立体几何选填题资料讲解

合集下载

高考数学立体几何多选题知识点总结附解析

高考数学立体几何多选题知识点总结附解析

高考数学立体几何多选题知识点总结附解析一、立体几何多选题1.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B DC ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π 【答案】ABD【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.2.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB AD AC ++= B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45D .1BD 与AC所成角的余弦值为3 【答案】AC【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值.【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112221113262++=+++⋅+⋅+⋅=+++⨯⨯=AA AB AD AA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB AD AB AB AD AD , 所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠ ⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+, 所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD AB AB AD BD,111cos ,2⋅<>===B ACD BD BD AC AC D 不正确;对C,112==AC BD ,在1A AC 中,111,===A A AC AC 22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 1∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.3.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值D .1MB P 在侧面11D C CD 上射影图形是三角形【答案】BC【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误.【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时,若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥, 由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =, 2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误; 对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=, 190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥,1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBC a a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △, 且21224MBG a a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误.故选:BC.【点睛】方法点睛:证明面面垂直常用的方法:(1)面面垂直的定义;(2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.4.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为球心,6为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7【答案】ACD【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否.【详解】如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点. 同理,棱111111,,A B B C C D 与球面没有交点.因为棱11A D 与棱BC 之间的距离为26>BC 与球面没有交点. 因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故22651AE OE OA -=-=,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC ,同理//GH BC ,故//EF GH ,故,,,E F G H 共面.由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确.因为在直角三角1BA C 中,122A B =,2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误. 由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥,因为EF EH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒,故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确.因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱,其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD.【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.5.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可.【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP ,因为三角形PAD 为等边三角形,所以OP AD ⊥,因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD ,因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD的中点,所以)2Q , 平面PAD 的一个法向量为(0,1,0)m =,6(QC =,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,22PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则 3602260n AQ x zn AC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-,设PC 与平面AQC 所成角为θ,则21sin 36n PCn PC θ⋅===, 所以cos 3θ=,所以B 正确; 三棱锥B ACQ -的体积为1132BACQ Q ABC ABC V V S OP --==⋅ 1116322=⨯⨯⨯=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为(0,3,)M a ,则MQ MD =, 所以()()()2222226323632a a ⎛⎫⎛⎫++-=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即(0,3,0)M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以22236x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为2342434x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.6.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A , 若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =,此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,3SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234PQRSPQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin 33412S PQR PQRV PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅, 又13sin 234PSRSPS PR PS PR π=⋅=⋅, 13sin 234PSQS PS PQ PS PQ π=⋅=⋅, 13sin 234PQRSPQ PR PQ PR π=⋅=⋅, ()3S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅, ∴()33sin 1212PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQPRPSα++=为常数,故D 正确. 故选:ABD. 【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.7.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +的最小值为1705【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =,连接111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.8.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D D B .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2 D .过点1A 与异面直线AD 与1CB 成60角的直线有2条 【答案】ABD 【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D . 【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥, 由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1ACB C C =,1BD ∴⊥平面1ACB ,故B 正确;对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA m DA m DA my z ⋅<>===⋅++, 1122111cos ,221CB m zCB m CB my z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =± 因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确. 故选:ABD. 【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。

高中数学立体几何(解析版)

高中数学立体几何(解析版)

立体几何立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,文科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及简单几何体的变面积以及体积.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.【考查题型】选择,填空,解答题【限时检测】(建议用时:90分钟)一、单选题AA是1.(2018·上海高考真题)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA为底面矩形的一边,则这样的阳正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1马的个数是()A.4 B.8 C.12 D.16【答案】D【分析】根据新定义和正六边形的性质可得答案.【详解】根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选D.【点睛】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.2.(2020·上海虹口区·高三一模)在空间,已知直线l及不在l上两个不重合的点A、B,过直线l做平面α,使得点A、B到平面α的距离相等,则这样的平面α的个数不可能是()A.1个B.2个C.3个D.无数个【答案】C【分析】分情况讨论可得出.【详解】(1)如图,当直线AB与l异面时,则只有一种情况;(2)当直线AB与l平行时,则有无数种情况,平面α可以绕着l转动;(3)如图,当l过线段AB的中垂面时,有两种情况.故选:C.3.(2020·上海高三一模)如图,在正四棱柱1111ABCD A B C D -中,底面边长2AB =,高14A A =,E 为棱1A A 的中点.设BAD ∠=α、BED θ∠=、1B ED γ∠=,则α、β、γ之间的关系正确的是( ).A .αγθ=>B .γαθ>>C .θγα>>D .αθγ>>【答案】B 【分析】求出α、β、γ的大小即可求解. 【详解】由题意可得2BAD πα∠==,连接BD ,则BDE 为等边三角形,所以3BED πθ∠==, 连接1B D ,则222122426B D =++=22222BE DE ==+=取1B D 的中点O ,连接EO ,则16BO 862EO =-=所以16tan 32B EO ∠==, 所以13B EO π∠=,即123B ED πγ∠==,所以γαθ>>.故选:B4.已知长方体1111ABCD A B C D -,下列向量的数量积一定不为0的是( )A .1AD AB ⋅B .11AD BC ⋅ C .1BD BC ⋅ D .1BD AC ⋅【答案】C【分析】利用正方体几何性质计算出数量积为零的选项,根据长方体的性质证明数量积一定不为零的选项.【详解】当长方体1111ABCD A B C D -为正方体时,根据正方体的性质可知: 1111,,AB AD AD B C BD AC ⊥⊥⊥,所以10AB AD ⋅=、110AD B C ⋅=、10BD AC ⋅=.根据长方体的性质可知:1BC CD ⊥,所以1BD 与BC 不垂直,即1BD BC ⋅一定不为0.故选:C5.(2020·上海高三一模)已知正方体1111ABCD A B C D -,点P 是棱1CC 的中点,设直线AB 为a ,直线11A D 为b .对于下列两个命题:①过点P 有且只有一条直线l 与a 、b 都相交;②过点P 有且只有一条直线l 与a 、b 都成45︒角.以下判断正确的是( )A .①为真命题,②为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①为假命题,②为假命题【答案】B 【分析】作出过P 与两直线相交的直线l 判断①;通过平移直线a ,b ,结合异面直线所成角的概念判断②.【详解】解:直线AB 与A 1D 1 是两条互相垂直的异面直线,点P 不在这两异面直线中的任何一条上,如图所示:取BB 1的中点Q ,则PQ ∥A 1D 1,且 PQ =A 1D 1,设A 1Q 与AB 交于E ,则点A 1、D 1、Q 、E 、P 共面, 直线EP 必与A 1D 1 相交于某点F ,则过P 点有且只有一条直线EF 与a 、b 都相交,故①为真命题; 分别平移a ,b ,使a 与b 均经过P ,则有两条互相垂直的直线与a ,b 都成45°角,故②为假命题. ∴①为真命题,②为假命题.故选:B .【点睛】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想,是中档题.二、填空题6.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π;【分析】根据圆的周长公式易得圆锥底面周长,也就是圆锥侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图扇形的圆心角的大小.【详解】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.【点睛】思路点睛:该题考查的是有关圆锥侧面展开图的问题,解题思路如下:(1)首先根据底面半径求得底面圆的周长;(2)根据圆锥侧面展开图扇形的弧长就是底面圆的周长,结合母线长,利用弧长公式求得圆心角的大小. 7.(2020·上海闵行区·高三一模)如图,已知正四棱柱1111ABCD A B C D -的底面边长为2,高为3,则异面直线1AA 与1BD 所成角的大小是_______.【答案】22;【分析】根据11//AA DD ,得到1DD B ∠异面直线1AA 与1BD 所成的角,然后在1Rt DD B △,利用正切函数求解.【详解】因为11//AA DD ,所以1DD B ∠异面直线1AA 与1BD 所成的角,在正四棱柱1111ABCD A B C D -的底面边长为2,高为3, 所以1122tan 3BD DD B DD ∠==, 因为1(0,)2DD B π∠∈, 所以122arctan3DD B ∠=, 故答案为:22arctan 38.(2019·上海市建平中学高三月考)某几何体由一个半圆锥和一个三棱锥组合而成,其三视图如图所示(单位:厘米),则该几何体的体积(单位:立方厘米)是________.【答案】12π+2,高为3;半圆锥的底面是半径为1的半圆,高为3;据此计算出该几何体的体积.【详解】由三视图可知,三棱锥的体积:1223132V ⎛=⨯⨯= ⎝⎭;半圆锥体积:()11113232V ππ=⨯⨯⨯⨯⨯=,所以总体积为:12π+. 故答案为12π+.【点睛】本题考查空间几何体的体积计算,难度较易.计算组合体的体积时,可将几何体拆分为几个容易求解的常见几何体,然后根据体积公式完成求解.9.(2020·上海高三其他模拟)如图直三棱柱ABB 1-DCC 1中, BB 1⊥AB ,AB=4,BC=2,CC 1=1,DC 上有一动点P ,则△APC 1周长的最小值是 .【答案】521+试题分析:要求周长的最小值,因边为定值,只要求另两边之和的最小值,因两点直线线段最短,所以的最小值为因此△APC 1周长的最小值是521考点:棱柱的相关知识.10.(2020·上海高三一模)已知母线长为6cm 的圆锥的侧面积是底面积的3倍,则该圆锥的底面半径为________cm .【答案】2【分析】设底面半径为r ,由两个面积的关系可得底面半径的值.【详解】解:设底面半径为r ,则由题意,可得213262r r ππ=⨯⨯,解得2r , 故答案为:2.【点睛】本题考查圆锥的侧面积及圆的面积公式,属于基础题.11.(2020·上海高三其他模拟)已知圆锥的母线长为l ,过圆锥顶点的最大截面三角形的面积为212l ,则此圆锥底面半径r 与母线长l 的比r l的取值范围是____________. 【答案】22【分析】先判断两条母线的夹角=90θ时最大截面三角形的面积为212l 22l r ≤和r l <,最后求出r l 的取值范围即可. 【详解】解:过圆锥顶点的截面三角形的面积:1sin 2S l l θ=⋅⋅(θ为两母线的夹角), 因为过圆锥顶点的最大截面三角形的面积为212l ,即两条母线的夹角=90θ时的截面面积,此时底面弦长为2l ,所以22l r ≤,又r l <,所以212r l≤<, 故答案为:2[,1)2【点睛】本题考查空间几何体,是基础题.12.(2020·上海青浦区·高三二模)用一平面去截球所得截面的面积为23cm π,已知球心到该截面的距离为1cm ,则该球的表面积是___________2cm .【答案】16π【分析】由已知求出小圆的半径,然后利用勾股定理求出球的半径,即可求出球的表面积【详解】解:因为用一平面去截球所得截面的面积为23cm π,所以小圆的半径为3cm ,因为球心到该截面的距离为1cm ,所以球的半径为221(3)2+=cm ,所以球的表面积为24216S ππ=⨯=2cm ,故答案为:16π【点睛】此题考查球的截面的半径、球心到截面的距离与球的半径间的关系,属于基础题13.(2020·上海普陀区·高三月考)已知一个半圆柱的高为4,其俯视图如图所示,其左视图的面积为8,则该半圆柱的表面积为______.【答案】1612+π【分析】由圆柱的主视图和左视图知该圆柱的底面直径为4,高为3,由此能求出该几何体的表面积,得到答案.【详解】由题意,其左视图为矩形,其左视图的面积为8,半圆柱的高h 为4,可得半圆的半径r 为2,由于半圆柱的表面积为两个底面半圆面积加侧面展开图形的面积, 即2211222224224161222S r rh rh πππππ=⨯⨯++=⨯⨯⨯+⨯⨯+⨯⨯=+.故答案为:1612+π.【点睛】本题主要考查了空间几何体的三视图的应用,以及圆柱的表面积的计算问题,同时考查了圆柱的结构特征的应用,属于基础题.三、解答题14.(2020·上海虹口区·高三一模)如图在三棱锥P ABC -中,棱AB 、AC 、AP 两两垂直,3AB AC AP ===,点M 在AP 上,且1AM =.(1)求异面直线BM 和PC 所成的角的大小;(2)求三棱锥P BMC -的体积.【答案】(1)5(2)3. 【分析】(1)以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,利用空间向量法可求得异面直线BM 和PC 所成的角的大小;(2)计算出PMC △的面积,并推导出AB ⊥平面PMC ,利用锥体的体积公式可求得三棱锥P BMC -的体积.【详解】(1)由于AB 、AC 、AP 两两垂直,以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,如下图所示:则()3,0,0B 、()0,0,0A 、()0,3,0C 、()0,0,3P 、()0,0,1M ,()3,0,1BM =-,()0,3,3PC =-,5cos ,101032BM PC BM PC BM PC⋅<>===-⨯⋅,因此,异面直线BM 和PC 所成的角的大小为5arccos 10; (2)AB AC ⊥,AB AP ⊥,AC AP A =,AB ∴⊥平面APC ,AC AP ⊥,1AM =,2PM AP AM ∴=-=,132PMC S PM AC ∴=⋅=△, 1133333B PMC PMC V S AB -=⋅=⨯⨯=△.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.15.(2020·上海青浦区·高三一模)如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面P AC ;(2)求异面直线1BD 与AP 所成角的大小. 【答案】(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点. 连结PO ,又因为P 是1DD 的中点,所以1//PO BD . 又因为PO ⊂平面P AC ,1BD ⊄平面P AC 所以直线1//BD 平面P AC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==,2122AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒ 故异面直线1BD 与AP 所成角的大小为30. 【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m nα=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.16.(2020·上海长宁区·高三一模)如图,已知圆锥的顶点为P ,底面圆心为O ,高为23,底面半径为2.(1)求该圆锥的侧面积;(2)设OA 、OB 为该圆锥的底面半径,且90AOB ∠=︒,M 为线段AB 的中点,求直线PM 与直线OB 所成的角的正切值.【答案】(1)8π;(213【分析】(1)利用圆锥侧面积公式即可;(2)通过中点作辅助线即可. 【详解】解:(1)OP ⊥底面OAB 由题意高3h =2r ,所以母线4l圆锥的侧面积S =12lr 12242π=⨯⨯⨯8π= (2)取OA 的中点为N ,因为M 为AB 的中点所以//MN OB ,PMN ∠就是直线PM 与直线OB 所成的角. 因为OB OA ⊥,OB OP ⊥,所以OB ⊥平面POA ,MN ⊥平面POA ,MN PN ⊥ 在Rt △PNM 中,22()132rPN h =+=,112MN OB ==.所以PMN ∠的正切值为13.即直线PM 与直线OB 所成的角正切值为13.17.(2020·上海徐汇区·高三一模)如图:在直三棱柱111ABC A B C -中,2AC BC ==,14CC =,90ACB ∠=,E 、F 分别为棱1AA 、AB 的中点.(1)求异面直线1A C 与EF 所成的角的大小(结果用反三角函数值表示); (2)求五棱锥11C EFBB A -的体积11C EFBB A V -. 【答案】(1)5arctan (2)143.【分析】(1)连接1A B ,利用中位线的性质可得出1//A B EF ,由此可得出1BA C ∠(或其补角)就是异面直线1A C 与EF 所成的角,利用解三角形的知识求出1BA C ∠的正切值,即可得解;(2)计算出五边形1EFBB A 的面积,并推导出CF ⊥平面11AA B B ,再利用锥体的体积公式可计算出五棱锥11C EFBB A -的体积11C EFBB A V -. 【详解】 (1)连接1A B ,E 、F 分别为1AA 、AB 的中点,所以,1//A B EF ,于是1BA C ∠(或其补角)就是异面直线1A C 与EF 所成的角, 在1A BC 中,2BC =,221125AC AA AC =+=,221126A B AA AB =+=,22211A C BC A B ∴+=,所以1BC A C ⊥,所以,1125tan 525BC BAC AC ∠===. 所以,异面直线1A C 与EF 所成角的大小为5arctan5;(2)由于111111822722AEFEFBB A ABB A S S S AB AA AE AF =-=⋅-⋅==五边形矩形 连接CF ,2AC BC ==,F 为AB 的中点,90ACB ∠=,CF AB ∴⊥,且122CF AB == 1AA ⊥平面ABC ,CF ⊂平面ABC ,1CF AA ∴⊥,1AB AA A ⋂=,CF ∴⊥平面11AA B B ,所以11111114722333C EFBB A EFBB A V S CF -=⋅=⨯⨯=五边形. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.18.(2020·上海大学附属中学高三三模)如图,正四棱锥P ABCD -中.(1)求证:BD ⊥平面PAC ; (2)若2AB =,423P ABCD V -=,求二面角A PB C --的余弦值. 【答案】(1)证明见解析;(2)1arccos 3⎛⎫- ⎪⎝⎭【分析】(1)先证明PO BD ⊥,结合,BD AC ⊥利用线面垂直的判定定理可得结论;(2)由423P ABCD V -=求出棱锥的高,可求得侧棱长,判定侧面的形状后可得二面角的平面角,利用余弦定理可得答案. 【详解】(1)因为P ABCD -是正棱锥,P ∴在面ABCD 内射影是AC 与BD 的交点O ,即PO ⊥面ABCD ,PO BD ∴⊥,又,BD AC PO ⊥与AC 在面PAC 内相交,BD ∴⊥面PAC ;(2)2142233P ABCD V PO -=⨯⨯=, 2PO ∴=,222PB =+=,则PAB △与PBC 为边长是2的正三角形,取PB 的中点E ,连,AE CE , 则AE PB ⊥,CE PB ⊥,AEC ∠是二面角的平面角,3381cos 3233AEC +-∠==-⨯⨯,1cos 3AEC arc ⎛⎫∠=- ⎪⎝⎭【点睛】本题主要考查线面垂直的证明以及二面角的求解,考查了正四棱锥的性质,属于中档题.19.(2019·上海市建平中学高三月考)如图:四面体ABCD 的底面ABC 是直角三角形,AC BC ⊥,3AC =,4BC =,DA ⊥平面ABC ,5DA =,E 是BD 上的动点(不包括端点).(1)求证:AE 与BC 不垂直;(2)当AE DC ⊥时,求DEEB的值. 【答案】(1)证明见解析;(2)259.【分析】(1)利用反证法,先假设AE 与BC 垂直,然后根据条件推出与题设矛盾的结论,即可证明出AE与BC 不垂直;(2)先作辅助线//EF BC ,利用AE DC ⊥以及BC ⊥平面DAC 得到DC ⊥平面AEF ,由此得到AF DC ⊥,从而确定出F 点位置,再由DE DFEB FC=得到结果. 【详解】(1)假设AE BC ⊥,因为DA ⊥平面ABC ,所以DA BC ⊥,且DA AE A =,所以BC ⊥平面DAE ,又因为AB平面DAE ,所以BC AB ⊥,又因为由条件可知BC AC ⊥,所以BC AB ⊥不成立, 故假设不成立,所以AE 与BC 不垂直;(2)过E 作//EF BC ,交DC 于F ,连接AF ,因为AC BC ⊥,DA BC ⊥且DA AC A =,所以BC ⊥平面DAC ,因为//EF BC ,所以EF ⊥平面DAC ,所以EF DC ⊥, 又因为AE DC ⊥,EF DC ⊥,EF AE E =,所以DC ⊥平面AEF ,所以DC AF ⊥,又cos 25934AD ADC DC ∠===+,所以cos cos 34DF ADF ADC AD ∠=∠==, 所以34DF =,所以34FC =,所以259DF FC =,所以由相似可知259DE DF EB FC ==. 【点睛】本题考查空间中的垂直关系的判断与证明,难度一般.空间中的不平行、不垂直关系的证明,如果正面证明比较麻烦,可采用反证法去证明.20.(2020·上海市七宝中学高三其他模拟)如图,四边形11ABB A 是圆柱1OO 的轴载面,4AB =,12OO =,以圆柱上底面为底面作高为2的圆锥1PO ,C 、1C 分别在AB 、11A B 上,2AOC π∠=,1113AO C π∠=.(1)求这个几何体的表面积和体积; (2)求二面角111O AC C --的余弦值. 【答案】(1)表面积为(1242π+,体积为323π;(23823-. 【分析】(1)计算出圆锥的母线长,利用圆锥的侧面积公式和圆柱的侧面积、底面积公式可计算出几何体的表面积,结合柱体和锥体的体积公式可求得几何体的体积;(2)以点O 为坐标原点,OA 、OC 、OP 所在直线分别为x 、y 、z 轴建立空间直角坐标系O xyz -,利用空间向量法可求得二面角111O AC C --的余弦值. 【详解】(1)由题意可知,圆柱的底面半径为22ABr ==, 因为1PO 为圆锥的高,且12PO =,所以,圆锥的母线长为221122PA PO r =+=,又12OO =,因此,该几何体的表面积为(22+2222221242S ππππ=⨯⨯⨯+⨯=+.该几何体的体积为22132222233V πππ=⨯⨯+⨯⨯⨯=; (2)以点O 为坐标原点,OA 、OC 、OP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则点()10,0,2O ,()12,0,2A ,()13,2C ,()0,2,0C ,设平面11A CC 的一个法向量为(),,m x y z =,()113,0AC =-,()12,2,2AC =--, 由11100m AC m AC ⎧⋅=⎪⎨⋅=⎪⎩,得302220x x y z ⎧-=⎪⎨-+-=⎪⎩,令3x =1y =,13z =所以,平面11A CC 的一个法向量为(3,1,13m =,易知平面111O AC 的一个法向量为()0,0,1n =,()()22233cos ,82331131m n m n m n⋅<>===⋅-++-⨯,由图象可知,二面角111O AC C --31823--【点睛】本题考查组合体的表面积与体积的计算,同时也考查了利用空间向量法计算二面角的余弦值,考查计算能力,属于中等题.21.(2020·上海高三其他模拟)如图,已知⊙O 的直径AB=3,点C 为⊙O 上异于A ,B 的一点,VC ⊥平面ABC ,且VC=2,点M 为线段VB 的中点.(1)求证:BC ⊥平面VAC ;(2)若直线AM 与平面V AC 所成角为4π.求三棱锥B-ACM 的体积. 【答案】(1))祥见解析;(2)试题分析:(1)由线面垂直得VC ⊥BC ,由直径性质得AC ⊥BC ,由此能证明BC ⊥平面V AC .(2)首先由(1)作出直线AM 与平面V AC 所成的角:取VC 的中点N ,连接MN ,AN ,则MN ∥BC ,由(I )得BC ⊥平面VAC ,所以MN ⊥平面V AC ,则∠MAN 为直线AM 与平面V AC 所成的角.即∠MAN=4π,所以MN=AN ;这样就可求出AC 的长,且而求得体积.试题解析:(1)证明:因为VC ⊥平面ABC ,BC ABC ⊂平面,所以VC ⊥BC ,又因为点C 为圆O 上一点,且AB 为直径,所以AC ⊥BC ,又因为VC ,AC ⊂平面V AC ,VC∩AC=C ,所以BC ⊥平面V AC.(2)如图,取VC 的中点N ,连接MN ,AN ,则MN ∥BC ,由(I )得BC ⊥平面V AC ,所以MN ⊥平面V AC ,则∠MAN 为直线AM 与平面V AC 所成的角.即∠MAN=4π,所以MN=AN ;令AC=a,则29-a ,MN=292a -;因为VC=2,M 为VC 中点,所以21a + 所以,292a -=21a +,解得a=1 因为MN ∥BC,所以考点:1.直线与平面垂直的判定;2. 棱柱、棱锥、棱台的体积;3. 直线与平面所成的角.22.(2020·上海高三其他模拟)已知正方体1111ABCD A B C D -,12AA =,E 为棱1CC 的中点.(1)求异面直线AE 与1DD 所成角的大小(结果用反三角表示);(2)求C 点到平面ABE 的距离,并求出三锥C ADE -的体积.【答案】(1)1arccos 3;(2)C 点到平面ABE 25,三锥C ADE -的体积为23. 【分析】(1)由已知得AEC ∠(或补角)是异面直线AE 与1DD 所成角,求解AEC 可得答案;(2)利用等体积E ABC C ABE V V --=,可求得设C 点到平面ABE 的距离,利用C ADE A CDE V V --=,可求得三锥C ADE -的体积.【详解】解:(1)连接AC ,因为11//CC DD ,所以AEC ∠(或补角)是异面直线AE 与1DD 所成角, 在AEC 中,()22221cos 3221EC AEC AE AC EC ∠====++, 所以异面直线AE 与1DD 所成角是1arccos 3;(2)设C 点到平面ABE 的距离为h ,因为E ABC C ABE V V --=,即1133ABC ABE S EC S h ⋅=⋅△△, 又正方体1111ABCD A B C D -中,AB ⊥面11BB C C ,所以ABE △是Rt ABE △,又2222215BE BC EC =+=+=, 所以1111221253232h ⨯⨯⨯⨯=⨯⨯⨯⋅,解得255h =, 所以C ADE A CDE V V --=111212332DCE S AD ⎛⎫=⋅=⨯⨯⨯⨯ ⎪⎝⎭△23=.【点睛】本题考查空间中异面直线所成的角,运用等体积法求点到面的距离以及三棱锥的体积,属于中档题.。

高考数学试题-立体几何选择填空含答案解析

高考数学试题-立体几何选择填空含答案解析

选填训练4答案一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项) 1. 如图,在四面体O −ABC 中,G 是底面△ABC 的重心,且OG ⃗⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,则log 3|xyz|等于 ( )A. −3B. −1C. 1D. 3【答案】A 解:连结AG ,OG ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AG ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +13(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=OA ⃗⃗⃗⃗⃗ +13(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=13OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,∴x =y =z =13, 则log 3|xyz|=log 3127=−3.2. 在△ABC 中A =30°,AC =4,BC =a ,若△ABC 仅一个解时,则a 的取值范围是( )A. a ≥4B. a =2C. a ≥4或a =2D. 无法确定【答案】C解:当a =ACsin30°=4×12=2时,以C 为圆心,以a =2为半径画弧,与射线AD 只有唯一交点, 此时符合条件的三角形只有一个,当a ⩾4时,以C 为圆心以a 为半径画弧时,在从垂足到A 点之间得不到交点,交点只能在垂足外侧,三角形也是唯一的, ∴a ≥4或a =2,故选C .3. 设两个向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 满足|e 1⃗⃗⃗ |=2,|e 2⃗⃗⃗ |=1,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 之间的夹角为60°,若向量2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ 与向量e 1⃗⃗⃗ +t e 2⃗⃗⃗ 的夹角为钝角,则实数t 的取值范围是( )A. (−7,−12)B. (−7,−√142)∪(−√142,−12) C. (−7,−√142)D. (−√142,−12)【答案】B解:由题意知(2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ )·(e 1⃗⃗⃗ +t e 2⃗⃗⃗ )<0,即2t 2+15t +7<0,解得−7<t <−12.又由2t ·t −7≠0,得t ≠±√142,∴t ∈(−7,−√142)∪(−√142,−12). 故选B .4. 已知向量a ⃗ =(1,2),a ⃗ ·b ⃗ =10,|a ⃗ +b ⃗ |=5√2,b ⃗ 方向上的单位向量为e⃗ ,则向量a ⃗ 在 向量b ⃗ 上的投影向量为( ) A. 12e ⃗ B. 2e ⃗ C.125e⃗ D. 52e⃗ 【答案】B解:由a ⃗ =(1,2)可得:|a ⃗ |=√12+22=√5,由|a ⃗ +b|⃗⃗⃗ =5√2两边平方得:|a ⃗ |2+2a ⃗ ·b ⃗ +|b⃗ |2=(5√2)2=50,即:5+2×10+|b⃗ |2=50,解得:|b ⃗ |=5, 设a ⃗ 和b ⃗ 的夹角为θ,则cosθ=a⃗ ·b ⃗|a ⃗ |·|b⃗ |=10√5×5=2√55, 所以向量a ⃗ 在向量b ⃗ 上的投影向量为:|a ⃗ |cosθ·b⃗ |b ⃗ |=√5×2√55e ⃗ =2e ⃗ .故选B .5. 如图所示,在直三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,AB =3,AC =AA 1=4,一只蚂蚁由顶点A 沿棱柱侧面经过棱BB 1爬到顶点C 1,蚂蚁爬行的最短距离为( )A. 4B. 4C.D.+【答案】B解:如图所示,把侧面展开,矩形对角线即为蚂蚁爬行的最短距离,∵AB ⊥AC ,AB =3,AC =AA 1=4,∴BC =√AB 2+AC 2=√32+42=5,由题已知AA 1=CC 1=4,∴蚂蚁爬行的最短距离=√(AB +BC )2+(CC 1)2=√(3+5)2+42=4√5,所以最小值为4√5,故选B .6.在四棱锥P−ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为( )A. B. C. D.【答案】A解:根据题意可知PD=DC,则点D符合“M为底面ABCD内的一个动点,且满足MP=MC”,设AB的中点为N,因为侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB⊥AD,AB⊂底面ABCD,所以AB⊥侧面PAD,又PA⊂侧面PAD,所以AB⊥PA,根据题目条件可知△PAN≌△CBN,∴PN=CN,点N也符合“M为底面ABCD内的一个动点,且满足MP=MC”,故动点M的轨迹肯定过点D和点N,而到点P与到点C的距离相等的点为线段PC 的垂直平分面,线段PC的垂直平分面与平面ABCD的交线是一直线.故选A.7.如图,直角梯形ABCD,AB//CD,∠ABC=90°,CD=2,AB=BC=1,E是边CD中点,△ADE沿AE翻折成四棱锥D′−ABCE,则点C到平面ABD′距离的最大值为( )A. 12B. √3−1 C. √22D. √63【答案】C解:直角梯形ABCD ,AB//CD ,∠ABC =90°,CD =2,AB =BC =1,E 是边CD 中点,△ADE 沿AE 翻折成四棱锥D′−ABCE ,当D′E ⊥CE 时,点C 到平面ABD′距离取最大值,∵D′E ⊥AE ,CE ∩AE =E ,CE ,AE ⊂平面ABCE ,∴D′E ⊥平面ABCE , 以E 为原点,EC 为x 轴,EA 为y 轴,ED′为z 轴,建立空间直角坐标系,则A(0,1,0),C(1,0,0),D′(0,0,1),B(1,1,0), AB ⃗⃗⃗⃗⃗ =(1,0,0),AC ⃗⃗⃗⃗⃗ =(1,−1,0),AD′⃗⃗⃗⃗⃗⃗⃗ =(0,−1,1), 设平面ABD′的法向量n⃗ =(x,y,z),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =x =0n ⃗ ⋅AD′⃗⃗⃗⃗⃗⃗⃗ =−y +z =0,取y =1,得n ⃗ =(0,1,1),∴点C 到平面ABD′距离的最大值为d =|AC ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |=1√2=√22.故选C .8. 在△ABC 中,有正弦定理:asinA =bsinB =csinC =定值,这个定值就是△ABC 的外接圆的直径.如图所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( )A. λ先变小再变大B. 仅当M 为线段EF 的中点时,λ取得最大值C. λ先变大再变小D. λ是一个定值【答案】D解:设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2,则由题意,πR 12πR 22=λ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,由正弦定理可得R 1=12×DE sin∠DME,R 2=12×DFsin∠DMF ,又DE =DF ,sin∠DME =sin∠DMF , 可得R 1=R 2,可得λ=1.故选D .二、多选题(本大题共4小题,共20.0分。

007——微专题七:立体几何选择填空多选题中档题-解析

007——微专题七:立体几何选择填空多选题中档题-解析

微专题七:立体几何选择填空多选题中档题一、单选题1.如图,在棱长为2的正方体1111ABCD A B C D -中,M 是11A B 的中点,点P 是侧面11CDD C 上的动点,且MP ∥截面1AB C ,则线段MP 长度的取值范围是( ).A .[2,6]B .[6,22]C .[6,23]D .[6,3]【答案】B 【分析】取CD 的中点为N,1CC 的中点为R,11B C 的中点为H,证明平面MNRH//平面1AB C ,MP ⊂平面MNRH ,线段MP 扫过的图形为MNR ∆,通过证明222MN NR MR =+,说明MRN ∠为直角,得线段MP 长度的取值范围为[],MR MN 即可得解. 【详解】取CD 的中点为N,1CC 的中点为R,11B C 的中点为H,作图如下:由图可知,11//,MB NC MB NC =,所以四边形1MNCB 为平行四边形, 所以1//MN B C ,因为1111//,//MH A C A C AC ,所以//MH AC , 因为1,MNMH M ACB C C ==, 故平面MNRH//平面1AB C ,因为MP ∥截面1AB C ,所以MP ⊂平面MNRH ,线段MP 扫过的图形为MNR ∆,由2AB =知,22,2MN NR ==,在1Rt MC R ∆中,22211MR C R C M =+,即()222156MR =+=,所以6MR =,所以222MN NR MR =+,即MRN ∠为直角,故线段MP 长度的取值范围为[],MR MN ,即6,22⎡⎤⎣⎦,故选:B【点睛】本题考查面面平行的判定定理与性质定理及空间两点间的距离;重点考查转化与化归的思想;属于难度大、抽象型试题.2.在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 平面1D AE ,则1A F 与平面11BCC B 所成角的正切值t 构成的集合是( )A .25|235t t B .25|25t t C .|223t t D .|222t t【答案】D 【分析】为确定F 点位置,先找过1A 与平面1D AE 平行且与平面11B BCC 相交的平面,分别取111,B B B C 的中点,M N ,连接11,,A M MN A N ,可知平面1//A MN 平面1D AE ,故F 在线段MN 上,可知线面角为11A FB ∠,分析其正切值即可求出.【详解】设平面1AD E 与直线BC 交于点G ,连接,AG EG ,则G 为BC 的中点. 分别取111,B B B C 的中点,M N ,连接11,,A M MN A N ,则11//A M D E , ∵1A M平面1D AE ,1D E ⊂平面1D AE ,∴1//A M 平面1D AE ,同理可得//MN 平面1D AE . ∵1,A M MN 是平面1A MN 内的两条相交直线, ∴平面1//A MN 平面1D AE ,且1//A F 平面1D AE , 可得直线1A F ⊂平面1A MN ,即点F 是线段MN 上的动点.设直线1A F 与平面11BCC B 所成角为θ,运动点F 并加以观察,可得:当点F 与点M (或N )重合时,1A F 与平面11BCC B 所成角等于11A MB ,此时所成角θ达到最小值,满足111tan 2A B B Mθ;当点F 与MN 中点重合时,1A F 与平面11BCC B 所成角达到最大值,此时111111tan 2222A B A B B FB M θ,∴1A F 与平面11BCC B 所成角的正切值t 构成的集合为|222t t ,故选D.【点睛】本题主要考查了面面平行的判定与性质,线面角,及线面角正切的最值问题,属于难题.3.如图,PO 是平面α的斜线,O 是斜足,PA α⊥于点A ,BC 是α内过点O 的直线.若POB ∠是锐角,则有( ).A .POC COA ∠>∠B .POA BOA ∠<∠C .POC COA ∠<∠D .POB AOB ∠<∠【答案】C 【解析】【分析】由三余弦定理可得POB AOB ∠>∠,即POC COA ∠<∠,再逐一检验A,B,D 选项即可得解. 【详解】解:由三余弦定理可得:cos cos cos POB POA AOB ∠=∠∠, 又,,POB POA AOB ∠∠∠为锐角,所以cos cos POB AOB ∠<∠, 所以POB AOB ∠>∠,所以POB AOB ππ-∠<-∠, 即POC COA ∠<∠,故C 正确,则选项A 错误, 同理POB AOB ∠>∠,则选项D 错误,又,POA BOA ∠∠大小无法确定,则不能比较大小,即选项B 错误, 故选C.【点睛】本题考查了三余弦定理,属中档题.4.如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的面积的最小值为A .22B .1C 2D .2【答案】C 【分析】延展平面EFG ,可得截面EFGHOR ,其中H Q R 、、分别是所在棱的中点,可得1//D P 平面EFGHQR ,再证明平面1//D AC 平面EFGHQR ,可知P 在AC 上时,符合题意,从而得到P 与O 重合时三角形1PBB 的面积最小,进而可得结果. 【详解】延展平面EFG ,可得截面EFGHQR ,其中H Q R 、、分别是所在棱的中点, 直线1D P 与平面EFG 不存在公共点,所以1//D P 平面EFGHQR ,由中位线定理可得AC//EF ,EF 在平面EFGHQR 内,AC 在平面EFGHQR 外, 所以AC //平面EFGHQR ,因为1D P 与AC 在平面1D AC 内相交,所以平面1//D AC 平面EFGHQR ,所以P 在AC 上时,直线1D P 与平面EFG 不存在公共点, 因为B O 与AC 垂直,所以P 与O 重合时BP 最小, 此时,三角形1PBB 的面积最小,最小值为12222⨯⨯=,故选C.【点睛】 本题主要考查线面平行的判定定理、面面平行的判定定理,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.5.已知ABC ∆是由具有公共直角边的两块直角三角板(Rt ACD ∆与Rt BCD ∆)组成的三角形,如左下图所示.其中,45,60CAD BCD ∠=∠=.现将Rt ACD ∆沿斜边AC 进行翻折成1D AC ∆(1D 不在平面ABC 上).若,M N 分别为BC 和1BD 的中点,则在ACD ∆翻折过程中,下列命题不正确的是( )A .在线段BD 上存在一定点E ,使得EN 的长度是定值B .点N 在某个球面上运动C .存在某个位置,使得直线1AD 与DM 所成角为60D .对于任意位置,二面角1D AC B --始终大于二面角1D BC A -- 【答案】D 【分析】由题意,可得二面角1D AC B --和二面角1D BC A --有共同的平面角ABC ∠,且另一个面都过点1D ,过点1D 作平面ABC 的垂线,即可得到二面角1D AC B --和二面角1D BC A --的平面角,进而得大小关系即可. 【详解】不妨设1AD =,取AB 中点E ,易知E 落在线段BD 上,且11122EN AD ==, 所以点N 到点E 的距离始终为12,即点N 在以点E 为球心,半径为12的球面上运动, 因此A 、B 选项不正确;对于C 选项,作1//,AP DM AD 可以看成以AC 为轴线,以45为平面角的圆锥的母线,易知1AD 与AP 落在同一个轴截面上时,1PAD ∠ 取得最大值,则1PAD ∠的最大值为60,此时1D 落在平面ABC 上,所以160PAD ∠<,即1AD 与DM 所成的角始终小于60,所以C 选项不正确;对于D 选项,易知二面角1D AC B --为直二面角时,二面角1D AC B --始终大于二面角1D BC A --,当二面角1D AC B --为锐二面角时,如图所示作1D R ⊥平面ABC 与点R ,然后作,RO AC RS BC ⊥⊥分别交,AC BC 于,O S ,则二面角1D AC B --的平面角为1D OR ∠,二面角1D BC A --的平面角为1D SR ∠, 且1111tan ,tan D R D RD OR D SR OR SR∠=∠=,又因为OR SR <,所以11D OR D SR ∠>∠, 所以二面角1D AC B --始终大于二面角1D BC A --,故选D.【点睛】本题主要考查了空间几何体的结构特征,以及空间角的求解,其中解答中正确确定二面角的的平面角和异面直线所成的角是解答的关键,试题综合性强,难度大,属于难题,着重考查了空间想象能力,以及分析问题和解答问题的能力.6.如图,在棱长为1的正方体1111ABCD A B C D -中,点E F 、分别是棱BC ,1CC 的中点,P 是侧面11BCC B 内一点,若1A P //平面AEF ,则线段1A P 长度的取值范围是( )A .325(,)42B .325[,]42C .5[1,]2D .5[0,]2【答案】B 【解析】分析:先判断出点P 的位置,确定使得1A P 取得最大值和最小值时点P 的位置,然后再通过计算可求得线段1A P 长度的取值范围.详解:如下图所示,分别取棱111,BB B C 的中点M 、N ,连MN ,1BC ,∵,,,M N E F 分别为所在棱的中点,则11,MNBC EF BC ,∴MN ∥EF ,又MN ⊄平面AEF ,EF ⊂平面AEF ,∴MN ∥平面AEF .∵11,AA NE AA NE =,∴四边形1AENA 为平行四边形,∴1A N AE ∥,又1A N ⊄平面AEF ,AE ⊂平面AEF , ∴1A N ∥平面AEF ,又1A NMN N =,∴平面1A MN ∥平面AEF .∵P 是侧面11BCC B 内一点,且1A P ∥平面AEF ,∴点P 必在线段MN 上.在11Rt A B M ∆中,2221111151()2A M AB B M ++.同理,在11Rt A B N ∆中,可得15A N =∴1A MN ∆为等腰三角形. 当点P 为MN 中点O 时,1A P MN ⊥,此时1A P 最短;点P 位于M 、N 处时,1A P 最长. ∵2222115232()()244AO A M OM =-=-=,115A M A N ==.∴线段1A P 长度的取值范围是325[,]42.故选B .点睛:本题难度较大,解题时要借助几何图形判断得出使得1A P 取得最值时的点P 的位置,然后再根据勾股定理进行计算. 7.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H .则以下命题中,错误的命题是A .点H 是△A 1BD 的垂心B .AH 垂直平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°【答案】D 【详解】因为三棱锥A -A 1BD 是正三棱锥,故顶点A 在底面的射影是底面的中心,A 正确;平面A 1BD ∥平面CB 1D 1,而AH 垂直于平面A 1BD ,所以AH 垂直于平面CB 1D 1,B 正确;根据对称性知C 正确,故选D.二、多选题8.如图,在四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,CDE △是正三角形,M 为线段DE 的中点,点N 为底面ABCD 内的动点,则下列结论正确的是( )A .若BC DE ⊥,则平面CDE ⊥平面ABCDB .若BC DE ⊥,则直线EA 与平面ABCD 所成的角的正弦值为64C .若直线BM 和EN 异面,则点N 不可能为底面ABCD 的中心D .若平面CDE ⊥平面ABCD ,且点N 为底面ABCD 的中心,则BM EN = 【答案】ABC 【分析】根据面面垂直的判定,线面夹角的求解办法,以及异面直线的定义,结合面面垂直的性质,对每个选项进行逐一分析,即可容易判断选择.【详解】 ∵BC CD ⊥,BC DE ⊥,CDDE D =,,CD DE ⊂平面CDE ,∴BC ⊥平面CDE ,∵BC ⊂平面ABCD ,∴平面ABCD ⊥平面CDE ,A 项正确;设CD 的中点为F ,连接EF 、AF ,则EF CD ⊥.∵平面ABCD ⊥平面CDE ,平面ABCD 平面CDE CD =,EF ⊂平面CDE ∴EF ⊥平面ABCD ,设EA 与平面ABCD 所成的角为θ,则EAF θ=∠,223EF CE CF =-=,225AF AD FD =+=,2222AE EF AF =+=,则6sin 4EF AE θ==,B 项正确; 连接BD ,易知BM ⊂平面BDE ,由B 、M 、E 确定的面即为平面BDE ,当直线BM 和EN 异面时,若点N 为底面ABCD 的中心,则N BD ∈, 又E ∈平面BDE ,则EN 与BM 共面,矛盾,C 项正确;连接FN ,∵FN ⊂平面ABCD ,EF ⊥平面ABCD ,∴EF FN ⊥, ∵F 、N 分别为CD 、BD 的中点,则112FN BC ==, 又3EF=,故222EN EF FN =+=,227BM BC CM =+=,则BM EN ≠,D 项错误. 故选:ABC . 【点睛】本题综合考查面面垂直的判定以及性质、异面直线的定义、线面夹角的求解,属综合困难题.9.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC 6D .若点E 到平面11ACC AEB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫ ⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,10B b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛⎫- ⎪⎝⎭,,,所以12a BC b ⎛⎫=- ⎪ ⎪⎝⎭,,,12a AB b ⎛⎫=- ⎪ ⎪⎝⎭,. ∵11BC AB ⊥,∴110BC AB ⋅=,即22202a b ⎫⎛⎫--+=⎪ ⎪⎪⎝⎭⎝⎭,解得2b a =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,12a BC ⎛⎫=- ⎪ ⎪⎝⎭,因为2111cos ,6||||a BC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===-,所以异面直线1,BC DA所成角的余弦值为6,选项C 正确.对于选项D ,设点E 在底面ABC 的射影为1E ,作1EF 垂直于AC ,垂足为F ,若点E 到平面11ACC A 的,即有12E F EB =,又因为在1CE F ∆中,112E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.三、填空题10.如图,正方体1111ABCD A B C D -的棱长为a ,动点P 在对角线1BD 上,过点P 作垂直于1BD 的平面γ,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当323[,]33x a a ∈时,函数()y f x =的值域为______. 【答案】{}32a【分析】 当323,33x a a ⎡⎤∈⎢⎥⎣⎦时,截面多边形是六边形HIJKLM ,利用相似比可知邻边长之和为定值即可得到结果. 【详解】当323,33x a a ⎡⎤∈⎢⎥⎣⎦时,截面多边形是六边形HIJKLM ,设11HI AC =111B I B C =λ,则1IJ B C =111C I B C =1﹣λ, ∴HI +2a ,∴截面六边形的周长为32a ;故答案为{}32a【点睛】本题考查了几何体中动点问题,截面周长问题,考查了空间想象力,属于中档题.11.如图,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD 是平面α内边长为R 的正三角形,线段AC ,AD 分别与球面交于点M 、N ,则三棱锥A BMN -的体积是__________.【答案】38375R 【分析】 2AB R =,BC R =,5AC R =,BCD ∆是平面α内边长为R 的正三角形,ABC AMB ∆∽,45AM AC =,类似有45AN AD =,24()5A BMN AMN A BCD ABCV S V S -∆-∆==,由此能求出三棱锥A BMN -的体积. 【详解】 2AB R =,BC R =,5AC R =,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD ∆是平面α内边长为R 的正三角形, 线段AC ,AD 分别与球面交于点M 、N ,BAM BAC ∴∠=∠,90AMB ABC ∠=∠=︒,ABC AMB ∴∆∆∽,∴AB AC AM AB =,455AM R ∴=, ∴45AM AC =,类似有45AN AD =, ∴2416()525A BMN AMN A BCD ABC V S V S -∆-∆===,∴三棱锥A BMN -的体积: 231613832253475A BMN V R R R -=⨯⨯⨯⨯=.故答案为:38375R .【点睛】本题考查三棱锥的体积的求法,考查球、三棱锥的结构特征等基础知识,考查运算求解能力,是中档题. 12.如图,已知:在ABC 中,3CA CB ==,3AB =,点F 是BC 边上异于点B ,C 的一个动点,EF AB ⊥于点E ,现沿EF 将BEF 折起到PEF 的位置,使PE AC ⊥,则四棱锥P ACFE -的体积的最大值为________.2 过点D 作CD AB ⊥,由EF AB ⊥可知//EF CD ,进而证明PE ⊥平面ABC ,所以PE 为四棱锥P ACFE -的高,设BE PE x ==,通过题设条件分别求出BEF S 和ABC S 的表达式,进而得出ACFE S 四边形的表达式,记四棱锥P ACFE -的体积为(x)V ,由四棱锥的体积公式可得333()418V x x x =-(302x <<),然后利用导数求得(x)V 的最大值即可. 【详解】过点D 作CD AB ⊥,由EF AB ⊥可知//EF CD ,因为EF AB ⊥,所以翻折后PE EF ⊥,所以PE CD ⊥,又PE AC ⊥,AC CD D =,AC ,CD ⊂平面ABC ,所以PE ⊥平面ABC ,所以PE 为四棱锥P ACFE -的高, 因为3CA CB ==3AB =,CD AB ⊥,所以可得:()22223332CD AC AD ⎛⎫=-=-= ⎪⎝⎭ 设BE PE x ==,所以EF BE CD BD =332x =,即3EF x =, 所以2132BEF S BE EF x =⋅=△,又1332ABC S AB CD =⋅=△, 所以2333ACFE S x =四边形,记四棱锥P ACFE -的体积为(x)V , 所以323334133()34618x V x x x x ⎛⎫=⋅⋅=- ⎪ ⎪⎝⎭-(302x <<),2()V x x '=,令()0V x '=可得x =或x =(舍去),所以当0,2x ⎛∈ ⎝⎭时,()0V x '>,()V x '单调递增;当322x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0V x '<,()V x '单调递减,因此当2x =时,(x)V 取得最大值,最大值为24V ⎛= ⎝⎭.故答案为:4. 【点睛】本题考查棱锥体积的求法,考查利用导数研究函数的最值,考查逻辑思维能力和运算求解能力,属于中档题.。

第11讲 立体几何填空压轴题(解析版)

第11讲  立体几何填空压轴题(解析版)

第11讲 立体几何填空压轴题1.(2021·山东济宁一模)在长方体1111ABCD A B C D -中,3AB =,14A D A A ==,E ,F ,G 分别是棱AB ,BC ,1CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 平行,当三角形1BB P 的面积最小时,三棱锥1A BB P -的外接球的体积是______. 【答案】125π6【分析】由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P 所在线段,可知当BP AC ⊥时,三角形1BB P 面积最小,然后证明1AP B P ⊥,得到1AB 为三棱锥1A BB P -的外接球的直径,进一步求解得答案.【解析】补全截面EFG 为截面1EFGHQR 如图,设BR AC ⊥,直线1D P 与平面EFG 不存在公共点,1//D P ∴平面1EFGHQR ,易知平面1//ACD 平面1EFGHQR ,P AC ∴∈,且当P 与R 重合时,BP BR =最短,此时1PBB 的面积最小,由等面积法得1122BR AC AB BC ⨯=⨯,即113422BR ⨯⨯,125BP ∴=, 1B B AP ⊥,BP AP ⊥,AP ∴⊥平面1B BP ,则1AP B P ⊥,又1AB B B ⊥,1AB ∴为三棱锥1A BB P -5=.∴三棱锥1A BB P -的外接球的半径为52,体积为35125π2643V π⎛⎫= ⎪⎝⎭=⨯.【名师点睛】方法点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段,,PA PB PC 两两互相垂直,一般把有关元素“补形”成为一个球内接长方体,利用22224PA PB PC R ++=求解,考查学生的空间想象能力与思维能力,是中档题.2.(2021·浙江丽水月考)如图,在ABC 中,12BM MC =,1AB AC ==,3BM =D 在线段BM 上运动,沿AD 将ADB △折到ADB ',使二面角B AD C '--的度数为60︒,若点B '在平面ABC 内的射影为O ,则OC 的最小值为_______.【答案】10【分析】本题需要作出空间图形,运用解三角形的知识求解.【解析】如图,过点B 作BE AD ⊥于点E ,过点B '作B O BE '⊥于点O ,下面证明点O 即为B '在平面ABC 内的射影,B EO '∠即为二面角 B AD C '--的平面角,,AE EO AE EB AE B O ''⊥⊥⇒⊥又 B O BE '⊥B O ABC '⇒⊥面,∴点O 即为B '在平面ABC 内的射影,B EO '∠即为二面角 B AD C '--的平面角,∴=60B EO '∠︒, 设BAD θ∠=,则sin BE B E θ'==,又=60B EO '∠︒,∴12EO B E '=,即3sin 2BO θ=,45CBO θ∠=︒-, 在CBO 中由余弦定理得()2222cos 45OC BC BO BC BO θ=+-⋅⋅︒-()292sin cos 454θθθ=+-⋅︒-2332sin sin 242θθ=--31cos 232sin 2422θθ-=-⋅- 3313cos 2sin 2828θθ=-+,在BAM 中由余弦定理求得AM = 1sin 2BAM ∠=<, ∴030θ<<︒,0260θ<<︒,记()3313cos 2sin 2828g θθθ=-+,则 ()g θ为减函数, 当BAM θ=∠时,()g θ取得最小值,()()min 3313cos 2sin 2828g g BAM BAM BAM θ=∠=∠-∠+, 又223cos 212sin 155BAM BAM ∠=-∠=-=, 4sin 25BAM ∠=,∴()min 1320g θ=,∴min OC ==.【名师点睛】本题属于一道综合性难题,需要极强的空间想象能力和运算能力.能否准确作出空间图形是解决本题的关键,最后要得出正确答案,需要对解三角形,以及三角恒等变换知识非常熟练,计算能力要过硬,本题属于压轴题.3.(2021·江西八校4月联考)在三棱锥P ABC -中,4,8PA PB BC AC ====,AB BC ⊥.平面PAB ⊥平面ABC ,若球Q 是三棱锥P ABC -的外接球,则球O 的表面积为___________.【答案】80π【分析】根据题意可求出点P 到面ABC 的距离为2,而三角形ABC 为直角三角形,由此可知球心O 在面ABC 内的射影为AC 的中点,设球心O 到面ABC 的距离为h ,根据勾股定理,即可求出h ,算出外接球半径,得到外接球的表面积.【解析】∵平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,BC ∴⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP ,∴//DE BC ,2DE =,DE ∴⊥平面PAB ,DE PD ∴⊥,PA PB =,∴D 为AB 的中点,又AB BC ⊥, ∴三棱锥P ABC -外接球的球心在面ABC 内的射影为AC的中点,4BC =,8AC =,AB ==,2PD ∴==,4PE ==<,∴三棱锥P ABC -外接球的球心在面ABC 的下方,如图,过O 作OF PD ⊥于F ,∴四边形OEDF 为矩形.设球心O 到面ABC 的距离为h ,即OE FD h ==,三棱锥P ABC -外接球的半径为R ,故()2222242R h h h =+=++,解得2h = ,2222420R =+=,∴球O 的表面积为2480S R ππ==.【名师点睛】本题主要考查三棱锥的几何特征以及其外接球的表面积求法、涉及面面垂直的性质定理应用,解题的关键是找到球心,利用直角三角形勾股定理,列出方程,求出外接球的半径,从而求得表面积,意在考查学生直观想象能力和计算能力,属于较难题.4.(2021·四川名校联考)已知在三棱锥P ABC -中, 90,4,30BAC AB AC APC ︒︒∠===∠=,平面PAC ⊥平面ABC ,则三棱锥P ABC -外接球的表面积为__________.【答案】80π【分析】根据已知条件确定,ABC PAC 的外接圆圆心12,O O ,及三棱锥P ABC -的外接球球心O 、AC 边中点H 的位置关系--四边形12OO HO 为矩形,进而应用正弦定理、侧面外接圆半径与外接球半径、点面距之间的关系,求外接球半径,即可求球的表面积.【解析】如图12,O O 分别为,ABC PAC 的外心.由90BAC ∠=︒,即1O 为BC 中点,取AC 的中点,H 则1O H AC ⊥,又面PAC ⊥面ABC ,面PAC 面ABC AC =,1O H ⊂面ABC ,即1O H ⊥面,PAC 设球心为O ,则2OO ⊥平面,PAC∴12//O H OO ,又2O H AC ⊥,2O H ⊂面PAC ,面PAC 面ABC AC =,面PAC ⊥面ABC , ∴2O H ⊥平面ABC ,又1OO ⊥平面ABC ,∴12//OO O H ,即四边形12OO HO 为矩形.由正弦定理知:228sin AC O P APC==∠,即24O P =,∴若外接球半径为R ,则2222216420R O P OO =+=+=,∴2480S R ππ==.【名师点睛】关键点点睛:利用面面垂直、等腰直角三角形的性质,应用三棱锥侧面外接圆半径、外接球半径、点面距之间的几何关系,结合正弦定理求外接球半径,进而求表面积.5.(2021·中学生标准学术能力3月测试)在棱长为的正四面体A BCD -中,点,E F 分别为直线,AB CD 上的动点,点P 为EF 中点,为正四面体中心(满足),若,则长度为_________.【答案】【分析】将正四面体放在棱长为4的正方体中, 设分别是的中点, 连接,设的中点为,连接,结合勾股定理和中位线定理可得,由线面垂直的判定定理可得平面,从而证明是直角三角形,结合勾股定理即可求出.【解析】将正四面体放在棱长为4的正方体中,则,为正方体的中心,设分别是的中点,则是的中点,,连接,设的中点为,连接,∵是的中位线,∴,同理, ∵,∴,∴,即,则,∴, ∵,∴,∵,,,∴平面,∴,在中,Q QA QB QC QD ===PQ =EF ,M N ,AB CD EN EN S ,,QS SP PQ 228ME NF +=NF ⊥MNE NEF EF AB CD ⊥Q ,M N ,AB CD Q MN ,MN AB MN CD ⊥⊥EN EN S ,,QS SP PQ QS NME 1//,2QS ME QS ME =1//,2SP NF SP NF =AB CD ⊥ME NF ⊥QS SP ⊥90QSP ∠=︒()22222124QS SP ME NF PQ +=+==228ME NF +=MN ME ⊥222216NE MN ME ME =+=+NF ME ⊥NF MN ⊥MN ME M =NF ⊥MNE NF NE ⊥RT NEF △.【名师点睛】关键点睛:本题考查了线面垂直的判定定理和线面垂直的性质,关键是将几何体放入正方体中便于分析垂直关系.6.(2021·江苏省天一中学高三二模)《九章算术》是古代中国的第一部自成体系的数学专著,与古希腊欧几里得的《几何原本》并称现代数学的两大源泉.《九章算术》卷五记载:“今有刍甍,下广三丈,表四丈,上袤二丈,无广,高一丈.问积几何?”译文:今有如图所示的屋脊状楔体,下底面是矩形,假设屋脊没有歪斜,即的中点在底面上的投影为矩形的中心点,,,,,(长度单位:丈).则楔体的体积为___________(体积单位:立方丈).【答案】【分析】将几何体补成直三棱柱,计算出三棱柱、三棱锥、三棱锥的体积,进而可求得楔体的体积.【解析】延长至点,使得,延长至点,使得,分别取、的中点、,连接、、、、、、、、、,如下图所示:EF ==PQ ABCD -ABCD PQ R ABCD ABCD O //PQ AB 4AB =3AD =2PQ =1OR =PQ ABCD-5PQ ABCD -ADE BCF ADE BCF P ADE -Q BCF -PQ ABCD -QP E 1PE =PQ F 1QF =AD BC M N AC AN CM AE DE BF CF EM FN MN∵四边形为矩形,则且,又∵、分别为、的中点,则且,∴四边形为平行四边形,且,为矩形的中心,则为的中点,∵、分别为、的中点,则且,∴四边形为平行四边形,∴、互相平分,∵为的中点,则为的中点,,,, ,则,又且,且,∴四边形为平行四边形,且,为的中点,且,则为的中点,为的中点,且,∴四边形为平行四边形,,点在底面上的投影为矩形的中心点,则平面,平面, 平面,,∵四边形为矩形,则,,平面,∵且,∴几何体为直三棱柱,平面,平面,,∵四边形为平行四边形,则,, ,,同理可得, 因此,楔体的体积为.【名师点睛】方法点睛:求解多面体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位ABCD //AD BC AD BC =M N AD BC //AM BN AM BN =ABNM //MN AB ∴MN AB =O ABCD O AC M N AD BC //AM CN AM CN =AMCN AC MN O AC O MN 1PE QF ==2PQ =4EF PQ PE QF AB ∴=++==//PQ AB //EF AB //MN AB MN AB =//EF MN ∴EF MN =EFNM //EM FN ∴EM FN =R PQ PE QF =R EF O MN //ER OM ∴ER OM =EROM //EM OR ∴R ABCD ABCD O RO ⊥ABCD EM ∴⊥ABCD AB ⊂ABCD AB EM ∴⊥ABCD AB AD ⊥EMAD M =AB ∴⊥ADE ////AB CD EF AB CD EF ==ADE BCF EM ⊥ABCD AD ⊂ABCD EM AD ∴⊥EROM 1EM OR ==1322ADE S AD EM =⋅=△3462ADE BCF ADE V S AB -=⋅=⨯=△1132P ADE ADE V S PE -=⋅=△12Q BCF V -=PQ ABCD -5PQ ABCD ADE BCF P ADE Q BCF V V V V ----=--=置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 7.(2021·江西重点中学协作联考(理))在四棱锥中,平面ABCD ,底面ABCD 是直角梯形,,,若动点Q 在平面P AD 内运动,使得与相等,则三棱锥的体积最大时的外接球的体积为_____.【分析】根据题意推出,,再根据推出,在平面内,建立直角坐标系求出点轨迹是圆,从而可求出点到的距离最大为,即三棱锥的高的最大值为,再寻找三棱锥的外接球球心,计算球半径,进而计算球的体积即得结果.【解析】∵平面,∴平面平面,∵,,∴平面,平面,∵在内及边上,∴、在平面内,∴,,∴在内,,在内,, ∵,∴,∵,∴, 在平面内,以的中点为原点O ,线段的垂直平分线为轴,建立平面直角坐标系:P ABCD -PA ⊥//,AB CD AB AD ⊥2CD AD ===CQD ∠BQA ∠ - Q ACD AB QA ⊥CD QD ⊥CQD BQA ∠=∠QD =PDA Q 22(3)8x y -+=Q DA - Q ACD PA ⊥ABCD PAD ⊥ABCD //AB CD AB ⊥AD AB ⊥PAD CD ⊥PAD Q PAD △QA QD PAD AB QA ⊥CD QD ⊥Rt CDQ △tan CD CQD DQ ∠=Rt ABQ △tan AB BQA QA=CQD BQA ∠=∠CD AB DQ QA=2,CD AB ==QD =PDA DA DA y则,,设,则由,∴动点Q 在平面P AD 内运动,点轨迹是圆,如图所示,当在过圆心的垂线时点到的距离最大为半径,也就是三棱锥的高的最大值为,下面的计算不妨设点在x 轴上方,外接圆圆心在中垂线上,即y 轴上,设外接圆圆心N ,半径r ,则,而,故,,∴,故,则如图三棱锥,平面,,的外接圆圆心在斜边中点M 上,过M ,N 作平面和平面的垂线,交于点I ,即是三棱锥外接球球心,∵,∴三棱锥外接球半径(1,0)D -(1,0)A (,)P xy ||DQ =||QA =QD ==22(3)8x y -+=Q 22(3)8x y -+=Q Q DA Q ACD -Q QAD DA 2sin DQr DAQ=∠2,4QS AS DS ===AQ DQ ====sin sin QS DAQ QAS AQ ∠=∠===26sin DQ r DAQ ===∠3AN r ==ON ==Q ACD -CD ⊥PAD 2CD AD ==ACD △ACD QAD 12DM AC IM ON ====Q ACD -R DI ====∴三棱锥的外接球的体积为. 【名师点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.8.(2021·江西宜春期末(理))已知菱形中,对角线,将沿着折叠,使得二面角为120°, ,则三棱锥的外接球的表面积为________.【答案】【分析】将沿折起后,取中点为,连接,,得到,在中由余弦定理求出的长,进一步求出的长,分别记三角形与的重心为、,记该几何体的外接球球心为,连接,,证明与全等,求出,再推出,连接,由勾股定理求出,即可得出外接球的表面积.【解析】将沿折起后,取中点为,连接,,则,, ∴即为二面角的平面角,∴;设,则,在中,即 , 解得,即,∴,∴与是边长为分别记三角形与的重心为、,则,;即; ∵与都是边长为是的外心,点是的外心;记该几何体的外接球球心为,连接,,根据球的性质,可得平面,平面,∴与都是直角三角形,且为公共边,∴与全等,因此,∴; ∵,,,且平面,平面,∴平面; Q ACD -3344333V R ππ===ABCD BD =ABD △BD A BD C --AC =A BCD -28π ABD BD BD E AE CE 120AEC ∠=︒AEC AE AB ABD △BCD △G F ABCD O OF OG Rt OGE △Rt OFE OE BD OE ⊥OB OB ABD BD BD E AE CE AE BD ⊥CE BD ⊥AEC ∠A BD C --120AEC ∠=︒AE a =AE CE a ==AEC 2222cos120AC AE EC AE CE =+-⋅⋅︒2127222a a a ⎛⎫=-⨯⨯⨯- ⎪⎝⎭3a =3AE =AB ==ABD △BCD △ABD △BCD △G F 113EG AE ==113EF CE ==EF EG =ABD △BCD △G ABD △F BCD △ABCD O OF OG OF ⊥BCD OG ⊥ABD OGE OFE △OE Rt OGE △Rt OFE 1602OEG OEF AEC ∠=∠=∠=︒2cos60EF OE ==︒AE BD ⊥CE BD ⊥AE CE E =AE ⊂AEC CE ⊂AEC BD ⊥AEC又平面,∴,连接,则外接球半径为∴外接球表面积为.【名师点睛】思路点睛:求解几何体外接球体积或表面积问题时,一般需要结合几何体结构特征,确定球心位置,求出球的半径,即可求解;在确定球心位置时,通常需要先确定底面外接圆的圆心,根据球心和截面外接圆的圆心连线垂直于截面,即可确定球心位置;有时也可将几何体补型成特殊的几何体(如长方体),根据特殊几何体的外接球,求出球的半径.9.(2021·浙江绍兴期末)已知三棱锥的三条侧棱两两垂直,与底面成角,是平面内任意一点,则的最小值是________.【答案】【分析】作,再由,易得,从而平面ABE ,由面面垂直的判定定理得到平面ABE 平面BCD ,得到与底面成的角为,然后在中,设 ,BA 与BP 的夹角为,利用余弦定理得,根据直线与平面所成的角是平面内直线与该直线所成的角中最小的角,得到,再利用二次函数性质求解. 【解析】如图所示:OE ⊂AEC BD OE ⊥OB OB ===2428S ππ=⨯=A BCD -AB BCD 30P BCD APBP12AE CD ⊥,BA CA BA DA ⊥⊥BA CD ⊥CD ⊥⊥AB BCD 30ABE ∠=ABP △1,0BA BP =≠α22121cos AP BP BP BP α⎛⎫=+- ⎪⎝⎭22211114AP BP BP BP ⎛⎛⎫≥+=+ ⎪ ⎝⎭⎝⎭作,垂足为E ,连接BE ,∵, ∴平面ACD ,则,又,∴平面ABE ,又平面BCD ,∴平面ABE 平面BCD ,∴点A 的射影在直线BE 上,∴与底面成的角为, 在中,设 ,BA 与BP 的夹角为,由余弦定理得,两边同除以得 , ∵直线与平面所成的角是平面内直线与该直线所成的角中最小的角,∴ ,∴,当点在BE 上取等号,又∵ , ∴,当时,即点P 在E 处,取得最小值,∴的最小值是.【名师点睛】关键点点睛:本题关键是在中,根据直线与平面所成的角是平面内直线与该直线所成的角中最小的角,得到,将余弦定理,转化为,由点在BE 上求解. 10.(2021·江苏南通期末)我国古代数学名著《九章算数》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱为一个“堑堵”,底面是以为斜边的直角三角形,且,点在棱上,且,当的面积取最小值时,三棱锥的外接球的表面积为________.AE CD ⊥,,BA AC BA AD AC AD A ⊥⊥⋂=BA ⊥BA CD ⊥BA AE A ⋂=CD ⊥CD ⊂⊥AB BCD 30ABE ∠=ABP △1,0BA BP =≠α2222cos AP BA BP BA BP α=+-⋅⋅2BP 22121cos AP BP BP BP α⎛⎫=+- ⎪⎝⎭cos cos30α≤22211114AP BP BP BP ⎛⎛⎫≥+=+ ⎪ ⎝⎭⎝⎭P cos3023BA BE ==()0,BP ∈+∞1BP =2AP BP ⎛⎫⎪⎝⎭14AP BP 12ABP △cos cos30α≤22121cos AP BP BP BP α⎛⎫=+- ⎪⎝⎭22211114AP BP BP BP ⎛⎛⎫≥+-=+ ⎪ ⎝⎭⎝⎭P 111ABC A B C -ABC AB 5,3AB AC ==P 1BB 1PC PC ⊥1APC P ABC -【答案】【分析】如图,连接,取的中点为,连接,可证,设,则,利用基本不等式可求何时取最小值,又可证为三棱锥的外接球的球心,从而可求此时外接球的表面积. 【解析】如图,连接,取的中点为,连接.∵三棱柱为直棱柱,故平面,而平面,故, 又,,故平面,∵平面,故, ∵,,故平面,∵平面,故.设,在直角三角形中,,同理,45πCP AP O ,CO OB 1,C P CP AC CP ⊥⊥PB x=1AC PS=O P ABC-CP AP O ,CO OB 111ABC A B C -1CC ⊥ABC AC ⊂ABC 1CC AC ⊥CB AC ⊥1CC BC C ⋂=AC ⊥11BCC B 1C P ⊂11BCC B 1AC C P ⊥1PA PC ⊥AC PA A ⋂=1PC ⊥ACP CP ⊂ACP 1PC PC ⊥1,PB x CC h ==PCB 2216CP x =+()22116C P h x =+-∴,整理得到. 又,当且仅当时等号成立,也就是时,的面积取最小值.∵平面,平面,故,故,而为直角三角形,故,故为三棱锥,∴外接球的表面积为.【名师点睛】方法点睛:空间中线线垂直、线面垂直可以相互转化,而三棱锥外接球的表面积体积的计算关键是球心位置的确定,可用球心到各顶点的距离相等来判断,必要时可补体,通过规则几何体的外接球来确定球心的位置.11.(2021·的正方体中,棱,的中点分别为,,点在平面内,作平面,垂足为.当点在内(包含边界)运动时,点的轨迹所组成的图形的面积等于_____________.【分析】由正方体性质可知平面平面,且平面,故点的轨迹所组成的图形与平面在平面正 投影图形全等,故可求得投影的面积,即为所求解.()22232h x h x =++-16h x x-=1AC PS=18=x =PB =1APC AC ⊥11BCC B CP ⊂11BCC B AC CP ⊥OA OP OC ==PAB △OP OB =O P ABC -==(245ππ⨯=1111ABCD A B C D -1BB 11B C E F P 11BCC B PQ ⊥1ACD Q P 1EFB △Q 1//ACD 11A BC PQ ⊥1ACD Q 1EFB 11A BC【解析】由正方体性质可知平面平面,且平面,故点的轨迹所组成的图形与平面在平面正投影图形全等,又为正三棱锥,故正投影如图,即再平面的正投影为,且,,,,,点的轨迹所组成的图形的面积为. 12.(2021·江苏南京市·南京一中高三月考)我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童,如图的刍童有外接球,且点到平面距离为4,则该刍童外接球的表面积为__________.1//ACD 11A BC PQ ⊥1ACD Q 1EFB 11A BC 111B A BC -1EFB △11A BC 1E F B '''1E F ''=1F B ''1E B ''=123E B F π'''∠=11112sin 2312E F B SB E B F π'''''''=⋅⋅⋅=Q 12ABCD EFGH -4,AB AD EH EF ====E ABCD【答案】【分析】由已知得,球心在上下底面中心的连线上,该连线与上下底面垂直,球心必在该垂线上,然后根据,利用直角三角形与直角三角形,即可列出外接球半径的方程,求解即可.【解析】假设为刍童外接球的球心,连接、交于点,连接、交于点,由球的几何性质可知、、在同一条直线上,由题意可知,平面,平面,,设,在中,,在矩形中,, ,在中,,在矩形中,,,, 设外接球半径,,解得,则,即,100πOB OG =1OO G 2OO B O HF EG 1O AC DB2O O 1O 2O 2OO ⊥ABCD 1OO ⊥EFGH 214O O =2O O r =1Rt OGO 22211OG OO O G =+EFGHEG ===112O G EG ==()(22222114OG OO O G r ∴=+=-+2Rt OBO 22222OB OO O B =+ABCD 8DB ===2142O B BD ==22222224OB OO O B r ∴=+=+OG OB R ==()(222244r r ∴-+=+3r =5OB ==5R =则该刍童的外接球半径为,该刍童外接球的表面积为:,13.(2021·江苏徐州期末)已知三棱锥外接球的表面积为,平面,,,则三棱锥体积的最大值为________.【答案】【分析】设三边的长分别为,,,由三棱锥体积公式有,由外接球表面积知外接球半径,应用正弦定理以及含有棱面垂直关系的三棱锥:外接圆半径R 、对应面外接圆半径r、棱长三者的关系有,即可求,再结合余弦定理求最值,进而求体积的最大值.【解析】设三边的长分别为,,,则三棱锥体积, 设外接球的半径为,由得, 设外接圆的半径为,由正弦定理得,即,又平面知,∴,,即, 故,,当且仅当时取等号. 【名师点睛】关键点点睛:由正弦定理、三角形面积公式得到三棱锥体积表达式,应用外接球半径R 、有棱面垂直关系的三棱锥中棱长m 、面的外接圆半径r 的关系,并结合余弦定理求三棱锥体积的最值.14.(2021·黑龙江齐齐哈尔市实验中学高三期末(理))如图,在矩形中,,为的中点,将沿翻折成(平面),为线段的中点,则在翻折过程中给出以下四个结论:5∴24100R ππ=P ABC -100πPB ⊥ABC8PB =120BAC ∠=︒ABC a bc V =225R =2224PB R r =+a bc ABC a b c 11sin120832V bc =⋅︒⋅=R 24100R ππ=225R =ABC r 2sin120a r =︒3r a =PB ⊥ABC 222425R ⎫=+=⎪⎪⎝⎭a =22272cos120bc bc =+-⋅︒222723b c bc bc bc bc =++≥+=9bc ≤933V =≤=3==b c 2224m R r =+ABCD 22BC AB ==N BC ABN AN 1B AN △1B ∉ABCD M 1B D ABN①与平面垂直的直线必与直线垂直; ②线段; ③异面直线与所成角的正切值为; ④当三棱锥的体积最大时,三棱锥外接球的表面积是. 其中正确结论的序号是_______.(请写出所有正确结论的序号) 【答案】①②④【分析】①平面,则可判断;②通过线段相等,可求出线段的长;②异面直线与所成角为,求出其正切值即可;④找出球心,求出半径即可判断其真假.从而得到正确结论的序号.【解析】如图,取的中点为,的中点为,连接,,,, 则四边形为平行四边形,直线平面,∴①正确;,∴②正确; ∵,异面直线与的所成角为,,∴③错误; 1BAN CM CM CM 1NB 31D ANB -1D ANB -4π//CM 1B AN CM NE =NK CM 1NB 1ENB ∠1AB E AD F EN EM FN 1B F CNEM CM ∥1AB N CM NE ===CMEN CM 1NB 1ENB ∠11tan 2ENB ∠=当三棱锥的体积最大时,平面与底面垂直,可计算出,,,∴,同理,∴三棱锥外接球的球心为,半径为1,外接球的表面积是,④正确.故答案为:①②④.【名师点睛】本题考查翻折过程中点线面的位置关系,注意翻折过程中不变的量,考查了相关角度,长度,体积的计算,考查直观想象,运算能力,属于较难题目.15.(2021·浙江省杭州第二中学高三开学考试)已知三棱锥的四个顶点都在球的表面上,平面,,,,,则球的半径为______;若是的中点,过点作球的截面,则截面面积的最小值是______.【分析】过底面外接圆的圆心作垂直于底面的直线,则球心在该直线上,可得,然后即可求出球的半径,若是的中点,,重合,过点作球的截面,则截面面积最小时是与垂直的面,即是三角形的外接圆,然后算出答案即可. 【解析】如图所示:由题意知底面三角形为直角三角形,∴底面外接圆的半径, 过底面外接圆的圆心作垂直于底面的直线,则球心在该直线上,可得, 连接,设外接球的半径为,∴,解得.若是的中点,,重合,过点作球的截面,则截面面积最小时是与垂直的面,即是三角形的外接圆,而三角形的外接圆半径是斜边的一半,即2,∴截面面积为. 【名师点睛】几何体的外接球球心一定在过底面多边形的外心作垂直于底面的直线上.1D ANB -1BAN ABCD 1B D 11AB =22211AB B D AD +=190AB D ∠=︒90AND ∠=︒1D ANB -F 4πP ABC -O PA ⊥ABC 6PA =AB =2AC =4BC =O D BC D O 4πO 'O 32PAOO '==D BC D O 'D O OO 'ABC 22BCr ==O 'O 32PAOO '==OA R 222222313R r OO '=+=+=R =D BC D O 'D O OO 'ABC ABC 224ππ⋅=16.(2021·安徽六安市·六安一中高三月考(理))在三棱锥中,,,两两垂直且,点为的外接球上任意一点,则的最大值为______.【答案】【分析】先根据三棱锥的几何性质,求出外接球的半径,结合向量的运算,将问题转化为求球体表面一点到SAC ∆外心距离最大的问题,即可求得结果.【解析】∵两两垂直且,故三棱锥的外接球就是对应棱长为2的正方体的外接球. 且外接球的球心为正方体的体对角线的中点,如下图所示:设线段的中点为, 故可得,故当取得最大值时,取得最大值.而当在同一个大圆上,且,点与线段在球心的异侧时,取得最大值,如图所示,此时,,故答案为:.【名师点睛】本题考查球体的几何性质,几何体的外接球问题,涉及向量的线性运算以及数量积运算,属综合性困难题.17.(2021·山西阳泉期末(理))如图,棱长为3的正方体的顶点在平面上,三条棱都在平面的同侧,如顶点到平面的距离分别为,则顶点到平面的距离为___________;S ABC -SA SB SC 2SA SB SC ===M S ABC -MA MB ⋅2,,SA SB SC 2SA SB SC===S ABC -O AB 1O ()()1111MA MB MO O A MO O B ⋅=+⋅+()()1111MO O A MO O A=+⋅-2221112MO O A MO =-=-1MO MA MB ⋅,,M A B 1MO AB ⊥M AB 1MO )22111,?2122MO OO MO ==-=-=2A α,,AB AC AD α,B C αD α【答案】【分析】连接BC ,CD ,BD ,则四面体为直角四面体,即已知直角四面体的三个顶点A ,B ,C 到平面的距离分别为0,1,求D 点到平面的距离,结合几何性质,即可进行求解.【解析】如图,连接BC ,CD ,BD ,则四面体为直角四面体,做平面的法线AH ,再做平面于,平面于,平面 于,连接,,,设AH=h ,DA=a ,DB=b ,DC=c ,由等体积可得,,∴,令,,,可得,设,∵,,∴,∴D 到平面.【名师点睛】本题中正方体的位置特殊,难以下手,突破点在于正方体的8个顶点中,有关系的只有4个,这4个点组成直角四面体,再进行求解.本题考查锥体体积的求法,考查分析、推理、化简、计算、空间想象的能力,属中档题.18.(2021·浙江宁波模拟)已知圆锥的顶点为,为底面中心,,,为底面圆周上不重合的三点,为底面的直径,,为的中点.设直线与平面所成角为,则的最大值为__________.6A BCD -ααA BCD -α1BB ⊥α1B 1CC ⊥α1C 1DD ⊥α1D 1AB 1AC 1AD 22221111h a b c =++2222221h h h a b c++=1BAB α∠=1CAC β∠=1DAD γ∠=222sin sin sin 1αβγ++=1DD m =11BB =1CC =2221()()1333m ++=m =αS O A B C AB SA AB =M SA MC SAB αsin α1【分析】由题意建立空间直角坐标系,结合空间向量的结论和均值不等式确定的最大值即可.【解析】以AB 的中点O 为坐标原点,建立如图所示的空间直角坐标系,不妨设,则: ,如图所示,由对称性不妨设且,则,易知平面SAB 的一个法向量为,据此有:, 当且仅当时等号成立,综上可得:.【名师点睛】本题主要考查空间向量及其应用,学生的空间想象能力等知识,意在考查学生的转化能力和计算求解能力.19.(2021·江苏省天一中学高三二模)在棱长为1 的正方体中,以A 的球面与正方体表面的交线长为___________.【答案】【解析】如图,球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点所在的三个面上,即面、面和面上;另一类在不过顶点的三个面上,即面、面和面上.在面上,交线为弧且在过球心的大圆上,∵,,则sin α4SA AB ==(()0,,,,0M C x y -0,0x y ><224x y +=(,1,MC x y =+()1,0,0m =sin MC mMC m α⋅=⨯==≤1=-4y =sin α11111ABCD A B C D -6A 11AAB B ABCD 11AA D D A 11BBC C 11CCD D 1111D C B A 11AA B B EF A 3AE =11AA =,同理,∴,故弧的长为,而这样的弧共有三条.在面上,交线为弧且在距球心为1的平面与球面相交所得的小圆上,此时,小圆的圆心为,,∴弧,这样的弧也有三条,于是,所得的曲线长为,故答案为.20.(2021·江西3校3月联考(理))如图所示,三棱锥中, 是边长为3的等边三角形, 是线段的中点, ,且,若, ,,则三棱锥的外接球的表面积为_____.【答案】【解析】三棱锥中,是边长为3的等边三角形,设的外心为,外接圆的半径在中,,满足,为直角三角形,的外接圆的圆心为,由于,为二面角的平面角,分别过两个三角形的外心作两个半平面的垂线交于点,则为三棱锥的外接16A AE π∠=6BAF π∠=6EAF π∠=EF 369π⋅=11BB C C FG B 2FBG π∠=FG 2π=33+=6P ABC -ABC ∆D AB DE PB E =DE AB ⊥120EDC ∠=︒32PA =PB =P ABC -13πP ABC -ABC ABC ∆1O 1032sin 60O A ==PAB ∆3,32PA PB AB ===222PA PB AB +=PAB ∆PAB ∆D ,CD AB ED AB ⊥⊥0120EDC ∠=P AB C 1,O D O O P ABC -球的球心,在中,,则,连接,设,则,. 【名师点睛】求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.21.(2021·陕西下学期质检)如图,在三棱锥中,,,倍,则该三被锥外接球的表面积为______.【答案】【分析】取边的中点,外接圆的圆心为,三棱锥外接球球心为,求出斜高,从而得侧面积和底面积,由已知求得,确定在延长线上,利用勾股定理求得外接球半径可得球表面积.【解析】如图,取边的中点,外接圆的圆心为,三棱锥外接球球心为.如图所示,∵且点为的中点,∴由此可知该三棱锥的侧面积,底面的面积为∴,解得(舍负).设三棱锥外接球半径为,.∵,∴点在底面上的射影为点.∵,1Rt D OO ∆01130,2ODO DO ∠==01cos30,12O D OD OD OD ===OA OA R =22222313()124R AD OD =+=+=21344=134S R πππ==⨯球A BCD -===BC CD BD 2AB AC AD a ===12πBC E BCD △F A BCD -O a O AF BC E BCD △F A BCD -O AB AC =E BC AE =12S =⨯=侧BCD △=1a =A BCD -R OF x =2AB AC AD ===A BCD F AB BC <。

专题4.3 立体几何的动态问题 高考数学选填题压轴题突破讲义

专题4.3 立体几何的动态问题 高考数学选填题压轴题突破讲义

一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点.究其原因,是因为学生缺乏相关素养和解决问题的策略造成的.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证. 二.解题策略类型一 立体几何中动态问题中的角度问题例1.【四川高考题】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为.【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值.当点M 在P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当M 点向左移动时,EM 与AF 所成角逐渐变小时,点M 到达点Q 时,角最小,余弦值最大. 【举一反三】1、【四川高考题】如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是()A .3[,1]3B .6[,1]3C .622[,]33D .22[,1]32、【广东省东莞市2019届高三第二次调研】在正方体中,E 是侧面内的动点,且平面,则直线与直线AB 所成角的正弦值的最小值是A .B .C .D .3、如图,已知平面αβ⊥,l αβ=I ,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D --的余弦值的最小值是( )A .15B .12C .32D .1类型二 立体几何中动态问题中的距离问题【例2】【广西壮族自治区柳州市2019届高三毕业班3月模拟】如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是( )A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 【举一反三】1、【河南省焦作市2018-2019学年高三三模】在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .22.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .253、如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.类型三 立体几何中动态问题中的面积、体积问题 【例3】在棱长为6的正方体中,是中点,点是面所在的平面内的动点,且满足,则三棱锥的体积最大值是( )A. 36B.C. 24D.【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P 到平面BCD 的距离的最大值,选择公式,可求最值. 【举一反三】1、《 九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,若12A A AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C-的体积为( )A.83B.2C.2D.222、【黑龙江省哈尔滨市第六中学2017届高三下学期第一次模拟】已知矩形ABCD中,6,4AB BC==,,E F分别是,AB CD上两动点,且AE DF=,把四边形BCFE沿EF折起,使平面BCFE ⊥平面ABCD,若折得的几何体的体积最大,则该几何体外接球的体积为()A. 28πB.2873πC. 32πD.6423π3、【湖南省衡阳市2019届高三二模】如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为()A.B.C.D.类型四立体几何中动态问题中的轨迹问题【例4】如图直三棱柱中,为边长为2的等边三角形,,点、、、、分别是边、、、、的中点,动点在四边形内部运动,并且始终有平面,则动点的轨迹长度为()A. B.C.D.【指点迷津】由已知可知平面平面,要始终有平面,点M 为定点,所以点P 的轨迹为线段HF ,求其长度即可. 【举一反三】1、【安徽省安庆市2019届高三二模】如图,正三棱柱的侧棱长为,底面边长为,一只蚂蚁从点出发沿每个侧面爬到,路线为,则蚂蚁爬行的最短路程是()A .B .C .D .2、在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为( )A .直线B .椭圆C .圆D .抛物线 3、已知平面平面,,且.是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为 ( ) A. B. C.D.类型五 立体几何中动态问题中的翻折、旋转问题【例5】如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CDB '--的平面角为α,则( )A.A DB α'∠≤B.A DB α'∠≥C. A CB α'∠≤D.A CB α'∠≤【举一反三】1、【四川省宜宾市2019届高三二诊】已知棱长都为2的正三棱柱的直观图如图,若正三棱柱绕着它的一条侧棱所在直线旋转,则它的侧视图可以为A.B.C.D.2.【重庆市南开中学2019届高三三月测试】如图,在正方形中,,分别为线段,上的点,,.将绕直线、绕直线各自独立旋转一周,则在所有旋转过程中,直线与直线所成角的最大值为________.3.【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.三.强化训练一、选择题1. 已知正方体ABCD-A1B1C1D1的棱长为1,E,F分别是边AA1,CC1上的中点,点M是BB1上的动点,过点E,M,F的平面与棱DD1交于点N,设BM=x,平行四边形EMFN的面积为S,设y=S2,则y关于x的函数y=f(x)的图象大致是()A.B. C. D.2、某圆柱的高为1,底面周长为8,其三视图如图所示圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A .B .C .D .3、如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值 D .异面直线E A '与BD 不可能垂直 4.【河南省郑州市第一中学2019届高三上期中】在三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是( )A .B .C .D .5.【河南省郑州市2019年高三第二次质量检测】在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为( )A .B .C .D .6.【上海交通大学附属中学2019届高三3月月考】如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为( )A.B.C.D.不能确定7.如图,在等腰中,,M为的中点,沿BM把它折成二面角,折后A与C的距离为,则二面角的大小为( )A.30° B.60° C.90° D.120°二、填空题8.【安徽省蚌埠市2019届高三第一次检查】如图所示,正方体的棱长为2,E,F为,AB的中点,M点是正方形内的动点,若平面,则M点的轨迹长度为______.9.已知正方体的棱长为,点为线段上一点,是平面上一点,则的最小值是______________________;10、【2017课标3,理16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°.其中正确的是________.(填写所有正确结论的编号)11.【2019届湘赣十四校高三联考第二次考试】如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.12.【河南省六市2019届高三第一次联考】如图,是等腰直角三角形,斜边,D为直角边BC 上一点不含端点,将沿直线AD折叠至的位置,使得在平面ABD外,若在平面ABD上的射影H恰好在线段AB上,则AH的取值范围是______.13.【陕西省榆林市2019届高考模拟第三次测试】如图,是边长为2的正方形,其对角线与交于点,将正方形沿对角线折叠,使点所对应点为,.设三棱锥的外接球的体积为,三棱锥的体积为,则__________.14.【河南省洛阳市2018-2019学年高中三第二次统考】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.15.【江西省吉安一中、九江一中、新余一中等八所重点中学2019届高三4月联考】如图,已知多面体的底面是边长为的正方形,平面,且,现将以直线为轴旋转一周后,则直线与动直线所成角的范围__________.16.在三棱锥中,,分别为棱和棱上的动点,则△的周长范围___________.。

高三数学选择填空难题突破 立体几何中最值问题

高三数学选择填空难题突破 立体几何中最值问题

高三数学选择填空难题突破立体几何中最值问题高三数学选择填空难题突破——立体几何中的最值问题一、方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题。

此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练。

立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合。

解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。

二、解题策略类型一:距离最值问题例1:如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且AB=2,若线段DE上存在点P使得GP⊥BP,则边CG长度的最小值为()解:建立空间直角坐标系,设CG长度为a及点P的坐标,求BP与GP的坐标,得到函数关系式,利用函数求其最值。

举一反三:如图,在棱长为1的正方体ABCD-A中,点E、F分别是棱BC、CC'的中点,P是侧面BCC'B内一点,若A'P⊥平面AEF,则线段A'P长度的取值范围是_____。

二、改写后的文章高三数学选择填空难题突破——立体几何中的最值问题一、方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目。

而几何问题中的最值与范围类问题,不仅可以考查学生的空间想象能力,还可以考查运用运动变化观点处理问题的能力,因此这类问题将是有中等难度的考题。

历届高考数学立体几何选择填空汇总.

历届高考数学立体几何选择填空汇总.

人大行政管理考研复试真题心得分享作为考研复试的一部分,面试环节是很多考生备战过程中感到较为紧张的一环。

而作为人大行政管理的考研复试科目之一,面试的通过与否对考生未来的发展具有重要的影响。

在这里,我将分享一些关于人大行政管理考研复试真题的心得体会,希望对正在备考的考生们有所帮助。

首先,了解考研大纲是非常重要的。

考研大纲是考生备考的的重要依据,熟悉大纲不仅可以了解考试的内容和要求,还可以帮助考生明确备考的重点和方向,提高备考效率。

在备考过程中,我会仔细研读大纲,并将其划分为不同的模块,逐一进行学习和掌握。

同时,大纲中的每个考点都应该被掌握并独立进行总结,这样可以确保自己在复试中可以有足够的答题材料。

其次,考研笔记的整理与积累是备考过程中不可或缺的一环。

在复习的过程中,我会针对每个考点进行详细的笔记整理。

这不仅可以帮助我加深对知识点的理解和记忆,还可以方便我在复习过程中进行查阅。

考研笔记的整理应该注重概念的讲解、案例的引用以及自己对于知识的理解与补充,这样才能帮助我更好地回答问题和理解考研真题。

最后,复试真题的练习也是非常重要的。

通过做真题可以帮助我了解考试的形式和要求,熟悉考试的节奏和时间分配。

而且,真题可以帮助我发现自己的薄弱环节和需要加强的地方。

在进行真题练习时,我会模拟考试环境,合理安排时间,注重思路的清晰和表达的准确。

每做完一套真题,我会仔细分析自己的答题情况,找出不足之处,并进行针对性的复习和提高,以争取在实际考试中能够得心应手。

总结起来,人大行政管理考研复试是需要考生全方位准备的一个环节,综合素质和学科基础都是重要的考察要素。

在备考过程中,我们应该密切关注考研大纲,合理安排复习时间,积极整理和记忆相关知识点,同时进行适当的真题练习。

只有全面准备,才能在复试中取得好的成绩。

希望以上的分享能够对正在备考人大行政管理考研复试的考生们有所帮助。

祝愿大家能够顺利通过复试,实现自己的考研梦想!。

《立体几何》知识点填空(教师版)

《立体几何》知识点填空(教师版)

《立体几何》知识点填空(教师版)一、两个元素之间的关系(以下公理、定理、结论,均分别用“文字、图形、符号”这三种语言描述)(一)“点与直线”之间有 2 种关系?(1)过空间中一点作已知直线的平行线,共有1条?作平行面,共有无数个?(2)过空间中一点作已知直线的垂线,共有无数条?作垂面,共有1个?(二)“点与平面”之间有2种关系?【公理1】如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

【应用】①检验桌面是否平;②判断直线是否在平面内。

【公理2】经过不在同一条直线上的三点,有且只有一个平面。

推论1:一直线和直线外一点确定唯一平面。

推论2:两相交直线确定唯一平面。

推论3:两平行直线确定唯一平面。

【应用】①它是空间内确定平面的依据;②它是证明平面重合的依据。

(1)过空间中一点作已知平面的平行线,共有无数条?作平行面,共有1个?(2)过空间中一点作已知平面的垂线,共有1条?作垂面,共有无数个?(三)“直线与直线”之间有3种关系?【等角定理】如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

【异面直线判定定理】过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线。

(四)“直线与平面”之间有3种关系?(五)“平面与平面”之间有2种关系?【公理1】夹在两平行平面间的平行线段相等。

【公理2】如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

【应用】①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

(六)空间中的平行问题定理1(线面平行的判定):平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

定理2(面面平行的判定):如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

定理4(面面平行的性质1):如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

高考数学立体几何多选题知识点-+典型题附解析

高考数学立体几何多选题知识点-+典型题附解析

高考数学立体几何多选题知识点-+典型题附解析一、立体几何多选题1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC 6 【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD=+-=+, 所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ,()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD ABAB AD BD ,1116cos ,23⋅<>===⋅B AC D BD BD AC AC,故D 不正确;对C ,112==AC BD ,在1A AC 中,111,2,3===A A AC AC ,所以22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 21∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.2.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a,a ⎡∈⎣,()Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,22R λλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,2D R λλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,222212440AR AC λλλλλ⋅=--⋅--=-+-+=, 14λ=,此时113313022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则44,,333R ⎛⎫ ⎪ ⎪⎝⎭,142,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.3.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A , 若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234PQRSPQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin 33412S PQR PQRV PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅, 又13sin23PSRSPS PR PS PR π=⋅=⋅, 13sin 234PSQS PS PQ PS PQ π=⋅=⋅, 13sin23PQRSPQ PR PQ PR π=⋅=⋅,()12S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅,∴()3sin PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQPRPSα++=为常数,故D 正确. 故选:ABD.【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.4.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF ,,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.5.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD 【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =∈,,则12PD =,即点P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=,可判断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =,,11DD =,则12PD P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.6.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC 6D .若点E 到平面11ACC A 的距离等于32EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫⎪⎝⎭,,,3002B a ⎛⎫ ⎪ ⎪⎝⎭,,,1302B a b ⎛⎫ ⎪ ⎪⎝⎭,,,102a C b ⎛⎫- ⎪⎝⎭,,,所以1322a BC a b ⎛⎫=-- ⎪ ⎪⎝⎭,,,1322a AB a b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即222302a b ⎫⎛⎫--+=⎪ ⎪⎪⎝⎭⎝⎭,解得22b a =. 因为//DE 平面11ABB A ,则动点E 的轨迹的长度等于122BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,3002B a ⎛⎫ ⎪ ⎪⎝⎭,,,()0,0,0D ,1202a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,1322a BC a a ⎛⎫=- ⎪ ⎪⎝⎭,-,, 因为211162cos ,||||622a BC DA BC DA BC DA a a ⎛⎫- ⎪⋅⎝⎭<>===-,所以异面直线1,BC DA 所成角的余弦值为66,选项C 正确. 对于选项D ,设点E 在底面ABC 的射影为1E ,作1E F 垂直于AC ,垂足为F ,若点E 到平面11ACC A 的距离等于3EB ,即有31E F EB =,又因为在1CE F ∆中,3112E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.7.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D DB .1BD ⊥平面1ACBC .1BD 与底面11BCC B 所成角的正切值是2D .过点1A 与异面直线AD 与1CB 成60角的直线有2条【答案】ABD【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D .【详解】 对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥,由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1AC B C C =,1BD ∴⊥平面1ACB ,故B 正确; 对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =,则221cos ,21DA m DA m DA my z ⋅<>===⋅++, 1122111cos ,221CB m z CB m CB m y z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-+或12z =--,由已知可得3z ≤,所以,12z =-+,可得22y =±,因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确.故选:ABD.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.8.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°]D .直线C 1P 与平面A 1C 1D 6 【答案】ABD【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P ﹣A 1C 1D 的体积为定值;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°];在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线C 1P 与平面A 1C 1D. 【详解】解:在A 中,∵A 1C 1⊥B 1D 1,A 1C 1⊥BB 1,B 1D 1∩BB 1=B 1,∴A 1C 1⊥平面BB 1D 1,∴A 1C 1⊥BD 1,同理,DC 1⊥BD 1,∵A 1C 1∩DC 1=C 1,∴直线BD 1⊥平面A 1C 1D ,故A 正确;在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D ,∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1),设平面A 1C 1D 的法向量(),,n x y z =, 则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n ,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为: 11||||||C P n C Pn ⋅⋅=∴当a=12时,直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为3,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解;(2)、用空间向量坐标公式求解.。

专题10 立体几何选择填空题(解析版)

专题10 立体几何选择填空题(解析版)

专题10立体几何选择填空题1.【2019年新课标3文科08】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【解答】解:∵点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED的中点,∴BM⊂平面BDE,EN⊂平面BDE,∵BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,∴直线BM,EN是相交直线,设DE=a,则BD,BE,∴BM a,EN a,∴BM≠EN,故选:B.2.【2019年新课标2文科07】设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【解答】解:对于A,α内有无数条直线与β平行,α∩β或α∥β;对于B,α内有两条相交直线与β平行,α∥β;对于C,α,β平行于同一条直线,α∩β或α∥β;对于D,α,β垂直于同一平面,α∩β或α∥β.故选:B.3.【2018年新课标2文科09】在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.B.C.D.【解答】解以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),(﹣2,2,1),(0,﹣2,0),设异面直线AE与CD所成角为θ,则cosθ,sinθ,∴tanθ.∴异面直线AE与CD所成角的正切值为.故选:C.4.【2018年新课标1文科05】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R,则该圆柱的表面积为:12π.故选:B.5.【2018年新课标1文科09】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.6.【2018年新课标1文科10】在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6C.8D.8【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC12.可得BB12.所以该长方体的体积为:28.故选:C.7.【2018年新课标3文科03】中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.8.【2018年新课标3文科12】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC的外心为O′,显然D在O′O的延长线与球的交点如图:O′C,OO′2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:18.故选:B.9.【2018年北京文科06】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:P A⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△P AB,△PBC,△P AD.故选:C.10.【2017年新课标1文科06】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.11.【2017年新课标2文科06】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10•π•32×6=63π,故选:B.12.【2017年新课标3文科09】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r,∴该圆柱的体积:V=Sh.故选:B.13.【2017年新课标3文科10】在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC【解答】解:法一:连B1C,由题意得BC1⊥B1C,∵A1B1⊥平面B1BCC1,且BC1⊂平面B1BCC1,∴A1B1⊥BC1,∵A1B1∩B1C=B1,∴BC1⊥平面A1ECB1,∵A1E⊂平面A1ECB1,∴A1E⊥BC1.故选:C.法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),(﹣2,1,﹣2),(0,2,2),(﹣2,﹣2,0),(﹣2,0,2),(﹣2,2,0),∵•2,2,0,6,∴A1E⊥BC1.故选:C.14.【2017年北京文科06】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积10.故选:D.15.【2019年天津文科12】已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于;由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:v=sh=π()2×1;故答案为:16.【2019年新课标3文科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.【解答】解:该模型为长方体ABCD﹣A1B1C1D1,挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,∴该模型体积为:V O﹣EFGH=6×6×4=144﹣12=132(cm3),∵3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g).故答案为:118.8.17.【2019年新课标1文科16】已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为.【解答】解:∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,过点P作PD⊥AC,交AC于D,作PE⊥BC,交BC于E,过P作PO⊥平面ABC,交平面ABC于O,连结OD,OC,则PD=PE,∴CD=CE=OD=OE1,∴PO.∴P到平面ABC的距离为.故答案为:.18.【2019年北京文科12】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V.故答案为:40.19.【2019年北京文科13】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.20.【2018年新课标2文科16】已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA=4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V8π.故答案为:8π.21.【2018年天津文科11】如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为.【解答】解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1.则四棱锥A1﹣BB1D1D的体积为:.故答案为:.22.【2017年新课标2文科15】长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O 的表面积为.【解答】解:长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,可知长方体的对角线的长就是球的直径,所以球的半径为:.则球O的表面积为:414π.故答案为:14π.23.【2017年新课标1文科16】已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得r=3.球O的表面积为:4πr2=36π.故答案为:36π.24.【2017年天津文科11】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R,则球的体积Vπ•()3;故答案为:.1.【2019年湖北省武汉市高考数学(5月份)模拟】已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( )A .4BC .D .【答案】B 【解析】设长方体的三条棱的长分别为:,,x y z ,则2()524()36xy yz zx x y z ++=⎧⎨++=⎩,===.故选:B .2.【湖北省黄冈中学2019届高三第三次模拟】已知正方体1111ABCD A B C D -的棱长为1,在对角线1A D 上取点M ,在1CD 上取点N ,使得线段MN 平行于对角面11A ACC ,则||MN 的最小值为( )A .1 BC .2D 【答案】D 【解析】作1MM AD ⊥,垂足为1M ,作1NN CD ⊥,垂足为1N ,如下图所示:在正方体1111ABCD A B C D -中,根据面面垂直的性质定理,可得11,MM NN ,都垂直于平面ABCD ,由线面垂直的性质,可知11MM NN ,易知:1111//M M A N N ACC 平面,由面面平行的性质定理可知://11M N AC ,设11DM DN x ==,在直角梯形11MM N N 中,222211)(12)633MN x x x ⎛⎫=+-=-+ ⎪⎝⎭,当13x =时,||MN 故本题选D.3.【广东省2019届高考适应性考试】平面四边形ABCD 中,AD AB ==CD CB ==AD AB ⊥,现将ABD ∆沿对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 的过程中,直线A C '与平面BCD 所成最大角的正切值为( )A .2B .12C D .3【答案】D 【解析】 取BD 的中点O,则,,,A B A D BC CD A O BD CO BD '''==∴⊥⊥即BD ⊥平面A OC ',从而平面BCD ⊥平面A OC ',因此A '在平面BCD 的射影在直线OC 上,即A CO '∠为直线A C '与平面BCD 所成角,因为AD AB ==CD CB ==AD AB ⊥,所以111,2sin sin sin 22A O A O OC A CO OA C OA C OC '''''==∴∠=∠=∠≤,即A CO '∠最大值为π6,因此直线A C '与平面BCD 所成最大角的正切值为πtan 63=,选D.4.【山东省淄博市部分学校2019届高三5月阶段性检测】在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,并且保持1AP BD ⊥,则动点P 的轨迹为 ( )A .线段1BC B .线段1BCC .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段 【答案】A 【解析】如图,连接AC ,1AB ,1B C ,在正方体1111ABCD A B C D -中,有1BD ⊥面1ACB , 因为1AP BD ⊥,所以AP ⊂面1ACB , 又点P 在侧面11BCC B 及其边界上运动,∴故点P 的轨迹为面1ACB 与面11BCC B 的交线段1CB .故选:A .5.【四川省名校联盟2019届高考模拟信息卷(一)】已知一个几何体的三视图如图所示,其中俯视图是一个边长为2的正方形,则该几何体的表面积为( )A .223B .20C .20+D .20+【答案】C 【解析】解:该几何体是棱长为2的正方体削去一个角后得到的几何体(如图),其表面积为()122132222222S +⨯=⨯⨯+⨯+⨯⨯1202+⨯=.故选C.6.【山东省淄博市部分学校2019届高三5月阶段性检测】如图,在正方体1111ABCD A B C D -中,点F 是线段1BC 上的动点,则下列说法错误..的是( )A .当点F 移动至1BC 中点时,直线1A F 与平面1BDC 所成角最大且为60B .无论点F 在1BC 上怎么移动,都有11A F BD ⊥C .当点F 移动至1BC 中点时,才有1A F 与1BD 相交于一点,记为点E ,且12A EEF= D .无论点F 在1BC 上怎么移动,异面直线1A F 与CD 所成角都不可能是30 【答案】A 【解析】对于A ,当点F 移动到1BC 的中点时,直线1A F 与平面1BDC 所成角由小到大再到小,如图1所示;且F 为1B C的中点时最大角的余弦值为11132OF A F ==<,最大角大于60︒,所以A 错误; 对于B ,在正方形中,1DB ⊥面11A BC ,又1A F ⊂面11A BC ,所以11A F B D ⊥,因此B 正确; 对于C ,F 为1BC 的中点时,也是1B C 的中点,它们共面于平面11A B CD ,且必相交,设为E ,连1A D 和1B F ,如图2,根据△1A DE ∽△1FB E ,可得1112A E DA EF B F==,所以C 正确;对于D ,当点F 从B 运动到1C 时,异面直线1A F 与CD 所成角由大到小再到大,且F 为1B C 的中点时最小角的正切值为2123=>,最小角大于30°,所以D 正确;故选:A .7.【山东省栖霞市2019届高三高考模拟卷】已知P ,A ,B ,C ,D 是球O 的球面上的五个点,四边形ABCD 为梯形,//AD BC ,2AB DC AD ===,4BC PA ==,PA ⊥面ABCD ,则球O 的体积为( )A .3B .3C .D .16π【答案】A 【解析】取BC 中点E ,连接,,AE DE BD//AD BC 且12AD BC EC == ∴四边形ADCE 为平行四边形 AE DC∴=,又12DC BC = 12D E B C ∴= AE DE BE EC ∴===E ∴为四边形ABCD 的外接圆圆心设O 为外接球的球心,由球的性质可知OE ⊥平面ABCD作OF PA ⊥,垂足为F ∴四边形AEOF 为矩形,2OF AE == 设AF x =,OP OA R ==则()22444x x +-=+,解得:2x = R ∴=∴球O 的体积:343V R π==本题正确选项:A8.【广东省东莞市2019届高三第二学期高考冲刺试题】如图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为( )A .253πB .263πC .223πD .233π【答案】A 【解析】由三视图还原原几何体,如图所示,可知原几何体为组合体,是半径为2的球的34与半径为1的球的14, 其球的组合体的体积33341425V 2143433πππ=⨯⨯+⨯⨯= . 故选:A .9.【河南省百校联盟2019届高三考前仿真试卷】阳马,中国古代算数中的一种几何形体,是底面长方形,两个三角面与底面垂直的四棱锥体,在阳马P ABCD -中,PC 为阳马P ABCD -中最长的棱,1,2,3AB AD PC ===,若在阳马P ABCD -的外接球内部随机取一点,则该点位阳马内的概率为( ) A .127πB .427πC .827πD .49π【答案】C 【解析】根据题意,PC 的长等于其外接球的直径,因为PC =3=,∴2PA =,又PA ⊥平面ABCD ,所以314431223332P ABCDV V π-⎛⎫=⨯⨯⨯==⨯ ⎪⎝⎭球,, ∴3483274332P ππ==⎛⎫⨯ ⎪⎝⎭. 10.【湖南省长沙市湖南师范大学附属中学2019届高三高考模拟(二)】已知平面α平面β=直线l ,点A 、C α∈,点B 、D β∈,且A 、B 、C 、D l ∉,点M 、N 分别是线段AB 、CD 的中点,则下列说法正确的是( )A .当2CD AB =时,M 、N 不可能重合B .M 、N 可能重合,但此时直线AC 与l 不可能相交 C .当直线AB 、CD 相交,且//AC l 时,BD 可与l 相交 D .当直线AB 、CD 异面时,MN 可能与l 平行 【答案】B 【解析】A 选项:当2CD AB =时,若,,,A BCD 四点共面且//AC BD 时,则,M N 两点能重合,可知A 错误;B 选项:若,M N 可能重合,则//AC BD ,故//AC l ,此时直线AC 与直线l 不可能相交,可知B 正确;C 选项:当AB 与CD 相交,直线//AC l 时,直线BD 与l 平行,可知C 错误;D 选项:当AB 与CD 是异面直线时,MN 不可能与l 平行,可知D 错误.本题正确选项:B11.【山东省临沂市2019届高三模拟考试(三模)】如图是某几何体的三视图,则过该几何体顶点的所有截面中,最大截面的面积是( )A .2 BC D .1【答案】A 【解析】由三视图可知其对应的几何体是一个半圆锥,且圆锥的底面半径为r =1h =,故俯视图是一个腰长为2,顶角为120的等腰三角形,易知过该几何体顶点的所有截面均为等腰三角形,且腰长为2,顶角的范围为(0,120⎤⎦, 设顶角为θ,则截面的面积:122sin 2sin 2S θθ=⨯⨯⨯=, 当90θ=时,面积取得最大值2. 故选:A .12.【江西省抚州市临川第一中学2019届高三下学期考前模拟】已知如图正方体1111ABCD A B C D -中,P 为棱1CC 上异于其中点的动点,Q 为棱1AA 的中点,设直线m 为平面BDP 与平面11B D P 的交线,以下关系中正确的是( )A .1//m D QB .1m Q B ⊥C .//m 平面11BD Q D .m ⊥平面11ABB A【答案】C 【解析】因为在正方体1111ABCD A B C D -中,11//D B BD ,且11D B ⊄平面BDP ,BD ⊂平面BDP , 所以11//D B 平面BDP ,因为11D B ⊂平面11B D P ,且平面11B D P 平面BDP m =,所以有11//m D B ,而1111D QD B D =,则m 与1D Q 不平行,故选项A 不正确;若1m Q B ⊥,则111B Q D B ⊥,显然1B Q 与11D B 不垂直,矛盾,故选项B 不正确; 若m ⊥平面11ABB A ,则11D B ⊥平面11ABB A ,显然与正方体的性质矛盾,故C 不正确; 而因为11D B ⊂平面11B D P ,m ⊄平面11B D P , 所以有//m 平面11B D P ,所以选项C 正确,.13.【山东省日照市2019届高三5月校际联合考试】如图,三棱锥A BCD -的项点,,,A B C D 都在同一球面上,BD 过球心O ,BD ABC =∆是边长为4的等边三角形,点,P Q 分别为线段BC AO ,上的动点(不含端点),且AP CQ =,则三棱锥P QOC -体积的最大值为______.【答案】23【解析】因为BD 过球心,24=BD ,所以OA OB OC ===,又△ABC 是边长为4等边三角形, 所以AO 2+CO 2=AC 2,AO 2+BO 2=AB 2,所以AO ⊥CO ,AO ⊥BO . 所以AO ⊥平面BCD ,且△BOC 也是等腰直角三角形, 设AP=CQ=x ,则211112sin ))3243323P QCOV x x x x π-⎛⎫=⋅⋅⋅⋅=≤= ⎪ ⎪⎝⎭ 当且紧当2=x 时成立. 故答案为:23. 14.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】已知两条不重合的直线m ,n ,两个不重合的平面α,β,有下列四个命题: ①若m n ∥,α⊂m ,则n α∥; ②若n α⊥,m β⊥,且m n ∥,则αβ;③若α⊂m ,n α⊂,β∥m ,n β∥,则αβ;④若αβ⊥,m αβ=,且n β⊂,n m ⊥,则n α⊥.其中所有正确命题的序号为______. 【答案】②④ 【解析】逐一考查所给的命题:①若m n ∥,α⊂m ,有可能n α⊂,不一定有n α∥,题中的命题错误; ②若n α⊥,m β⊥,且m n ∥,由线面垂直的性质定理可得αβ,题中的命题正确;③若α⊂m ,n α⊂,β∥m ,n β∥,若m n ∥,有可能α与β相交,题中的命题错误; ④若αβ⊥,m αβ=,且n β⊂,n m ⊥,由线面垂直的性质定理可得n α⊥,题中的命题正确.综上可得:正确命题的序号为②④.15.【安徽省黄山市2019届高三毕业班第三次质量检测】连接正方体每个面的中心构成一个正八面体,则该八面体的外接球与内切球体积之比为______. 【答案】.【解析】若正八面体的外接球的各个顶点都在同一个球面上,则其中ABCD 四点或AFCE 四点所组成的截面在球的一个大圆面上, 可得,此四点组成的正方形是球的大圆的一个内接正方形, 其对角线的长度即为球的直径,设正八面体边长为2,且每个侧面三角形均为等边三角形,故FE=AC=2,则外接球的半径是,又正方体中心设为O,取AB中点M,则在直角△OME中,斜边ME=,斜边ME上的高即为内切球的半径,大小为,∴外接球与内切球半径之比为,∴外接球与内切球体积之比为故答案为.16.【江苏省七市2019届高三第三次调研】已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=3 cm,BC=1 cm,CD=2 cm.将此直角梯形绕AB边所在的直线旋转一周,由此形成的几何体的体积为____cm3.【答案】【解析】依据题意,作出如下直角梯形:将此直角梯形绕AB边所在的直线旋转一周,所得几何体体积等于一个圆柱的体积和一个圆锥的体积之和。

立体几何大题(解析版)

立体几何大题(解析版)

立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | |n |(n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:则点C 0,2,0 ,D 0,0,3 ,E 233,0,0 ,则CD =0,-2,3 ,CE =233,-2,0 ,设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,因为AB ⊥AE ,则A 1B ⊥A 1E ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.因为平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,DM ⊂平面ACD ,所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),因为点M是PD的中点,所以M0,22,22,所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为AB =AC ,所以AE ⊥BC ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由已知AF =1,∠BAC =60°,所以EF =3,AE =2,BE =1,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,设平面A 1BC 的法向量为n =x ,y ,z ,则n ⋅BC =-3x +y =0n ⋅BA 1 =-3x +3z =0 ,令x =1,得n =1,3,1 ,设平面BCC 1的法向量为m =a ,b ,c ,则m ⋅BC =-3a +b =0m ⋅CC 1 =b +3c =0,令a =1,得m =1,3,-1 ,所以cos n ,m =n ⋅m n ⋅m=35⋅5=35,即二面角A 1-BC -M 的正弦值为45.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面BDF ⊥平面BCG ;(2)若平面BDF 与平面ABG 所成二面角的余弦值为155,且线段AB 长度为2,求点G 到直线DF 的距离.【答案】(1)证明见解析(2)62【分析】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,有HBCG 为平行四边形,根据题设可得FB ⊥HB ,即FB ⊥CG ,再由线面垂直的性质可得CB ⊥FB ,最后根据线面、面面垂直的判定即可证结论.(2)构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,确定相关点坐标,进而求平面BDF 、平面ABG 的法向量,利用空间向量夹角的坐标表示及已知条件可得h =2r ,即可求出点G 到直线DF 的距离.【详解】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,易知:HBCG 为平行四边形,所以HB ⎳CG ,又G 为弧CD 的中点,则H 是弧AB 的中点,所以∠HBA =45°,而由题设知:∠ABF =45°,则∠HBF =∠HBA +∠ABF =90°,所以FB ⊥HB ,即FB ⊥CG ,由CB ⊥底面ABF ,FB ⊂平面ABF ,则CB ⊥FB ,又CB ∩CG =C ,CB ,CG ⊂平面BCG ,所以FB ⊥平面BCG ,又FB ⊂平面BDF ,所以平面BDF ⊥平面BCG .(2)由题意,构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,则B 0,2r ,0 ,F 2r ,0,0 ,D 0,0,h ,G -r ,r ,h ,所以FD =-2r ,0,h ,BD =0,-2r ,h ,AB =0,2r ,0 ,AG =-r ,r ,h ,若m =x ,y ,z 是面BDF 的一个法向量,则m ⋅FD =-2rx +hz =0m ⋅BD =-2ry +hz =0 ,令z =2r ,则m =h ,h ,2r ,若n =a ,b ,c 是面ABG 的一个法向量,则n ⋅AB =2rb =0n ⋅AG =-ra +rb +hc =0 ,令c =r ,则n =h ,0,r ,所以cos m ,n =m ⋅n m n=h 2+2r 22h 2+4r 2×h 2+r 2=155,整理可得h 2-4r 2 h 2+2r 2 =0,则h =2r ,又AB =2,由题设可知,此时点G -1,1,2 ,D 0,0,2 ,F 2,0,0 ,则DF =2,0,-2 ,DG =-1,1,0 ,所以点G 到直线DF 的距离d =DG 2-DG ⋅DF 2DF2=62.13(22·23下·江苏·三模)如图,圆锥DO 中,AE 为底面圆O 的直径,AE =AD ,△ABC 为底面圆O 的内接正三角形,圆锥的高DO =18,点P 为线段DO 上一个动点.(1)当PO =36时,证明:PA ⊥平面PBC ;(2)当P 点在什么位置时,直线PE 和平面PBC 所成角的正弦值最大.【答案】(1)证明见解析;(2)P 点在距离O 点36处【分析】(1)利用勾股定理证明出AP ⊥BP 和AP ⊥CP ,再用线面垂直的判定定理证明出PA ⊥平面PBC ;(2)建立空间直角坐标系,利用向量法求解.【详解】(1)因为AE =AD ,AD =DE ,所以△ADE 是正三角形,则∠DAO =π3,又DO ⊥底面圆O ,AE ⊂底面圆O ,所以DO ⊥AE ,在Rt △AOD 中,DO =18,所以AO =DO 3=63,因为△ABC 是正三角形,所以AB =AO ×32×2=63×3=18,AP =AO 2+PO 2=92,BP =AP ,所以AP 2+BP 2=AB 2,AP ⊥BP ,同理可证AP ⊥CP ,又BP ∩PC =P ,BP ,PC ⊂平面PBC ,所以PA ⊥平面PBC .(2)如图,建立以O 为原点的空间直角坐标系O -xyz .设PO =x ,(0≤x ≤18),所以P 0,0,x ,E -33,9,0 ,B 33,9,0 ,C -63,0,0 ,所以EP =33,-9,x ,PB =33,9,-x ,PC =-63,0,-x ,设平面PBC 的法向量为n =a ,b ,c ,则n ⋅PB =33a +9b -cx =0n ⋅PC =-63a -cx =0,令a =x ,则b =-3x ,c =-63,故n =x ,-3x ,-63 ,设直线PE 和平面PBC 所成的角为θ,则sin θ=cos EP ,n =33x +93x -63x 108+x 2⋅x 2+3x 2+108=63x 108+x 2⋅4x 2+108=634x 2+1082x 2+540≤6324x 2⋅1082x 2+540=13,当且仅当4x 2=1082x 2,即PO =x =36时,直线PE 和平面PBC 所成角的正弦值最大,故P 点在距离O 点36处.14(22·23下·镇江·三模)如图,四边形ABCD 是边长为2的菱形,∠ABC =60°,四边形PACQ 为矩形,PA =1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP ,DP 与平面ABCD 所成角相等;②三棱锥P -ABD 体积为33;③cos ∠BPA =55(1)平面PACQ ⊥平面ABCD ;(2)求二面角B -PQ -D 的大小;(3)求点C 到平面BPQ 的距离.【答案】(1)证明见解析(2)2π3(3)32【分析】(1)若选①,则作PA ⊥面ABCD ,证明A 和A 重合从而得到PA ⊥面ABCD ,从而得到面面垂直;若选②,计算得到P 到面ABD 的距离h =1=PA ,得到PA ⊥面ABCD ,从而得到面面垂直;若选③,通过余弦定理计算得到PA ⊥AB ,再通过PA ⊥面ABCD ,从而得到面面垂直;(2)通过建立空间直角坐标系,求出两个平面的法向量,结合二面角计算公式计算即可;(3)通过点面距离的计算公式直接计算即可.【详解】(1)选①,连接BD ,作PA ⊥面ABCD ,垂足为A .∵BP ,DP 与平面ABCD 所成角相等,∴A B =A D ,∴A 在BD 的中垂线AC 上,∵在平面PACQ 内,PA ⊥AC ,PA ⊥AC ,∴A 和A 重合,∴PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD若选②,设P 到面ABD 的距离为h ,∵V P -ABD =13S △ABD ⋅h =13×3⋅h =33,得h =1=PA ,∴PA 即为P 到面ABD 的距离,即PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD .若选③,由余弦定理得,cos ∠BPA =PB 2+PA 2-AB 22PB ⋅PA =55,∴BP =5,∴BP 2=AP 2+AB 2∴PA ⊥AB ,又PA ⊥AC ,AC ∩AB =A ,AC ,AB ⊂面ABCD∴PA ⊥面ABCD ,又PA ⊂面PACQ∴面PACQ ⊥面ABCD(2)因为PA ⊥面ABCD ,OB ,OC ⊂面ABCD ,所以PA ⊥OB ,PA ⊥OC ,取PQ 中点G ,则OG ⎳PA ,所以OG ⊥OB ,OG ⊥OC ,又因为OB ⊥OC ,所以建立如下图所示空间直角坐标系,∵B 3,0,0 ,P 0,-1,1 ,D -3,0,0 ,Q 0,1,1 ,∴BQ =-3,1,1 ,DQ =3,1,1 ,DP =3,-1,1 ,设平面BPQ 的一个法向量为m =x ,y ,z ,则m⋅BP =0m ⋅BQ =0 ,即-3x -y +z =0-3x +y +z =0 ,令x =3,则y =0,z =3,∴m =3,0,3 ,设平面DPQ 的一个法向量为n =x 1,y1,z 1 ,则n ⋅DP=0n ⋅DQ =0 ,即3x 1-y 1+z 1=3x 1+y 1+z 1=0,令x1=3,则y 1=0,z 1=-3,∴n =3,0,-3 ,∴cos m ,n =m ⋅n m ⋅ n =-623×23=-12,∵m ,n ∈0,π ,∴m ,n =2π3,由图可知二面角B -PQ -D 是钝角,所以二面角B -PQ -D 的大小为2π3.(3)∵C 0,1,0 ,Q 0,1,1 ,∴CQ =0,0,1 ,∵平面BPQ 的一个法向量为m =3,0,3 ,∴点C 到平面BPQ 的距离d =CQ ⋅m m=323=32.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.【答案】(1)证明见解析(2)EP EA 1=25【分析】(1)作B 1O ⊥AB 交AB 于O 点,由面面垂直的性质可得B 1O ⊥平面ABC ,可得B 1O ⊥AC ,再由线面垂直的判定定理得AC ⊥平面A 1B 1BA ,从而得到AC ⊥A 1B ,再由线面垂直的判定定理可得答案;(2)以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,设EP =λEA 1 ,可得AP =-λ,1-λ,3λ ,求出平面A 1BE 的一个法向量,由线面角的向量求法可得答案.【详解】(1)因为侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB =AC =2,所以△ABB 1、△AA 1B 1为边长为2的等边三角形,作B 1O ⊥AB 交AB 于O 点,则O 点为AB 的中点,因为平面A 1B 1BA ⊥平面ABC ,平面A 1B 1BA ∩平面ABC =AB ,B 1O ⊂平面A 1B 1BA ,所以B 1O ⊥平面ABC ,AC ⊂平面ABC ,可得B 1O ⊥AC ,又AB 1⊥AC ,B 1O ∩AB 1=B 1,B 1O 、AB 1⊂平面A 1B 1BA ,可得AC ⊥平面A 1B 1BA ,因为A 1B ⊂平面A 1B 1BA ,所以AC ⊥A 1B ,因为侧面A 1B 1BA 为菱形,所以B 1A ⊥A 1B ,AB 1∩AC =A ,AB 1、AC ⊂平面AB 1C ,所以A 1B ⊥平面AB 1C ;(2)由(1)知,AC ⊥平面A 1B 1BA ,∠BAC =π2,取做A 1B 1的中点O 1,连接AO 1,则B1O ⎳AO 1,所以AO 1⊥平面ABC ,以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则A 0,0,0 ,A 1-1,0,3 ,B 2,0,0 ,E 0,1,0 ,A 1B =3,0,-3 ,EA 1 =-1,-1,3 ,设EP =λEA 1 ,可得P -λ,1-λ,3λ ,所以AP =-λ,1-λ,3λ ,设平面A 1BE 的一个法向量为n=x ,y ,z ,则A 1B ⋅n=0EA 1 ⋅n =0,即3x -3z =0-x -y +3z =0 ,令z =3,可得n =1,2,3 ,可得sin π4=cos n ,AP =n ⋅AP n AP=-λ+2-2λ+3λ 1+4+3λ2+1-λ 2+3λ2,解得λ=0舍去,或λ=25,所以EP EA 1=25.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.【答案】(1)N 是CD 的中点(2)12,1,0 ,-1310,1,185 【分析】(1)根据面面平行的性质证明MN ⎳PC ,即可得解;(2)先根据球的体积求出PQ ,然后根据空间中两点间的距离公式即可得解.【详解】(1)因为平面OMN ⎳平面PBC ,平面OMN ∩平面PCD =MN ,平面PBC ∩平面PCD =PC ,所以MN ⎳PC ,因为M 是PD 的中点,所以N 是CD 的中点;(2)由题意4π×PQ 22=214π,解得PQ =212,设MQ =λMN,λ∈R ,由题意,P 0,0,2 ,M 0,1,1 ,N 12,1,0 ,则PM =0,1,-1 ,MN =12,0,-1 ,则PQ =PM +MQ =0,1,-1 +λ12,0,-1 =λ2,1,-λ-1 ,则λ24+1+-λ-1 2=212,解得λ=1或λ=-135,当λ=1时,MQ =MN ,则Q 12,1,0 ,当λ=-135时,MQ =-135MN =-1310,0,135,设Q x ,y ,z ,则MQ =x ,y -1,z -1 =-1310,0,135,所以x =-1310y -1=0z -1=135 ,解得x =-1310y =1z =185 ,则Q -1310,1,185 ,综上所述点Q 的坐标为12,1,0,-1310,1,185 .17(22·23·汕头·三模)如图,圆台O 1O 2的轴截面为等腰梯形A 1ACC 1,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点.(1)在平面BCC 1内,过C 1作一条直线与平面A 1AB 平行,并说明理由;(2)若四棱锥B -A 1ACC 1的体积为23,设平面A 1AB ∩平面C 1CB =l ,Q ∈l ,求CQ 的最小值.【答案】(1)作图见解析,理由见解析(2)7【分析】(1)根据线面平行的判定和中位线定理即可求解;(2)根据几何关系或空间向量方法即可求解.【详解】(1)取BC 中点P ,作直线C 1P 即为所求,取AB 中点H ,连接A 2H ,PH ,则有PH ∥AC ,PH =12AC ,如图,在等腰梯形A 1ACC 1中,A 1C 1=12AC ,有HP ∥A 1C 1,HP =A 1C 1,则四边形A 1C 1PH 为平行四边形,即有C 1P ∥A 1H ,又A 1H ⊂平面A 1AB ,C 1P⊄平面A 1AB ,所以C 1P ∥平面A 1AB .(2)法一:延长AA 1,CC 1交于点O ,故O ∈AA 1⊂平面ABA 1,O ∈CC 1⊂平面CC 1B故平面A 1AB ∩平面C 1CB =BO ,BO 即l ,在△OBC 中,OC ,OB 均为圆锥母线.过点B 作BO ⊥AC 于O .在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高h =AA 21-AC -A 1C 122=3,∴等腰梯形A 1ACC 1的面积为S =122+4 3=33,所以四棱锥B -A 1ACC 1的体积V =13S ×BO =13×33×BO =23,解得BO =2,故点O 与O 2重合,BC =22由AC =2AA 1=2A 1C 1,得OC =2CC 1,且∠C 1CA =60°,故OC =AC =4=OB .△OBC 中,O 到BC 距离h 1=OB 2-BC 22=14.则△OBC 面积=12OB ⋅CQ min =12BC ⋅h 1,得:CQ 的最小值为:CQ min =22⋅144=7.法二:同法一求出B 的位置.以O 2为原点,OB ,OC ,O 2O 1方向为x ,y ,z 轴正向建立空间直角坐标系,C 0,2,0 ,B 2,0,0 ,AA 1 =0,1,3 ,AB =2,2,0 ,CC 1 =0,-1,3 ,BC=-2,2,0设面A 1AB 的法向量为a=x 1,y 1,z 1a ⋅AA 1=y 1+3z 1=0a ⋅AB=2x 1+2y 1=0,取z 1=1,有a=3,-3,1 ;同理可得面C 1CB 的法向量为β=3,3,1 ,由l =面C 1CB ∩面A 1AB ,可知B ∈l ,设l 的方向向量为l=x ,y ,z ,故l ⋅a =3x -3y +z =0,l ⋅β=3x +3y +z =0取l=1,0,3 ,下面分2个方法求|CQ |min求|CQ |min 方法1:BQ =l=t ,0,3t ,,∵B 2,0,0 ,∴Q t -2,0,3t∴CQ =(t -2)2+22+(3t )2=4t 2-4t +8,当t =12时,CQ 取最小值为7.求CQ min 方法2:BC 在l 上的投影向量的模为BC ⋅l l =-2×1+2×0+0×32=1故CQ 的最小值即C 到l 的距离为BC 2-12=7.法三:在三角形△BCO 中,BO =CO =4,BC =22,cos ∠CBO =42+(22)2-422×4×22=122⋅sin ∠CBO =1-1222=722,所以CQ ≥CB sin ∠CBO =722×22=7.18(19·20下·临沂·二模)如图①,在Rt △ABC 中,B 为直角,AB =BC =6,EF ∥BC ,AE =2,沿EF 将△AEF 折起,使∠AEB =π3,得到如图②的几何体,点D 在线段AC 上.(1)求证:平面AEF ⊥平面ABC ;(2)若AE ⎳平面BDF ,求直线AF 与平面BDF 所成角的正弦值.【答案】(1)证明见解析;(2)64.【分析】(1)由余弦定理计算证明EA ⊥AB ,再利用线面垂直的判定、性质,面面垂直的判定推理作答.(2)以A 为原点,建立空间直角坐标系,利用空间向量求线面角的正弦作答.【详解】(1)在△ABE 中,AE =2,BE =4,∠AEB =π3,由余弦定理得:AB 2=AE 2+BE 2-2AE ⋅BE cos ∠AEB =4+16-2×2×4×12=12,则AB =23,有EB 2=EA 2+AB 2,于是∠EAB =π2,即有EA ⊥AB ,又EF ⊥EB ,EF ⊥EA ,EA ∩EB =E ,EA ,EB ⊂平面ABE ,因此EF ⊥平面ABE ,而AB ⊂平面ABE ,则EF ⊥AB ,又因为EA ∩EF =E ,EA ,EF ⊂平面AEF ,从而AB ⊥平面AEF ,而AB ⊂平面ABC ,所以平面AEF ⊥平面ABC .(2)以A 为原点,以AB ,AE 分别为x ,y 轴,过点A 垂直于平面ABE 的直线为z 轴,建立空间直角坐标系,如图,由(1)知,EF ⊥平面ABE ,而EF ⎳BC ,则有BC ⊥平面ABE ,则A (0,0,0),B (23,0,0),E (0,2,0),F (0,2,2),C (23,0,6),AF =(0,2,2),FB =(23,-2,-2),AC=(23,0,6),连接EC 与FB 交于点G ,连接DG ,因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =DG ,则AE ⎳GD ,有GC GE =DCDA,在四边形BCFE 中,由EF ⎳BC ,得GC GE =BC EF =3,即DC DA=3,AD =14AC =32,0,32 ,FD =AD -AF =32,-2,-12,设平面BDF 的法向量为n =(x ,y ,z ),则n ⋅FD =32x -2y -12z =0n ⋅FB =23x -2y -2z =0,令x =1,得n =(1,0,3),设直线AF 与平面BDF 所成角为θ,于是sin θ=|cos ‹n ,AF ›|=|n ⋅AF ||n ||AF |=2322×2=64,所以直线AF 与平面BDF 所成角的正弦值为64.19(22·23下·广州·三模)如图,四棱锥P -ABCD 的底面为正方形,AB =AP =2,PA ⊥平面ABCD ,E ,F 分别是线段PB ,PD 的中点,G 是线段PC 上的一点.(1)求证:平面EFG ⊥平面PAC ;(2)若直线AG 与平面AEF 所成角的正弦值为13,且G 点不是线段PC 的中点,求三棱锥E -ABG 体积.【答案】(1)证明见解析(2)19【分析】(1)由线面垂直判定可证得BD ⊥平面PAC ,由中位线性质知EF ⎳BD ,从而得到EF ⊥平面PAC ,由面面垂直判定可得结论;(2)以A 为坐标原点可建立空间直角坐标系,设PG =λPC ,λ∈0,12 ∪12,1 ,由线面角的向量求法可构造方程求得λ,结合垂直关系可得G 平面PAB 的距离为16BC =13,利用棱锥体积公式可求得结果.【详解】(1)连接BD ,∵E ,F 分别是线段PB ,PD 的中点,∴EF ⎳BD ,∵底面四边形ABCD 为正方形,∴BD ⊥AC ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD ,又PA ∩AC =A ,PA ,AC ⊂平面PAC ,∴BD ⊥平面PAC ,∵EF ⎳BD ,∴EF ⊥平面PAC ,又EF ⊂平面EFG ,∴平面EFG ⊥平面PAC .(2)以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,E 1,0,1 ,F 0,1,1 ,P 0,0,2 ,C 2,2,0 ,设PG =λPC ,λ∈0,12 ∪12,1 ,则AG =AP +PG =0,0,2 +2λ,2λ,-2λ =2λ,2λ,2-2λ ,AE =1,0,1 ,AF =0,1,1 ,设平面AEF 的一个法向量为n=x ,y ,z ,则n ⋅AE=x +z =0n ⋅AF=y +z =0,令z =-1,解得:x =1,y =1,∴n =1,1,-1 ;设直线AG 与平面AEF 所成角为θ,sin θ=cos n ,AG =n ⋅AGn ⋅AG=6λ-2 3⋅4λ2+4λ2+2-2λ 2=13,解得:λ=16或λ=12(舍),∴PG =16PC ,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC ;∵BC ⊥AB ,PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴BC ⊥平面PAB ,∴G 到平面PAB 的距离为16BC =13,∴V E -ABG =V G -ABE =13S △ABE ⋅16BC =13×12×12×2×2×13=19.20(22·23下·长沙·一模)斜三棱柱ABC -A 1B 1C 1的各棱长都为2,∠A 1AB =60°,点A 1在下底面ABC 的投影为AB 的中点O .(1)在棱BB 1(含端点)上是否存在一点D 使A 1D ⊥AC 1若存在,求出BD 的长;若不存在,请说明理由;(2)求点A 1到平面BCC 1B 1的距离.【答案】(1)存在,BD =25(2)2155【分析】(1)连接OC ,以O 点为原点,如图建立空间直角坐标系,设BD =tBB 1 ,t ∈0,1 ,根据AC 1 ⋅A 1D=0,求出t 即可;(2)利用向量法求解即可.【详解】(1)连接OC ,因为AC =BC ,O 为AB 的中点,所以OC ⊥AB ,由题意知A 1O ⊥平面ABC ,又AA 1=2,∠A 1AO =60°,所以A 1O =3,以O 点为原点,如图建立空间直角坐标系,则A 10,0,3 ,A 1,0,0 ,B -1,0,0 ,C 0,3,0 ,由AB =A 1B 1得B 1-2,0,3 ,同理得C 1-1,3,3 ,设BD =tBB 1,t ∈0,1 ,得D -1-t ,0,3t ,又AC 1 =-2,3,3 ,A 1D =-1-t ,0,3t -3 ,由AC 1 ⋅A 1D=0,得-2-1-t +33t -3 =0,得t =15,又BB 1=2,∴BD =25,∴存在点D 且BD =25满足条件;(2)设平面BCC 1B 1的法向量为n=x ,y ,z ,BC =1,3,0 ,CC 1 =-1,0,3 ,则有n ⋅BC=x +3y =0n ⋅CC 1=-x +3z =0,可取n =3,-1,1 ,又BA 1=1,0,3 ,∴点A 1到平面BCC 1B 1的距离为d =BA 1 cos BA 1 ,n =BA 1 ×3+0+3BA 1×5=2155,∴所求距离为2155.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.【答案】(1)2(2)证明见解析【分析】(1)通过证明线线和线面垂直,并结合已知条件即可得出三棱锥C -A 1B 1C 1的体积;(2)建立空间直角坐标系,表达出各点的坐标,求出所成角为α与β的正余弦值,即可证明结论.【详解】(1)由题意,∵平面ABB 1A 1⊥平面ABC ,且平面ABB 1A 1∩平面ABC =AB ,AB ⊥BC ,BC ⊂平面ABC ∴BC ⊥平面ABB 1A 1,∵BB 1⊂平面ABB 1A 1,∴BC ⊥BB 1,又AC ⊥BB 1,BC ∩AC =C ,BC ,AC ⊂平面ABC ∴BB 1⊥平面ABC ,连接C 1B ,∵DE ⎳平面BCC 1B 1,DE ⊂平面ABC 1,平面ABC 1∩平面BCC 1B 1=C 1B ,∴DE ∥C 1B ,∵AE =2EB ,∴AD =2DC 1 ,∴A 1C 1=12AC .∴三棱锥C -A 1B 1C 1底面A 1B 1C 1的面积S 1=12×2×3=3,高h =BB 1=2,。

高考数学立体几何多选题知识归纳总结及解析

高考数学立体几何多选题知识归纳总结及解析

高考数学立体几何多选题知识归纳总结及解析一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯ 又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124D S BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而332333328A S ⎛⎫=⨯⨯=> ⎪ ⎪⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系. 设(),,M x y z ,则(),,AM x y z =,222AM x y z =++,(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.3.如图所示,正三角形ABC 中,D ,E 分别为边AB ,AC 的中点,其中AB =8,把△ADE 沿着DE 翻折至A 'DE 位置,使得二面角A '-DE -B 为60°,则下列选项中正确的是( )A .点A '到平面BCED 的距离为3B .直线A 'D 与直线CE 所成的角的余弦值为58C .A 'D ⊥BDD .四棱锥A '-BCED 237【答案】ABD 【分析】作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N .利用线面垂直的判定定理判定CD ⊥平面A'MN ,利用面面垂直的判定定理与性质定理得到'A 到平面面BCED 的高A'H ,并根据二面角的平面角,在直角三角形中计算求得A'H 的值,从而判定A;根据异面直线所成角的定义找到∠A'DN 就是直线A'D 与CE 所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N ,在利用外接球的球心的性质进行得到四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,经过计算求解可得半径从而判定D. 【详解】如图所示,作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N . 则A'M ⊥DE ,MN ⊥DE , ,∵'A M ∩MN =M ,∴CD ⊥平面A'MN , 又∵CD ⊂平面ABDC ,∴平面A'MN ⊥平面ABDC , 在平面A'MN 中作A'H ⊥MN ,则A'H ⊥平面BCED , ∵二面角A'-DE -B 为60°,∴∠A'EF =60°,∵正三角形ABC 中,AB =8,∴AN =43∴A'M 3,∴A'H =A'M sin60°=3,故A 正确; 连接DN ,易得DN ‖EC ,DN =EC =4, ∠A'DN 就是直线A'D 与CE 所成的角, DN =DA'=4,A'N =A'M 3,cos ∠A'DN =22441252448+-=⨯⨯,故B 正确;A'D =DB =4,22121627A N BN +=+=',∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()()22222433x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P , 则HP =x ,易得()()22222433x x R +=++=, 解得23x =, ∴244371699R ⨯=+=,2373R ∴=,故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.4.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为32C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确;故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.5.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为6,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.6.已知直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,D 是AC 的中点,O 为1A C 的中点.点P 是1BC 上的动点,则下列说法正确的是( )A .当点P 运动到1BC 中点时,直线1A P 与平面111ABC 5B .无论点P 在1BC 上怎么运动,都有11A P OB ⊥C .当点P 运动到1BC 中点时,才有1A P 与1OB 相交于一点,记为Q ,且113PQ QA = D .无论点P 在1BC 上怎么运动,直线1A P 与AB 所成角都不可能是30° 【答案】ABD 【分析】构造线面角1PA E ∠,由已知线段的等量关系求1tan EPPA E AE∠=的值即可判断A 的正误;利用线面垂直的性质,可证明11A P OB ⊥即可知B 的正误;由中位线的性质有112PQ QA =可知C 的正误;由直线的平行关系构造线线角为11B A P ∠,结合动点P 分析角度范围即可知D 的正误 【详解】直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==选项A 中,当点P 运动到1BC 中点时,有E 为11B C 的中点,连接1A E 、EP ,如下图示即有EP ⊥面111A B C∴直线1A P 与平面111A B C 所成的角的正切值:1tan EPPA E AE∠= ∵112EP BB =,22111152AE A B B E BB =+= ∴15tan PA E ∠=,故A 正确选项B 中,连接1B C ,与1BC 交于E ,并连接1A B ,如下图示由题意知,11B BCC 为正方形,即有11B C BC ⊥而AB BC ⊥且111ABC A B C -为直三棱柱,有11A B ⊥面11B BCC ,1BC ⊂面11B BCC ∴111A B BC ⊥,又1111A B B C B =∴1BC ⊥面11A B C ,1OB ⊂面11A B C ,故11BC OB ⊥ 同理可证:11A B OB ⊥,又11A B BC B ⋂=∴1OB ⊥面11A BC ,又1A P ⊂面11A BC ,即有11A P OB ⊥,故B 正确选项C 中,点P 运动到1BC 中点时,即在△11A B C 中1A P 、1OB 均为中位线∴Q 为中位线的交点 ∴根据中位线的性质有:112PQ QA =,故C 错误选项D 中,由于11//A B AB ,直线1A P 与AB 所成角即为11A B 与1A P 所成角:11B A P ∠ 结合下图分析知:点P 在1BC 上运动时当P 在B 或1C 上时,11B A P ∠最大为45° 当P 在1BC 中点上时,11B A P ∠最小为23arctan arctan 3023>=︒ ∴11B A P ∠不可能是30°,故D 正确 故选:ABD 【点睛】本题考查了利用射影定理构造线面角,并计算其正弦值;利用线面垂直证明线线垂直;中位线的性质:中位线交点分中位线为1:2的数量关系;由动点分析线线角的大小7.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡∈⎣,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222DR CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,02222224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,33R ⎛⎫ ⎪ ⎪⎝⎭,14232,,33D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.8.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=; C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈ ⎪⎝⎭;D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD 【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D. 【详解】以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--, 对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,1A P PD +===则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PCAPC PA PC λλλλλλ⋅-∠===--+-+⋅, 01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误; 对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以222122R R ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭,解得34R =, 故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD. 【点睛】关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.。

2021年立体几何选填压轴讲座 (学生版)

2021年立体几何选填压轴讲座 (学生版)

立体几何中压轴题专题讲座一、 常规正三棱锥的外接球的体积(面积)或(内切球)1、 正四面体的外接球和内切球的一般求法,①用两个直角三角形求棱长为1外接球的半径R=6,内切球的半径r=6,R :r=3:1;②把棱长为1的正四面体放在正方体里,即122=+b a ;122=+c b ;1c 22=+a则4623b c 4R 2222=⇒=++=R a ;43213r S S S S V ABCD +++= 2、 一般三棱锥ABCD 的外接球和内切球球心找法① 选取一个特殊的底面三角形,设为三角形ABC,找出底面三角形的外心及外接圆的半径;② 过底面三角形外心作底面的垂线,此时垂线任意一点P,显然满足PA=PB=PC ③ 让P 点滑动,使PA=PD 或PB=PD 或PC=PD,此时的P 点即为,外接球的球心 ④ 内切球的球心一般用等体积法得出:43213r S S S S V ABCD +++= 二、 一般三棱锥(四棱锥或其它几何体)的外接球(或内切球)1、已知平面四边形ABCD 中,2AB AD ==,23BC CD BD ===,将ABD ∆沿对角线BD 折起,使点A 到达点A '的位置,当10A C '=时,三棱锥A BCD -的外接球的体积为 .2、已知A BCD -是球O 的内接三棱锥,6AB AC BC BD CD =====,9AD =,则球O 的表面积为 .3、三棱台111ABC A B C -中,111112A A B B C C A B ====,4AB =,侧面11A B BA ⊥底面ABC ,M 为AB 的中点,线段MC 的长为 ;该三棱台的所有顶点都在球O 的球面上,则球O 的表面积为 .三、应用型题型方法和策略:根据题目要求画出合适展开图形,截面图,或抽象出的立体图形1、有一个正四棱锥,它的底面边长和侧棱长均为a,现在要用一张正方形的包装纸将它完全包住(不能裁剪纸,但可以折叠)那么包装纸的最小边长应为.2、用一个边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢.现将半径为1的球体放置于蛋巢上,则球体球心与蛋巢底面的距离为()A.21+B.51+C.31+D.51-3、如图所示,是一个由三根细铁杆PA,PB,PC组成的支架,三根铁杆的两两夹角都是60︒,一个半径为1的球放在支架上,则球心到P的距离为.四、传统文化中的立体几何外接球(或内接球)问题1、半正多面体亦称“阿基米德多面体”是由边数不全相同的正多边形为面围成的几何体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,如图所示,其中八个面为正三角形,六个面为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为2,且其各个顶点都在同一个球面上,则该球的表面积为__________.2、《九章算术》中将底面是直角三角形、侧棱垂直于底面的三棱柱称之为“堑堵”,现有一“堑堵”型石材,其底面三边长分别为5,12,13,若石材的高为6,将此石材加工成一个球体,则该球体的最大体积为.3、农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期的楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角所形构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为 . 五、立体几何中轨迹问题 1.已知三棱锥A BCO -,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在BCO ∆内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .6πB .6π或366π+C .366π-D .6π或366π- 2、如图,在长方形ABCD 中,3AB =,1BC =,E 为线段DC 上一动点,现将AED ∆沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK AE ⊥,K 为垂足,当E 从D 运动到C ,则K 所形成轨迹的长度为 .3、 如图,正方体1111ABCD A B C D -的棱长为a ,线段1B C 上有一个动点P 线段11A C 有两个动点E 、F ,且22EF a =,现有如下四个结论: ① 点E 、F 在棱11A C 上运动时,三棱锥B CEF -的体积为定值;② 点P 在直线1B C 上运动时,直线1A P 与平面11A C D 所成角的大小不变; ③ 点P 在直线1B C 上运动时,直线1AD 与1A P 所成角的大小不变;④ 点M 是底面ABCD 所在平面上的一点,且到直线AD 与直线1CC 的距离相等,则M 点的轨迹是抛物线. 其中正确结论的序号是 . 4.在正四面体ABCD 中,P ,Q 分别是棱AB ,CD 的中点,E ,F 分别是直线AB ,CD 上的动点,M 是EF 的中点,则能使点M 的轨迹是圆的条件是( )A .2PE QF +=B .2PE QF =C .2PE QF =D .222PE QF +=六、综合题型1、如图,在棱长均为3的正四棱锥P ABCD -中,E ,F ,G ,H 分别是PA ,PB ,PC ,PD 上的点,平面EFGH 与平面ABCD 平行,S 为AC 和BD 的交点,当四棱锥S EFGH -的体积最大时, PE PA= ,此时四棱锥S EFGH -的外接球的表面积是 .2、如图,圆形纸片的圆心为O 半径为4cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,ABE ∆、BCF ∆、CDG ∆、DAH ∆分别是以AB ,BC ,CD ,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE ∆、BCF ∆、CDG ∆、DAH ∆,使得E ,F ,G ,H 重合,得到一个四棱锥,当四棱锥体积取得最大值,正方形ABCD 的边长为 cm .3.一正方体的棱长为a,作一平面α与正方体一条体对角线垂直,且α与正方体每个面都有公共点,记这样得到的截面多边形的周长为l,则()A.[4]l a∈B.4l a=C.l=D.以上都不正确4.三棱锥P ABC-中.AB BC⊥,PAC∆为等边三角形,二面角P AC B--的余弦值为,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为()A.1B.2C.12D.13。

高考数学立体几何多选题知识点总结及解析

高考数学立体几何多选题知识点总结及解析

高考数学立体几何多选题知识点总结及解析一、立体几何多选题1.在正三棱柱111ABC A B C -中,AC =11CC =,点D 为BC 中点,则以下结论正确的是( ) A .111122A D AB AC AA =+-B .三棱锥11D ABC -的体积为6C .1AB BC ⊥且1//AB 平面11AC DD .ABC 内到直线AC 、1BB 的距离相等的点的轨迹为抛物线的一部分 【答案】ABD 【分析】A .根据空间向量的加减运算进行计算并判断;B .根据1111D ABC A DB C V V --=,然后计算出对应三棱锥的高AD 和底面积11DB C S,由此求解出三棱锥的体积;C .先假设1AB BC ⊥,然后推出矛盾;取AB 中点E ,根据四点共面判断1AB //平面11AC D 是否成立;D .将问题转化为“ABC 内到直线AC 和点B 的距离相等的点”的轨迹,然后利用抛物线的定义进行判断. 【详解】A .()11111111222A D A A AD AD AA AB AC AA AB AC AA =+=-=+-=+-,故正确; B .1111D AB C A DB C V V --=,因为D 为BC 中点且AB AC =,所以AD BC ⊥, 又因为1BB ⊥平面ABC ,所以1BB AD ⊥且1BB BC B =,所以AD ⊥平面11DB C ,又因为AD ===11111122DB C S BB B C =⨯⨯=,所以1111111133226D AB C A DB C DB C V V AD S --==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.2.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -的外接球体积为556【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故2252OD OG GD =+=,由矩形的性质知:152OB OE OF OB ====,令四棱锥1D BB FE -的外接球半径为R ,则52R =,所以四棱锥1D BB FE -的外接球体积为35435V R ππ==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.3.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==, 又E 为棱1CC 上的中点,所以14B N =,所以1111234432B BMN N B BMV V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.4.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短, 即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.5.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到5tan 5θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFBααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得5tan θ=,验证满足,故D 正确; 故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.6.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EF AD ==,则下述正确的是( )A .//OF 平面BCEB .BF ⊥平面ADFC .点A 到平面CDFE 的距离为217D .三棱锥C BEF -5π 【答案】ABC 【分析】由1EF OB ==,//EF OB ,易证//OF 平面BCE ,A 正确;B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以AD BF ⊥,由线段AB 为圆O 的直径,所以BF FA ⊥,易证故B 正确.C ,由C DAF A CDF V V --=可求点A 到平面CDFE 的距离为217,C 正确. D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误. 【详解】解:1EF OB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE ,OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE ,故A 正确.线段AB 为圆O 的直径,所以BF FA ⊥,矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD 平面ABEF AB =,AD ⊂平面ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥ AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =, 所以BF ⊥平面ADF ,故B 正确.1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===, //DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,3BF =22312CF CB BF +=+=,22112DF DA AF =+=+=2AB CD ==,CDF 是等腰三角形,CDF 的边DF 上的高22222142222DF CF ⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, 1147222CDF S =⨯⨯=△, //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF , //BC 平面ADF ,点C 到平面ADF 的距离为3BF =, 111122DAF S =⨯⨯=△,C DAF A CDF V V --=,设点A 到平面CDFE 的距离为h ,1133ADF CFD S FB S h ⨯⨯=⨯⨯△△,11173323h ⨯⨯=⨯⨯, 所以21h =,故C 正确. 取DB 的中点M ,则//MO AD ,12MO =,所以MO ⊥平面CDFE ,所以215122ME MF MB MC ⎛⎫====+= ⎪⎝⎭所以M 是三棱锥C BEF -5, 三棱锥C BEF -外接球的体积为334455533V r ππ==⨯=⎝⎭,故D 错误, 故选:ABC. 【点睛】综合考查线面平行与垂直的判断,求点面距离以及三棱锥的外接球的体积求法,难题.7.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a,a ⎡∈⎣,()Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,22R λλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,2D R λλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,222212440AR AC λλλλλ⋅=--⋅--=-+-+=, 14λ=,此时113313,,02222224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4433R ⎛⎫ ⎪ ⎪⎝⎭,14233D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.8.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||104A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得33λ=时,函数()f λ取得最大值()31231339f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.9.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +170【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos AA AC AAC ''==∠=, 所以217042222()105AC '=+-⨯⨯⨯-=.故选:AD.【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时3MN =,即面积S 的最大值为62, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确. 对于D 选项,四棱锥A MENF -的体积1112123346M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体的体积转化为正方体的体积的一半求解. ABCD EMFN。

高考数学立体几何多选题知识点及练习题附解析

高考数学立体几何多选题知识点及练习题附解析

高考数学立体几何多选题知识点及练习题附解析一、立体几何多选题1.如图,在直三棱柱111ABC A B C -中,12AC BC AA ===,90ACB ∠=︒,D ,E ,F分别为AC ,1AA ,AB 的中点.则下列结论正确的是( )A .1AC 与EF 相交B .11//BC 平面DEF C .EF 与1AC 所成的角为90︒D .点1B 到平面DEF 的距离为322【答案】BCD 【分析】利用异面直线的位置关系,线面平行的判定方法,利用空间直角坐标系异面直线所成角和点到面的距离,对各个选项逐一判断. 【详解】对选项A ,由图知1AC ⊂平面11ACC A ,EF 平面11ACC A E =,且1.E AC ∉由异面直线的定义可知1AC 与EF 异面,故A 错误;对于选项B ,在直三棱柱111ABC A B C -中,11B C //BC .D ,F 分别是AC ,AB 的中点, //∴FD BC ,11B C ∴ //FD .又11B C ⊄平面DEF ,DF ⊂平面DEF ,11B C ∴ //平面.DEF 故B 正确;对于选项C ,由题意,建立如图所示的空间直角坐标系,则(0C ,0,0),(2A ,0,0),(0B ,2,0),1(2A ,0,2),1(0B ,2,2),1(0C ,0,2),(1D ,0,0),(2E ,0,1),(1F ,1,0).(1EF ∴=-,1,1)-,1(2AC =-,0,2). 1·2020EF AC =+-=,1EF AC ∴⊥,1EF AC ∴⊥. EF 与1AC 所成的角为90︒,故C 正确;对于选项D ,设向量(n x =,y ,)z 是平面DEF 的一个法向量. (1DE =,0,1),(0DF =,1,0), ∴由n DE n DF ⎧⊥⎨⊥⎩,,,即·0·0n DE n DF ⎧=⎨=⎩,,,得00.x z y +=⎧⎨=⎩,取1x =,则1z =-,(1n ∴=,0,1)-, 设点1B 到平面DEF 的距离为d . 又1(1DB =-,2,2),1·102DB n d n-+∴===, ∴点1B 到平面DEF 的距离为2,故D 正确.故选:BCD 【点睛】本题主要考查异面直线的位置关系,线面平行的判定,异面直线所成角以及点到面的距离,还考查思维能力及综合分析能力,属难题.2.在三棱柱111ABC A B C -中,ABC ∆是边长为( )A .直线1A C 与直线1BB 之间距离的最大值为3B .若1A 在底面ABC 上的投影恰为ABC ∆的中心,则直线1AA 与底面所成角为60︒ C .若三棱柱的侧棱垂直于底面,则异面直线AB 与1A C 所成的角为30D .若三棱柱的侧棱垂直于底面,则其外接球表面积为64π【答案】AD 【分析】建立空间直角坐标系,用向量法求解. 【详解】如图示,以A 为原点,AC 为y 轴正方向,Ax 为x 轴正方向,过A 点垂直于面ABC 的向上方向为z 轴正方向建系,则()()()0,0,0,3,0,0,23,0,A B C 设()()()100010001000,,,3,3,,,23,,A x y z B x y z C x y z ++所以()()()1000100011,23,,,,,3,3,0,AC x y z BB x y z A B =---== 对于A:设n 为直线1A C 与直线1BB 的公垂线的方向向量,则有:11·0·0AC n BB n ⎧=⎪⎨=⎪⎩,即()()0000002300x x y y zz x x y y zz ⎧-+-=⎪⎨++=⎪⎩解得:()00,0n z x =- 设直线1A C 与直线1BB 之间距离为d ,则22011222200009||||z A B nd d x z n x z ===++ 22009x d ≥∴≤,即3d ≤,故A 正确;对于B :若1A 在底面ABC 上的投影恰为ABC ∆的中心,则(13,211A 底面法向量()(10,0,1,1,3,211m AA ==,设直线 1AA 与底面所成角为θ,则:121133sin |cos ,|143AA n θ===⨯,故B 错误; 对于C : 三棱柱的侧棱垂直于底面时,则(((1110,0,43,3,43,0,23,43,A B C则()(13,3,0,3,43,AB AC ==-设异面直线AB 与1A C 所成的角为θ,则1115cos |cos ,|||10||||23215AB AC AB AC AB AC θ====⨯,故C 错误;对于D :若三棱柱的侧棱垂直于底面时,外接球的球心O 为上下底面中心DD 1连线的中点,所以外接球的半径()222324R =+=,所以2464S R ππ==.故D 正确故选:AD 【点睛】向量法解决立体几何问题的关键: (1)建立合适的坐标系; (2)把要用到的向量正确表示; (3)利用向量法证明或计算.3.在正三棱柱111ABC A B C -中,2AC =11CC =,点D 为BC 中点,则以下结论正确的是( ) A .111122A D AB AC AA =+- B .三棱锥11D AB C -的体积为36C .1AB BC ⊥且1//AB 平面11AC DD .ABC 内到直线AC 、1BB 的距离相等的点的轨迹为抛物线的一部分 【答案】ABD 【分析】A .根据空间向量的加减运算进行计算并判断;B .根据1111D ABC A DB C V V --=,然后计算出对应三棱锥的高AD 和底面积11DB C S,由此求解出三棱锥的体积;C .先假设1AB BC ⊥,然后推出矛盾;取AB 中点E ,根据四点共面判断1AB //平面11AC D 是否成立;D .将问题转化为“ABC 内到直线AC 和点B 的距离相等的点”的轨迹,然后利用抛物线的定义进行判断. 【详解】A .()11111111222A D A A AD AD AA AB AC AA AB AC AA =+=-=+-=+-,故正确; B .1111D AB C A DB C V V --=,因为D 为BC 中点且AB AC =,所以AD BC ⊥, 又因为1BB ⊥平面ABC ,所以1BB AD ⊥且1BB BC B =,所以AD ⊥平面11DB C ,又因为363AD BD BC ===,11111122DB C S BB B C =⨯⨯=, 所以1111111162333226D AB C A DB C DB C V V AD S --==⨯⨯=⋅⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.4.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确;对于B.因为1:1:2A F FA =,所以111332B M A B==, 又E 为棱1CC 上的中点,所以14B N =, 所以1111234432B BMN N B BM V V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.5.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到5tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得5tan 5θ=,验证满足,故D 正确; 故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.6.在长方体1111ABCD A B C D -中,AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a,0a ⎡∈⎣,(2,)Q b ,[]0,2b ∈,设11A R AC λ=,得到(22,,22)R λλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,2)D R λλ=--,12(22)2D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,22)(2)412440AR AC λλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时12282()()05555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则44()33R,142()33D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.7.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥ C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE 【答案】AC 【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B . 【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点, ∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE ,∴MF 平面1A DE ,∵DF BE ∥且DF BE =,∴四边形BEDF 为平行四边形,∴BF DE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE ,∴BF ∥平面1A DE ,又BF MF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE ,∵BM ⊂平面BMF ,∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==,则112MF A D a ==,BF DE ==,145A DE MFB ︒∠=∠=,∴BM a ==,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确, ∵DE CE ==,2CD AB a ==, ∴222DE CE CD +=, ∴DE CE ⊥,设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =, ∴DE ⊥平面1A CE ,∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾,所以假设不成立,即B 错误.故选:AC .【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.8.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π【答案】BD【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断; 对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可.【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM =由翻折可知,1MAB MAB ∠=∠,1AB AB =,对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确.故选:BD.【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.。

高三数学立体几何选填题知识点

高三数学立体几何选填题知识点

高三数学立体几何选填题知识点在高三数学考试中,立体几何是一个重要的考点,其中选填题的考察内容常常涉及到立体几何的各个方面。

在本文中,我们将重点讨论高三数学立体几何选填题的一些重要知识点。

1. 空间几何关系在立体几何中,空间几何关系是非常重要的一个知识点。

其中包括点、线、面以及它们之间的位置关系。

在解题过程中,我们常常需要利用空间几何关系来分析和求解问题。

举例来说,当我们面对一个立方体的选填题时,我们需要知道立方体上相对的面是相互平行的,因此可以利用这个特性来求解问题。

又比如,当我们遇到一个求两条直线交角的选填题时,我们需要利用空间几何关系来判断两条直线是否相交,从而得到正确的答案。

2. 空间几何图形的投影在立体几何中,投影是非常重要的概念。

它将三维的空间几何图形投射到二维平面上,给出了图形在平面上的形状和位置。

在选填题中,我们常常需要利用图形的投影来解决问题。

例如,当我们遇到一个求直线与平面的倾斜角的选填题时,我们可以通过观察直线在平面上的投影来求解。

如果投影是一条线段,那么直线与平面的倾斜角为零;如果投影是一个点,那么直线与平面的倾斜角为90度。

3. 空间几何体的体积和表面积在立体几何中,体积和表面积是我们经常计算和比较的内容。

而在选填题中,我们常常需要利用体积和表面积的关系来求解问题。

以求解一个长方体的选填题为例,我们可以利用长方体的体积公式V = lwh来求解。

如果已知长方体的体积和两个边长,我们可以通过代入公式来计算第三个边长。

又比如,当我们遇到一个求一个球的外切立方体边长的选填题时,我们可以利用球的体积公式V = (4/3)πr³和立方体的体积公式V = l³,然后通过联立方程求解。

4. 空间几何的立体坐标在立体几何中,我们可以使用立体坐标来描述点、线、面和体的位置关系。

立体坐标是由空间中的三个坐标轴所确定的,常常使用(x, y, z)来表示。

在选填题中,我们常常需要利用立体坐标求解问题。

立体几何多选题知识点总结附解析

立体几何多选题知识点总结附解析

立体几何多选题知识点总结附解析一、立体几何多选题1.如图①,矩形ABCD 的边2BC =,设AB x =,0x >,三角形BCM 为等边三角形,沿BC 将三角形BCM 折起,构成四棱锥M ABCD -如图②,则下列说法正确的有( )A .若T 为BC 中点,则在线段MC 上存在点P ,使得//PD 平面MATB .当)3,2x ∈时,则在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCDC .若使点M 在平面ABCD 内的射影落在线段AD 上,则此时该四棱锥的体积最大值为1 D .若1x =,且当点M 在平面ABCD 内的射影点H 落在线段AD 上时,三棱锥M HAB -6322++【答案】BCD 【分析】对于A ,延长AT 与DC 的延长线交于点N ,此时,DP 与MN 必有交点; 对于B ,取AD 的中点H ,表示出2223MH MT HT x --,验证当)3,2x ∈时,无解即可; 对于C ,利用体积公式21233V x x =⨯⨯-,借助基本不等式求最值即可; 对于D ,要求外接球半径与内切球半径,找外接圆的圆心,又内接圆半径为2323r =++【详解】对于A ,如图,延长AT 与DC 的延长线交于点N ,则面ATM ⋂面()MDC N MN =.此时,DP 与MN 必有交点,则DP 与面ATM 相交,故A 错误; 对于B ,取AD 的中点H ,连接MH ,则MH AD ⊥.若面MAD ⊥面ABCD ,则有2223MH MT HT x =-=- 当)3,2x ∈时,无解,所以在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCD故B 正确;对于C ,由题可知,此时面MAD ⊥面ABCD ,由B 可知,(3x ∈,所以()22222221223232331333232x x V x x x x ⎛⎫+-⎛⎫=⨯⨯-=-≤== ⎪ ⎪⎝⎭⎝⎭当且仅当223x x =-,即6x =时等号成立.故C 正确; 对于D ,由题可知,此时面MAD ⊥面ABCD ,且2MH =因为AHB ,MHB 都是直角三角形,所以M ABH -底面外接圆的圆心是中点,所以1R =,由等体积法,可求得内接圆半径为2323r =++,故61322R r +=,故D 正确.故选:BCD . 【点睛】本题从多个角度深度考查了立体几何的相关内容,注意辅助线的作法,以及求内接圆半径的公式、基本不等式、构造函数等核心思想.2.在三棱柱111ABC A B C -中,ABC ∆是边长为343( )A .直线1A C 与直线1BB 之间距离的最大值为3B .若1A 在底面ABC 上的投影恰为ABC ∆的中心,则直线1AA 与底面所成角为60︒ C .若三棱柱的侧棱垂直于底面,则异面直线AB 与1A C 所成的角为30D .若三棱柱的侧棱垂直于底面,则其外接球表面积为64π 【答案】AD 【分析】建立空间直角坐标系,用向量法求解. 【详解】如图示,以A 为原点,AC 为y 轴正方向,Ax 为x 轴正方向,过A 点垂直于面ABC 的向上方向为z 轴正方向建系,则()()()0,0,0,3,0,0,23,0,A B C 设()()()100010001000,,,3,3,,,23,,A x y z B x y z C x y z ++所以()()()1000100011,23,,,,,3,3,0,AC x y z BB x y z A B =---== 对于A:设n 为直线1A C 与直线1BB 的公垂线的方向向量,则有:11·0·0AC n BB n ⎧=⎪⎨=⎪⎩,即()()0000002300x x y y zz x x y y zz ⎧-+-=⎪⎨++=⎪⎩解得:()00,0n z x =- 设直线1A C 与直线1BB 之间距离为d ,则22011222200009||||z A B nd d x z n x z ===++ 22009x d ≥∴≤,即3d ≤,故A 正确;对于B :若1A 在底面ABC 上的投影恰为ABC ∆的中心,则(13,211A 底面法向量()(10,0,1,1,3,211m AA ==,设直线 1AA 与底面所成角为θ,则:121133sin |cos ,|143AA n θ===⨯,故B 错误; 对于C : 三棱柱的侧棱垂直于底面时,则(((1110,0,43,3,43,0,23,43,A B C则()(13,3,0,3,43,AB AC ==-设异面直线AB 与1A C 所成的角为θ,则1115cos |cos ,|||10||||23215AB AC AB AC AB AC θ====⨯,故C 错误;对于D :若三棱柱的侧棱垂直于底面时,外接球的球心O 为上下底面中心DD 1连线的中点,所以外接球的半径()222324R =+=,所以2464S R ππ==.故D 正确故选:AD 【点睛】向量法解决立体几何问题的关键: (1)建立合适的坐标系; (2)把要用到的向量正确表示; (3)利用向量法证明或计算.3.如图,正方体1111ABCD A B C D -的棱长为3,点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=.动点M 在侧面11ADD A 内(包含边界)运动,且满足直线//BM 平面1D EF ,则( )A .过1D ,E ,F 的平面截正方体所得截面为等腰梯形B .三棱锥1D EFM -的体积为定值C .动点M 10D .过B ,E ,M 的平面截正方体所得截面面积的最小值为10【答案】BCD【分析】由题做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,进而计算即可排除A 选项;根据//BM平面1D EF ,由等体积转化法得1111D EFM M D EF B D EF D BEFV V V V ----===即可得B 选项正确;取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知M 的轨迹为线段HI ,故C 选项正确;过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,易知过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而得当H 位于点I 时,截面面积最小,为四边形ABEI 的面积,且面积为S AB BE =⋅= 【详解】解:对于A 选项,如图,取BF 中点G ,连接1A G ,由点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=,故四边形11A D EG 为平行四边形,故11//AGD E ,由于在11A B G △,F 为1B G 中点,当N 为11A B 中点时,有11////NF A G D E ,故过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,此时12D N ==,EF ==1D EFN 不是等腰梯形,故A 选项错误;对于B 选项,三棱锥1D EFM -的体积等于三棱锥1M D EF -的体积,由于//BM平面1D EF ,故三棱锥1M D EF -的体积等于三棱锥1B D EF -的体积,三棱锥1B D EF -的体积等于三棱锥1D BEF -的体积,而三棱锥1D BEF -的体积为定值,故B 选项正确; 对于C 选项,取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知1////HB AG NF ,1//BI D F ,由于1,HI BI I NFD F F ==,故平面//BHI 平面1D EF ,故M 的轨迹为线段HI ,故C 选项正确;对于D 选项,过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,则过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,易知当H 位于点I 时,平行四边形BPOE 边BP 最小,且为AB ,此时截面平行四边形BPOE 的面积最小,为四边形ABEI 的面积,且面积为S AB BE =⋅=D 选项正确; 故选:BCD【点睛】本题解题的关键在于根据题意,依次做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而讨论AD选项,通过//BM平面1D EF ,并结合等体积转化法得1111D EFM M D EF B D EF D BEF V V V V ----===知B 选项正确,通过构造面面平行得M 的轨迹为线段HI ,进而讨论C 选项,考查回归转化思想和空间思维能力,是中档题.4.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 6为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 【答案】ACD 【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否. 【详解】如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点.同理,棱111111,,A B B C C D 与球面没有交点. 因为棱11A D 与棱BC 之间的距离为26>BC 与球面没有交点.因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H , 所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故22651AE OE OA -=-=,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC , 同理//GH BC ,故//EF GH ,故,,,E F G H 共面. 由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确. 因为在直角三角1BA C 中,122A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误.由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥, 因为EFEH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒, 故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确. 因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱, 其体积为111212⨯⨯⨯=,而正方体的体积为8,故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD. 【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.5.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .AP ∥平面11AC D【答案】BD 【分析】 对于A ,1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可. 【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D , 所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长, 所以1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x , 所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-, 所以111AP BC x x ⋅=-+=, 所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D , 所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则110n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 令1x =,则1,1z y =-=,所以(1,1,1)n =-, 所以110AP n x x ⋅=-+-=,所以AP n ⊥, 所以AP ∥平面11AC D ,D 正确, 故选:BD 【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.6.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EF AD ==,则下述正确的是( )A .//OF 平面BCEB .BF ⊥平面ADFC .点A 到平面CDFE 21D .三棱锥C BEF - 【答案】ABC 【分析】由1EF OB ==,//EF OB ,易证//OF 平面BCE ,A 正确;B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以AD BF ⊥,由线段AB 为圆O 的直径,所以BF FA ⊥,易证故B 正确.C ,由C DAF A CDF V V --=可求点A 到平面CDFE 的距离为7,C 正确. D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误. 【详解】解:1EF OB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE ,OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE ,故A 正确.线段AB 为圆O 的直径,所以BF FA ⊥,矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD 平面ABEF AB =,AD ⊂平面ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥ AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =, 所以BF ⊥平面ADF ,故B 正确.1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===, //DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,BF =2CF ==,DF ===2AB CD ==,CDF 是等腰三角形,CDF 的边DF 上的高2==,1222CDF S =⨯=△, //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF , //BC平面ADF ,点C 到平面ADF 的距离为BF = 111122DAF S =⨯⨯=△,C DAF A CDF V V --=,设点A 到平面CDFE 的距离为h ,1133ADF CFD S FB S h ⨯⨯=⨯⨯△△,1113232h ⨯=⨯,所以21h =,故C 正确. 取DB 的中点M ,则//MO AD ,12MO =,所以MO ⊥平面CDFE ,所以21512ME MF MB MC ⎛⎫====+= ⎪⎝⎭所以M 是三棱锥C BEF -5, 三棱锥C BEF -外接球的体积为33445553326V r ππ⎛==⨯= ⎝⎭,故D 错误, 故选:ABC. 【点睛】综合考查线面平行与垂直的判断,求点面距离以及三棱锥的外接球的体积求法,难题.7.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.8.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22ACC .异面直线AD 与1BCD .若点E 到平面11ACC AEB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002aA ⎛⎫ ⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,10B b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛⎫- ⎪⎝⎭,,,所以12a BC b ⎛⎫=- ⎪ ⎪⎝⎭,,,12a AB b ⎛⎫=- ⎪ ⎪⎝⎭,. ∵11BC AB ⊥,∴110BC AB ⋅=,即222022a a b ⎛⎫⎛⎫--+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得2b a =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,1222a BC a ⎛⎫=- ⎪ ⎪⎝⎭,-,,因为2111cos ,||||aBC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===1,BC DA 所成角C 正确. 对于选项D ,设点E 在底面ABC 的射影为1E ,作1E F 垂直于AC ,垂足为F ,若点E 到平面11ACC A 的距离等于32EB ,即有312E F EB =,又因为在1CE F ∆中,311E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何 选填题一、选择题1.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+2.设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m3.如下图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A.54B.162C.54183+162183+4.设直线,m n 是两条不同的直线,,αβ是两个不同的平面,则//αβ的一个充分条件是( )A.//,//,m n m n αβ⊥B.//,,//m n m n αβ⊥C.,//,m n m n αβ⊥⊥D. ,,//m n m n αβ⊥⊥5.已知,αβ是两个不同的平面,,m n 为两条不重合的直线,则下列命题中正确的为( )A .若αβ⊥,n αβ=I ,m n ⊥,则m α⊥B .若m α⊂,n β⊂,//m n ,则//αβC .若m α⊥,n β⊥,m n ⊥,则αβ⊥D .若//m α,//n β,//m n ,则//αβ6.某几何体的三视图如图所示,则该几何体的体积为( )A .23B .1C .43D .2 8.已知两个不同的平面a ,β和两条不重合的直线m ,n ,则下列四个命题中不正确的是( )A .若//m n ,m a ⊥,则n a ⊥B .若m a ⊥,m β⊥,则//a βC .若m a ⊥,//m n ,n β⊂,则a β⊥D .若//m a ,a n β=I ,则//m n9.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )10.已知直线m ⊂平面β,直线l 平面α,则下列结论中错误的是( )A .若l β⊥,则//m αB .若//l m ,则αβ⊥C .若//αβ,则l m ⊥D .若αβ⊥,则//l m11.某几何体的三视图如图所示,则该几何体的体积是( )A .103B .163C .5D .10 12.下列命题正确的是( )A .两两相交的三条直线可确定一个平面B .两个平面与第三个平面所成的角都相等,则这两个平面一定平行C .过平面外一点的直线与这个平面只能相交或平行D .和两条异面直线都相交的两条直线一定是异面直线13.某椎体的三视图如图所示,则该棱锥的最长棱的棱长为( )A .33B .17C .41D .4215.已知在三棱锥P ABC -中,1PA PB PC ===,2AB =,AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( )A .3πB .3πC .2πD .2π 16.在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面//α平面β,则平面α内任意一条直线//m 平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若平面α内的三点A ,B ,C 到平面β的距离相等,则//αβ.其中正确命题的个数为( )个 A .0 B .1 C .2 D .317.把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C ABD -的正视图与府视图如右图所示,则侧视图的面积为( )A .12B 2C 2D .1418.下列命题中正确的个数是( )①过异面直线a ,b 外一点P 有且只有一个平面与a ,b 都平行;②异面直线a ,b 在平面内的射影相互垂直,则a b ⊥;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④直线a ,b 分别在平面α,β内,且a b ⊥,则αβ⊥.A .0B .1C .2D .319.某几何体三视图如图,则该几何体体积是( )A .4B .43C .83D .2 20.在直三棱柱111ABC A B C -中,AC BC ⊥,点M 是侧面11ABB A 内的一点,若MC 与平面ABC 所成的角为30︒,MC 与平面11ACC A 所成的角也为30︒,则MC 与平面11BCC B 所成的角正弦值为( )A .12B .2 C.3 D .3 二、填空题 21.将边长为2的正ABC ∆沿BC 边上的高 AD 折成直二面角 B AD C --, 则三棱锥B ACD - 的外接球的表面积为__________.22.若动圆M 与圆1C :22(4)2x y ++=外切,且与圆2C :22(4)2x y -+=内切,则动圆圆心M 的轨迹方程 .23.设正三棱柱'''ABC A B C -中,'2AA =,23AB =,则该正三棱柱外接球的表面积是 .24.若过定点()1,0M -且斜率为k 的直线与圆22:450C x x y ++-=在第一象限内的部分有交点,则k 的取值范围是____________.25.已知点(),p x y 是直线()400kx y k ++=>上一动点,PA PB 、是圆22:20C x y y +-=的两条切线,A B 、是切点,若四边形PACB 的最小面积是2,则k 的值为_________26.如图是某几何体的三视图,正视图和侧视图为直角三角形,俯视图是等边三角形,则该几何体外接球的表面积为____________.27.已知边长为3的菱形ABCD 中,60BAD ∠=︒,沿对角线BD 折成二面角A BD C --为120︒的四面体ABCD ,则四面体的外接球的表面积 .28.已知三棱锥A BCD -中,213AB CD ==,41BC AD ==,61AC BD ==,则三棱锥A BCD -的外接球的表面积为 .29.如图,在棱长均相等的正四棱锥P ABCD -最终,O 为底面正方形的重心,,M N 分别为侧棱,PA PB 的中点,有下列结论:①//PC 平面OMN ;②平面//PCD 平面OMN ;③OM PA ⊥;④直线PD 与直线MN 所成角的大小为90o .其中正确结论的序号是 .(写出所有正确结论的序号)30.已知ABC ∆的三个顶点在以O 为球心的球面上,且22,1,3AB BC AC ===,三棱锥O ABC -的体积为66,则球O 的表面积为__________. 31.已知某几何体的三视图(单位:cm )如下图所示,则该几何体的体积是______32.若点P 在圆221:(4)(2)9C x y -+-=上,点Q 在圆222:(2)(1)4C x y +++=上,则PQ 的最小值是 .33.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥ABC S -中,M 是SC 的中点,且SB AM ⊥,底面边长22=AB ,则其外接球的表面积为 .34.已知在三棱柱111ABC A B C -中,各棱长相等,侧棱垂直于底面,且点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 .35.如图,在直三棱柱111ABC A B C -中,1,2,3AB AC BC ===D E 、分别是1AC 和1BB 的中点,则直线DE 与平面11BB C C 所成的角为 .β,γ两两垂直且交于一点O,若空间有一点P到这三个平面的距离分别36.平面α,是3、4、12则点P到点O的距离为________.立体几何选填题参考答案1.D 试题分析:由三视图可知该几何体为半个圆柱,底面圆的半径为1,高为2,所以表面积为21221234S πππ=⨯+⨯+⨯⨯=+2.A 试题分析:由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得l β⊥,l α⊂可得αβ⊥考点:空间线面平行垂直的判定与性质3.D 试题分析:由三视图可知该几何体为正方体去掉一个顶点后的几何图形,表面积由三个正方形,三个等腰直角三角形及一个边长为的正三角形构成,所以面积为162+ 考点:三视图及几何体表面积4.D 试题分析:由,m n αβ⊥⊥可知向量,m n u r r 分别为连个平面的法向量,所以由向量的知识可知当,m n u r r 平行时可得到//αβ 考点:空间线面平行垂直的判定与性质5.C 试题分析:A 中,m α可能平行,相交或直线在平面内;B 中两平面可能平行可能相交;C 中由面面垂直的判定可知结论正确;D 中两平面可能平行可能相交考点:空间线面垂直平行的判定与性质6.C 试题分析:由三视图可知该几何体是一四棱锥,底面是长和宽分别为4和1的矩形,高为1,则其体积为1441133V ⨯⨯⨯==,故选C . 【方法点晴】本题主要考查三视图,属于较易题型.应注意把握三个视图的位置和尺寸:主视图在图纸的左上方,左视图在主视图的右方,俯视图在主视图的下方;主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按上述顺序放置,则应注明三个视图名称.8.D 试题分析:对于A ,∵m α⊥,∴直线m 与平面α所成角为90︒,∵m n P ,∴n 与平面α所成角,等于m 与平面α所成角,∴n 与平面α所成的角也是90︒,即“n α⊥ ”成立,故A 正确;对于B ,若m α⊥,m β⊥,则经过m 作平面γ,设a γα⋂=,b γβ⋂=,∵a α⊂,b β⊂,∴在平面γ内,m a ⊥且m b ⊥,可得a 、b 是平行直线,∵a β⊄,b β⊂,a b P ,∴a βP ,经过m 再作平面θ,设c θα⋂=,d θβ⋂=,用同样的方法可以证出c βP ,∵a 、c 是平面α内的相交直线,∴αβP ,故B 正确;对于C ,∵m α⊥,m n P ,∴n α⊥,又∵n β⊂,∴αβ⊥,故C 正确;对于D ,m αP ,n αβ⋂=,当直线m 在平面β内时,m n P 成立,但题设中没有m β⊂这一条,故D 不正确,故选D.考点:平面的基本性质及推论. 【方法点睛】本题以命题判断真假为例,着重考查了空间线面平行、线面垂直的判定定理和性质定理,以及平面与平面的平行、垂直的判定定理等知识点,属于基础题;根据直线与平面垂直的性质和直线与平面所成角的定义,得到A 项正确;根据直线与平面垂直的定义,结合平面与平面平行的判定定理,得到B 项正确;根据直线与平面垂直的性质定理和平面与平面垂直的判定定理,得到C 项正确;根据直线与平面平行的性质定理的大前提,可得D 项是错误的.由此可得正确答案.9.C 试题分析:由俯视图可知三棱锥的底面是个边长为2的正三角形,由侧视图可知三棱锥的一条侧棱垂直于底面,且其长度为2,故其主视图为直角边长为2的等腰直角三角形,且中间有一虚线,故选C . 考点:三视图.10.D试题分析:A 项,由l β⊥,可知//αβ,又,//m m αα⊂∴,故A 正确; B 项,因为//,,l m l m αα⊥∴⊥,又,m βαβ⊂∴⊥,故B 正确;C 项,//,,l l αβαβ⊥∴⊥Q ,又,m l m β⊂∴⊥,故C 正确;D 项,因为αβ⊥,可知l m 与平 行,相交,异面,所以D 错误.综上可知应选D.考点:线面垂直,面面垂直的性质定理和判定定理.11.B 试题分析:正方体挖去一个四棱锥,体积为:31622231-222=⨯⨯⨯⨯⨯.故选B. 考点:三视图求体积.【方法点睛】三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.12.C 试题分析:A.三线交于一点时不一定在一个平面,故A 不正确;B.正四棱锥中,侧面和底面所成角相等但不平行,故B 不正确;C.直线和平面的位置关系只能是在面内或面外,因为直线经过平面外一点,故不在面内,必在面外,在面外包括平行和相交,故C 正确;D.可以交于一点,则共面,故D 不正确.考点:直线和平面的位置关系;平面和平面的位置关系.13【答案】C 试题分析:该几何体为一个侧面与底面垂直,底面为正方形的四棱锥(如图所示),其中底面ABCD 边长为4,侧面PAD ⊥平面ABCD ,点P 在底面的射影为E ,所以,1,4,4PE AD DE AE PE ⊥===,所以225PA PE AE =+=,2241PB PE BE =+=,2233PC PE CE =+=,2217PD PE DE =+=,底面边长为4,所以最长的棱长为41,故选C.考点:简单几何体的三视图. 15.B 试题分析:由题意得,AC 为截面圆的直径,且3AC =,设球心到平面ABC 的距离为d ,设球的半径为R ,因为1PA PB PC ===,2AB =,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,所以点P 到平面ABC 的距离为22,由勾股定理可得22222312()()()22R d d =+=+-,解得30,4d R ==,所以球的表面积为234434S R πππ==⨯=,故选B .考点:球的组合体及球的表面积的计算. 16.B 试题分析:互相平行的两条直线在同一个平面内的射影是互相平行的两条直线或是同一条直线,或是两个点,故①不正确;若平面αP 平面β,由面面平行的性质可得平面α内任意一条直线m P 平面β,故②正确;若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,只有当平面α⊥平面β时,才有直线n ⊥平面β,故③不正确;若平面α内的三点,,A B C 到平面β的距离相等,则α与β相交或平行,故④不正确,故选B.考点:1、线面关系的判定与性质;2、面面关系的判定与性质.【方法点晴】本题主要考查线面关系的判定与性质、面面关系的判定与性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.17.D 试题分析:取BD 的中点E ,连接,CE AE ,因为平面ABD ⊥平面CBD ,所以CE AE ⊥,所以CEA ∆是三棱锥的侧视图,因为2BD =,所以22CE AE ==,所以CEA ∆的面积为12212224S =⨯⨯=,故选B . 考点:空间几何体的三视图.【方法点晴】本题主要考查了空间几何体的三视图及其应用,其中解答中涉及到几何体的三视图的应用,几何体的侧面积公式,以及线面位置关系的判定与应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解得中牢记几何体的三视图的规则,得出原几何体的形状是解答的关键,试题比较基础,属于基础题.18.A试题分析:①此命题不正确,当过点P 与两条异面直线中的一条的平面与另一条直线平行时,此时找不到一个过P 的平面与两条异面直线都平行,不正确;②本命题用图形说明,如图,三棱锥P ABC -中,侧棱PB 垂直于底面,,PA PC 两线在底面上的投影垂直,D 为棱PB 上一点,而异面直线,PA DC 两线不垂直,不正确;③四边相等的四边形也可以是空间四边形,不正确;④直线a ,b 分别在平面,αβ内,且a b ⊥,则,αβ不一定垂直,不正确.故选A .考点:空间中直线与直线之间的位置关系.【方法点睛】通过列举反例说明命题不正确.本题考查命题真假的判断,考查了空间中直线与直线之间的位置关系,线面位置关系,两异面直线的关系,面面位置关系等,正确解答本题,关键是要有着较好的空间立体感知能力,能对命题所涉及的问题找到恰当的模型做载体进行判断.本题是训练空间感知能力的一道好题,属于中档题.19.B试题分析:几何体为一个三棱锥,如图,2222,,AB AC DO AB AC DO ABC ===⊥⊥,,面,体积是11222423323D ABC ABC d S -∆⨯⨯⨯=⨯⨯=,选B .考点:三视图 【思想点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.20.B 试题分析:以MC 为对角线作长方体,设MC 与平面11BCC B 所成的角为 α,则222sin sin 30sin 301α+︒+︒=,故2sin α=.选B. 考点:线面角21.5π 试题分析:外接球半径22225211(3)452R R S R ππ=++⇒=⇒==. 考点:外接球. 22.)2(114222≥=-x y x 试题分析:设动圆M 的半径为r ,则由已知2||1+=r MC ,2||2-=r MC , ||1MC ∴22||2=-MC .又)0,4(),0,4(21C C -,O D C B A228||21>=C C .根据双曲线定义知,点M 的轨迹是以)0,4(),0,4(21C C -为焦点的双曲线的右支.4,2==c a Θ,14222=-=∴a c b .∴点M 的轨迹方程是 )2(114222≥=-x y x . 考点:定义法求轨迹方程.【思路点睛】本题考查的是求轨迹方程,求有关的轨迹问题时,根据题设条件的不同常采用以下方法:①直接法:直接根据题目提供的条件列出方程.②定义法:根据圆、直线,椭圆,双曲线,抛物线等定义列方程.③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.23.20π试题分析:因为该三棱柱为正三棱柱,所以底面为正三角形,底面三角形外接圆的直径为2324sin 603AB r ===︒,即2r =,所以该三棱柱外接球的半径222212152AA R r ⎛⎫=+=+= ⎪⎝⎭,所以该三棱柱外接球的表面积为2420S R ππ==.考点:1.正三棱柱的性质;2.球的切接问题.【名师点睛】本题考查正三棱柱的性质与球的切接问题,属中档题;球与旋转体的组合,通常通过作出它的轴截面解题;球与多面体的组合,通常通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图,把空间问题化归为平面问题.24.()0,5 试题分析:圆心()2,0-,半径为3,画出图象如下图所示,由图可知,斜率的取值范围为()0,MA k ,令0x =代入圆的方程,求得()0,5,5MA A k =,所以()0,5k ∈.考点:直线与圆的位置关系.【思路点晴】本题主要考查直线与圆的位置关系,考查数形结合的数学思想方法.首先求出圆心和半径,画出圆的图像,根据题意,直线和圆交于第一象限,也就是斜率的取值范围在()0,MA k 直线.A 是圆与y 轴的交点,故令0x =代入圆后,可求得纵坐标,由于交点在第一象限,所以坐标取正数,由此求得实数k 的取值范围.25.2【解析】试题分析:圆C :2220x y y +-=的圆心(0,1),半径是r=1, 由圆的性质知:S 四边形PACB =2S △PBC ,四边形PACB 的最小面积是2,∴S △PBC 的最小值S=1= 12rd (d 是切线长)∴d 最小值=2 圆心到直线的距离就是PC 的最小值,2221251k +==+,∵k >0,∴k=2 考点:直线与圆的位置关系;点到直线的距离公式26.193π 试题分析:如图,设球的半径为R ,则22222)22332()22332()1(⨯⨯+=⨯⨯+-=d d R ,解之得21=d ,故1219912412=+=R ,所以球的面积319121934ππ=⨯=S ,应填答案193π. 考点:三视图的识读及球的表面积公式的运用.【易错点晴】本题考查的是三视图与原几何体的形状的转化问题.解答时先依据题设中提供的三视图,将其换元为立体几何中的简单几何体,再依据几何体的形状求其体积.在这道题中,从三视图所提供的图形信息中可以推知这是一个底面为等边三角形高为1=h 的三棱锥.解答本题的难点是先依据题设中提供的信息确定底面的形状及高,进而依据球心距及球半径的关系建立方程组求出球的半径1219=R ,运用球面面积公式求解.27.28π 试题分析:如图所示,ο120=∠AFC ,ο60=∠AFE ,33223=⨯=AF ,∴23,233==EF AE ,设x O O =',∵2='B O ,1='F O ,∴由勾股定理可得22222331234⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=x x R ,∴72=R ,∴四面体的外接球的表面积为ππ2842=R ,故答案为π28.考点:(1)球内接多面体;(2)球的表面积和体积.28.77π 试题分析:因为该三棱锥的对棱两两相等,所以可构造长、宽、高分别是6,4,5的长方形,如图所示,三棱锥A BCD -的外接球即为所构造的长方体的外接球,所M D B C A O d R以所求外接球的半径3616257722R ++==,则三棱锥A BCD -的外接球的表面积为227744772S R πππ⎛⎫==⋅= ⎪ ⎪⎝⎭,故答案为π77.考点:球的表面积、体积.【方法点晴】本题主要考查了几何体的外接球以及球的表面积计算,由该三棱锥的对棱两两相等,将三棱锥的外接圆构造成长方体的外接圆是解决本题的关键所在,对空间想象能力要求较高,难度中档;在正方体与球的组合体中常见的有三种形式:1、正方体的各个定点均在球面上,球的直径即为正方体的体对角线;2、正方体的个面与球相切,球的直径即为棱长;3、球与正方体的各条棱相切,球的直径即为面对角线.29.①②③试题分析:如图,连接AC ,易得//PC OM ,所以//PC 平面OMN ,结论①正确.同理//PD ON ,所以平面//PCD 平面OMN ,结论②正确.由于四棱锥的棱长均相等,所以22222AB BC PA PC AC +=+=,所以PC PA ⊥,又//PC OM ,所以OM PA ⊥,结论③正确.由于,M N 分别为侧棱,PA PB 的中点,所以//MN AB ,又四边形ABCD 为正方形,所以//AB CD ,所以直线PD 与直线MN 所成的角即为直线PD 与直线CD 所成的角,为PDC ∠,知三角形PDC 为等边三角形,所以60PDC ∠=o ,故④错误,故答案为①②③ .考点:(1)线面平行的判定;(2)面面平行的判定;(3)线线垂直的判定.【方法点晴】本题考查了线面平行的判定、面面平行的判定以及线线垂直的判定和异面直线所成的角等,对空间想象能力要求较高,难度较大;常见证明线线平行的方式有:1、利用三角形中位线得到平行;2、构造平行四边形得到平行;3、利用面面平行等;在该题中证明平行利用的是中位线,垂直利用的是勾股定理;求异面直线所成角的简单步骤即:“作,证,求”.30.12π 试题分析:在ABC ∆中,22,1,3AB BC AC ===,由勾股定理可知斜边AC 的中点O '就是ABC ∆的外接球圆的圆心,因为三棱锥O ABC -的体积为6,所以116221326OO '⨯⨯⨯⨯=,所以3OO '=,所以93344R =+=,球O 的表面积为2412R ππ=.考点:球的表面积的求解.31.470【解析】 试题分析:该几何体是长方体上截了一个三棱锥,如图, 该几何体的体积470656213110510=⨯⨯⨯⨯-⨯⨯=V . 考点:1.三视图;2.几何体的体积和表面积.32.553-【解析】易知圆221:(4)(2)9C x y -+-=的圆心坐标为)2,4(1C ,半径为3=r ;圆4)1()2(:222=+++y x C 的圆心坐标为)1,2(2--C ,半径为2=R .r R C C d +=+>==3245||21Θ,∴两圆的位置关系是外离,又点P 在圆1C 上,点Q 在圆2C 上,则PQ 的最小值为553)(-=+-r R d .33.π12 试题分析:设O 为S 在底面ABC 的投影,则O 为等边三角形ABC 的中心,∵⊥SO 平面ABC ,⊂AC 平面ABC ,∴SO AC ⊥,又AC BO ⊥,∴⊥AC 平面SBO ,∵⊂SB 平面SBO ,∴AC SB ⊥,又SB AM ⊥,⊂AM 平面SAC ,⊂AC 平面SAC ,A AC AM =I ,∴⊥SB 平面SAC ,同理可证⊥SC 平面SAB .∴SA ,SB ,SC 两两垂直.∵SOC ≌≌∆∆∆SOB SOA ,∴SC SB SA ==,∵22=AB ,∴2===SC SB SA .设外接球球心为N ,则N 在SO 上.∵3622332=⨯=AB BO .∴33222=-=BO SB SO ,设外接球半径为r ,则r r SO NO -=-=332,r NB =,∵222NB ON OB =+,∴2233238r r =⎪⎪⎭⎫ ⎝⎛-+,解得3=r .∴外接球的表面积ππ1234=⨯=S .故答案为:π12. 考点:(1)棱柱、棱锥、棱台的体积;(2)球的表面积和体积.【方法点睛】本题考查了正棱锥的结构特征,棱锥与外接球的关系,属于中档题.设棱锥的高为SO ,则由正三角形中心的性质可得OB AC ⊥,SO AC ⊥,于是⊥AC 平面SBO ,得AC SB ⊥,结合AM SB ⊥可证⊥SB 平面SAC ,同理得出SA ,SB ,SC 两两垂直,从而求得侧棱长,外接球的球心N 在直线SO 上,设r BN SN ==,则r SO ON -=,利用勾股定理列方程解出r .34.60︒ 【解析】如图,取BC 的中点E ,连接DE 、AE 、AD .依题意知三棱柱111ABC A B C -为正三棱柱,易得⊥AE 平面C C BB 11,故ADE ∠为AD 与平面C C BB 11所成的角.设各棱长为1,则23=AE ,21=DE ,从而32123tan ===∠DEAE ADE ,则60ADE ∠=︒.35.6π 试题分析:取AC 中点F ,则//,DF BE DF BE =,∴//DE BF ,∴BF 与平面11BB C C 所成的角为所求,1,3,2AB BC AC ===Q ,∴AB BG ⊥,又1AB BB ⊥,∴11AB BB C C ⊥平面,作//GF AB 交BC 于G ,则11GF BB C C ⊥平面,∴FBG ∠为直线BF 与平面11BB C C 所成的角,由条件知13,2BG BC ==1122GF AB ==,∴3tan GF FBG BG ∠==,∴6FBG π∠=. 考点:线面角.【思路点晴】过不平行于平面的直线上一点作平面的垂线,这条直线与平面的交点与原直线与平面的交点的连线与原直线构成的(这条线与原直线的夹角的余角线面)即为夹角,夹角范围:0,2π⎡⎤⎢⎥⎣⎦.在解答题目的过程中,首先将线面角作出来,一般是利用平面的垂线来作角.作出角后,利用解直角三角形来求角的某个三角函数值.36.13 试题分析:由题意得,点P 到点O 的距离为222341213++=,故填:13.考点:立体几何中的距离.。

相关文档
最新文档