A.【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.干行四边形C.正六边形D.圆【答案】A【解析】【分析】【详解】解: A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选A.【点睛】本题考查中心对称图形;轴对称图形.4.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A.勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A 、不能通过平移得到,故不符合题意;B 、不能通过平移得到,故不符合题意;C 、不能通过平移得到,故不符合题意;D 、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.6.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(2,3)--B .33(2,2)---C .3(3,2)--D .(3,3)- 【答案】D【解析】【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,∴OM=2+1=3,∴'B 的坐标为(3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.8.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A.线段BE的长度B.线段EC的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.10.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.20.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴22AB AD +2211+2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.。

五下数学用平移和旋转解决问题技巧

五下数学用平移和旋转解决问题技巧

五下数学用平移和旋转解决问题技巧
解决平移和旋转的问题需要掌握一些基本技巧。

以下是一些建议和策略,可以帮助你更好地理解和解决这类问题:
1. 理解基本概念:首先,你需要理解平移和旋转的基本概念。

平移是图形在平面内沿某一方向直线移动一定的距离;旋转是图形绕某一点转动一定的角度。

2. 识别图形:在解决问题时,要能够识别哪些图形是可以进行平移或旋转的。

通常,线段、三角形、矩形等基本图形是适合进行平移或旋转的。

3. 找出平移或旋转的元素:确定需要平移或旋转的图形元素,并注意方向和距离(角度)。

4. 应用几何性质:在解决与平移和旋转相关的问题时,要利用相关的几何性质。

例如,平移不改变图形的形状和大小;旋转后的图形与原图形全等。

5. 数形结合:结合图形和数学表达式来解决问题。

有时,通过观察图形可以更好地理解问题,而数学表达式则提供了精确的解决方案。

6. 实践操作:如果有机会,尽量实际操作一些例子,例如手动平移或旋转图形。

这有助于你更好地理解问题,并找到解决方案。

7. 检查答案:解决问题后,要检查答案是否符合题目的要求,以及是否符合实际情况。

通过掌握这些技巧,你将能够更好地理解和解决与平移和旋转相关的问题。

图形的平移与旋转的几何题型(难)

图形的平移与旋转的几何题型(难)

BA C D E F 图形的平移与旋转的几何题型〔难〕轴对称图形:中心对称图形:1.如下图,在边长为1的正方形ABCD 中,E 、F 分别是AB 、AD 上的点,且AE+EF+FA=2,求∠ECF 的度数。

2.:等边△ABC 有一点P ,且PC=2,PA=4,PB=,那么AB=.3.如图,四边形ABCD中,AC、BD为对角线,△ABC为等边三角形,∠ADC=30°,AD=2,BD=3,那么CD 的长为.4.如图,矩形ABCD中,AD=6,AB=,点O是AD的中点,点P在DA的延长线上,且AP=3.一动点E 从P点出发,以每秒1个单位长度的速度沿射线PD匀速运动;另一动点F从D点出发,以每秒1个单位长度的速度沿DO匀速运动,到达O点后,立即以原速度沿OD返回.点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PD的同侧,设运动的时间为t秒〔t≥0〕.〔1〕当等边△EFG的边EG恰好经过点B时,运动时间t的值为;〔2〕当等边△EFG的顶点G恰好落在BC上时,运动时间t的值为;〔3〕在整个运动过程中,设等边△EFG和矩形ABCD重叠局部的面积为S,请写出S与t之间的函数关系式和相应的自变量t的取值围.5.△ABC是等边三角形,AB=6,将一块含有30°角的直角三角板DEF如下图放置,让等边△ABC向右平移〔BC只能在EF上移动〕.如图1,当点E与点B重合时,点A恰好落在三角板DEF的斜边DF上.〔1〕假设点C平移到与点F重合,求等边△ABC平移的距离;〔2〕在等边△ABC向右平移的过程中,AB,AC与三角板斜边的交点分别为G,H,连接EH交AB于点P,如图2.①求证:EB=AH;②假设∠HEF=30°,求EH的长;③判断PG的长度在等边△ABC平移的过程中是否会发生变化?如果不变,请求出PG的长;如果变化,请说明理由.作业:1.如图,等腰△ABC外一点D,连接DA,DB,DC,且∠ADC=30°.BD=15,AD=12,那么CD的长为.2.如图,等边三角形ABC的边长为2,点E是边BC上一动点〔不与点B、C重合〕,以BE为边在BC的下方作等边三角形BDE,连接AE、CD.〔1〕在运动的过程中,AE与CD有何数量关系?请说明理由.〔2〕当BE=1时,求∠BDC的度数.3.在平面直角坐标系中,点O为坐标原点,点A〔0,4〕.△AOB是等边三角形,点B在第一象限.〔Ⅰ〕如图①,求点B的坐标;〔Ⅱ〕点P是x轴上的一个动点,连接AP,以点A为旋转中心,把△AOP逆时针旋转,使边AO与AB重合,得△ABD.①如图②,当点P运动到点〔,0〕时,求此时点D的坐标;②求在点P运动过程中,使△OPD的面积等于的点P的坐标〔直接写出结果即可〕.4.两个边长为1的正方形,如下图,让一个正方形的顶点与另一个正方形中心重合,不难知道重合局部的面积为,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠局部面积是否发生变化?说明理由.5.,△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移,如图1,当点E与点B重合时,点A恰好落在三角形的斜边DF上.〔1〕利用图1证明:EF=2BC;〔2〕在三角板的平移过程中,在图2中线段EB=AH是否始终成立〔假定AB,AC与三角板斜边的交点为G、H〕?如果成立,请证明;如果不成立,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的平移与旋转的几何题型)
难(
图形的平移与旋转的几何题型(难)轴对称图形:中心对称图形:
,AD上的点,且AE+EF+FA=2AB1在边长为的正方形ABCD中,E、F分别是、
1.如图所示,求∠ECF的度数。

C
D
F
B
A
E
,,且PC=2,PA=4ABC2.已知:等边△内有一点P .AB=PB=,则
3.如图,四边形ABCD中,AC、BD为对角线,△ABC为等边三角形,∠ADC=30°,AD=2,BD=3,则CD的长
为.
AD是,AB=,点O4.如图,矩形ABCD中,AD=6
EDA.一动点的延长线上,且AP=3的中点,点P在匀PD1个单位长度的速度沿射线从P
点出发,以每秒F从D点出发,以每秒1速运动;个单位长度另一动点的速度沿DO匀速运动,到达O点后,立即以原速度沿OD 返回.已知点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PD的同侧,设运动的时间为t 秒(t≥0).
(1)当等边△EFG的边EG恰好经过点B 时,运动时间t的值为;
(2)当等边△EFG的顶点G恰好落在BC 上时,运动时间t的值为;
(3)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请写出S 与t之间的函数关系式和相应的自变量t的取值范
围.
°30是等边三角形,AB=6,将一块含有已知△5.ABC向ABC角的直角三角板DEF如图所示放置,让等边△与点E1,当点上移动)右平移(BC只能在EF.如图上.的斜边DFB重合时,点A恰好落在三角板DEF 平移的重合,求等边△ABC)若点C平移到与点F1(距离;与三AC,ABC向右平移的过程中,AB(2)在等边△,PAB于点EH 角板斜边的交点分别为G,H,连接交.如图2 EB=AH;①求证:的长;°,求②若∠HEF=30EH平移的过程中是否会发ABCPG的长度在等边△③判断的长;如果变化,请说生变化?如果不变,请求出PG明理
由.
作业:,DB,DCABC外一点D,连接DA,1.如图,等腰△的长,则CD,且∠
ADC=30°.BD=15AD=12为.
2.如图,等边三角形ABC的边长为2,点E
是边BC上一动点(不与点B、C重合),以BE为边在BC的下方作等边三角形BDE,连接AE、CD.
(1)在运动的过程中,AE与CD有
何数量关系?请说明理由.
(2)当BE=1时,求∠BDC的度数.
,0O为坐标原点,点A(3.在平面直角坐标系中,已知点在第一象限..△AOB是等边三角形,点B4)(Ⅰ)如图①,求点B 的坐标;为AP,以点A是(Ⅱ)点Px轴上的一个动点,连接重合,与AB把△旋转中
心,AOP逆时针旋转,使边AO ABD.得△①如图②,当点P运动到点(,0)时,求此时点D
的坐标;
②求在点P运动过程中,使△OPD的面积等于的点P的坐标(直接写出结果即
可).
4.两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面
另一个正方形绕现把其中一个正方形固定
不动,积为,
其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.
5.已知,△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移,如图1,当点E与点B重合时,点A恰好落在三角形的斜边DF上.
(1)利用图1证明:EF=2BC;
(2)在三角板的平移过程中,在图2中线
段EB=AH是否始终成立(假定AB,AC与三角板斜边的交点为G、H)?如果成立,请证明;如果不成立,请说明理由.。

相关文档
最新文档