环氧树脂固化剂概论
环氧树脂固化剂
环氧树脂固化剂概述环氧树脂固化剂是一类用于固化环氧树脂的化学物质。
环氧树脂具有优异的物理和化学性质,但其在常温下为液态,并不具备实际应用的强度和硬度。
通过添加适量的固化剂,可以使环氧树脂在特定的温度和时间下发生固化反应,形成具有优良性能的固体材料。
固化剂的作用原理固化剂在环氧树脂中的主要作用是引发化学反应,促进环氧树脂的固化。
通常情况下,环氧树脂是由环氧基团(Epoxide group)和胺基或酸酐基等活性基团组成的。
固化剂中的活性基团与环氧基团发生反应,形成交联结构,使环氧树脂由液态变为固态。
常见的环氧树脂固化剂胺类固化剂胺类固化剂是最常用的环氧树脂固化剂之一。
常见的胺类固化剂包括环氧乙烷胺、环氧丙烷胺、环氧脂肪胺等。
这些胺类固化剂具有活性氢原子,能够与环氧基团形成胺基加成反应,生成胺基苄醚结构。
胺类固化剂固化后的环氧树脂具有较高的热稳定性、耐化学品侵蚀性和机械强度。
酸酐类固化剂酸酐类固化剂是另一类常见的固化剂。
常用的酸酐类固化剂有邻苯二甲酸酐、巴斯夫固化剂等。
酸酐类固化剂与环氧树脂中的氢原子发生酯交换反应,生成酯键结构。
酸酐类固化剂固化后的环氧树脂具有优良的机械性能和耐化学品侵蚀性。
环氧树脂固化剂的选择与性能正确选择适合的固化剂对于环氧树脂固化的性能至关重要。
不同的固化剂具有不同的反应速率和固化温度范围,根据具体应用要求选择合适的固化剂可以获得所需的性能。
固化剂的选择还应考虑环境友好性、毒性和成本等因素。
一些高性能的聚胺固化剂具有较高的毒性,使用时需要注意安全。
同时,固化剂的成本也是影响选择的重要因素。
固化剂与环氧树脂的配比固化剂的用量和配比对固化效果和性能有重要影响。
过多的固化剂可能导致固化过程过快,产生内部应力集中等问题;过少的固化剂则可能导致固化不完全,影响材料性能。
一般来说,固化剂的用量为环氧树脂总重量的10-40%之间。
具体的配比应根据固化剂的特性和应用要求进行调整。
混合固化剂和环氧树脂时,应根据固化剂的性质和要求合理控制混合时间和混合速度,确保固化剂和环氧树脂充分混合。
环氧树脂固化剂概述
环氧树脂固化剂概述环氧树脂本身为热塑性的线型结构,受热后固态树脂可以软化、熔融,变成粘稠态或液态;液态树脂受热黏度降低。
只有加入固化剂后,环氧树脂才能得到实用。
一个完整概念的环氧树脂组成物应该由四个方面的成分组成。
但在实际应用时,不一定四个方面的成分都要具备,但树脂成分中的固化剂必不可少,可见固化剂的重要。
环氧树脂所以能取得广泛应用,就是因为这些成分多变配合的结果。
尤其是固化剂,一旦环氧树脂确定之后,固化剂对环氧树脂组成物的工艺性和固化产物(产品)的最终性能起决定性作用。
固化剂定义及分类1、定义环氧树脂本身是热塑性的线型结构,不能直接拿来就应用,必须在向树脂中加入第二组分,在一定温度(或湿度)等条件下,与环氧树脂的环氧基进行加成聚合反应,或催化聚合反应,生成三维网络结构(体型网状结构)的固化物后才能使用。
这个充当第二组分的化合物称作固化剂,分为加成型固化剂和触媒型固化剂。
2、固化剂的分类固化剂按反应性和化学结构分类如下1、伯胺与环氧基的反应当用伯胺固化环氧树脂时,在第一阶段伯胺和环氧基反应生成仲胺;在第二阶段,生成的仲胺和环氧基反应生成叔胺,并且生成的羟基亦能和环氧基反应、具有加速反应进行的倾向。
胺的化学结构不同,它们与环氧基的反应速度也不相同,在初期反应速度比较快,环氧基消耗的比较多,到达一定的时间后,环氧基的消耗不像开始那么多。
环氧基的反应程度在3周的期间内非常低,聚酰胺只有40%,二亚乙基三胺也只不过65%,要进一步提高环氧基的反应程度,有必要在高温下进行固化反应。
当多胺固化环氧树脂时,醇或酚的存在会促进反应加快,但不能改变最后的反应程度。
醇、酚的羟基和环氧基的氧原子形成氢键而促进开环,醇羟基容易开成这种键,因此显示更大的从促进作用。
除了酚、醇之外,有机酸、硫酰胺等对反应也有促进作用。
但邻苯二甲酸、顺丁烯二酸没有促进作用,这是由于它们和胺反应和成了酰亚胺之故。
有些基团具有抑制作用。
如:,OR、,COOR、,SO3R、,CON2R、,SO2NR2、,CN、,NO2等。
环氧树脂热固化剂
环氧树脂热固化剂摘要:一、环氧树脂热固化剂的概述二、环氧树脂热固化剂的分类及特点三、环氧树脂热固化剂的应用领域四、环氧树脂热固化剂的发展趋势与展望正文:环氧树脂热固化剂是一种重要的化工原料,它能够对环氧树脂进行热固化,从而提高环氧树脂的物理和化学性能。
在许多行业中,环氧树脂热固化剂都发挥着至关重要的作用。
环氧树脂热固化剂主要分为以下几类:1.胺类热固化剂:例如,二苯并咪唑、二苯基胍等,具有良好的反应活性和低温柔性。
2.酸酐类热固化剂:例如,邻苯二甲酸酐、四氢邻苯二甲酸酐等,具有较好的耐腐蚀性能。
3.咪唑类热固化剂:例如,2-甲基咪唑、2-乙基咪唑等,具有较高的固化温度和良好的耐磨性。
4.其他热固化剂:如有机铋、有机钛等,具有特殊的功能和性能。
环氧树脂热固化剂广泛应用于以下领域:1.涂料行业:环氧树脂热固化剂可用于生产各类涂料,如防腐漆、防腐蚀漆、地坪漆等。
2.胶粘剂行业:环氧树脂热固化剂可用于制备各种胶粘剂,如环氧胶、酚醛胶等。
3.复合材料行业:环氧树脂热固化剂可用于生产各类复合材料,如碳纤维复合材料、玻璃纤维复合材料等。
4.其他领域:如电子电器、建筑、交通等众多行业。
随着科技的进步和环保要求的提高,环氧树脂热固化剂的发展趋势呈现出以下特点:1.绿色环保:越来越多的国家和地区对有害物质的使用加以限制,因此,开发环保型热固化剂成为当前的研究重点。
2.高性能:随着对高性能材料的需求不断增长,环氧树脂热固化剂的性能要求越来越高。
3.多功能性:未来环氧树脂热固化剂的发展将更加注重多功能性,以满足不同行业和领域的需求。
总之,环氧树脂热固化剂作为一种重要的化工原料,在多个领域具有广泛的应用前景。
环氧树脂热固化剂
环氧树脂热固化剂(原创版)目录一、环氧树脂热固化剂的概述二、环氧树脂热固化剂的分类三、环氧树脂热固化剂的性能与应用四、环氧树脂热固化剂的发展趋势正文一、环氧树脂热固化剂的概述环氧树脂热固化剂是一种用于促使环氧树脂发生固化反应的物质,它能够与环氧树脂中的环氧基团发生化学反应,形成三维网络结构,从而使环氧树脂具备良好的物理和化学性能。
环氧树脂热固化剂在工业领域中有着广泛的应用,如涂料、胶粘剂、复合材料等。
二、环氧树脂热固化剂的分类环氧树脂热固化剂可以根据其化学成分和反应特性进行分类,常见的分类如下:1.胺类热固化剂:如二甲基胺、三甲基胺等,适用于室温固化环氧树脂,具有较高的固化速度和优良的性能。
2.酸酐类热固化剂:如邻苯二甲酸酐、丁二酸酐等,具有较高的耐热性和耐化学品性能,适用于高性能环氧树脂制品的固化。
3.树脂类热固化剂:如酚醛树脂、脲醛树脂等,具有良好的韧性和耐热性,适用于结构件和功能件的固化。
4.其他类热固化剂:如聚硫醇、有机硅等,具有特殊的性能,如耐低温、耐高温、耐腐蚀等,适用于特殊场合的环氧树脂制品的固化。
三、环氧树脂热固化剂的性能与应用环氧树脂热固化剂的性能主要表现在以下几个方面:1.固化速度:不同的热固化剂具有不同的固化速度,一般而言,胺类热固化剂的固化速度较快,酸酐类热固化剂的固化速度较慢。
2.耐热性:环氧树脂热固化剂的耐热性直接影响环氧树脂制品的使用温度,酸酐类热固化剂具有较高的耐热性,酚醛树脂类热固化剂次之。
3.韧性:环氧树脂热固化剂的韧性关系到环氧树脂制品的抗冲击性能,树脂类热固化剂具有较好的韧性。
4.耐化学品性:环氧树脂热固化剂的耐化学品性关系到环氧树脂制品的抗腐蚀性能,酸酐类热固化剂具有较好的耐化学品性。
环氧树脂热固化剂广泛应用于涂料、胶粘剂、复合材料等领域,如环氧地坪涂料、电子封装材料、汽车零部件等。
四、环氧树脂热固化剂的发展趋势随着环氧树脂在各领域的应用不断拓展,对环氧树脂热固化剂的需求也在不断增长。
环氧树脂固化剂的种类及固化机理汇总!
环氧树脂固化剂的种类及固化机理汇总!环氧树脂固化剂是与环氧树脂发生化学反应,形成网状立体聚合物,把复合材料骨材包络在网状体之中。
使线型树脂变成坚韧的体型固体的添加剂。
01 固化剂的种类碱性类碱性类固化剂 WTF:包括脂肪族二胺和多胺、芳香族多胺、其它含氮化合物及改性脂肪胺。
酸性类酸性类固化剂:包括有机酸、酸酐、和三氟化硼及其络合物。
加成型加成型固化剂:这类固化剂与环氧基发生加成反应构成固化产物一部分链段,并通过逐步聚合反应使线型分子交联成体型结构分子,这类固化剂又称瓜型固化剂。
催化型催化型固化剂:这类固化剂仅对环氧树脂发生引发作用,打开环氧基后,催化环氧树脂本身聚合成网状结构,生成以醚键为主要结构的均聚物。
显在型显在型固化剂为普通使用的固化剂,又可分为加成聚合型和催化型。
所谓加成聚合型即打开环氧基的环进行加成聚合反应,固化剂本身参加到三维网状结构中去。
这类固化剂,如加入量过少,则固化产物连接着末反应的环氧基。
因此,对这类固化剂来讲,存在着一个合适的用量。
而催化型固化剂则以阳离子方式,或者阴离子方式使环氧基开环加成聚合,最终,固化剂不参加到网状结构中去,所以不存在等当量反应的合适用量;不过,增加用量会使固化速度加快。
在显在型固化剂中,双氰胺、己二酸二酰肼这类品种,在室温下不溶于环氧树脂,而在高温下溶解后开始固化反应,因而也呈现出一种潜伏状态。
所以,可称之为功能性潜伏型固化剂。
潜伏型潜伏型固化剂指的是与环氧树脂混合后,在室温条件下相对长期稳定(环氧树脂一般要求在3个月以上,才具有较大实用价值,最理想的则要求半年或者1年以上),而只需暴露在热、光、湿气等条件下,即开始固化反应。
这类固化剂基本上是用物理和化学方法封闭固化剂活性的。
所以,在有的书上也把这些品种划为潜伏型固化剂,实际上可称之为功能性潜伏型固化剂。
因为潜伏型固化剂可与环氧树脂混合制成一液型配合物,简化环氧树脂应用的配合手续,其应用范围从单包装胶黏剂向涂料、浸渍漆、灌封料、粉末涂料等方面发展。
(整理)环氧树脂的固化机理及其常用固化剂
3.8 环氧树脂通过逐步聚合反应的固化环氧树脂的固化剂,大致分为两类:(1)反应型固化剂可与EP分子进行加成,并通过逐步聚合反应的历程使它交联成体型网状结构。
特征:一般都含有活泼氢原子,在反应过程中伴有氢原子的转移。
如多元伯胺、多元羧酸、多元硫醇和多元酚等。
(2)催化型固化剂可引发树脂中的环氧基按阳离子或阴离子聚合的历程进行固化反应。
如叔胺、咪唑、三氟化硼络合物等。
3.8.1 脂肪族多元胺1、反应机理催化剂(或促进剂):质子给予体促进顺序:酸≥酚≥水>醇(催化效应近似正比于酸度)如被酸促进(先形成氢键)形成三分子过渡状态(慢)2、常用固化剂四乙烯五胺多乙烯多胺试比较它们的活性、粘度、挥发性与固化物韧性的相对大小?脂肪胺类固化剂的特点(1)活性高,可室温固化。
(2)反应剧烈放热,适用期短;(3)一般需后固化。
室温固化7d左右,再经2h/80~100℃后固化,性能更好;(4)固化物的热变形温度较低,一般为80~90 ℃;(5)固化物脆性较大;(6)挥发性和毒性较大。
课前回顾1、海因环氧树脂的结构式与主要性能特点?2、二氧化双环戊二烯基醚环氧树脂的特点?3、TDE-85环氧树脂的结构式与性能特点?4、脂肪族环氧树脂的特点及用途?5. 有机硅环氧树脂的特点?6、环氧树脂的固化剂可分为哪两类,分别按什么反应历程进行固化?特点是什么?两类固化剂的代表有哪些?7、脂肪族多元胺固化剂的催化剂有哪些?活性顺序是怎样的?8、常用的脂肪族多元胺有哪些?多乙烯多胺的结构通式?它们的活性与挥发性相对大小顺序?9、脂肪族多元胺类环氧固化剂的主要特点有哪些?3、化学计量胺的用量(phr)= 胺当量×环氧值胺当量= 胺的相对分子量÷胺中活泼氢的个数phr意义:每100份树脂所需固化剂的质量份数。
例题:分别用二乙烯三胺和四乙烯五胺固化E-44环氧树脂,试计算固化剂的用量(phr值)。
若E-44用10%的丙酮或者669(环氧值为0.75)稀释后(质量比为100:10),又如何计算? 胺当量(DETA)=103/5=20.6胺当量(TEPA)=189/7=27(1)未稀释,环氧值=0.44Phr(DETA)=0.44×20.6=9.1Phr(TEPA)=0.44×27=11.9(2)用丙酮稀释,环氧值=0.44×100/110=0.4Phr(DETA)=0.4×20.6=8.2Phr(TEPA)=0.4×27=10.8用669稀释,环氧值=0.44×100/110+0.75×10/110=0.468Phr(DETA)=0.468×20.6=9.6Phr(TEPA)=0.468×27=12.63.8.2 芳香族多元胺’二胺基二苯基甲烷(DDM)二胺基二苯砜(DDS)芳族多元胺固化剂的特点优点:固化物耐热性、耐化学性、机械强度均比脂肪族多元胺好。
环氧树脂固化剂
环氧树脂固化剂固化剂1.脂肪族多元胺1.1 乙二胺(EDA)由1,2-二氯乙烷(EDC)和氨反应制备。
还可由一乙醇胺(MEA)和氨反应制备乙二胺。
对于脂肪胺,伯胺基与环氧的反应速度约为仲胺的2倍。
但环氧基与伯胺的反应与生成的仲胺基和环氧基的反应几乎是同时进行的。
伯胺易与空气中的二氧化碳反应生成白色的固体碳酸铵盐,不能与环氧基发生反应,但加热可以放出二氧化碳,可继续反应。
1.2 二亚乙基三胺(DETA)在25℃下24小时内就能充分固化,7d可以达到最高值,加热进行后固化,其性能可以得到进一步改善。
二亚乙基三胺的粘度非常低,与空气接触生产白烟,环氧当量为185的双酚A型环氧树脂其计算用量为11%。
在其化学计算量的当量点附近有最大的交联密度。
而实际用量为化学计算量的75%即可,有助于减少固化放热。
以二亚乙基三胺固化的环氧树脂有良好的耐化学药品性。
二亚乙基三胺的变性物:二亚乙基三胺与环氧乙烷(EO)、环氧丙烷(PO)的加成物。
生成N,N’-二羟乙基二亚乙基三胺,由于加成物中含有羟基,加速了环氧树脂的固化速度,其适用期比二亚乙基三胺要短。
固化放热温度随羟乙基化程度提高而降低。
且改善了固化剂对树脂的溶解性,降低了固化剂的挥发性和毒性。
但其吸湿性变强。
二亚乙基三胺与丙烯晴的加成反应成为氰乙基化反应,加成后反应活性降低,适用期增长,受湿度的影响也变难。
随着氰乙基化程度的增加,最高放热温度降低,树脂固化物的耐溶剂性得到改善,特别是耐氯化溶剂性能,但固化物电性能有所下降。
二亚乙基三胺与甲醛或多聚甲醛的反应称作羟甲基化反应,可制成一种低毒性的固化剂,适用期较短,适用于快速固化的要求。
二亚乙基三胺与环氧树脂及单环氧化物反应,生成具有羟基和氨基的胺加成物,由于加成物的分子量较大,挥发性小,没有胺臭味,毒性亦低,与树脂的配合量较多,称量不严格,生成的羟基具有促进其固化的作用,由于胺加成物的粘度高,使适用期变短。
二乙胺基三胺与酚、醛的反应成为曼尼期反应,三元反应生成物成为曼尼期碱。
环氧树脂固化剂 原理
环氧树脂固化剂原理一、交联反应环氧树脂的固化过程是一种典型的交联反应,通过这种反应,环氧树脂由线型结构转变为网状结构。
固化过程中,环氧树脂中的环氧基与固化剂中的活泼氢发生反应,生成羟基。
这些羟基进一步相互反应,形成三维网状结构。
这种网状结构使得环氧树脂变得坚硬和耐热,从而实现了从液态到固态的转变。
二、固化剂种类环氧树脂的固化剂种类繁多,根据其性质和应用需求有多种分类方式。
根据固化机理,可以分为胺类、酸酐类、聚合物类等。
胺类固化剂如脂肪胺、芳香胺等,反应速度快,但耐热性较差;酸酐类固化剂如邻苯二甲酸酐、顺丁烯二酸酐等,耐热性好,但反应速度较慢;聚合物类固化剂如聚酰胺、酚醛树脂等,具有良好的综合性能。
三、温度与时间环氧树脂的固化过程受温度影响较大。
在室温下,固化反应速度较慢,需要较长时间才能完全固化。
提高温度可以加快固化反应速度,缩短固化时间。
但温度过高可能导致固化过度,产生裂纹或变形。
因此,选择合适的温度和时间是实现环氧树脂良好固化的关键。
四、催化剂在环氧树脂的固化过程中,催化剂起到了加速反应的作用。
催化剂的种类和用量对固化速度和固化产物的性能都有重要影响。
常见的催化剂有酸、碱、过渡金属化合物等。
选择合适的催化剂可以提高固化速度,改善固化产物的性能。
五、填料与改性为了改善环氧树脂的力学性能、电性能和热性能等,常常需要添加填料进行改性。
填料的选择和用量应根据具体的应用需求而定。
常用的填料有硅微粉、玻璃纤维、碳纤维等。
填料的加入可以降低成本、提高耐磨性、增强刚性等。
同时,填料还可以通过表面改性来改善与环氧树脂的相容性,进一步提高复合材料的性能。
环氧树脂的固化机理及其常用固化剂
2、反应型固化剂
可与EP分子进行加成,通过逐步聚合反应 交联成体型网状结构; 一般含有活泼氢,反应中伴随氢原子转移, 如多元伯胺、多元羧酸、多元硫
醇和多元酚。
3、催化型固化剂
环氧基按阳离子或阴离子聚合机理进行固 化,如叔胺、咪唑、三氟化硼络合物。
23、环氧树脂固化的三个阶段
液体-操作时间:树脂/固化剂混合物仍然是液体适合应用。 凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段), 这时它开始凝胶
或“突变”成软凝胶物。此时只是局部固 化,新使用的环氧树脂仍然能与它 化学链接,因此该未处 理的表面仍然可以进行粘接或反应。 固体-最终固化:环氧混合物变成固体阶段,这时能砂磨 及整型。在室温下 维持若干天使它继续固化。
8、芳香族多元胺
间苯二胺
4,4-二氨基二苯基甲烷(DDM)
间苯二甲胺
4,4-二氨基二苯砜(DDS)
9、芳香族多胺特点
固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺 活性低,大多加热固化 氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应 多为固体,熔点高,工艺性差 液化,低共熔点混合,多元胺与单缩水甘油醚加成
13、硫脲-多元胺缩合
硫脲与脂肪族多元胺加热至100℃缩合放出 氨气 能在极低温下(0℃以下)固化EP
14、聚酰胺化
9,11-亚油酸与9,12-亚油酸二聚反应 然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小 与EP相容性良好,化学计量要求不严 固化物有很好的增韧效果 放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右
环氧树脂的固化机理 及其常用固化剂
1、什么是固化剂
环氧树脂固化剂
环氧树脂固化剂环氧树脂固化剂是一种被广泛应用于工业领域的材料。
它是一种能够使环氧树脂在一定条件下发生反应,从而形成具有特定性能的固体材料的物质。
环氧树脂固化剂在自动化生产中扮演着重要的角色,并且具有广泛的应用领域。
接下来将介绍环氧树脂固化剂的特性、分类、应用和未来发展前景。
首先,环氧树脂固化剂具有固化速度快、高强度、耐化学腐蚀等优点。
固化剂可以通过调节比例和温度来控制固化速度,提高生产效率。
由于环氧树脂固化剂能够与环氧树脂发生化学反应,可以形成具有高强度的固体材料。
此外,这种固化剂还具有良好的耐化学腐蚀性能,能够在各种恶劣环境下使用。
根据固化机理的不同,环氧树脂固化剂可以分为两类:热固化剂和光固化剂。
热固化剂是指在一定的温度下,通过热量促进环氧树脂与固化剂之间的反应。
这种固化方式适用于需要在较高温度下进行固化的情况,例如汽车制造和航空航天领域。
光固化剂是指通过紫外线或可见光的照射来引发固化反应。
这种固化方式具有固化速度快、操作简单的特点,适用于表面固化和光学材料。
环氧树脂固化剂在工业生产中有着广泛的应用。
首先,它被广泛应用于粘接材料的制备。
环氧树脂固化剂能够与各种基材发生固化反应,形成强度高、抗剪切能力强的结合界面,适用于金属、陶瓷、塑料等多种材料的粘接。
其次,环氧树脂固化剂还可用于电子封装材料的制备。
由于其优异的电绝缘性能和封闭性能,可以用于电子元件的灌封和封装,提高产品的可靠性和稳定性。
此外,环氧树脂固化剂还被广泛应用于复合材料的制备、涂层材料的制备等领域。
环氧树脂固化剂的未来发展前景十分广阔。
随着工业自动化水平的提高,对于固化剂的要求也越来越高。
未来,环氧树脂固化剂可能向着高效、环保、低成本方向发展。
例如,可以研发出更快速固化的固化剂,提高生产效率。
同时,可以探索使用更环保的固化剂替代传统的有机固化剂,减少对环境的影响。
此外,还可以通过改变固化剂的配方和工艺来降低制备成本,提高竞争力。
综上所述,环氧树脂固化剂是一种在工业领域广泛应用的材料。
环氧树脂固化剂概述
环氧树脂固化剂概述环氧树脂固化剂概述环氧树脂本身为热塑性的线型结构,受热后固态树脂可以软化、熔融,变成粘稠态或液态;液态树脂受热黏度降低。
只有加入固化剂后,环氧树脂才能得到实用。
一个完整概念的环氧树脂组成物应该由四个方面的成分组成。
但在实际应用时,不一定四个方面的成分都要具备,但树脂成分中的固化剂必不可少,可见固化剂的重要。
环氧树脂所以能取得广泛应用,就是因为这些成分多变配合的结果。
尤其是固化剂,一旦环氧树脂确定之后,固化剂对环氧树脂组成物的工艺性和固化产物(产品)的最终性能起决定性作用。
固化剂定义及分类1、定义环氧树脂本身是热塑性的线型结构,不能直接拿来就应用,必须在向树脂中加入第二组分,在一定温度(或湿度)等条件下,与环氧树脂的环氧基进行加成聚合反应,或催化聚合反应,生成三维网络结构(体型网状结构)的固化物后才能使用。
这个充当第二组分的化合物称作固化剂,分为加成型固化剂和触媒型固化剂。
2、固化剂的分类固化剂按反应性和化学结构分类如下1、伯胺与环氧基的反应当用伯胺固化环氧树脂时,在第一阶段伯胺和环氧基反应生成仲胺;在第二阶段,生成的仲胺和环氧基反应生成叔胺,并且生成的羟基亦能和环氧基反应、具有加速反应进行的倾向。
胺的化学结构不同,它们与环氧基的反应速度也不相同,在初期反应速度比较快,环氧基消耗的比较多,到达一定的时间后,环氧基的消耗不像开始那么多。
环氧基的反应程度在3周的期间内非常低,聚酰胺只有40%,二亚乙基三胺也只不过65%,要进一步提高环氧基的反应程度,有必要在高温下进行固化反应。
当多胺固化环氧树脂时,醇或酚的存在会促进反应加快,但不能改变最后的反应程度。
醇、酚的羟基和环氧基的氧原子形成氢键而促进开环,醇羟基容易开成这种键,因此显示更大的从促进作用。
除了酚、醇之外,有机酸、硫酰胺等对反应也有促进作用。
但邻苯二甲酸、顺丁烯二酸没有促进作用,这是由于它们和胺反应和成了酰亚胺之故。
有些基团具有抑制作用。
环氧树脂固化剂的概况
环氧树脂固化剂的概况双酚A环氧树脂的结构稳定,能够加热到200℃不发生变化,其他环氧树脂具有无限使用期,通过固化剂使环氧树脂实现交联反应,由于固化过程中不放出H2O或其他低分子化合物,环氧树脂固化物避免了某些缩聚型高分子在热固化过程中所产生的气泡和界面上的多孔性缺陷。
环氧树脂固化物性能在很大程度上取决于固化剂,其种类繁多。
一、环氧树脂固化剂分类1. 按化学结构分为碱性和酸性两类1.1碱性固化剂:脂肪二胺、多胺、芳香族多胺、双氰双胺、咪唑类、改性胺类。
1.2酸性固化剂:有机酸酐、三氟化硼及络合物。
2. 按固化机理分为加成型和催化型2.1加成型固化剂:脂肪胺类、芳香族、脂肪环类、改性胺类、酸酐类、低分子聚酰胺和潜伏性胺。
2.2催化型固化剂:三级胺类和咪唑类。
二、环氧树脂固化剂的发展我国1998年环氧树脂产量为7.5万吨, 固化剂需求量约为2万吨, 实际的固化剂产量仅为1.2万吨, 生产厂家分布在沿海城市, 如天津、上海、江苏和浙江等地。
例如:脂肪多胺:常州石化厂650吨/年间苯二胺:上海柒化八厂80吨/年T—31改性胺:江苏昆山助剂厂60吨/年低分子聚酰胺:天津延安化工厂200吨/年590#改性胺和593#改性胺:上海树脂厂17吨/年793#改性胺:天津合材所6吨/年SK—302改性胺:江阴颐山电子化工材料厂5吨/年另外:B—系列固化剂,N—苄基二甲胺,DMP—30,801#改性胺,HD—236改性胺,GY—051缩胺,CHT—251改性胺,105#缩胺,810#水下固化剂,NF—841固化剂,703#改性胺等。
三、胺类固化剂1.胺类固化机理1.1一级胺固化机理若按氮原子上取代基(R)数目可分为一级胺、二级胺和三级胺;若按N数目可分为单胺、双胺和多胺;按结构可分为脂肪胺、脂环胺和芳香胺。
一级胺对环氧树脂固化作用按亲核加成机理进行,每一个活泼氢可以打开一个环氧基团,使之交联固化。
芳香胺与脂环胺的固化机理与一级胺相似(伯胺、仲胺和叔胺)①与环氧基反应生成二级胺②与另一环氧基反应生成三级胺③生成的羟基与环氧树脂反应1.2固化促进机理:在固化体系中加入含给质子基团的化合物如苯酚,就会促进胺类固化,这可能是一个双分子反应机理,即给质子体羟基上的固发氢首先与环氧基上的氧形成氢键,是环氧基进一步极化,有利于胺类的N对环氧基Cδ+的亲核进攻,同时完成氢原子的加成。
(整理)环氧树脂的固化机理及其常用固化剂
3.8 环氧树脂通过逐步聚合反应的固化环氧树脂的固化剂,大致分为两类:(1)反应型固化剂可与EP分子进行加成,并通过逐步聚合反应的历程使它交联成体型网状结构。
特征:一般都含有活泼氢原子,在反应过程中伴有氢原子的转移。
如多元伯胺、多元羧酸、多元硫醇和多元酚等。
(2)催化型固化剂可引发树脂中的环氧基按阳离子或阴离子聚合的历程进行固化反应。
如叔胺、咪唑、三氟化硼络合物等。
3.8.1 脂肪族多元胺1、反应机理催化剂(或促进剂):质子给予体促进顺序:酸≥酚≥水>醇(催化效应近似正比于酸度)如被酸促进(先形成氢键)形成三分子过渡状态(慢)2、常用固化剂四乙烯五胺多乙烯多胺试比较它们的活性、粘度、挥发性与固化物韧性的相对大小?脂肪胺类固化剂的特点(1)活性高,可室温固化。
(2)反应剧烈放热,适用期短;(3)一般需后固化。
室温固化7d左右,再经2h/80~100℃后固化,性能更好;(4)固化物的热变形温度较低,一般为80~90 ℃;(5)固化物脆性较大;(6)挥发性和毒性较大。
课前回顾1、海因环氧树脂的结构式与主要性能特点?2、二氧化双环戊二烯基醚环氧树脂的特点?3、TDE-85环氧树脂的结构式与性能特点?4、脂肪族环氧树脂的特点及用途?5. 有机硅环氧树脂的特点?6、环氧树脂的固化剂可分为哪两类,分别按什么反应历程进行固化?特点是什么?两类固化剂的代表有哪些?7、脂肪族多元胺固化剂的催化剂有哪些?活性顺序是怎样的?8、常用的脂肪族多元胺有哪些?多乙烯多胺的结构通式?它们的活性与挥发性相对大小顺序?9、脂肪族多元胺类环氧固化剂的主要特点有哪些?3、化学计量胺的用量(phr)= 胺当量×环氧值胺当量= 胺的相对分子量÷胺中活泼氢的个数phr意义:每100份树脂所需固化剂的质量份数。
例题:分别用二乙烯三胺和四乙烯五胺固化E-44环氧树脂,试计算固化剂的用量(phr值)。
若E-44用10%的丙酮或者669(环氧值为0.75)稀释后(质量比为100:10),又如何计算? 胺当量(DETA)=103/5=20.6胺当量(TEPA)=189/7=27(1)未稀释,环氧值=0.44Phr(DETA)=0.44×20.6=9.1Phr(TEPA)=0.44×27=11.9(2)用丙酮稀释,环氧值=0.44×100/110=0.4Phr(DETA)=0.4×20.6=8.2Phr(TEPA)=0.4×27=10.8用669稀释,环氧值=0.44×100/110+0.75×10/110=0.468Phr(DETA)=0.468×20.6=9.6Phr(TEPA)=0.468×27=12.63.8.2 芳香族多元胺’二胺基二苯基甲烷(DDM)二胺基二苯砜(DDS)芳族多元胺固化剂的特点优点:固化物耐热性、耐化学性、机械强度均比脂肪族多元胺好。
环氧树脂固化剂方面的书
环氧树脂固化剂方面的书环氧树脂固化剂是一种重要的化工原料,广泛应用于涂料、胶粘剂、复合材料等领域。
本文将从环氧树脂固化剂的定义、分类、性能以及应用等方面进行介绍。
一、环氧树脂固化剂的定义环氧树脂固化剂是指能够与环氧树脂发生反应,使其从液态或半固态转变为固态的化合物。
固化剂的添加可以改变环氧树脂的物理特性,如硬度、耐磨性、耐化学性等,从而满足不同领域对材料性能的要求。
二、环氧树脂固化剂的分类根据固化剂的性质和反应机理,环氧树脂固化剂可以分为胺类、酸酐类、酚醛类、亚胺类、环氧树脂类等几大类。
其中,胺类固化剂是最常用的一类,常见的有脂肪胺、芳香胺、脂环胺等。
三、环氧树脂固化剂的性能1. 固化反应速度:环氧树脂固化剂的反应速度对于工艺操作和固化过程的控制很重要。
反应速度过快会导致固化剂和树脂在混合过程中发生过早反应,影响流动性和操作时间;反应速度过慢则固化时间过长,不利于生产效率。
2. 固化温度和热稳定性:不同的固化剂对应不同的固化温度,因此需要根据具体要求选择适当的固化剂。
同时,固化剂的热稳定性也直接影响着固化过程的效果和材料的稳定性。
3. 力学性能:固化剂的选择和使用量会对固化后的环氧树脂材料的力学性能产生重要影响,如强度、韧性等。
4. 耐化学性:固化剂的化学稳定性决定了固化后的环氧树脂材料对各种化学介质的耐受性。
四、环氧树脂固化剂的应用1. 涂料领域:环氧树脂固化剂常用于水性涂料、粉末涂料、防腐涂料等的制备,以提高涂料的硬度、附着力和耐化学性。
2. 胶粘剂领域:环氧树脂固化剂可以与环氧树脂发生反应形成高强度的粘接剂,广泛应用于航空、汽车、电子等领域。
3. 复合材料领域:环氧树脂固化剂可以与碳纤维、玻璃纤维等增强材料进行复合,制备出具有优异性能的复合材料,用于航空航天、建筑等领域。
4. 电子领域:环氧树脂固化剂可以用于电子元器件的封装和防潮,提高元器件的性能和可靠性。
环氧树脂固化剂是环氧树脂体系中不可或缺的一部分,对于改善环氧树脂的性能和拓展其应用领域起着重要作用。
环氧树脂的固化
绝缘性
固化后的环氧树脂是一种优良的绝缘 材料,可用于电气工程中。
固化产物的化学性能
耐化学药品性
固化产物对多种化学药品具有稳定性,不易发生化学反应。
热稳定性
固化产物在高温下能保持较好的稳定性,不易分解或变形。
耐候性
固化产物在户外环境中能长期保持性能稳定,不易受紫外线、氧 化等因素影响。
环氧树脂结构
环氧树脂的分子结构中含有环氧基、 羟基等极性基团和脂肪族、芳香族等 非极性基团,因此具有许多优异的性 能。
环氧树脂的性质
物理性质
环氧树脂通常是黏稠液体或低熔点固体,无色或淡黄色,透明或半透明,有良 好的黏附力和浸润性。
化学性质
环氧树脂在固化过程中,环氧基会与固化剂中的活性基团发生化学反应,形成 三维网状结构,从而赋予固化物优异的力学性能、耐化学药品性能和电性能等 。
高固化质量。
固化工艺的优化与改进
固化温度与时间的控制
根据环氧树脂的性质和工件要 求,合理调整固化温度和时间 ,以获得最佳的固化效果。
新型固化技术的探索
研究新型固化技术,如微波固 化、超声波固化等,以进一步 缩短固化时间、降低能耗和提 高产品质量。
固化设备的改进
针对现有固化设备的不足之处 进行改进,如提高加热效率、 优化温度控制系统等,以提高 固化质量和效率。
催化剂
催化剂可以加速固化反应,提高生产效率。常用的催化剂 包括有机胺、有机酸、金属盐等。
固化剂种类和用量
不同种类的固化剂具有不同的反应活性和机理,对固化产 物的性能也有显著影响。同时,固化剂的用量也直接影响 固化反应的进行程度和产物的性能。
湿度和氧气
环氧树脂固化剂
环氧树脂固化剂环氧树脂本身为热塑性的线型结构,受热后固态树脂可以软化、熔融,变成粘稠态或液态;液态树脂受热黏度降低。
只有加入固化剂后,环氧树脂才能得到实用。
如下图所示,一个完整概念的环氧树脂组成物应该由四个方面的成分组成。
但在实际应用时,不一定四个方面的成分都要具备,但树脂成分中的固化剂必不可少,可见固化剂的重要。
环氧树脂所以能取得广泛应用,就是因为这些成分多变配合的结果。
尤其是固化剂,一旦环氧树脂确定之后,固化剂对环氧树脂组成物的工艺性和固化产物(产品)的最终性能起决定性作用。
固化剂定义及分类1、定义环氧树脂本身是热塑性的线型结构,不能直接拿来就应用,必须在向树脂中加入第二组分,在一定温度(或湿度)等条件下,与环氧树脂的环氧基进行加成聚合反应,或催化聚合反应,生成三维网络结构(体型网状结构)的固化物后才能使用。
这个充当第二组分的化合物称作固化剂,分为加成型固化剂和触媒型固化剂。
2、固化剂的分类固化剂按反应性和化学结构分类如下图所示固化剂化学1、伯胺与环氧基的反应当用伯胺固化环氧树脂时,在第一阶段伯胺和环氧基反应生成仲胺;在第二阶段,生成的仲胺和环氧基反应生成叔胺,并且生成的羟基亦能和环氧基反应、具有加速反应进行的倾向。
胺的化学结构不同,它们与环氧基的反应速度也不相同,在初期反应速度比较快,环氧基消耗的比较我,到达一定的时间后,环氧基的消耗不像开始那么多。
环氧基的反应程度在3周的期间内非常低,聚酰胺只有40%,二亚乙基三胺也只不过65%,要进一步提高环氧基的反应程度,有必要在高温下进行固化反应。
当多胺固化环氧树脂时,醇或酚的存在会促进反应加快,但不能改变最后的反应程度。
醇、酚的羟基和环氧基的氧原子形成氢键而促进开环,醇羟基容易开成这种键,因此显示更大的从促进作用。
除了酚、醇之外,有机酸、硫酰胺等对反应也有促进作用。
但邻苯二甲酸、顺丁烯二酸没有促进作用,这是由于它们和胺反应和成了酰亚胺之故。
有些基团具有抑制作用。
环氧树脂固化剂特点和反应机理
环氧树脂固化剂特点和反应机理环氧树脂是一类重要的聚合物材料,具有优异的物理性能和化学稳定性。
然而,单组分的环氧树脂在常温下并不能自行固化成坚硬的材料,需要通过添加固化剂来完成固化反应。
环氧树脂固化剂是一种能够引发环氧树脂高效固化的化合物,其特点和反应机理为:一、特点:1.高活性:环氧树脂固化剂引发的固化反应速度较快,可以在较短的时间内固化环氧树脂,形成坚硬的固体材料。
2.低挥发性:环氧树脂固化剂通常具有低挥发性,不易挥发出来,可以保持固化剂的活性,保证固化反应的进行。
3.高选择性:环氧树脂固化剂具有对环氧树脂高度选择性的特点,能够引发环氧树脂的固化反应,而不对其他基团发生反应。
4.适应性广泛:环氧树脂固化剂可以选择性地与不同类型的环氧树脂反应,形成具有不同性能的固化产品,可以根据不同的要求进行选择。
二、反应机理:1.加氮型反应机理:加氮型环氧树脂固化剂通常是一种含有活性氢原子的化合物,环氧树脂中的环氧基通过与固化剂中的活性氢原子发生加成反应,形成醚键。
同时,固化剂中的活性氢原子与环氧树脂中的环氧基发生环氧-胺开环反应,形成胺基。
这两个反应同时进行,从而导致环氧树脂的固化。
2.加硫型反应机理:加硫型环氧树脂固化剂一般是含有硫原子的化合物。
固化剂中的硫原子与环氧树脂中的环氧基发生亲核加成反应,形成硫-氧键。
同时,生成的硫-氧键会进一步反应形成硫-硫键,形成三维网状结构,从而导致环氧树脂的固化。
总之,环氧树脂固化剂是一类能够高效引发环氧树脂的固化反应的化合物。
根据不同的特点和反应机理,可以选择不同类型的固化剂,实现对环氧树脂的选择性固化,形成具有不同性能的固化材料。
环氧树脂固化剂
固化剂1.脂肪族多元胺1.1 乙二胺(EDA)由1,2-二氯乙烷(EDC)和氨反应制备。
还可由一乙醇胺(MEA)和氨反应制备乙二胺。
对于脂肪胺,伯胺基与环氧的反应速度约为仲胺的2倍。
但环氧基与伯胺的反应与生成的仲胺基和环氧基的反应几乎是同时进行的。
伯胺易与空气中的二氧化碳反应生成白色的固体碳酸铵盐,不能与环氧基发生反应,但加热可以放出二氧化碳,可继续反应。
1.2 二亚乙基三胺(DETA)在25℃下24小时内就能充分固化,7d可以达到最高值,加热进行后固化,其性能可以得到进一步改善。
二亚乙基三胺的粘度非常低,与空气接触生产白烟,环氧当量为185的双酚A型环氧树脂其计算用量为11%。
在其化学计算量的当量点附近有最大的交联密度。
而实际用量为化学计算量的75%即可,有助于减少固化放热。
以二亚乙基三胺固化的环氧树脂有良好的耐化学药品性。
二亚乙基三胺的变性物:二亚乙基三胺与环氧乙烷(EO)、环氧丙烷(PO)的加成物。
生成N,N’-二羟乙基二亚乙基三胺,由于加成物中含有羟基,加速了环氧树脂的固化速度,其适用期比二亚乙基三胺要短。
固化放热温度随羟乙基化程度提高而降低。
且改善了固化剂对树脂的溶解性,降低了固化剂的挥发性和毒性。
但其吸湿性变强。
二亚乙基三胺与丙烯晴的加成反应成为氰乙基化反应,加成后反应活性降低,适用期增长,受湿度的影响也变难。
随着氰乙基化程度的增加,最高放热温度降低,树脂固化物的耐溶剂性得到改善,特别是耐氯化溶剂性能,但固化物电性能有所下降。
二亚乙基三胺与甲醛或多聚甲醛的反应称作羟甲基化反应,可制成一种低毒性的固化剂,适用期较短,适用于快速固化的要求。
二亚乙基三胺与环氧树脂及单环氧化物反应,生成具有羟基和氨基的胺加成物,由于加成物的分子量较大,挥发性小,没有胺臭味,毒性亦低,与树脂的配合量较多,称量不严格,生成的羟基具有促进其固化的作用,由于胺加成物的粘度高,使适用期变短。
二乙胺基三胺与酚、醛的反应成为曼尼期反应,三元反应生成物成为曼尼期碱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环氧树脂是一类具有良好的粘接性、电绝缘性、化学稳定性的热固性高分子材料,作为胶粘剂、涂料和复合材料等的树脂基体,广泛应用于建筑、机械、电子电气、航空航天等领域。
环氧树脂使用时必须加入固化剂,并在一定条件下进行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正使用价值的环氧材料。
因此固化剂在环氧树脂的应用中具有不可缺少的,甚至在某种程度上起着决定性的作用。
环氧树脂潜伏性固化剂是近年来国内外环氧树脂固化剂研究的热点。
所谓潜伏性固化剂,是指加入到环氧树脂中与其组成的单组分体系在室温下具有一定的贮存稳定性,而在加热、光照、湿气、加压等条件下能迅速进行固化反应的固化剂,与目前普遍采用的双组分环氧树脂体系相比,由潜伏性固化剂与环氧树脂混合配制而成的单组分环氧树脂体系具有简化生产操作工艺,防止环境污染,提高产品质量,适应现代大规模工业化生产等优点。
环氧树脂潜伏性固化剂的研究一般通过物理和化学的手段,对普通使用低温和高温固化剂的固化活性加以改进,主要采取以下两种改进方法:一是将一些反应活性高而贮存稳定性差的固化剂的反应活性进行封闭、钝化;二是将一些贮存稳定性好而反应活性低的固化剂的反应活性提高、激发。
最终达到使固化剂在室温下加入到环氧树脂中时具有一定的贮存稳定性,而在使用时通过光、热等外界条件将固化剂的反应活性释放出来,从而达到使环氧树脂迅速固化的目的。
本文就国内外环氧树脂潜伏性固化剂的研究进展作一基本概述。
1 环氧树脂潜伏性固化剂1.1 改性脂肪族胺类脂肪族胺类固化剂如乙二胺、己二胺、二乙烯三胺、三乙烯四胺等是常用的双组分环氧树脂室温固化剂,通过化学改性的方法,将其与有机酮类化合物进行亲核加成反应,脱水生成亚胺是一种封闭、降低其固化活性,提高其贮存稳定性的有效途径。
这种酮亚胺型固化剂与环氧树脂组成的单组分体系通过湿气和水分的作用而使酮亚胺分解成胺因此在常温下即可使环氧树脂固化。
但一般固化速度不快,使用期也较短,原因是亚胺氮原子上的孤对电子仍具有一定的开环活性。
为解决这一问题,武田敏之用羰基两端具有立体阻碍基团的酮3-甲基-2 -丁酮与高活性的二胺1,3 二氨甲基环己烷反应得到的酮亚胺不仅具有较高的固化反应活性,而且贮存稳定性明显改善。
另外日本专利报道采用聚醚改性的脂肪族胺类化合物与甲基异丁基酮反应得到的酮亚胺也是一种性能良好的环氧树脂潜伏性固化剂。
脂肪族胺类固化剂通过与丙烯腈、有机膦化合物,过渡金属络合物的反应,也可使其固化反应活性降低,从而具有一定的潜伏性。
1.2 芳香族二胺类芳香胺由于具有较高的Tg而受到重视,但由于其的剧毒性而限制了应用。
经改性制得的芳香族二胺类固化剂则具有Tg高、毒性低、吸水率低、综合性能好的优点。
近年来研究较多的芳香族二胺类固化剂有二胺基二苯砜(DDS)、二胺基二苯甲烷(DDM)、间苯二胺(m PDA)等,其中以DDS研究得最多最成熟,成为高性能环氧树脂中常用的固化剂。
DDS用作环氧树脂潜伏性固化剂时,与MP DA、DDM等芳香二胺相比,由于其分子中有强吸电子的砜基,反应活性大大降低,其适用期也增长。
在无促进剂时,100克环氧树脂配合物的适用期可达1年,固化温度一般要达到200℃。
为了降低其固化温度,常加入促进剂以实现中温固化。
近年来为了改善体系的湿热性能和韧性,对DDS进行了改性,开发出多种聚醚二胺型固化剂,使得它们在干燥时耐热性有所降低,这些二胺因两端胺基间的距离较长,造成吸水点氨基减少,并且具有优良的耐冲击性。
1.3 双氰胺类双氰胺又称二氰二胺,很早就被用作潜伏性固化剂应用于粉末涂料、胶粘剂等领域。
双氰胺与环氧树脂混合后室温下贮存期可达半年之久。
双氰胺的固化机理较复杂,除双氰胺上的4个氢可参加反应外,氰基也具有一定的反应活性。
双氰胺单独用作环氧树脂固化剂时固化温度很高,一般在150~170℃之间,在此温度下许多器件及材料由于不能承受这样的温度而不能使用,或因为生产工艺的要求而必须降低单组分环氧树脂的固化温度。
解决这个问题的方法有两种,一种是加入促进剂,在不过分损害双氰胺的贮存期和使用性能的前提下,降低其固化温度。
这类促进剂很多,主要有咪唑类化合物及其衍生物和盐、脲类衍生物、有机胍类衍生物、含磷化合物,过渡金属配合物及复合促进剂等,这些促进剂都可以使双氰胺的固化温度明显降低,理想的固化温度可降至120℃左右,但同时会使贮存期缩短,而且耐水性能也会受到一定的影响。
另一种降低单组分环氧树脂固化温度的有效方法是通过分子设计的方法对双氰胺进行化学改性。
在双氰胺分子中引入胺类,特别是芳香族胺类结构,以制备双氰胺衍生物,如瑞士Ciba Geigy公司开发的HT 2833,HT 2844是一种用3,5 二取代苯胺改性的双氰胺衍生物,其化学结构式如下:据报道,此类固化剂与环氧树脂相溶性较好,贮存期长,固化速度快,在100℃下固化1h,剪切强度可达25MPa,150℃固化30min,剪切强度可达27MPa。
日本旭化成工业公司研制的粉末涂料专用固化剂AEHD-610,AEHD-210也是一种改性双氰胺衍生物。
另外,日本有采用芳香族二胺如4,4’ 二氨基二苯甲烷(DDM),4,4’ 二氨基二苯醚(DDE),4,4’ 二氨基二苯砜(DDS),对二甲苯胺(DMB)分别与双氰胺反应制得其衍生物的报道。
上述引入苯环后的双氰胺衍生物与双酚A型环氧树脂的相溶性与双氰胺相比明显增加,与E 44环氧树脂组成的单组分体系在室温贮存期长达半年之久,固化温度均低于双氰胺。
国内有关对双氰胺进行化学改性得到双氰胺衍生物的报道较少,温州清明化工采用环氧丙烷与双氰胺反应制得了双氰胺MD 02,其熔点154~162℃,比双氰胺的熔点(207~210℃)低了45℃左右,采用100份E 44环氧树脂,15份MD 02和0 5份2 甲基咪唑组成的配方,150℃下凝胶的时间为4min。
用苯胺甲醛改性双氰胺所得的衍生物与双酚A型环氧树脂混溶性增加,在丙酮和酒精的混合溶液中有良好的溶解性,且反应活性增加,贮存性也较长。
1.4 咪唑类咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑等咪唑类固化剂是一类高活性固化剂,在中温下短时间即可使环氧树脂固化,因此其与环氧树脂组成的单组分体系贮存期较短,必须对其进行化学改性,在其分子中引入较大的取代基形成具有空间位阻的咪唑类衍生物,或与过渡金属Cu、Ni、Co、Zn等的无机盐反应生成相应的咪唑盐络合物,才能成为在室温下具有一定贮存期的潜伏性固化剂。
对咪唑类固化剂进行化学改性的方法很多,从反应机理上来看,主要有两种:一种是利用咪唑环上1位仲胺基氮原子上的活泼氢对其进行改性,这类改性剂有异氰酸酯、氰酸酯、内酯等,改性后所得的咪唑类衍生物具有较长的贮存期和良好的机械性能。
另一种方法是利用咪唑环上3位N原子的碱性对其改性,使它与具有空轨道的化合物复合,这类物质包括有机酸、金属无机盐类、酸酐、TCNQ、硼酸等。
其中金属无机盐类一般是含具有空轨道的过渡金属离子,如Cu2+、Ni2+、Zn2+、Cd2+、Co2+等,它们与咪唑形成配位络合物,具有很好的贮存性,而在150~170℃迅速固化,但无机盐类、有机酸及其盐类等的引入,将会破坏原咪唑固化产物的耐水解性和耐湿热性。
国内对咪唑类潜伏性固化剂的研究较少,国外市场则相对较多。
日本第一工业制药株式会社将各种咪唑与甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、六次甲基二异氰酸酯(HDI)反应制成封闭产物,减弱了咪唑环上胺基的活性,有较长使用期,当温度上升到100℃以上,封闭作用解除,咪唑恢复活性,环氧树脂固化。
1.5 有机酸酐类有机酸酐类固化剂与双氰胺相似,具有较好的贮存稳定性,尽管固化温度较高,可是固化产物的力学性能、介电性能和耐热性能均较好。
不过这类固化剂由于酸酐键容易水解的缘故而耐湿性较差,并且不容易进行化学改性,因此一般采用添加促进剂的方法降低有机酸酐类固化剂的固化温度。
有机酸酐类固化剂常用的固化促进剂包括叔胺和叔胺盐,季膦盐,路易斯酸-胺络合物,乙酰丙酮过渡金属络合物等。
1.6 有机酰肼类与双氰胺一样,有机酰肼也是一种高熔点固体,但其固化温度比双氰胺低。
有机酰肼与环氧树脂组成的单组分环氧树脂胶体系的贮存期可达4个月以上,常用的有机酰肼化合物有:琥珀酸酰肼、己二酸二酰肼、癸二酸酰肼、间苯二甲酸酰肼和对羟基安息香酸酰肼(POBH)等。
不同种类的有机酰肼固化温度不尽相同,由于其固化温度较高,故常加入促进剂来降低固化温度,所用的促进剂与双氰胺基本相同。
1.7 路易斯酸胺络合物类路易斯酸胺络合物是一类有效的环氧树脂潜伏性固化剂,由BF3、AlCl3、ZnCl2、PF5等路易斯酸与伯胺或仲胺形成络合物而成。
作为环氧树脂的固化剂,这类络合物常温下相当稳定,而在120℃时则快速固化环氧树脂,其中研究最多的是三氟化硼-胺络合物。
据报道,一种合成的新型三氟化硼-胺络合物BPEA-2具有良好的潜伏性、粘接性能和韧性。
路易斯酸胺络合物也是酸酐类和芳香胺类潜伏性固化剂常用的促进剂。
1.8 微胶囊类微胶囊类环氧树脂潜伏性固化剂实际上是利用物理方法,将室温双组分固化剂采用微细的油滴膜包裹,形成微胶囊,加入到环氧树脂中后将固化剂的固化反应活性暂时封闭起来,而通过加热、加压等条件使胶囊破裂,释放出固化剂,从而使环氧树脂固化。
微胶囊类环氧树脂潜伏性固化剂的成膜剂包括纤维素、明胶、聚乙烯醇、聚酯、聚砜等,由于制备工艺要求严格,胶囊膜的厚度对贮存、运输和使用会带来不同程度影响。
2 结语虽然环氧树脂潜伏性固化剂的种类很多,但是每种类型的固化剂都有一定的优点和缺点,到目前为止,仍然没有发现一种性能特别优良,十分理想的潜伏性固化剂。
目前环氧树脂潜伏性固化剂的研究主要集中在双氰胺类,咪唑类和芳香族二胺类固化剂。
同时在达到潜伏性固化剂使用中降低固化温度、缩短固化时间、延长适用期的要求的基础上,进一步解决环氧树脂固化产物耐水、耐热,以及提高韧性等问题,也是今后环氧树脂潜伏性固化剂研究的重点。
不仅如此,随着人们对环境保护意识的提高,低毒和无毒的环保型环氧树脂潜伏固化剂的研究也是必然的趋势。
固化剂是环氧树脂固化物必需的原料之一,否则环氧树脂就不会固化。
为适应各种应用领域的要求,应使用相应的固化剂。
固化剂的种类很多,现介绍于下:脂肪多元胺乙二胺EDA H2NCH2CH2NH2 分子量60 活泼氢当量15 无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。
用于粘接、浇注、涂料。
该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。
但它们放热量大、适用期短。
一般而言它们分子量越大受配合量影响越小。