初中一年级数学上册知识点新版
最新初中一年级上期数学知识点
初中一年级上期数学知识点>初中一年级上期数学知识点>第一章有理数(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a-b=a+(-b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
初中一年级数学上册第一章知识点
以下是为⼤家整理的关于初中⼀年级数学上册第⼀章知识点的⽂章,供⼤家学习参考!第⼀章有理数1.1正数和负数以前学过的0以外的数前⾯加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同⼀个问题中,分别⽤正数和负数表⽰的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴规定了原点、正⽅向、单位长度的直线叫做数轴。
数轴的作⽤:所有的有理数都可以⽤数轴上的点来表达。
注意事项:⑴数轴的原点、正⽅向、单位长度三要素,缺⼀不可。
⑵同⼀根数轴,单位长度不能改变。
⼀般地,设是⼀个正数,则数轴上表⽰a的点在原点的右边,与原点的距离是a个单位长度;表⽰数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数只有符号不同的两个数叫做互为相反数。
数轴上表⽰相反数的两个点关于原点对称。
在任意⼀个数前⾯添上“-”号,新的数就表⽰原数的相反数。
1.2.4绝对值⼀般地,数轴上表⽰数a的点与原点的距离叫做数a的绝对值。
⼀个正数的绝对值是它的本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表⽰有理数,它们从左到右的顺序,就是从⼩到⼤的顺序,即左边的数⼩于右边的数。
⽐较有理数的⼤⼩:⑴正数⼤于0,0⼤于负数,正数⼤于负数。
⑵两个负数,绝对值⼤的反⽽⼩。
1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较⼤的加数的符号,并⽤较⼤的绝对值减去较⼩的绝对值。
互为相反数的两个数相加得0。
⑶⼀个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a三个数相加,先把前⾯两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进⾏。
初中一年级数学知识点总结
初中一年级数学知识点总结每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技巧的。
下面是我给大家整理的一些学校一班级数学学问点总结的学习资料,盼望对大家有所关心。
学校一班级数学学问点总结(上册)第一章有理数一、学问框架二.学问概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数;(2)有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;(2) 肯定值可表示为:或 ;肯定值的问题常常分类争论;5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若a≠0,那么的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把肯定值相加;(2)异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把肯定值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数打算.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的安排律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;留意:零不能做除数, .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,全部数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最终加减.本章内容要求同学正确熟悉有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、肯定值的意义所在。
初中一年级数学知识点总结
初中一年级数学知识点总结初中一年级数学知识点总结一一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;p不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=-1?a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
初中一年级上册数学知识点
初中一年级上册数学知识点初中一年级数学上册知识点篇一第二章一元一次方程2.1 从算式到方程方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的。
性质:1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)把等式一边的某项变号后移到另一边,叫做移项。
第三章图形认识初步3.1 多姿多彩的图形几何体也简称体(solid)。
包围着体的是面(surface)。
3.2 直线、射线、线段线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量1度=60分1分=60秒1周角=360度1平角=180度3.4 角的比较与运算如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
初中数学学习方法一、温故法学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。
二、操作法对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。
三、类比法这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。
四、喻理法为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念。
初中一年级上册数学知识点总结
初中一年级上册数学知识点总结一、内容概览初中数学一年级的课程是初中数学学习的基础阶段,为后续的复杂数学问题打下坚实的基石。
对于刚升入初中的同学们来说,上册数学知识点众多且涉及面广,涵盖整数、小数、分数等基础数学知识。
让我们一同走进这个奇妙的数学世界,探寻初中一年级上册的数学知识点吧!接下来我们将逐一梳理这些知识点,帮助大家更好地理解和掌握。
同学们让我们一起加油,迎接数学学习的挑战吧!1. 初中数学课程的重要性初中数学课程的重要性不言而喻,数学不仅仅是一门学科,更是我们日常生活中无处不在的工具。
从小学到初中,数学为我们打开了一个全新的世界,这里既有基础的算术运算,也有复杂的代数、几何知识。
在初中一年级上册的数学课程中,我们首先要明白数学的重要性。
数学是思维的体操,通过学习数学,我们的逻辑思维、抽象思维、问题解决能力都会得到极大的锻炼。
在初中阶段,我们会接触到代数、几何等更为抽象的知识,这些知识的学习过程,也是我们的思维不断得到锻炼和成长的过程。
数学在日常生活中的应用也非常广泛,无论是购物计算、时间规划,还是工程建设、财务管理,都离不开数学。
甚至在我们娱乐时,很多游戏、谜题也需要数学知识和技巧。
初中一年级上册的数学课程,为我们打下了日常生活应用的基础。
此外数学还是很多学科的基础,物理、化学、生物、计算机等学科学习都离不开数学的支持。
初中数学的学习,不仅为我们高中更深层次的学习打下基础,还为我们未来的职业发展提供了有力的支持。
所以初中一年级上册的数学课程,不仅仅是一门学科的学习,更是我们思维能力、生活能力、未来职业发展能力的一次全面提升。
让我们一起走进数学的世界,感受数学的魅力吧!2. 初一上册数学的主要内容及特点在初中一年级上册的数学学习中,我们将开启全新的数学知识之旅。
这一册的数学内容主要包括数与代数部分,它不仅是初中数学的基础,更是我们日常生活和今后学习的重要工具。
接下来让我们看看这一年我们都要学习哪些内容。
初中一年级上册数学知识点
初中一年级上册数学知识点初中一年级上册数学知识点第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个局部不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个局部都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最根本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n 条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的局部叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算1、有理数的分类正有理数有理数零负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
初中一年级数学上册百分数知识点归纳
初中一年级数学上册百分数知识点归纳百分数的概念百分数是指以100为基数的百分比,通常用百分号(%)表示。
在数学中,百分数可以表示一个数相对于整体的部分,也可以表示一个数相对于另一个数的比值。
百分数的计算方法1. 用百分数表示一个数相对于整体的部分,可以通过将这个数除以整体,再乘以100,得到百分数。
公式:百分数 = (部分 ÷整体) × 100%2. 用百分数表示一个数相对于另一个数的比值,可以通过将这个数除以另一个数,再乘以100,得到百分数。
公式:百分数 = (小数 ÷基数) × 100%百分数的转化1. 百分数转化为小数:将百分数去掉百分号,除以100即可转化为小数。
例如:75% = 75 ÷ 100 = 0.752. 小数转化为百分数:将小数乘以100,并加上百分号即可转化为百分数。
例如:0.6 = 0.6 × 100% = 60%百分数的应用百分数在日常生活和商业中有广泛的应用,常见的应用包括:1. 比较大小:可以用百分数比较两个数的大小,了解它们相对于整体的比例关系。
2. 打折计算:商店常常以打折的方式促销商品,打折的百分数可以用来计算实际价格。
3. 增加和减少:百分数可以表示一个数相对于另一个数的增加或减少。
例如,某物品的价格涨了15%,可以用百分数计算涨价的金额。
4. 概率计算:百分数可以表示某个事件发生的概率。
例如,掷骰子得到6的概率是1/6,可以用百分数表示为16.67%。
以上是初中一年级数学上册关于百分数的基本知识点归纳。
理解和掌握这些知识,对于解决实际问题和提高数学能力都非常重要。
初中一年级数学上册知识点【优秀5篇】
初中一年级数学上册知识点【优秀5篇】总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,让我们一起来学习写总结吧。
如何把总结做到重点突出呢?它山之石可以攻玉,以下内容是为您带来的5篇《初中一年级数学上册知识点》,如果能帮助到亲,我们的一切努力都是值得的。
七年级数学代数初步知识知识点篇一1、代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式。
注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。
2、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a 。
3、几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2 ;a与b差的平方是:(a-b)2 ;(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)若b0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2 ,非正数是:-a2 。
初中一年级上册数学篇二教学目标:1、学生能在具体情境中自主解决乘加、乘减问题,建构乘加、乘减问题的模型,形成基本的解决问题的策略,掌握乘加、乘减的计算方法和算理,能正确地计算。
初中一年级数学知识点
初中一年级数学知识点 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8一、无忧考网整理的关于初中一年级数学上册知识点第一章:有理数1.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;(2)有理数的分类: ①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数;a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;(3) ; ;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
初中一年级数学知识点
一、无忧考网整理的关于初中一年级数学上册知识点第一章:有理数1.有理数:1凡能写成形式的数,都是有理数,整数和分数统称有理数;注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2有理数的分类: ①②3注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;4自然数 0和正整数; a>0 a是正数; a<0 a是负数;a≥0 a是正数或0 a是非负数; a≤ 0 a是负数或0 a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; 2注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3相反数的和为0 a+b=0 a、b互为相反数.4相反数的商为-1.5相反数的绝对值相等4.绝对值:1正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2 绝对值可表示为:或 ;3 ; ;4 |a|是重要的非负数,即|a|≥0;5.有理数比大小:1正数永远比0大,负数永远比0小;2正数大于一切负数;3两个负数比较,绝对值大的反而小;4数轴上的两个数,右边的数总比左边的数大;5-1,-2,+1,+4,,以上数据表示与标准质量的差, 绝对值越小,越接近标准;6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1 a、b互为倒数; 若ab=-1 a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; 3一个数与0相加,仍得这个数.8.有理数加法的运算律:1加法的交换律:a+b=b+a ;2加法的结合律:a+b+c=a+b+c.9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+-b.10 有理数乘法法则:1两数相乘,同号得正,异号得负,并把绝对值相乘;2任何数同零相乘都得零;3几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正;11 有理数乘法的运算律:1乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac .简便运算12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:1正数的任何次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;3a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;4据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.混合运运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤;18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择;第二章整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式;2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5. .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去添括号法则:去添括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:划线;二“+”务必用+号开始合并三合:合并10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大或从大到小排列起来,叫做按这个字母的升幂排列或降幂排列.第三章一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以或除以同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0x是未知数,a、b是已知数,且a≠0.8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘不漏乘最简公分母去括号----------注意符号变化移项----------变号留下靠前合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:1读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.2画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系可把未知数看做已知量,填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:1行程问题:距离=速度时间 ;2工程问题:工作量=工效工时 ;工程问题常用等量关系:先做的+后做的=完成量3顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系:顺水路程=逆水路程4商品利润问题:售价=定价 , ;利润问题常用等量关系:售价-进价=利润5配套问题:6分配问题第四章图形初步认识一多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主正视图---------从正面看2、几何体的三视图侧左、右视图-----从左右边看俯视图---------------从上面看1会判断简单物体直棱柱、圆柱、圆锥、球的三视图.2能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图1同一个立体图形按不同的方式展开,得到的平现图形不一样的.2了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体1几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.2点动成线,线动成面,面动成体.二直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线ABBA 射线AB 线段a线段ABBA作法叙述作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段1度量法2用尺规作图法4、线段的大小比较方法1度量法2叠合法5、线段的中点二等分点、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系1点在直线上 2点在直线外.三角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法四种:3、角的度量单位及换算4、角的分类∠β锐角直角钝角平角周角范围 0<∠β<90°∠β=90° 90°<∠β<180°∠β=180°∠β=360°5、角的比较方法1度量法2叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角1借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.2借助量角器能画出给定度数的角.3用尺规作图法.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形:符号:9、互余、互补1若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.2若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.3余补角的性质:等角的补余角相等.10、方向角1正方向2北南偏东西方向3东西北南方向。
初中一年级数学上册知识点
初中一年级数学上册知识点初一数学概念实数:—有理数与无理数统称为实数。
有理数:整数和分数统称为有理数。
无理数:无理数是指无限不循环小数。
自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:符号不同的两个数互为相反数。
倒数:乘积是1的两个数互为倒数。
绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。
一个正数的绝对值是本身;一个负数的绝对值是它的相反数;0的绝对值是0。
数学第一章相交线一、邻补角:两条直线相交所成的四个角中;有公共顶点;并且有一条公共边;这样的角叫做邻补角。
邻补角是一种特殊位置关系和数量关系的角;即邻补角一定是补角;但补角不一定是邻补角。
二、对顶角:是两条直线相交形成的。
两个角的两边互为反向延长线;因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。
对顶角的性质:对顶角相等。
三、垂直1、垂直:两条直线所成的四个角中;有一个是直角时;就说这两条直线互相垂直。
其中一条叫做另一条的垂线;它们的交点叫做垂足。
记做a⊥b垂直是相交的一种特殊情形。
2、垂线的性质:①过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中;垂线段最短。
直线外一点到这条直线的垂线段的长度;叫做点到直线的距离。
3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)4、空间的垂直关系四、平行线1、平行线:在同一平面内;不相交的两条直线叫做平行线。
记做a‖b2、“三线八角”:两条直线被第三条直线所截形成的①同位角:“同方同位”即在两条直线的上方或下方;在第三条直线的同一侧。
②内错角:“之间两侧”即在两条直线之间;在第三条直线的两侧。
③同旁内角“之间同旁”即在两条直线之间;在第三条直线的同旁。
3、平行公理:经过直线外一点;有且只有一条直线与这条直线平行平行公理的推论:如果两条直线都与第三条直线平行;那么这两条直线也互相平行。
初中一年级数学上册知识点
初中一年级数学上册知识点初中一年级数学上册知识点概述一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数、负数和零的概念- 整数 operations (加法、减法、乘法、除法)2. 分数与小数- 分数的基本概念- 真分数与假分数- 分数的四则运算- 小数的基本概念- 小数的四则运算- 分数与小数的相互转换3. 代数表达式- 字母表示数- 代数式的概念- 单项式与多项式- 合并同类项- 代数式的简化4. 一元一次方程- 方程的概念- 一元一次方程的标准形式- 方程的解法(移项、合并同类项、系数化为1)二、几何1. 几何基本概念- 点、线、面、体的概念- 直线、射线、线段的区分- 角的概念(邻角、对角、平行线)2. 平面图形- 正方形、长方形的性质与计算- 三角形的基本性质- 等腰三角形、等边三角形的性质- 四边形的分类与性质(梯形、平行四边形、矩形、菱形)3. 面积与体积- 长方形、正方形的面积计算- 三角形的面积计算- 圆的面积与周长计算- 立方体、长方体的体积计算三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 简单统计图表的绘制(条形图、折线图)2. 概率- 随机事件的概念- 可能性的初步理解- 简单概率的计算四、应用题1. 利用所学知识解决实际问题- 速度、时间与距离问题- 货币、购物与消费问题- 比例与相似问题以上是初中一年级数学上册的主要知识点概述。
这些知识点构成了初中数学的基础,对于后续学习有着重要的影响。
学生应该通过练习和理解来掌握这些概念,为更高级的数学学习打下坚实的基础。
教师和家长应鼓励学生通过多种方式来探索和应用这些数学知识,以增强他们的数学能力和解决问题的技能。
初中一年级上册数学知识点
初中一年级上册数学知识点1. 数系与数值大小比较2. 等式与方程3. 加减乘除混合运算4. 分数与小数的加减乘除5. 百分数的背景及应用6. 比与比例7. 开根与平方8. 正比例函数与反比例函数9. 一元一次方程的解法10. 坐标系及平面图形的性质1. 数系与数值大小比较:介绍自然数、整数、有理数的概念及大小比较方法,例如在自然数中,1比0大,2比1大,以此类推。
2. 等式与方程:讲解等式和方程的定义及区别,以及解方程的方法,例如2x+3=7这个方程,解法是2x=4,x=2。
3. 加减乘除混合运算:以整数和分数的加减乘除为例,介绍运算顺序,例如7/3 + 2/5 - 1/2的运算顺序为先通分再相加减。
4. 分数与小数的加减乘除:介绍分数和小数的相互转换方法,以及加减乘除的运算法则,例如计算0.75 x 1 1/6,应先将11/6转化成小数,再进行计算。
5. 百分数的背景及应用:介绍百分数的定义及与分数、小数的转换,以及百分数在实际生活中的应用,例如计算折扣或税率等。
6. 比与比例:介绍比和比例的概念及对应的数学符号,以及比例中的同比例性质,例如三个数3、6、9之间的比为1:2:3,其中每两个数的比相同。
7. 开根与平方:介绍开方和平方的定义及计算方法,以及平方根和算术平方根的区别,例如√9=3,9的平方为81。
8. 正比例函数与反比例函数:介绍正比例函数和反比例函数的定义及图像特征,例如y=kx表示的是正比例函数,y=k/x表示的是反比例函数。
9. 一元一次方程的解法:介绍一元一次方程的定义以及解方程的方法,例如2x+3=7这个方程的解为x=2。
10. 坐标系及平面图形的性质:介绍笛卡尔坐标系和平面图形的基本概念,例如直线和曲线的表示方法,以及平面图形的基本性质,如面积、周长等。
我作为一个AI语言模型,可以根据您的要求生成一些内容,但可能不足3000字。
如果您需要更多的文本,请告诉我具体的需求,我会尽力满足。
初中一年级数学知识点
初中一年级数学知识点第一章:有理数1.有理数:初中一年级数学知识点.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类: ①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数; a>0 a是正数; a<0 a是负数;a≥0 a是正数或0 a是非负数; a≤0 a是负数或0 a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 a+b=0 a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;(3) ; ;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1a、b互为倒数; 若ab=-1a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.混合运运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤.18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择.第二章整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5. .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).第三章一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度•时间;(2)工程问题:工作量=工效•工时;工程问题常用等量关系:先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系:顺水路程=逆水路程(4)商品利润问题:售价=定价,;利润问题常用等量关系:售价-进价=利润(5)配套问题:(6)分配问题第四章图形初步认识(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA) 射线AB 线段a线段AB(BA)作法叙述作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系(1)点在直线上(2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):3、角的度量单位及换算4、角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形:符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向(2)北(南)偏东(西)方向(3)东(西)北(南)方向。
初中数学知识点总结分年级
初中数学知识点总结分年级一年级上册:1. 数的认识- 自然数、整数的认识和运算- 小数、分数的基本概念和四则运算- 正负数的引入和简单的运算2. 算术运算- 加法、减法、乘法、除法的基本原则和运算法则- 乘法表的熟练掌握- 括号的使用和运算顺序3. 几何图形- 平面图形的认识,包括点、线、面的基本性质- 基本图形的分类,如圆形、正方形、长方形、三角形等 - 对称性和图形的对称轴4. 度量衡- 长度、面积、体积、质量的基本概念和计算方法- 常用度量单位及其换算关系一年级下册:1. 分数和小数- 分数的意义、性质和比较大小- 小数的意义、性质和比较大小- 分数与小数的相互转换2. 比例与百分数- 比例的概念和基本性质- 百分数的引入和应用- 比例和百分数的实际问题解决3. 线性方程- 线性方程的概念和解法- 一元一次方程的解法和应用- 二元一次方程组的解法和应用4. 几何图形的性质- 平行线的性质和判定- 三角形的基本性质和分类- 四边形的基本性质和分类二年级上册:1. 代数表达式- 字母表示数的概念- 单项式和多项式的概念和运算 - 代数表达式的简化和变形2. 函数的初步认识- 函数的概念和表示方法- 线性函数和二次函数的基本概念 - 函数图像的绘制和基本特征3. 几何图形的计算- 面积和体积的计算公式- 相似三角形的性质和应用- 圆的基本性质和计算4. 数据的收集和处理- 统计数据的基本概念- 数据的图表表示方法,如条形图、折线图- 概率的初步认识和简单概率计算二年级下册:1. 代数式的进一步学习- 多项式的乘法和除法- 因式分解的方法和应用- 分式的概念和运算2. 平面直角坐标系- 坐标系的建立和点的坐标表示- 坐标系中图形的平移、旋转和对称- 函数图像与坐标系的关系3. 三角形和四边形- 三角形的面积计算公式- 特殊四边形的性质,如梯形、菱形、矩形和正方形 - 不同四边形面积的计算方法4. 不等式和不等式组- 不等式的概念和基本性质- 一元一次不等式的解法和应用- 一元一次不等式组的解法和应用三年级上册:1. 整数的性质- 整数的奇偶性和整除性- 质数与合数的概念和判断方法- 最大公约数和最小公倍数的求法2. 代数方程- 一元二次方程的解法- 二元二次方程组的解法- 分式方程和无理方程的解法3. 几何图形的变换- 图形的平移、旋转和翻转- 几何图形的相似变换- 坐标系中图形变换的代数表示4. 统计与概率- 数据的集中趋势,如平均数、中位数和众数 - 数据的离散程度,如方差和标准差- 概率的进一步认识和复杂概率计算三年级下册:1. 实数和复数- 实数的基本概念和性质- 复数的基本概念和运算- 实数与复数之间的转换2. 函数的应用- 函数在实际问题中的应用- 函数的最值问题和解法- 函数图像的交点问题3. 圆和立体图形- 圆的性质和圆周角、圆心角的关系 - 圆锥、圆柱和球的基本性质- 立体图形的表面积和体积计算4. 综合问题解决- 数学知识在实际问题中的应用- 数学建模。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中一年级数学上册知识点新版
实数:
—有理数与无理数统称为实数.
有理数:
整数和分数统称为有理数.
无理数:
无理数是指无限不循环小数.
自然数:
表示物体的个数0.1.2.3.4~(0包括在内)都称为自然数.
数轴:
规定了圆点.正方向和单位长度的直线叫做数轴.
相反数:
符号不同的两个数互为相反数.
倒数:
乘积是1的两个数互为倒数.
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值.一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0.
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
⑵减法法则:减去一个数,等于加上这个数的相反数.
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线.
数学第一章相交线
一.邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角.邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角.
二.对顶角:是两条直线相交形成的.两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”.
对顶角的性质:对顶角相等.
三.垂直
1.垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直.其中一条叫做另一条的垂线,它们的交点叫做垂足.记做a⊥b
垂直是相交的一种特殊情形.
2.垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
②连接直线外一点与直线上各点的所有线段中,垂线段最短.
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
3.画法:①一靠(已知直线)②二过(定点)③三画(垂线)
4.空间的垂直关系
四.平行线
1. 平行线:在同一平面内,不相交的两条直线叫做平行线.记做a‖b
2. “三线八角”:两条直线被第三条直线所截形成的
①同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧.
②内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧.
③同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁.
3. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
4. 平行线的判定方法
①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
③两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
④平行于同一条直线的两条直线平行;
⑤垂直于同一条直线的两条直线平行.
5. 平行线的性质:
①两条平行线被第三条直线所截,同位角相等;
②两条平行线被第三条直线所截,内错角相等;
③两条平行线被第三条直线所截,同旁内角互补.
6. 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.
7. 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成.
五平移
1.平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.
说明:①.平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离”这也是判断一种运动是否为平移的关键.③图形平移的方向,不一定是水平的
2.平移的性质:经过平移,对应线段.对应角分别相等,对应点所连的线段平行且相等.。