高斯光束的matlab仿真

合集下载

高等光学仿真matlab第六章高功率光纤激光器版pdf

高等光学仿真matlab第六章高功率光纤激光器版pdf

高等光学仿真matlab第六章高功率光纤激光器版pdf高功率光纤激光器是一种基于激光光源的新型发光器件,具有高功率、高光束质量、高光谱均匀度等特点,广泛应用于激光加工、激光通信、激光雷达等领域。

本文将介绍如何使用Matlab进行高等光学仿真,从而对高功率光纤激光器进行优化设计。

1.光学仿真原理光学仿真是利用计算机模拟光的传播过程,通过建立光学系统的数学模型,计算光场的传输、衍射、反射等现象,从而分析和优化系统性能。

Matlab作为一种强大的科学计算软件,提供了丰富的工具和函数,可用于光学系统的建模和仿真。

2.建立光纤激光器模型在Matlab中,可以利用光波传输法建立高功率光纤激光器的数学模型,包括光波传输方程、折射率方程、损耗方程等。

通过优化这些方程中的参数,可以设计出性能优越的光纤激光器。

3.光纤激光器的光场分析利用Matlab的光场传播函数,可以对光纤激光器的光场进行分析,包括光束的聚焦度、光谱特性、空间分布等。

通过观察这些参数的变化,可以了解光纤激光器在不同工作条件下的性能表现。

4.优化设计光纤激光器在光学仿真过程中,可以通过调节光纤激光器的结构参数、工作条件等,实现对光纤激光器性能的优化设计。

例如,通过改变激光器的长度、折射率、掺杂浓度等参数,可以提高光纤激光器的输出功率、波长稳定性等。

5.应用与展望高功率光纤激光器具有广泛的应用前景,可以应用于激光打标、激光切割、激光焊接等领域。

随着光纤激光器技术的不断进步,相信其在工业制造、医疗美容、通信等领域中将有更加广泛的应用。

综上所述,利用Matlab进行高等光学仿真,可以实现对高功率光纤激光器的精确建模和优化设计,为其在实际应用中发挥更大的作用提供了有力支持。

希望本文能够对读者在光学仿真领域的研究和应用有所启发,推动光学技术的不断发展和创新。

光纤光学matlab仿真

光纤光学matlab仿真

在MATLAB中进行光纤光学仿真可以通过数值模拟和解方程组来模拟光的传播、衍射、衰减等光学现象。

以下是一个简单的光纤光学仿真的一般步骤:
1. 建立光纤模型:
首先,确定光纤的基本参数,例如折射率、直径、长度等。

这些参数将决定光在光纤中的传播特性。

2. 定义入射光源:
在仿真中,定义光源的参数,例如波长、功率、入射角等。

这可以通过定义入射光的波函数来实现。

3. 求解传播方程:
光在光纤中的传播可以通过解相应的偏微分方程(PDE)来模拟。

根据光的波动性质,一般可以使用薛定谔方程或亥姆霍兹方程来描述。

4. 数值求解:
使用MATLAB的数值求解工具箱,例如pdepe函数,对求解的光学方程进行数值模拟。

5. 绘制仿真结果:
使用MATLAB的绘图工具,例如plot函数,可视化仿真结果。

6. 考虑衍射和衰减:
根据光纤的特性,考虑衍射和衰减等现象,更新光学方程。

7. 优化和分析:
通过调整光纤参数,观察光的传播特性,进行性能分析和优化。

注意事项:
•要考虑光在光纤中的多模式传播,可以引入模式耦合的描述。

•对于三维传播,可以将方程扩展到三维,并使用相应的求解方法。

•使用合适的数值方法,例如有限元法、有限差分法等。

以上是一个简单的光纤光学仿真的概要步骤。

具体仿真的复杂性取决于问题的具体情况和所需的精度。

MATLAB提供了强大的工具箱,包括数值求解、绘图、优化等,可用于实现高度复杂的光学仿真。

基于Matlab的光学实验仿真

基于Matlab的光学实验仿真

基于Matlab的光学实验仿真一、本文概述随着科技的快速发展,计算机仿真技术已成为科学研究、教学实验以及工程应用等领域中不可或缺的一部分。

在光学实验中,仿真技术能够模拟出真实的光学现象,帮助研究者深入理解光学原理,优化实验设计,提高实验效率。

本文旨在探讨基于Matlab的光学实验仿真方法,分析Matlab在光学实验仿真中的优势和应用,并通过具体案例展示其在光学实验仿真中的实际应用效果。

通过本文的阐述,读者将能够了解Matlab在光学实验仿真中的重要作用,掌握基于Matlab的光学实验仿真方法,从而更好地应用仿真技术服务于光学研究和实验。

二、Matlab基础知识Matlab,全称为Matrix Laboratory,是一款由美国MathWorks公司出品的商业数学软件,主要用于算法开发、数据可视化、数据分析以及数值计算等领域。

Matlab以其强大的矩阵计算能力和丰富的函数库,在光学实验仿真领域具有广泛的应用。

Matlab中的变量无需预先声明,可以直接使用。

变量的命名规则相对简单,以字母开头,后面可以跟字母、数字或下划线。

Matlab支持多种数据类型,包括数值型(整数和浮点数)、字符型、逻辑型、结构体、单元数组和元胞数组等。

Matlab的核心是矩阵运算,它支持多维数组和矩阵的创建和操作。

用户可以使用方括号 [] 来创建数组或矩阵,通过索引访问和修改数组元素。

Matlab还提供了大量用于矩阵运算的函数,如矩阵乘法、矩阵转置、矩阵求逆等。

Matlab具有强大的数据可视化功能,可以绘制各种二维和三维图形。

在光学实验仿真中,常用的图形包括曲线图、散点图、柱状图、表面图和体积图等。

用户可以使用plot、scatter、bar、surf和volume 等函数来创建这些图形。

Matlab支持多种控制流结构,如条件语句(if-else)、循环语句(for、while)和开关语句(switch)。

这些控制流结构可以帮助用户编写复杂的算法和程序。

matlab仿真在光学原理中的应用

matlab仿真在光学原理中的应用

MATLAB仿真在光学原理中的应用1. 简介光学是研究光的产生、传播、照明及检测等现象和规律的科学,它在物理学、医学、通信等领域有着重要的应用。

随着计算机科学和数值计算的发展,MATLAB作为一种强大的科学计算软件,被广泛应用于光学原理的仿真和分析中,为光学研究提供了有力的工具和方法。

本文将介绍MATLAB仿真在光学原理中的应用,并通过列举几个典型例子来说明MATLAB在解决光学问题上的优势。

2. 光的传播仿真光的传播是光学研究中的重要内容,MATLAB可以通过数值模拟的方法来进行光的传播仿真。

以下是一些常见的光传播仿真的应用:•光线传播仿真:通过计算光线在不同介质中的折射、反射和衍射等规律,可以模拟光在复杂光学系统中的传播过程。

•光束传输仿真:通过建立传输矩阵或使用波前传输函数等方法,可以模拟光束在光学元件中的传输过程,如透镜、棱镜等。

•光纤传输仿真:通过数值模拟光在光纤中的传播过程,可以分析光纤的传输损耗、模式耦合和色散等问题。

MATLAB提供了许多函数和工具箱,如光学工具箱、光纤工具箱等,可以方便地进行光传播仿真和分析。

3. 光学成像仿真光学成像是光学研究中的重要应用之一,MATLAB可以用于模拟和分析光学成像过程。

以下是一些常见的光学成像仿真的应用:•几何光学成像仿真:根据几何光学理论,可以通过模拟光线的传播和聚焦过程来分析光学成像的特性,如像差、焦距和倍率等。

•衍射光学成像仿真:通过衍射理论和数值计算,可以模拟光的衍射和干涉效应对光学成像的影响,如衍射限制和分辨率等。

•光学投影仿真:通过模拟光束、透镜和光阑等光学元件的组合和调节,可以分析光学投影系统的成像质量和变换特性。

MATLAB提供了丰富的函数和工具箱,如图像处理工具箱、计算光学工具箱等,可以方便地进行光学成像仿真和分析。

4. 激光光学仿真激光是光学研究中的一个重要分支,MATLAB可以用于模拟和分析激光的特性和应用。

以下是一些常见的激光光学仿真的应用:•激光器仿真:通过建立激光器的数学模型和模拟激光的发射过程,可以分析激光器的输出特性和光束质量等。

高斯变异matlab

高斯变异matlab

高斯变异matlab全文共四篇示例,供读者参考第一篇示例:高斯变异是一种常见的用于数据处理和模型拟合的方法,它在统计学和机器学习等领域中被广泛应用。

在MATLAB中,高斯变异可以通过一些内置函数来实现,如fitrgp和fitcecoc。

本文将介绍高斯变异的基本概念和在MATLAB中的应用。

高斯变异是一种回归分析方法,它根据已有的数据来预测未知数据的值。

在高斯变异中,数据被假设为由一个或多个高斯分布生成的,因此预测的结果也服从高斯分布。

这种方法最大的优点是可以利用已有数据的信息来准确地估计未知数据的值,并给出一个可靠的预测范围。

在MATLAB中,我们可以使用fitrgp函数来构建高斯过程回归模型。

这个函数可以根据输入的训练数据来拟合一个高斯过程模型,并返回一个用于预测的函数句柄。

我们可以这样使用fitrgp函数来拟合一个简单的正弦函数:``` matlab% 生成训练数据x = linspace(0, 2*pi, 100);y = sin(x)' + normrnd(0, 0.1, 100, 1);% 构建高斯过程回归模型gprMdl =fitrgp(x',y,'KernelFunction','squaredexponential','Standardize',1);% 绘制结果figureplot(x,y,'r.','MarkerSize',15)hold onplot(xnew,ynew,'b-','LineWidth',2)plot(xnew,ynew+2*ysd,'b--')plot(xnew,ynew-2*ysd,'b--')legend('观测数据','预测数据','95%置信区间')```在上面的例子中,我们首先生成一些训练数据,这里我们选择正弦函数并添加一些高斯噪声。

高斯光束的matlab仿真教学内容

高斯光束的matlab仿真教学内容

高斯光束的m a t l a b仿真题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。

(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。

)原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可,CCD采集的高斯光束光强分布图1 CCD采集的高斯光束强度分布读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。

用读入的数据取中间一行(122行)画出强度分布如图2所示。

50100150200020406080100120140160180实验测量高斯曲线图2 实验测量高斯曲线用理论上的高斯曲线公式画出理论高斯曲线如图3所示。

-40-30-20-1001020304000.20.40.60.81理论高斯曲线图3 理论高斯曲线M 文件如下:A=imread('D:\documents\作业\激光原理与应用\高斯.bmp');A1=A(:,122);x1=1:1:224;x2=-100:1:100;a2=exp(-x2.^2/10);figureimshow(A);axis offtitle('\fontsize{12}CCD 采集的高斯光束光强分布');figureplot(x2,a2,'linewidth',1,'color','b');axis([-40 40 0 1.2])title('\fontsize{12}实验测量高斯曲线')figureplot(x1,A1,'linewidth',1,'color','r')title('\fontsize{12}理论高斯曲线')axis([50 200 0 180])画三维强度分布。

基于matlab高斯光束经透射型体光栅后的光束传输特性分析(附源程序)

基于matlab高斯光束经透射型体光栅后的光束传输特性分析(附源程序)

目录1 基本原理 (1)1.1耦合波理论 (1)1.2高斯光波的基本理论 (9)2 建立模型描述 (10)3仿真结果及分析 (10)3.1角度选择性的模拟 (10)3.2波长选择性的模拟 (13)3.3单色发散光束经透射型布拉格体光栅的特性 (15)3.4多色平面波经透射型布拉格体光栅的特性 (17)4 调试过程及结论 (18)5 心得体会 (20)6 思考题 (20)7 参考文献 (20)8 附录 (21)高斯光束经透射型体光栅后的光束传输特性分析1 基本原理1.1耦合波理论耦合波理论分析方法基于厚全息光栅产生的布拉格衍射光。

当入射波被削弱且产生强衍射效率时,耦合波理论分析方法适用耦合波理论分析方法适用于透射光栅。

1.1.1耦合波理论研究的假设条件及模型耦合波理论研究的假设条件:(1) 单色波入射体布拉格光栅;(2) 入射波以布拉格角度或近布拉格角度入射;(3)入射波垂直偏振与入射平面;(4)在体光栅中只有两个光波:入射光波 R 和衍射光波 S;(5)仅有入射光波 R 和衍射光波 S 遵守布拉格条件,其余的衍射能级违背布拉格条件,可被忽略;(6)其余的衍射能级仅对入射光波 R 和衍射光波 S 的能量交换有微小影响;(7)将耦合波理论限定于厚布拉格光栅中;图1为用于耦合波理论分析的布拉格光栅模型。

z 轴垂直于介质平面,x 轴在介质平面内,平行于介质边界,y 轴垂直于纸面。

边界面垂直于入射面,与介质边界成Φ角。

光栅矢量K垂直于边界平面,其大小为2/=Λ,Λ为光栅周期,θ为入射角。

Kπ图1布拉格光栅模型R —入射波,S —信号波,Φ—光栅的倾斜角,0θ—再现光满足布拉格条件时的入射角(与z 轴所夹的角),K —光栅矢量的大学,d —光栅的厚度,r θ和s θ—再现光波和衍射光波与z 轴所夹的角度,Λ—光栅周期。

光波在光栅中的传播由标量波动方程描述:220E k E ∇+= (1)公式(2)中(),E xz 是y 方向的电磁波的复振幅,假设为与y 无关,其角频率为ω。

matlab激光器仿真

matlab激光器仿真

Matlab激光器仿真简介激光器是一种能够产生激光光束的设备,广泛应用于通信、医疗、材料加工等领域。

在激光器设计和优化的过程中,进行仿真是非常重要的一步。

Matlab作为一款功能强大的数学软件,提供了丰富的工具和函数库,可以方便地进行激光器仿真。

本文将介绍如何使用Matlab进行激光器仿真,包括模型建立、参数设置、仿真结果分析等内容。

激光器模型建立激光器基本原理在进行激光器仿真之前,我们首先需要了解激光器的基本原理。

激光器的核心部件是激光介质,通常是由半导体材料或激光晶体构成。

在激光介质中,通过泵浦能量的输入,激发介质内部的原子或分子从低能级跃迁到高能级,形成电子激发态。

当这些激发态的粒子回到低能级时,会放出光子,这些光子受到激发态的粒子数目和能级之间的能量差的限制,具有相干性并具有特定的频率和相位。

模型建立步骤激光器仿真的第一步是建立激光器模型。

在Matlab中,我们可以通过使用光线追踪或波动光学等方法来建立激光器模型。

以下是建立激光器模型的一般步骤:1.定义激光介质的材料属性,包括吸收率、发射截面等。

2.设计激光器的几何结构,包括激光介质的形状、激光器的长度、腔内的镜子等。

3.设置激光器的泵浦方式和泵浦能量,这将决定激光器的输出功率。

4.定义激光器的初始状态,包括介质的初始粒子数目和能级分布等。

参数设置在进行激光器仿真之前,我们还需要设置一些重要的参数,以确保仿真结果的准确性和可靠性。

以下是一些常用的参数设置:1.激光器的波长:激光器的波长决定了输出光的频率,对于不同的应用需求可能有不同的要求。

2.激光器的腔长:激光器的腔长决定了激光器的工作模式,一般可以选择连续模式或脉冲模式。

3.激光器的输出功率:激光器的输出功率可以通过调整泵浦能量或改变激光介质的特性来控制。

4.激光器的损耗:激光器的损耗来自于各种因素,如腔内的镜子反射率、介质的吸收等,需要进行准确的估计和设置。

仿真结果分析通过进行激光器仿真,我们可以得到激光器的输出光强、波形、频谱等信息,并进行相应的分析。

Matlab中的混合高斯模型建模方法介绍

Matlab中的混合高斯模型建模方法介绍

Matlab中的混合高斯模型建模方法介绍混合高斯模型(Gaussian Mixture Model,简称GMM)是一种常用的概率模型,用于对数据进行建模和分析。

在Matlab中,通过使用统计和机器学习工具箱(Statistics and Machine Learning Toolbox),可以轻松地实现混合高斯模型的建模和应用。

本文将介绍混合高斯模型的基本概念、建模方法和实际应用,并通过示例演示Matlab工具箱的使用。

1. 混合高斯模型的基本概念混合高斯模型是由若干个高斯分布组合而成的概率模型,每个高斯分布被称为一个混合成分(mixture component)。

每个混合成分具有自己的均值和方差,通过控制每个混合成分所占的权重,可以对不同分布的重要性进行调节。

混合高斯模型可以用于数据的聚类、分类、异常检测等各种应用场景。

2. 混合高斯模型的建模方法在Matlab中,可以使用`gmdistribution.fit()`函数对数据进行混合高斯模型的拟合。

该函数需要输入一个数据集以及所希望拟合的混合高斯模型的数量。

可以通过修改`Options`参数来调整拟合过程中的迭代次数、算法选择等。

3. 混合高斯模型的参数估计拟合完成后,可以通过以下属性来获取混合高斯模型的参数估计:- `mu`:每个混合成分的均值- `Sigma`:每个混合成分的协方差矩阵- `PComponents`:每个混合成分的权重4. 混合高斯模型的应用示例为了更好地理解混合高斯模型在实际应用中的表现,我们以一个虚拟数据集为例进行演示。

假设该数据集包含两个不同的高斯分布。

我们首先生成数据集,并对其进行可视化。

```matlabrng(1); % 设置随机种子data1 = mvnrnd([1, 1], [0.2, 0.1; 0.1, 0.2], 1000);data2 = mvnrnd([-1, -1], [0.2, -0.1; -0.1, 0.2], 1000);data = [data1; data2];scatter(data(:, 1), data(:, 2));```接下来,我们使用GMM对数据进行建模。

拉盖尔高斯光束 厄米高斯光束MATLAB仿真

拉盖尔高斯光束 厄米高斯光束MATLAB仿真

激光原理by贾而穑 130212114厄米高斯光束MATLAB仿真其中主程序文件:plotHermiteGaussianBeams.m子程序文件:HermitePoly.m程序如下:plotHermiteGaussianBeams.m%-------------------------------------------------------------------------% % auther:Erse Jia% Student ID 130212114%-------------------------------------------------------------------------% %% Hermite Gaussian Beams%% SET PARAMETERS% Physical parameterslambda = 500; % nmk = 2*pi/lambda;% The two parameters for the gaussian beam (and derived quantities)z0 = 1;A0 = 1;W0 = sqrt(lambda*z0/pi);W = @(z) W0*sqrt(1+(z/z0)^2);R = @(z) z*(1+(z/z0)^2);Zeta = @(z) atan(z/z0);% The coefficients for the Hermite-Gaussian (HG) beam of order (l,m)A = [ 1 0 0 0;1 1 0 0;0 0 0 0;0 0 .2 0];% Display Parametersres = 800;z = 1e-9;x = linspace(-2*W(z),2*W(z),res);y = linspace(-2*W(z),2*W(z),res);[X Y] = meshgrid(x,y);X = X(:);Y = Y(:);%% RUN THE SIMULATION% Preallocate MemoryU = zeros(length(X),1);Utemp = zeros(length(X),1);Utemp2 = zeros(length(X),1);% Calculate Values that are independent of HG Polynomial orderlpf = exp(-1i*k*z - 1i*k*(X.^2 + Y.^2)/(2*R(z))); %lateral phase factoru = sqrt(2)*X/W(z);v = sqrt(2)*Y/W(z);for l = 1:size(A,1)%if there are any terms of this order, calculate the x-HG (so you don't %need to repeat for each value of mif sum(A(l,:) ~= 0) ~= 0Utemp2 = (W0/W(z))*polyval(HermitePoly(l-1),u).*exp(-u.^2/2);elsecontinue;endfor m = 1:size(A,2)if A(l,m) ~= 0Utemp = Utemp2.*(polyval(HermitePoly(m-1),v)).*exp(-v.^2/2);Utemp = A(l,m)*Utemp.*lpf*exp(1i*(l+m+1)*Zeta(z));U = U + Utemp;endendend%% DRAW PLOTSfigure;U = reshape(U,res,res);imagesc(x,y,abs(U).^2);axis square;set(1,'color','w');title('Hermite-Gaussian Beam of Order');xlabel('x (nm)');ylabel('y (nm)');HermitePoly.m%-------------------------------------------------------------------------% % HermitePoly.m by Erse Jia% Student ID 130212114% Given nonnegative integer n, compute the% Hermite polynomial H_n. Return the result as a vector whose mth% element is the coefficient of x^(n+1-m).% polyval(HermitePoly(n),x) evaluates H_n(x).%-------------------------------------------------------------------------%function hk = HermitePoly(n)if n==0hk = 1;elseif n==1hk = [2 0];elsehkm2 = zeros(1,n+1);hkm2(n+1) = 1;hkm1 = zeros(1,n+1);hkm1(n) = 2;for k=2:nhk = zeros(1,n+1);for e=n-k+1:2:nhk(e) = 2*(hkm1(e+1) - (k-1)*hkm2(e));endhk(n+1) = -2*(k-1)*hkm2(n+1);if k<nhkm2 = hkm1;hkm1 = hk;endendend结果:拉盖尔高斯光束MATLAB仿真主程序文件:DrawtheLaguerreGaussbeam.m子程序文件:LG.mDrawtheLaguerreGaussbeam.m%-------------------------------------------------------------------------% % auther:Erse Jia% Student ID 130212114%-------------------------------------------------------------------------% clear all;close all; clcparams = [0 0 1];% Use function handleu0 = @(rho, phi)LG(params, rho, phi);R = @(x, y)(x<0)-(x>=0);u = @(rho, phi)R(rho.*cos(phi), rho.*sin(phi)).*u0(rho, phi);[X, Y] = meshgrid(linspace(-5, 5, 200));Rho = sqrt(X.^2 + Y.^2);Phi = atan(Y./X);figure(1)set(1,'color','w');Z = u(Rho, Phi);surf(X, Y, -Z)shading interpset(gca,'box','on');grid off;xlabel('x position');ylabel('y position');zlabel('z');colorbar;LG.mfunction y = LG( params, rho, phi )m = abs(params(1));p = params(2);w = params(3);if w==0msgbox('params(0) can not be equal to 0');endt = rho./w;y = sqrt(2*factorial(p)/pi/factorial(m+p))/w.* (sqrt(2).*t).^m ....* L([p m], 2*t.^2).* exp(-t.^2 + 1i*m*phi);function y = L(params, x)fact = @(x)arrayfun(@factorial, x);n = params(1); % pk = params(2); % mm = 0:n;a = factorial(n+k)*ones(1,length(m));b = fact(n-m);c = fact(k+m);d = fact(m);e = (-1).^m;y = zeros(size(x));for s = 1:n+1y = y + a(s) ./ b(s) ./ c(s) ./ d(s) .* e(s) .* x.^m(s); endendend结果:。

高斯模糊的实现(matlab)

高斯模糊的实现(matlab)

高斯模糊实现(matlab)高斯模糊是一种图像模糊滤波器,它用正态分布计算图像中每个像素的变换。

N 维空间正态分布方程为(1)在二维空间定义为(2)其中r 是模糊半径,指模板元素到模板中心的距离。

σ 是正态分布的标准偏差,。

在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆。

分布不为零的像素组成的卷积矩阵与原始图像做变换。

每个像素的值都是周围相邻像素值的加权平均。

原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。

这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。

1. 使用给定高斯模板平滑图像维基百科的实例高斯模糊矩阵:0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067 0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292 0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117 0.00038771 0.01330373 0.11098164 0.22508352 0.11098164 0.01330373 0.00038771 0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117 0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.000022920.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067用该矩阵进行高斯模糊的结果如下:使用代码如下:guass=[0.00000067 0.00002292 0.00019117 0.00038771 0.000191 17 0.00002292 0.00000067;0.00002292 0.00078633 0.00655965 0.01330373 0.006559650.00078633 0.00002292;0.00019117 0.00655965 0.05472157 0.11098164 0.054721570.00655965 0.00019117;0.00038771 0.01330373 0.11098164 0.22508352 0.110981640.01330373 0.00038771;0.00019117 0.00655965 0.05472157 0.11098164 0.054721570.00655965 0.00019117;0.00002292 0.00078633 0.00655965 0.01330373 0.006559650.00078633 0.00002292;0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067];TestImg=imread('Lena1.jpg');FuzzyImg=conv2(TestImg,guass,'full');subplot(121);imshow(TestImg);subplot(122);imshow(FuzzyImg/256);编程注意事项:在matlab中,我们常使用imshow()函数来显示图像,而此时的图像矩阵可能经过了某种运算。

matlab高斯函数信号

matlab高斯函数信号

matlab高斯函数信号
Matlab高斯函数信号
一、Matlab高斯函数信号介绍
Matlab高斯信号是特定类型的信号,它是主要由幅度和脉冲宽度构成的。

即:
其中,A为幅度,定义单位值,τ为脉冲宽度,定义脉冲的宽度,当τ越小,脉冲宽度越窄,当τ越大,脉冲宽度越宽,T为时间常数,定义在定义域上的准确度。

当T越大,定义域越宽,反之,越小。

Matlab高斯信号具有优良的性能,能够有效地抑制噪声,减少传输网络的错误,从而提高信号传输的可靠性,因此,它在许多领域得到了广泛的应用。

二、Matlab高斯信号的应用
1、通信信号:Matlab高斯函数信号在通信中广泛应用,用于建立网络的结构,可以降低物理信道的干扰,从而实现高速通信。

2、计算机图像处理:Matlab高斯函数信号可以用于压缩图像,减少图像在存储和传输中的噪声,从而提高图像处理和信息获取的效率。

3、声学效果研究:Matlab高斯函数信号可以用于研究不同频率信号的传播和发射,从而提高音响效果。

4、医学成像:Matlab高斯函数信号可以用于模拟机械成像,从而精确检测和诊断疾病。

三、Matlab高斯函数信号的生成
Matlab高斯函数信号可以通过Matlab内置函数gauss函数来生成。

该函数的语法格式如下:
其中A、τ和T分别代表Matlab高斯函数信号的幅度、脉冲宽度和时间常数;x为定义域变量,表示信号在定义域的取值范围;b 为定义域中心,表示信号在定义域的中心点。

高斯光束的matlab仿真

高斯光束的matlab仿真

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。

(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。

)原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可,CCD采集的高斯光束光强分布图1 CCD采集的高斯光束强度分布读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。

用读入的数据取中间一行(122行)画出强度分布如图2所示。

图2 实验测量高斯曲线用理论上的高斯曲线公式画出理论高斯曲线如图3所示。

图3 理论高斯曲线50100150200020406080100120140160180实验测量高斯曲线-40-30-20-1001020304000.20.40.60.81理论高斯曲线M文件如下:A=imread('D:\documents\作业\激光原理与应用\高斯.bmp');A1=A(:,122);x1=1:1:224;x2=-100:1:100;a2=exp(-x2.^2/10);figureimshow(A);axis offtitle('\fontsize{12}CCD采集的高斯光束光强分布');figureplot(x2,a2,'linewidth',1,'color','b');axis([-40 40 0 1.2])title('\fontsize{12}实验测量高斯曲线')figureplot(x1,A1,'linewidth',1,'color','r')title('\fontsize{12}理论高斯曲线')axis([50 200 0 180])画三维强度分布。

基于MATLAB的光学系统仿真及优化

基于MATLAB的光学系统仿真及优化

基于MATLAB的光学系统仿真及优化近年来,光学系统在许多领域中的应用越来越广泛,如无线通信、医疗影像等。

为了满足各种需求,光学系统在设计时需要进行仿真和优化。

而基于MATLAB的光学系统仿真及优化技术已经成为了一种较为常用的方法。

一、光学系统仿真光学系统仿真是指通过计算机程序对光学系统进行模拟,预测光学信号的传输、成像效应及其它性能。

目前,常用的仿真软件主要有光追模拟软件、有限元分析软件等。

其中,较为常见的是光追模拟软件,它可以精确地模拟光的传播过程,并能够预测光学系统在不同参数下的成像效果。

基于MATLAB的光学系统仿真技术主要采用ray tracing(光線追跡)算法。

这种算法利用光线的物理模型来模拟光的传输过程,在每个接口处计算反射、折射等光路变化,并确定光程差、相位等光学参数。

通过光学系统建模,通过MATLAB程序获取系统的光学参数,采用离散光线跟踪方法检测系统中光线的运动轨迹,得到完整光路的详细信息,并分析系统的光学性能。

二、光学系统优化光学系统的优化通常包括镜头设计、成像质量优化和照明设计等方面。

镜头设计是指通过对光学组件的优化来改进成像质量。

常见的优化方法包括减少像散、减少色差、增加透镜组数等。

成像质量优化是指通过对成像质量的参数进行分析和改进,来提高成像质量。

典型的优化目标包括分辨率、像散、畸变等。

照明设计是指通过特定的照明方案来达到目标照明效果。

其中,镜头设计是光学系统优化的重要方面。

基于MATLAB的光学系统优化可以通过编写程序实现对系统镜头的设计、分析和改进。

在系统设计之前,MATLAB可以对镜头进行优化设计,包括镜头形状、材料、曲率半径以及切向位置等。

此外,通过采用不同方法生成随机点云,进行仿真。

结果显示,通过该技术,可以快速生成不同形状的随机点阵,从而得到不同品质的成像效果。

镜头成像质量优化则是在实际运用过程中对光学系统进行微调,进一步提高成像效果。

三、应用实例基于MATLAB的光学系统仿真及优化技术已被广泛应用于诸多领域,其中最常见的是成像系统仿真。

高斯光束传播及其MATLAB仿真

高斯光束传播及其MATLAB仿真

目录一、高斯光束 (1)1简介: (1)2. 命名 (1)二、高斯定律的传播 (2)1.振幅分布特性 (2)2.等相位面特性 (2)3.高斯光束的瑞利长度 (3)4.高斯光束的远场发散角 (4)三、用MATLAB仿真高斯光束的优势 (4)四、提出高斯光束的问题 (4)五、问题的求解 (5)六、问题的MATLAB程序 (7)1、程序如下: (7)2.最终运行 (10)七、结束语 (17)八、参考文献 (17)九、成绩评定 (18)一、高斯光束1简介:通常情形,激光谐振腔发出的基模辐射场,其横截面的振幅分布遵守高斯函数,故称高斯光束。

2.命名关于光斑大小的查询,其实问的就是光斑的束腰直径或束腰半径。

束腰,是指高斯光绝对平行传输的地方。

半径,是指在高斯光的横截面考察,以最大振幅处为原点,振幅下降到原点处的0.36788倍,也就是1/e倍的地方,由于高斯光关于原点对称,所以1/e的地方形成一个圆,该圆的半径,就是光斑在此横截面的半径;如果取束腰处的横截面来考察,此时的半径,即是束腰半径。

沿着光斑前进,各处的半径的包络线是一个双曲面,该双曲面有渐近线。

高斯光束的传输特性,是在远处沿传播方向成特定角度扩散,该角度即是光束的远场发散角,也就是一对渐近线的夹角,它与波长成正比,与其束腰半径成反比,故而,束腰半径越小,光斑发散越快;束腰半径越大,光斑发散越慢。

我们用感光片可以看到,在近距离时,准直器发出的光在一定范围内近似成平行光,距离稍远,光斑逐渐发散,亮点变弱变大;可是从光纤出来的光,很快就发散;这是因为,准直器的光斑直径大约有400微米,而光纤的光斑直径不到10微米。

同时,对于准直器最大工作距离的定义,往往可理解为该准直器输出光斑的共焦参数,该参数与光斑束腰半径平方成正比,与波长成反比,计算式是:3.1415926*束腰半径*束腰半径/波长。

所以要做成长工作距离(意味着在更长的传输距离里高斯光束仍近似成平行光)的准直器,必然要把光斑做大,透镜相应要加长加粗。

matlab仿真光束的传输特性

matlab仿真光束的传输特性

一、课程设计题目:用matlab 仿真光束的传输特性。

二、任务和要求用matlab 仿真光束通过光学元件的变换。

① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1.5062,镜片中心厚度为3mm ,凸面曲率半径,设为100mm ,初始光线距离透镜平面20mm 。

用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。

② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121=='n n (K9玻璃),502-=r ,0.12='n ,物点A 距第一面顶点的距离为100,由A 点计算三条沿光轴夹角分别为10、20、30的光线的成像。

试用Matlab 对以上三条光线光路和近轴光线光路进行仿真,并得出实际光线的球差大小。

③ 设半径为1mm 的平面波经凸面曲率半径为25mm ,中心厚度3mm 的平凸透镜。

用matlab 仿真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。

并与理论光斑半径值进行对比,得出误差大小。

(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。

)2、用MATLAB 仿真平行光束的衍射强度分布图样。

(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。

)3、用MATLAB仿真厄米—高斯光束在真空中的传输过程。

(包括三维强度分布和平面的灰度图。

)4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。

用matlab 对不同传输距离处的光强进行仿真。

三、理论推导部分将坐标原点选在透镜中心处,θ1=arcsin(y1/r),由n1*sinθ1=n2*sinθ2可得出θ2=arcsin(n1/n2)*(y1/r),由几何关系可得到θ=θ2-θ1,则出射光线的斜率k=tan(θ2-θ1),当入射直线y=y1时,x1=d-(r-(yr ),并设出射直线为y=k*x+b;由直线经过(x1,y1)即可求2^)2^1出b值,从而就可以求出射直线。

光纤内脉冲信号传输仿真(包含matlab程序)

光纤内脉冲信号传输仿真(包含matlab程序)

光纤内脉冲信号传输仿真一、仿真内容1、 选择一种脉冲波形(高斯脉冲,啁啾高斯脉冲,双曲正割脉冲,超高斯脉冲等),讨论光脉冲在光纤内传输时,GVD 和SPM 效应是如何结合的,并使用MATLAB 仿真脉冲波形随传播距离的变化。

2、 选择一种调制方式(ASK ,PSK ,QPSK ,QAM 等),对脉冲进行调制,分析接收端的误码率。

二、原理分析1、 GVD光脉冲在单模光纤内传输的NLS 方程,对脉冲大于5ps 的脉冲有2222|A |22A A i i A A z Tβαγ∂∂=-+-∂∂ (1式) U (z,T )满足线性偏微分方程~2222U Ui z Tβ∂∂=∂∂ (2式) 若U(z,w)是U(z,T)的傅里叶变换,即~1(z,T)(z,)2i T U U e d ωωωπ-∞=-∞⎰ (3式) 满足常微分方程~~222U i U z βω∂=-∂ (4式) 其解为~~22(z,)(0,)exp(z)2iU U ωωβω= (5式)由第5式可得,GVD 改变了脉冲的每个频谱分量的相位,且其改变量依赖于频率及传输距离。

GVD 不会影响脉冲的频谱,但是能改变脉冲的形状。

把5式代入3式可得方程2的通解~221(z,T)(0,)exp(z i T)22i U U d ωβωωωπ∞=--∞⎰ (6式) 其中,~(0,)U ω是入射光在z=0处的傅里叶变换~(0,)U(0,T)exp(i T)U dT ωω∞=-∞⎰(7式) 方程6和方程7适用于任意形状的输入脉冲。

2、 SPM定义归一化振幅U/2(z,)(z,)A U αττ-= (8式)其中归一化时间量00/g t z T T T ντ-== (9式)(z,)U τ满足方程2222sgn()|U |U 2z D NLU U e i z L L αβτ-∂∂=-∂∂ (10式) 令2β=0,两边同时乘以i 可得2|U |U zNLU e z L α-∂=∂ (11式) 其中10()NL L P γ-=用NL exp(i )U V φ=做代换,并且令方程两边实部虚部相等,则有0Vz ∂=∂ 2z NL NLe V z L αφ-∂=∂ (12式) 对相位方程进行积分,得到通解NL (L,T)U(0,T)exp(i (L,T))U φ= (13式)其中,U(0,T)是z=0处的场振幅,且2NL eff NL (L,T)|U(0,T)|(L /L )φ= (14式)式中有限长度eff L [1exp(L)]/αα=-- (15式)第14式表明,SPM 产生随光强变化的相位,但脉冲形状保持不变。

高斯光束的matlab仿真设计

高斯光束的matlab仿真设计

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。

(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。

)原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可,CCD采集的高斯光束光强分布图1 CCD采集的高斯光束强度分布读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。

用读入的数据取中间一行(122行)画出强度分布如图2所示。

50100150200020406080100120140160180实验测量高斯曲线图2 实验测量高斯曲线用理论上的高斯曲线公式画出理论高斯曲线如图3所示。

-40-30-20-1001020304000.20.40.60.81理论高斯曲线图3 理论高斯曲线M文件如下:A=imread('D:\documents\作业\激光原理与应用\高斯.bmp');A1=A(:,122);x1=1:1:224;x2=-100:1:100;a2=exp(-x2.^2/10);figureimshow(A);axis offtitle('\fontsize{12}CCD采集的高斯光束光强分布');figureplot(x2,a2,'linewidth',1,'color','b');axis([-40 40 0 1.2])title('\fontsize{12}实验测量高斯曲线')figureplot(x1,A1,'linewidth',1,'color','r')title('\fontsize{12}理论高斯曲线')axis([50 200 0 180])画三维强度分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。

(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。

)原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可,CCD采集的高斯光束光强分布图1 CCD采集的高斯光束强度分布读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。

用读入的数据取中间一行(122行)画出强度分布如图2所示。

50100150200020406080100120140160180实验测量高斯曲线图2 实验测量高斯曲线用理论上的高斯曲线公式画出理论高斯曲线如图3所示。

-40-30-20-1001020304000.20.40.60.81理论高斯曲线图3 理论高斯曲线M文件如下:A=imread('D:\documents\作业\激光原理与应用\高斯.bmp');A1=A(:,122);x1=1:1:224;x2=-100:1:100;a2=exp(-x2.^2/10);figureimshow(A);axis offtitle('\fontsize{12}CCD采集的高斯光束光强分布');figureplot(x2,a2,'linewidth',1,'color','b');axis([-40 40 0 1.2])title('\fontsize{12}实验测量高斯曲线')figureplot(x1,A1,'linewidth',1,'color','r')title('\fontsize{12}理论高斯曲线')axis([50 200 0 180])画三维强度分布。

取图片矩阵的中间层,用mesh命令画出三维图如图4所示。

图4 三维强度分布由于读入的图片有一行白边,需要手动去除掉,否则三维图会有一边整体竖起来,影响观察。

最终的M文件如下。

A=imread('D:\documents\作业\激光原理与应用\高斯.bmp');[high, width, color] = size(A);x=1:width;y=1:high-1;mesh(x', y', double(A(2:224,:,1)));grid onxlabel('x'),ylabel('y'),zlabel('z');title('三维强度分布');再用matlab仿真理论上传播过程中高斯光束的变化这次先给出M文件:%Gaussian_propagation.m%Simulation of diffraction of Gaussian Beamclear;%Gaussian Beam%N:sampling numberN=input('Number of samples(enter from 100 to 500)=');L=10*10^-3;Ld=input('wavelength of light in [micrometers]=');Ld=Ld*10^-6;ko=(2*pi)/Ld;wo=input('Waist of Gaussian Beam in [mm]=');wo=wo*10^-3;z_ray=(ko*wo^2)/2*10^3;sprintf('Rayleigh range is %f [mm]',z_ray)z_ray=z_ray*10^-3;z=input('Propagation length (z) in [mm]');z=z*10^-3;%dx:step sizedx=L/N;for n=1:N+1for m=1:N+1%Space axisx(m)=(m-1)*dx-L/2;y(n)=(n-1)*dx-L/2;%Gaussian Beam in space domainGau(n,m)=exp(-(x(m)^2+y(n)^2)/(wo^2));%Frequency axis Kx(m)=(2*pi*(m-1))/(N*dx)-((2*pi*(N))/(N*dx))/2;Ky(n)=(2*pi*(n-1))/(N*dx)-((2*pi*(N))/(N*dx))/2;%Free space transfer functionH(n,m)=exp(j/(2*ko)*z*(Kx(m)^2+Ky(n)^2));endend%Gaussian Beam in Frequency domainFGau=fft2(Gau);FGau=fftshift(FGau);%Propagated Gaussian beam in Frequency domainFGau_pro=FGau.*H;%Peak amplitude of the initial Gaussian beamPeak_ini=max(max(abs(Gau)));sprintf('Initial peak amplitude is %f [mm]',Peak_ini)%PropagatedGaussian beam in space domainGau_pro=ifft2(FGau_pro);Gau_pro=Gau_pro;%Peak amplitude of the propagated Gaussian beamPeak_pro=max(max(abs(Gau_pro)));sprintf('Propagated peak amplitude is %f [mm]',Peak_pro)%Calculated Beam Width[N M]=min(abs(x));Gau_pro1=Gau_pro(:,M);[N1 M1]=min(abs(abs(Gau_pro1)-abs(exp(-1)*Peak_pro)));Bw=dx*abs(M1-M)*10^3;sprintf('Beam width(numerical) is %f[mm]',Bw)%Theoretical Beam Width W=(2*z_ray)/ko*(1+(z/z_ray)^2);W=(W^0.5)*10^3;sprintf('Beam width(theoretical) is %f[mm]',W)%axis in mm scalex=x*10^3;y=y*10^3;figure(1);mesh(x,y,abs(Gau))title('Initial Gaussian Beam')xlabel('x [mm]')ylabel('y [mm]')axis([min(x) max(x) min(y) max(y) 0 1])axis squarefigure(2);mesh(x,y,abs(Gau_pro))title('propagated Gaussian Beam')xlabel('x [mm]')ylabel('y [mm]')axis([min(x) max(x) min(y) max(y) 0 1])axis square程序主要根据高斯光束的传播规律计算传播过程中任意z处的高斯光强分布。

运行结果:Number of samples(enter from 100 to 500)=500wavelength of light in [micrometers]=0.568Waist of Gaussian Beam in [mm]=1ans =Rayleigh range is 5530.972982 [mm]Propagation length (z) in [mm]100000ans =Initial peak amplitude is 1.000000 [mm]ans =Propagated peak amplitude is 0.210252 [mm]ans =Beam?width(numerical) is 1.940000[mm]ans =Beam?width(theoretical) is 18.107635[mm]>>束腰半径处的理想高斯光强分布传播1m处的理想高斯光强分布传播10m处的理想高斯光强分布传播20m处的理想高斯光强分布传播30m处的理想高斯光强分布传播50m处的理想高斯光强分布传播100m处的理想高斯光强分布而用实验测得的光斑仿真的结果是:原始光斑的光强分布0.1m处1m处1.8m处5m处10m以后,已经基本是均匀强度的光斑。

相关文档
最新文档