嵌入式系统发展与应用
嵌入式系统的应用前景及未来发展趋势分析
嵌入式系统的应用前景及未来发展趋势分析嵌入式系统是指将计算机处理器和软件嵌入到各种设备中,使其具备智能化和自动化的功能,广泛应用于各个行业和领域。
从工业自动化到医疗保健,从军事航空到车联网,嵌入式系统已经成为无处不在的支撑技术,为人们的生产和生活带来了便利和创新。
本文将从应用前景和未来发展趋势两个方面,探讨嵌入式系统的未来发展。
一、应用前景分析1、工业自动化:随着工业发展和技术进步,嵌入式系统在工业生产中的应用不断增多。
例如,PLC控制器、传感器、智能仪表等设备,都是嵌入式系统的典型应用。
这些设备将生产环境中各种条件监测和控制的任务集成到一起,可实现自动化控制和协调生产过程,提高生产效率和质量。
2、医疗保健:随着人口老龄化的加剧和医疗技术的发展,嵌入式系统在医疗设备中的应用也日益广泛。
例如,心脏起搏器、血糖监测仪、医疗图像处理系统等,都依赖嵌入式系统实现自动化和智能化的功能。
这些设备可实时监测病人的身体状况,提供精准的诊断和治疗方案,为医疗保健带来了新的变革。
3、智能家居:随着人们生活水平的提高和家庭需求的不断增多,嵌入式系统在智能家居中的应用也越来越多。
例如,智能家居控制中心、安防系统、智能家电等,通过嵌入式系统实现自动化和智能化的控制,提供便利和安全保障,改善人们的家居生活质量。
4、车联网:随着汽车智能化和互联网技术的发展,嵌入式系统在车联网中的应用也日益广泛。
例如,智能导航系统、车辆监测系统、智能驾驶系统等,都是嵌入式系统的重要应用。
这些设备可提高车辆驾驶安全性、提供更舒适的交互和娱乐体验,形成智能出行新模式。
二、未来发展趋势分析1、智能化和自动化水平不断提高:未来,随着人工智能和大数据技术的发展,嵌入式系统将不断智能化和自动化,更好地适应和服务于人们的生产和生活需求。
例如,智能家居将更加智能化和个性化,能够自动识别用户的需求和习惯,提供更优质的服务和体验。
车辆和机器人将更加自主化和智能化,能够自动执行各种任务,提高工作效率和产品质量。
嵌入式系统的基本原理与应用
嵌入式系统的基本原理与应用嵌入式系统(Embedded System)是指内置在其他设备或系统中的计算机系统,它专门用于控制和管理设备的特定功能。
嵌入式系统的发展和应用涵盖了很多领域,包括家电、通信、汽车、医疗保健、工业控制等。
本文将介绍嵌入式系统的基本原理和其在各个领域的应用。
一、嵌入式系统的基本原理嵌入式系统的基本原理主要涉及硬件和软件两个方面。
1. 硬件方面嵌入式系统的硬件是由各种集成电路、处理器、存储器、输入输出设备等组成的。
它通常需要具备小型化、低功耗和高可靠性的特点。
常见的嵌入式处理器有ARM、Intel x86等,而存储器则包括EEPROM、SDRAM等。
此外,嵌入式系统还需要与外部设备进行通信,如串口、网口、USB等接口。
硬件的设计和选型要根据具体的应用需求进行选择。
2. 软件方面嵌入式系统的软件是用来控制和管理硬件的。
它通常由实时操作系统(RTOS)和应用软件构成。
RTOS具备快速响应和实时性的特点,能够有效地与硬件进行交互。
而应用软件则根据具体的功能需求进行编写,如传感器数据采集、数据处理、通信控制等。
此外,嵌入式系统的软件开发还需要考虑资源利用率和代码大小的优化,以保证系统的性能和效率。
二、嵌入式系统的应用领域嵌入式系统在各个领域都有广泛的应用,下面将介绍几个常见的领域。
1. 家电领域现代家庭中的许多电器产品都运用了嵌入式系统,如智能电视、空调、洗衣机等。
嵌入式系统能够实现设备的智能控制和互联互通,提高用户的使用体验。
2. 通信领域手机、路由器、交换机等通信设备都采用了嵌入式系统,它们能够实现数据的高效传输和网络的稳定运行。
嵌入式系统在通信领域的应用还包括无线通信、卫星通信等。
3. 汽车领域现代汽车中嵌入式系统的应用越来越广泛,包括车载导航、智能驾驶、车载娱乐等功能。
嵌入式系统能够提高汽车的安全性、舒适性和智能化程度。
4. 医疗领域医疗设备中常常运用嵌入式系统,如心脏起搏器、血糖仪、医疗监护仪等。
嵌入式系统的应用及发展
嵌入式系统的应用及发展【摘要】21世纪无疑将是一个网络的时代,将嵌入式系统应用到各种网络环境中去的呼声自然也越来越高。
目前大多数嵌入式系统还孤立于internet之外,随着internet的进一步发展,以及internet技术与信息家电、工业控制技术等的结合日益紧密,嵌入式设备与internet的结合才是嵌入式技术的真正未来。
【关键词】嵌入式;应用;发展1嵌入式arm技术及应用随着嵌入式系统处理器的不断发展,典型的32位risc 芯片——arm处理器,不论是在pda,stb,dvd等消费类电子产品中,还是在ps,航空,勘探,测量等军方产品中都得到了广泛的应用。
越来越多的芯片厂商早已看好arm的前景,比如intel,ns,atmel,philips,nec,cirrusloic等公司都有相应的产品。
他们把更多的功能集成在arm芯片中,使其成为了高集成度,低功耗的典型代表。
arm将其技术授权给世界上许多著名的半导体、软件和oem厂商,每个厂商得到的都是一套独一无二的arm相关技术及服务。
利用这种合伙关系,arm很快成为许多全球性risc 标准的缔造者。
arm架构是面向低预算市场设计的第一款risc微处理器。
arm提供一系列内核、体系扩展、微处理器和系统芯片方案。
由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行(理论上如此)。
典型的产品如下。
①cpu内核——arm7:小型、快速、低能耗、集成式risc内核,用于移动通信。
——arm7tdmi(thumb):这是公司授权用户最多的一项产品,将arm7指令集同thumb扩展组合在一起,以减少内存容量和系统成本。
同时,它还利用嵌入式ice调试技术来简化系统设计,并用一个dsp增强扩展来改进性能。
该产品的典型用途是数字蜂窝电话和硬盘驱动器。
——arm9tdmi:采用5阶段管道化arm9内核,同时配备thumb扩展、调试和harvard总线。
《嵌入式系统开发与应用》教学教案
《嵌入式系统开发与应用》教学教案一、教学目标1. 了解嵌入式系统的概念、特点和应用领域。
2. 掌握嵌入式系统的基本组成和开发流程。
3. 学习嵌入式操作系统的基本原理和常用操作系统。
4. 掌握嵌入式系统编程方法和常用编程工具。
5. 培养学生的嵌入式系统设计和开发能力。
二、教学内容1. 嵌入式系统概述1.1 嵌入式系统的定义1.2 嵌入式系统的特点1.3 嵌入式系统的应用领域2. 嵌入式系统的基本组成2.1 硬件平台2.2 软件系统2.3 中间件和驱动程序3. 嵌入式系统开发流程3.1 需求分析3.2 硬件选型和系统设计3.3 软件开发3.4 系统集成与测试3.5 产品发布与维护4. 嵌入式操作系统原理4.1 嵌入式操作系统的概念4.2 嵌入式操作系统的分类4.3 嵌入式操作系统的特点4.4 常用嵌入式操作系统介绍5. 嵌入式系统编程方法5.1 嵌入式编程语言5.2 嵌入式系统编程工具5.3 嵌入式系统编程规范5.4 嵌入式系统编程实例三、教学方法1. 讲授法:讲解嵌入式系统的基本概念、原理和开发流程。
2. 案例分析法:分析实际项目中的嵌入式系统设计和开发案例。
3. 实验法:动手实践,掌握嵌入式系统编程方法和工具。
4. 小组讨论法:分组讨论,培养团队合作能力。
四、教学资源1. 教材:《嵌入式系统开发与应用》2. 课件:教学PPT3. 实验设备:嵌入式开发板、编程器、仿真器等4. 在线资源:相关论文、博客、教程、论坛等五、教学评价1. 课堂参与度:观察学生在课堂上的发言和讨论情况。
2. 作业完成情况:评估学生作业的质量和完成速度。
3. 实验报告:评估学生在实验过程中的操作能力和解决问题的能力。
4. 期末考试:测试学生对嵌入式系统开发与应用知识的掌握程度。
六、教学内容6. 嵌入式系统硬件平台6.1 微控制器(MCU)6.2 应用处理器(AP)6.3 系统级芯片(SoC)6.4 硬件选型的考虑因素7. 嵌入式系统软件系统7.1 固件编程7.2 嵌入式操作系统7.3 中间件与驱动程序开发7.4 软件开发工具与环境8. 嵌入式系统中间件与驱动程序8.1 中间件的概念与作用8.2 常用中间件介绍8.3 驱动程序的概念与开发8.4 设备驱动程序的框架9. 嵌入式系统项目开发流程9.1 需求分析与规格说明书编写9.2 硬件设计与选型9.3 软件设计与开发9.4 系统集成与测试9.5 项目管理与迭代10. 嵌入式系统案例分析与实践10.1 案例选择与分析10.2 系统设计与开发过程10.3 项目实施与调试10.4 项目报告与评审七、教学方法1. 案例分析法:通过分析具体的嵌入式系统项目案例,使学生了解项目开发的实际过程。
嵌入式系统的发展历程
嵌入式系统的发展历程嵌入式系统是一种特殊的计算机系统,它嵌入在一些特定的设备中,用于控制和执行特定的功能。
随着科技的发展,嵌入式系统得到了广泛的应用,其发展历程也经历了几个阶段。
第一阶段是嵌入式系统的起步阶段。
在20世纪50年代和60年代,嵌入式系统主要用于军事和航空领域。
这些系统使用的是早期的电子管和磁芯存储器,体积庞大且功能有限。
然而,随着集成电路技术的发展,嵌入式系统开始变得更小巧、更高效。
第二阶段是嵌入式系统的成熟阶段。
在20世纪70年代和80年代,嵌入式系统开始在工业控制、汽车电子和家用电器等领域得到广泛应用。
这些系统使用的是更加先进的微处理器和存储器,能够实现更多样化的功能。
同时,实时操作系统的发展也使得嵌入式系统能够更好地响应外部事件和控制任务。
第三阶段是嵌入式系统的智能化阶段。
在20世纪90年代和2000年代,嵌入式系统开始融合更多的智能化技术,如人工智能、机器学习和无线通信等。
这些系统能够实现更复杂的任务,如语音识别、图像处理和无线通信。
同时,嵌入式系统的体积也进一步缩小,能够嵌入到更多的设备中。
第四阶段是嵌入式系统的互联网化阶段。
随着互联网的普及,嵌入式系统开始与互联网进行连接,形成了IoT(物联网)的概念。
这使得嵌入式系统能够实现远程访问、数据共享和云计算等功能,极大地扩展了其应用范围。
例如,智能家居、智能交通和智能医疗等领域的发展,都与嵌入式系统的互联网化密不可分。
第五阶段是嵌入式系统的人工智能阶段。
随着深度学习和神经网络等人工智能技术的快速发展,嵌入式系统也开始加入更复杂的智能化算法和硬件。
这使得嵌入式系统能够实现更高级的人工智能功能,如人脸识别、自动驾驶和智能机器人等。
同时,人工智能技术的推动也使得嵌入式系统在医疗、安防和工业等领域发挥了更大的作用。
总的来说,嵌入式系统在发展历程中经历了起步阶段、成熟阶段、智能化阶段、互联网化阶段和人工智能阶段等几个阶段。
每个阶段都伴随着技术的进步和应用的拓展,使得嵌入式系统在各个领域发挥了越来越重要的作用。
嵌入式系统的发展与应用
重要的指标来考虑 。在信息时代 ,人们必须在有效 的时间内
对 收到 的信 息进 行 处理 , 从而 为进 一 步 的决策 分析 争 取 时 间。 所 以 ,嵌入 式操 作 系统 必须 体现 一 定 的实 时性 。
摘
要 :概 括 了嵌入 式 系统 的发 展及 现 状 ,总结 了嵌 入 式操 作系 统及 其特 点 。
文 献标 识码 :A 文 章编 号 :10 — 93 (0 )0 — 08 0 0 67 7 2 1 1 60 6— 3
关键 词 :嵌 入 式系统 ;嵌入 式操 作系 统 中图分 类号 :T 99 N 1
床 、 智能 工 具 、工 业机 器 人 、服 务机器 人 及 信息 家 电等 各个
行 业 ,正 在逐 步 改变传 统 的工 业 生产 和服 务 方式 。
一
装 卸 ,去 掉 多余 的部 分 ,或者 简化 相应 的模块 。这 些特 征在 嵌 入 式系统 的模块 划分 中必须 事先 考虑 周全 。
算机 的 标准 形 式 ,通过 装 配 不 同的应 用 软件 ,以类 同面 目出
嵌 入 式操 作 系统 并不 是 简单 嵌 入 的操作 系 统 ,它 与通 常 意 义 上 的操作 系 统有 一 定 的区 别 。嵌入 式操 作 系统 负责 嵌入 式 系统 的全部 软 、硬 资源 的分 配、 调度 工作 ,控 制协 调 并发 活 动 ,它 必须 体 现 所在 系统 的 特征 ,能 够通 过 装 卸某 些 模块 来 达 到系 统 所要 求 的功 能 。完 成某 一项 或有 限项 功 能 ;在性 能 和 实 时性 方面 有 严格 的 限制 ;能 源 、成 本 和可 靠性 通 常 是 影 响设计 的 重要 因素 ; 占有 资 源少 、 易于 连 接 ;系 统功 能 可 针 对 需求 进行 裁剪 、 调整 ,以便满 足最 终 产 品的设 计 要求 。 嵌入 式操 作 系统 具有 如下 一 些特 点l: i I
浅析嵌入式操作系统的应用与发展
浅析 嵌入式操作系统 的应用与发展
黄欢欢( 防空兵学院, 河南 郑州 4 5 0 0 5 2 )
摘 要: 本 文通过 阐述嵌 入式操 作 系统的含 义, 探索其历史的发 展 , 掌握其发 展 规律 , 并据 此 阐述该 系统 的发 展 以及应 用的趋 势。
关键 词: 嵌 入 式操 作系统; 应用; 发 展
是前所未有 的。 从 国内, 到国外, 都掀起 了一场数字化技术 的变 就是典型代表 , 该阶段作为通用型嵌入式实时操作系统阶段 ,
1 嵌 入式 操作 系统 的含义及 其历史 的发 展
1 . 1嵌入 式操 作系统 的含义
件和 目录管理 , 多任 务; 网络支持 、 图形窗口、 设备支持、 用户界
随着 计算机技术 的发展 , 以芯片技术 以及软件技术为核心 的运行。 的数字化技术也迅猛发展起来 , 其涉及范围之 领域之宽, 都
革。
阶段三, 在这个阶段 , V x W o r k s 、 p S o S 、 O S 一 9 、 w i n d o w s C E
具有高度模块化 、 拓展性; 大 量的应用程序接 口 ( A P I ) 以及文
面等功能, 开发程序简单、 嵌入 式应 用软件丰富等特点。 这一阶
所谓 嵌入 式操 作系统 , 就 是指包 括与硬 件相关 的系 统内 段该系统的典型特点就是能够在各种不同类型强大的微处理器 上 运 行。 核、 通信协议、 标准化浏览器、 底层驱 动软件、 设备驱 动接 口、 图像 界面等 b r o w s e r 的一种系 统。 其作为一种支 持嵌入式 系统 2 嵌 入式操 作 系统 的应 用趋 势
飞机 、 导弹等武器 装备 中。 由于早期嵌 入式 系统 并没有操 作系 3 嵌 入 式操 作系统 的发 展趋 势 统 的支持 , 对系统的控制是通 过汇编语言编程直接进行 的, 运 目前, 随着技术 的发展 , 各种 嵌入式 L i n u x 操作系统 正迅
嵌入式系统技术在智能制造中的应用现状与前景
嵌入式系统技术在智能制造中的应用现状与前景随着智能制造技术的不断发展,嵌入式系统技术也日渐成为其中的重要组成部分。
嵌入式系统是一种专用计算机系统,它被嵌入到其他设备中,具有高效、稳定、安全、低功耗等特点。
根据市场研究机构IDC的数据,2020年全球嵌入式系统市场规模已达到1940亿美元,预计到2024年将达到2400亿美元。
嵌入式系统技术在智能制造中的应用也得到了越来越广泛的关注与应用。
嵌入式系统技术的应用现状智能制造中,嵌入式系统技术被广泛应用于各种工业设备和设施、物联网智能终端设备等多个领域。
以下是一些常见的嵌入式系统技术应用案例:1. 工业控制系统嵌入式系统技术在工业控制系统中应用非常广泛,其主要作用是监测和控制生产流程。
嵌入式系统可以对传感器数据进行采集、处理和分析,然后通过控制算法对设备进行控制。
比如,在自动化车间,灯光、风扇、传送带等设备可以通过嵌入式系统技术来集成控制,实现自动化生产。
2. 物联网智能化嵌入式系统技术也是实现物联网智能化的重要技术之一。
目前智能家居、智能车辆、智能城市等物联网应用中,嵌入式系统技术已被广泛应用。
通过嵌入式系统,各种智能设备可以实现互为连接、互相沟通,从而打造出更加智能化的生活方式。
3. 人工智能人工智能是智能制造技术的基础,而嵌入式系统技术也与之息息相关。
嵌入式系统可以协助计算机系统进行推理、学习和决策,同时可以将人工智能算法应用于现实生产流程中。
比如,在机器人生产流程中,嵌入式系统可以协调机器人的运动、采集环境数据等,从而实现高效、智能的生产。
嵌入式系统技术在智能制造中的未来前景随着嵌入式系统技术的不断发展,其在智能制造中的应用前景也愈加广阔。
未来,嵌入式系统技术将有以下发展趋势和应用前景:1. 面向物联网的嵌入式系统未来物联网将是智能制造的重要组成部分,相应的嵌入式系统技术也将面临更高的需求。
在面向物联网的应用场景下,嵌入式系统需要具备更高的能耗效率、更加稳定的工作性能和更强的安全性,以应对连接数量的增加和安全威胁的风险。
工业自动化中的嵌入式软件开发与应用技术
嵌入式系统具有高度的专业化和针对 性,通常具有实时性、可靠性和低功 耗等特点。
嵌入式系统的重要性
提高生产效率
嵌入式系统能够自动化地控制生产过程, 减少人工干预,提高生产效率。
提升产品质量
通过精确的控制和监测,嵌入式系统能够 提高产品的质量和一致性。
创新应用
嵌入式系统在医疗、交通、航空航天等领 域的应用,推动了这些领域的创新发展。
嵌入式系统的开源与商业化发展
开源技术为嵌入式系统开发提供了丰富的软件资源和开发工具,降低了开发成本和门槛,促进了技术 的快速迭代和创新。
商业化发展使得嵌入式系统更加注重用户体验和产品化,推动了技术的普及和应用,加速了市场的竞争 和发展。
开源与商业化发展的结合将有助于形成良性发展的生态系统,促进嵌入式系统的可持续发展和创新。
嵌入式数据库技术
嵌入式数据库技术是用于存储和管理数据的重要工具,它可以在嵌入式系统中提供 高效、可靠的数据存储和管理功能。
常见的嵌入式数据库有SQLite、Berkeley DB等,它们具有轻量级、高效、可靠和 安全等特点。
嵌入式数据库的选择需要考虑数据存储需求、系统资源限制和性能要求等因素。
嵌入式网络技术
时监控和预警系统等。
数据安全问题
总结词
数据安全是嵌入式系统在工业自动化中面临的另一个重要挑战,涉及到敏感信息的保护和防止恶意攻 击。
详细描述
工业自动化中的嵌入式系统通常涉及到大量的敏感数据,如生产过程数据、设备状态数据、控制算法 等。这些数据如果被非法获取或篡改,可能会造成重大损失。因此,需要采取一系列安全措施,如数 据加密、访问控制、防火墙等,以确保数据的安全性和完整性。
嵌入式网络技术是实现设备间 通信和远程控制的关键技术, 它包括有线和无线通信协议栈 、网络接口卡等。
嵌入式发展历程
嵌入式发展历程嵌入式系统是指由微处理器或单片机芯片组成的控制系统,它在不同的领域中得到了广泛的应用,如家电、汽车、手机等。
随着科技的不断进步和市场需求的不断增长,嵌入式系统经历了多年的发展,逐渐成为了现代社会不可或缺的一部分。
嵌入式系统的发展可以追溯到上个世纪70年代。
当时,微处理器刚刚出现,越来越多的计算机开始采用集成电路。
早期的嵌入式系统仅仅是一些单独的计算机模块,被用于控制和操作一些简单的设备,如电视机、录音机等。
随着时间的推移,嵌入式系统的功能不断增强,应用范围也在不断扩大。
80年代到90年代初,嵌入式系统开始应用于汽车领域,被用于汽车引擎的控制和监控。
这使得汽车变得更加智能化,提高了车辆的性能和安全性能。
随后,嵌入式系统又逐渐应用于家电领域,如冰箱、洗衣机等,使得家庭生活更加便利和舒适。
到了21世纪初,嵌入式系统的发展进入了一个全新的阶段。
随着互联网的普及和智能手机的出现,嵌入式系统与互联网之间的结合变得越来越密切。
人们可以通过手机控制家中的电器设备,实现远程监控和管理,这为家庭生活带来了前所未有的便利。
同时,嵌入式系统在医疗领域也得到了广泛的应用。
医疗器械、手术机器人等都采用了嵌入式系统,提高了医疗技术的水平和患者的生活质量。
随着嵌入式系统的不断发展,其硬件和软件技术也随之不断进步。
硬件方面,微处理器的性能越来越强大,功耗越来越低,体积越来越小。
软件方面,嵌入式系统的操作系统越来越成熟,开发和调试工具也越来越完善。
这为嵌入式系统的设计和开发提供了更大的便利,使得嵌入式系统的应用变得更加广泛。
未来,随着人工智能和物联网技术的发展,嵌入式系统的前景更加广阔。
人们可以通过嵌入式系统实现智能家居、智能交通等新的应用场景,使得生活更加智能化和便捷化。
同时,嵌入式系统还可以应用于工业自动化、能源管理等领域,提高生产效率和资源利用率。
可以预见,嵌入式系统在未来的发展中将发挥越来越重要的作用。
总结起来,嵌入式系统经过多年的发展,已从最初的简单控制系统逐渐演变为功能强大的智能化系统。
嵌入式系统技术的创新与应用
嵌入式系统技术的创新与应用从模拟到数字,再到嵌入式系统技术应用的广泛崛起,这个过程是持续不断的。
嵌入式系统技术是当今世界上应用最广泛的技术之一,它将数字技术与微电子技术相结合,并获得了巨大的成功。
嵌入式系统技术已经被广泛应用于工业控制、医疗设备、通信设备、视频处理、汽车电子、消费电子、机器人学等领域,成为现代智能化发展的重要推动力。
嵌入式系统技术的发展历程嵌入式系统技术的发展历程可分为两个历史时期。
第一个时期从1970年代到1990年代末,主要应用于军事、航天和重要国家的交通、电信等领域中,使用的处理器为Intel等主流芯片;第二个时期是1990年代末到现在,嵌入式系统技术开始应用于通讯、消费电子、工业控制等领域,并逐渐成为智能家居、智能电网、智能城市和智能交通的重要组成部分。
由于嵌入式系统技术的广泛应用,不同的领域对嵌入式系统的要求也日益提高,现代嵌入式系统正在不断迭代更新,创新技术应用越来越广泛。
嵌入式系统技术的创新发展嵌入式系统技术的创新发展包含如下几个方面:1.芯片处理技术的提升,使得嵌入式系统在不断拓展嵌入式系统技术中的芯片处理技术以Intel和ARM为代表,经过多年的不断拓展,芯片处理技术得到了提升。
目前,ARM是最受欢迎的处理器,因为它的芯片处理速度非常快,且能源效率高。
2.新型硬件设备的研发和应用新型硬件设备的研发和应用是创新的另一个方向,它包括:系统级芯片、MEMS传感器、智能芯片、超低功耗无线传输芯片等技术,并逐步向人工智能、深度学习、人与机器的交互等方向拓展。
3.新型编程语言和开发工具的应用新型编程语言和开发工具的应用同样是一个十分重要的方向,C、Java、Python等主流语言被不断完善和提升,国内外开发实践也在不断地进行中。
工具方面,C高级调试、代码优化和快速开发工具得到广泛应用。
嵌入式系统技术的应用领域嵌入式系统技术的应用领域越来越广,包括航空航天、汽车电子、机器人学、消费电子、智能家居、智能电网、工业控制等领域。
嵌入式系统发展与应用
嵌入式系统发展与应用引言不论是日常生活中经常使用的家庭自动化产品、家用电器、手提电话、自动柜员机(ATM),还是各行各业的办公设备、现代化医疗设备、航空电子、计算机网络设备、用于工业自动化和监测的可编程逻辑控制器(PLC),甚至是娱乐设备的固定游戏机和便携式游戏机等都属于嵌入式系统。
嵌入式系统始于微型机时代的嵌入式应用,通过将微型机嵌入到一个对象体系中,实现对象系统的智能化控制。
随着科技的不断发展,在单片机时代,嵌入式系统以器件形态迅速进入到传统电子技术领域中,以电子技术应用工程师为主体,实现传统电子系统的智能化。
而后,随着后PC时代的到来,网络、通信技术得以发展;同时,嵌入式系统软、硬件技术有了很大的提升,形成了基于嵌入式系统软、硬件平台,以网络、通信为主的非嵌入式底层应用的计算机应用模式。
1嵌入式系统的概念与发展1.1 嵌入式系统的概念嵌入式系统是以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统,对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。
嵌入式系统主要由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序等4个部分组成,它是集软硬件于一体的可独立工作的“器件”。
它必然是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。
1.2 嵌入式系统发展纵观嵌入式系统的发展历程,大致经历了以下四个阶段:(1)无操作系统阶段嵌入式系统最初的应用是基于单片机的,大多以可编程控制器的形式出现,具有监测、伺服、设备指示等功能通常应用于各类工业控制和飞机、导弹等武器装备中,一般没有操作系统的支持,只能通过汇编语言对系统进行直接控制,运行结束后再清除内存。
这些装置虽然已经初步具备了嵌入式的应用特点,但仅仅只是使用8位的CPU芯片来执行一些单线程的程序,因此严格地说还谈不上系统的概念。
这一阶段嵌入式系统的主要特点是:系统结构和功能相对单一,处理效率较低,存储容量较小,几乎没有用户接口。
新时代背景下嵌入式系统的现状及发展前景
新时代背景下嵌入式系统的现状及发展前景随着新时代的到来,嵌入式系统已经成为了未来发展的重点,并且在各个领域中扮演着不可或缺的角色。
随着科技的不断进步和发展,嵌入式系统的应用范围和数量也在不断扩大,未来的发展前景十分广阔。
目前,嵌入式系统主要应用于智能家居、智能物联网、智能交通等领域。
这些领域对嵌入式系统的要求都很高,需要嵌入式系统具有高可靠性、低功耗、小尺寸、高性能等特点。
而且,在新时代的背景下,人工智能、云计算、大数据等新兴技术的发展,也为嵌入式系统提供了更加广阔的应用场景。
在智能家居领域,嵌入式系统的应用非常广泛,包括家庭自动化系统、安防系统、智能家电等。
例如,家庭自动化系统可以通过智能家居控制中心,实现空调、热水器、灯光等设备的自动开关、温度控制等功能,提高了家庭的舒适性和安全性。
安防系统则可以结合人脸识别、视频监控等技术,实现智能安防功能,极大地提升了家庭的安全性能。
智能家电则可通过智能电视、智能音箱等设备进行联动控制,使得家庭生活更加智能化和便捷。
在智能物联网领域,嵌入式系统的应用也非常广泛。
物联网是指通过互联网使各类物品互相连接和交互的一种技术。
嵌入式系统是实现物联网的核心技术之一,它通过多种传感器和执行器,将各种数字和模拟信号转换成可以处理的数据,从而实现物联网的互联互通。
在智能物联网领域,嵌入式系统主要应用于智能家居、智能监测、智能医疗等方面,为人们的生活和工作提供了更多的智能化服务。
在智能交通领域,嵌入式系统的应用也十分广泛,包括车联网、智能交通控制、无人驾驶等。
通过嵌入式系统的应用,车辆可以自动感知道路情况、交通情况等,从而实现智能驾驶、自动泊车等功能,提高了交通的安全性和便利性。
此外,智能交通控制可以通过嵌入式系统实现智能交通管理,大大减少了交通拥堵和交通事故的发生。
无人驾驶则是嵌入式系统和人工智能技术相结合的一个重要领域,未来将会是智能交通领域发展的重要方向之一。
综上所述,嵌入式系统是新时代下的一个重要发展方向,未来的发展前景非常广阔。
嵌入式系统的发展前景及其应用
2 . 2嵌入式系统的特点
式 处理器系统 软件和应用软件 的要求也使其具有 以下的特点: 软件一般 都固化于存储器或单片机 本身。 ( 2 ) 软件代码质量高 、
应用中存储 空间仍有实时 的要求。
在单片机 的发展进 程中, 有过两种模 式 , 即本质上 的计 算 设置在一个芯片上, 形成单片机 , 芯片则完全按嵌入式设计 出新 模式等 。 才是全面完善 的嵌入 式系统。 芯片化模 式是嵌入式 系
足对 象要求 的应 用系统 。 嵌入 式系统 作为一个 专用 计算机 系 统, 要不断 向计算机 应用系统发展 。 才可以把 定义中的嵌入式
系统看成 是满足对象系统要求的计算机应用系统。
统, 从科学和专业角度 来探讨嵌 入式系统和特点。
2 . 1嵌入式系统要素和定义
按照嵌 入 式系统 开发和应用 的要求, 嵌入 式 系统可概 括 3 嵌入式系统的发展前景
・投 木 应 用
嵌入 式系统 的发展前景及其应用
贾 峥( 重庆理工 大学电 子信 息与自 动化学院, 重庆 4 0 0 0 5 4 )
摘 要: 现今我们已进入到一个网络的时代, 经历了 漫长的单片机发展道路 嵌入式系也逐步应用到各种网络环境中 。 嵌入式系统也有 了 独有的定义, 嵌入式设备与互联 网的结合才是嵌入式技术未来。 了解嵌入式系统的发展 历史, 按照它应用的普遍性、 通用性来定义嵌入式 系统。 由于嵌入式系 统应用中, 对象系统的普遍l 生 与单片机的独立发展道路, 使嵌入式系统应用在客观上存在这两个层次级。
关键词 : 嵌 入 式系统 ; 应 用模 式 ; 两个层次
1 嵌 入 式 系统 的发展 史
《嵌入式系统开发与应用》教学教案
《嵌入式系统开发与应用》教学教案第一章:嵌入式系统概述1.1 教学目标让学生了解嵌入式系统的定义、特点和应用领域让学生掌握嵌入式系统的基本组成部分及其工作原理让学生了解嵌入式系统的发展趋势和未来发展方向1.2 教学内容嵌入式系统的定义和特点嵌入式系统的基本组成部分:处理器、存储器、输入输出接口等嵌入式系统的应用领域:家电、工业控制、医疗设备等嵌入式系统的发展趋势和未来发展方向1.3 教学方法采用讲授法,讲解嵌入式系统的定义、特点和应用领域采用案例分析法,分析具体的嵌入式系统应用实例采用小组讨论法,让学生分组讨论嵌入式系统的发展趋势和未来发展方向1.4 教学评价课堂问答:学生能够回答嵌入式系统的定义、特点和应用领域的问题案例分析报告:学生能够分析具体的嵌入式系统应用实例第二章:嵌入式处理器2.1 教学目标让学生了解嵌入式处理器的定义、分类和性能指标让学生掌握嵌入式处理器的基本组成和工作原理让学生了解嵌入式处理器的选择方法和应用领域2.2 教学内容嵌入式处理器的定义和分类:单片机、ARM、DSP等嵌入式处理器的主要性能指标:主频、缓存、功耗等嵌入式处理器的基本组成:内核、外围电路、接口等嵌入式处理器的选择方法和应用领域2.3 教学方法采用讲授法,讲解嵌入式处理器的定义、分类和性能指标采用实验演示法,展示嵌入式处理器的基本组成和工作原理采用案例分析法,分析具体的嵌入式处理器应用实例2.4 教学评价课堂问答:学生能够回答嵌入式处理器的定义、分类和性能指标的问题案例分析报告:学生能够分析具体的嵌入式处理器应用实例第三章:嵌入式操作系统3.1 教学目标让学生了解嵌入式操作系统的定义、特点和分类让学生掌握嵌入式操作系统的基本组成和工作原理让学生了解嵌入式操作系统的选择方法和应用领域3.2 教学内容嵌入式操作系统的定义和特点:实时性、小型化、可移植性等嵌入式操作系统的分类:裸机、实时操作系统、嵌入式中间件等嵌入式操作系统的基本组成:内核、驱动程序、应用程序等嵌入式操作系统的选择方法和应用领域3.3 教学方法采用讲授法,讲解嵌入式操作系统的定义、特点和分类采用实验演示法,展示嵌入式操作系统的基本组成和工作原理采用案例分析法,分析具体的嵌入式操作系统应用实例3.4 教学评价课堂问答:学生能够回答嵌入式操作系统的定义、特点和分类的问题案例分析报告:学生能够分析具体的嵌入式操作系统应用实例第四章:嵌入式系统设计与开发流程4.1 教学目标让学生了解嵌入式系统设计的任务和步骤让学生掌握嵌入式系统开发的基本流程和方法让学生了解嵌入式系统开发的工具和环境4.2 教学内容嵌入式系统设计的任务和步骤:需求分析、硬件选型、软件设计等嵌入式系统开发的基本流程:系统设计、硬件实现、软件开发等嵌入式系统开发的工具和环境:集成开发环境、编程语言、调试工具等4.3 教学方法采用讲授法,讲解嵌入式系统设计的任务和步骤采用实验演示法,展示嵌入式系统开发的基本流程和方法采用案例分析法,分析具体的嵌入式系统开发实例4.4 教学评价课堂问答:学生能够回答嵌入式系统设计的任务和步骤的问题案例分析报告:学生能够分析具体的嵌入式系统开发实例第五章:嵌入式系统应用实例分析5.1 教学目标让学生了解嵌入式系统在各个领域的应用实例让学生掌握第六章:嵌入式系统在家电领域的应用6.1 教学目标让学生了解嵌入式系统在家电领域的应用实例让学生掌握家电领域中嵌入式系统的解决方案和设计要点让学生了解家电领域中嵌入式系统的发展趋势6.2 教学内容嵌入式系统在家电领域的应用实例:电视、冰箱、空调等家电领域中嵌入式系统的解决方案和设计要点:人机界面设计、网络通信等家电领域中嵌入式系统的发展趋势:智能化、网络化、节能化等6.3 教学方法采用讲授法,讲解嵌入式系统在家电领域的应用实例采用案例分析法,分析具体的嵌入式系统在家电领域的应用实例采用小组讨论法,让学生分组讨论家电领域中嵌入式系统的发展趋势6.4 教学评价课堂问答:学生能够回答嵌入式系统在家电领域的应用实例的问题案例分析报告:学生能够分析具体的嵌入式系统在家电领域的应用实例第七章:嵌入式系统在工业控制领域的应用7.1 教学目标让学生了解嵌入式系统在工业控制领域的应用实例让学生掌握工业控制领域中嵌入式系统的解决方案和设计要点让学生了解工业控制领域中嵌入式系统的发展趋势7.2 教学内容嵌入式系统在工业控制领域的应用实例:PLC、等工业控制领域中嵌入式系统的解决方案和设计要点:实时性、稳定性等工业控制领域中嵌入式系统的发展趋势:自动化、智能化等7.3 教学方法采用讲授法,讲解嵌入式系统在工业控制领域的应用实例采用案例分析法,分析具体的嵌入式系统在工业控制领域的应用实例采用小组讨论法,让学生分组讨论工业控制领域中嵌入式系统的发展趋势7.4 教学评价课堂问答:学生能够回答嵌入式系统在工业控制领域的应用实例的问题案例分析报告:学生能够分析具体的嵌入式系统在工业控制领域的应用实例第八章:嵌入式系统在医疗设备领域的应用8.1 教学目标让学生了解嵌入式系统在医疗设备领域的应用实例让学生掌握医疗设备领域中嵌入式系统的解决方案和设计要点让学生了解医疗设备领域中嵌入式系统的发展趋势8.2 教学内容嵌入式系统在医疗设备领域的应用实例:心电监护仪、超声波设备等医疗设备领域中嵌入式系统的解决方案和设计要点:精度、可靠性等医疗设备领域中嵌入式系统的发展趋势:智能化、小型化等8.3 教学方法采用讲授法,讲解嵌入式系统在医疗设备领域的应用实例采用案例分析法,分析具体的嵌入式系统在医疗设备领域的应用实例采用小组讨论法,让学生分组讨论医疗设备领域中嵌入式系统的发展趋势8.4 教学评价课堂问答:学生能够回答嵌入式系统在医疗设备领域的应用实例的问题案例分析报告:学生能够分析具体的嵌入式系统在医疗设备领域的应用实例第九章:嵌入式系统在交通领域的应用9.1 教学目标让学生了解嵌入式系统在交通领域的应用实例让学生掌握交通领域中嵌入式系统的解决方案和设计要点让学生了解交通领域中嵌入式系统的发展趋势9.2 教学内容嵌入式系统在交通领域的应用实例:智能交通系统、车辆导航等交通领域中嵌入式系统的解决方案和设计要点:实时性、安全性等交通领域中嵌入式系统的发展趋势:智能化、高效化等9.3 教学方法采用讲授法,讲解嵌入式系统在交通领域的应用实例采用案例分析法,分析具体的嵌入式系统在交通领域的应用实例采用小组讨论法,让学生分组讨论交通领域中嵌入式系统的发展趋势9.4 教学评价课堂问答:学生能够回答嵌入式系统在交通领域的应用实例的问题案例分析报告:学生能够分析具体的嵌入式系统在交通领域的应用实例重点和难点解析一、嵌入式系统概述:理解嵌入式系统的定义、特点和应用领域,以及嵌入式系统的基本组成和工作原理。
嵌入式系统开发与应用
嵌入式系统开发与应用嵌入式系统开发与应用是现代科技领域的重要组成部分,它涵盖了从底层硬件设计到高层软件开发的一系列技术和方法。
嵌入式系统广泛应用于诸多领域,如消费电子、工业控制、汽车电子、医疗设备等。
本文将介绍嵌入式系统开发的基本概念、应用领域以及未来发展趋势。
一、嵌入式系统开发的基本概念嵌入式系统是指嵌入在其他设备或系统中,具有特定功能的计算机系统。
与传统计算机系统相比,嵌入式系统通常具有体积小、功耗低、成本低的特点。
嵌入式系统的核心是微处理器(如ARM、MIPS等)或微控制器(如8051、STM32等),以及与之配套的外设(如存储器、输入输出接口等)。
嵌入式系统开发的关键是将硬件与软件紧密集成,以实现特定功能。
硬件开发主要包括电路设计、PCB设计、嵌入式软件开发者对硬件的控制,以及常用的传感器、执行器和通信接口的选型和集成。
软件开发主要包括操作系统的选择和裁剪、驱动程序的编写、应用程序的开发,以及与硬件之间的交互和通信。
二、嵌入式系统的应用领域1. 消费电子:嵌入式系统广泛应用于智能手机、平板电脑、智能电视等消费电子产品。
这些设备要求高性能、低功耗以及良好的用户体验。
嵌入式系统在这些设备中的作用是负责处理各类用户操作、数据处理、多媒体播放、通信等功能。
2. 工业控制:嵌入式系统广泛应用于工业自动化领域。
它能够实现工业设备的监控、控制和运行管理。
嵌入式系统可以处理各种输入输出信号,与工艺设备和传感器进行通信,并对工艺过程进行控制和调节。
3. 汽车电子:嵌入式系统在现代汽车中起到了至关重要的作用。
它能够实现汽车引擎控制、车身电子控制、信息娱乐、驾驶辅助等功能。
嵌入式系统可以通过各种传感器获取车辆状态信息,同时与汽车中的各种模块进行通信。
4. 医疗设备:嵌入式系统在医疗设备领域应用广泛,如心脏起搏器、呼吸机、血糖监测仪等。
嵌入式系统能够监测病人的生理参数,同时控制和调节医疗设备的工作状态,以满足病人的实际需求。
ARM嵌入式系统的应用及发展
ARM嵌入式系统的应用及发展ARM架构是一种32位RISC结构的嵌入式系统处理器,被广泛应用于智能手机、平板电脑、智能电视、智能穿戴设备、智能家居等众多领域。
在智能手机领域,ARM架构已成为主流的手机处理器。
有着极佳的性能和低功耗的优势,不仅能够运行流畅的应用程序,还可以长时间待机,为用户提供优质的使用体验。
同时,ARM架构还具有极高的可扩展性,可以满足各种应用场景的需求。
在智能家居领域,ARM架构已成为智能家居控制中心的首选。
ARM架构的嵌入式系统可以轻松实现多个设备之间的联动和互通,实现多种场景化控制,提高生活品质。
除此之外,ARM架构在物联网、工控、汽车电子等领域都有广泛应用。
随着技术的不断发展,ARM架构的应用领域将不断扩大,特别是在大数据、人工智能、深度学习等领域,ARM架构也有望成为主流CPU架构之一。
随着ARM架构的不断发展,其可塑性和灵活性也得到了不断提高。
除了基于Cortex-A、Cortex-R等架构的处理器以外,ARM还推出了M系列处理器,包括Cortex-M0、Cortex-M3、Cortex-M4等,主要应用于嵌入式控制和物联网领域,具有低功耗、低成本、高度可靠性等特点。
同时,ARM还推出了基于SoC(System on Chip)的解决方案,实现了芯片级别的集成,将数字、模拟、射频等不同功能模块集成在同一芯片上,为客户提供更加完整的解决方案。
总的来说,ARM架构的应用越来越广泛,其未来发展也将更加可期。
ARM架构的出现,推动了整个嵌入式系统产业的发展,为我们的生活带来了更多的便利和创新。
嵌入式系统的应用领域及发展趋势
安全防火、防盗系统,水、电、煤气表的远程自动抄表,在其中嵌入专用控制芯片代替 传统的人工检查,实现更高、更准确和更安全的性能。
(5)汽车电子领域 随着汽车产业的飞速发展,汽车电子近年来也有了较快的发展。但是不得不承认,目前 国内的嵌入式车载领域的发展与国际相比差距还是比较大的。电子导航系统在汽车电子中占 据的比重比较大,目前导航系统在国外已经有了广泛的应用。在国内近年来也已经开始起步, 可以预料未来几年内会有比较快速的发展。汽车电子领域的另外一个发展趋势是与汽车本身 机械结合,从而可以实现故障诊断定位等功能。 在车辆导航、流量控制、信息监测与汽车服务方面,嵌入式系统技术已经获得了广泛的 应用,内嵌GPS模块、GSM模块的移动定位终端已经在各种运输行业成功使用。 (6)工业控制 嵌入式为控制其应用在工业过程控制、数控机床、电力系统、电网安全、电网设备监测、 石油化工系统等领域。 (7)军工航天 对于大多数开发者和用户而言,这可能都是比较神秘的一个领域。的确,大多数人一生 都没有机会给F117战机编写控制程序。的确,军工和航天领域是不为大众所知的领域,在 这个领域里面,无论是硬件还是操作系统、编译器,通常并不是市场上可以见到的通用设备, 它们大多数都是专用的。但是并不代表这个领域落后,许多最先进的技术最前沿的成果,往 往都会用在这个领域。 (8)机器人 嵌入式芯片的发展将使机器人在微型化、智能化方面的优势更加明显,同时会大幅度降 低机器人的价格,使其在工业领域和服务领域获得更广泛的应用。 除了以上这些应用领域,嵌入式系统还有其他方面的应用。
嵌入式系统论文(1)
嵌入式系统论文(1)摘要嵌入式系统是一种以特定功能为目的、在系统内部固化了处理器、存储器和各种外设等组成的计算机系统。
本文主要介绍嵌入式系统的发展历程、应用领域、架构、软硬件设计以及未来发展趋势等内容。
发展历程嵌入式系统最早源于20世纪70年代的单片机,随着科技的不断进步,嵌入式系统也得到了长足的发展。
20世纪80年代,嵌入式系统开始广泛应用于各个行业,如通信、航空、军事、医疗等领域。
90年代初期,嵌入式系统逐渐进入家庭电器、汽车等领域,并随着智能手机、IoT等技术的出现,嵌入式系统已经深入到了人们的日常生活中。
应用领域嵌入式系统的应用领域非常广泛,可以应用于各种机器人、智能家居、智能工厂、医疗设备等领域。
在智能家居领域中,嵌入式系统可以通过连接各种传感器和设备,实现对家庭环境的自动控制和调节;在智能制造领域中,嵌入式系统可以协同工业机器,实现智能生产线的自动化控制;在医疗设备领域,嵌入式系统可以配合电子设备,实现医疗监测、诊断和治疗等功能。
架构嵌入式系统的架构可以分为单核架构和多核架构两种形式。
单核架构是指系统中只有一个CPU核心,各个模块和外设共享该CPU核心资源,因此需要对CPU核心进行优化和资源分配,使得各个功能模块可以充分利用CPU核心的处理能力;多核架构是指系统中有多个CPU核心,每个核心负责处理不同的任务,可以提高系统的并发处理能力和整体性能,并减少各个模块和外设之间的干扰和耦合。
软硬件设计嵌入式系统开发需要涉及到软硬件设计两个方面。
硬件设计主要包括电路设计、原理图设计、PCB设计等工作,需要考虑系统整体性能,以及各个外设之间的数据交互和控制。
软件设计主要包括嵌入式操作系统选型、驱动程序编写、应用程序开发等工作,需要考虑系统整体稳定性,及应用程序对硬件资源的使用情况。
未来发展趋势未来,嵌入式系统将与人工智能和大数据等技术结合,推动智能化的发展。
在智能家居领域中,嵌入式系统可以通过程序学习,自动适应家庭环境,提供更加智能化的服务;在智能制造领域中,嵌入式系统可以通过类人智能算法,实现智能优化和协同控制;在医疗设备领域中,嵌入式系统可以通过云计算技术,实现医疗数据的共享和分析等功能。
单片机与嵌入式系统的应用发展
单片机与嵌入式系统的应用发展嵌入式系统,是指应用特定目的的计算机系统,它的硬件和软件是为特定的应用场景而设计和优化的。
嵌入式系统的应用十分广泛,是现代科技的重要组成部分。
本文将重点探讨其中的一种关键技术——单片机。
一、单片机技术的发展历程单片机技术是指将微型计算机芯片核心,即微处理器、存储器、计时器、串行通讯口,以及输入输出口等组成在一个芯片上的一种集成电路技术。
单片机技术的发展历程如下:1971年:物理学家Ted Hoff在Intel公司发明了第一款微处理器Intel 4004,结束了集成电路元器件必须使用离散元器件的时代,也为单片机存储器容量的扩展打下了基础。
1976年:Intel公司推出第一款单片机芯片—Intel 8048。
1980年:Motorola公司推出了16位微处理器,开始了16位单片机的时代,单片机的应用领域得到进一步扩展和拓宽。
1990年:以90MHz时钟速度开发出的MIPS R4000大规模集成电路出现。
2000年:32位单片机应用开始普及,此时单片机作为嵌入式系统的核心技术,得到了广泛推广和运用。
二、单片机技术的应用领域现在单片机技术已成为嵌入式系统的重要组成部分,其应用已经渗透到众多领域。
以下是单片机技术的主要应用领域:1、家庭电器和电子产品:电视机、冰箱、洗衣机、电饭煲等。
2、汽车、船舶等交通工具:汽车电子控制器、电子油门、制动系统等。
3、数字通信:手机、无线局域网、蓝牙等。
4、医疗器械:心电图仪、血糖仪、体温计等。
5、重要设备和仪器:机床、仪表、机器人、安全系统等。
单片机技术的应用领域正在不断地扩展和深化,预计未来会出现更加广泛的应用场景。
例如,物联网、智能交通等领域都将是单片机技术的主战场。
三、单片机技术发展趋势随着科技的不断发展,单片机技术也在不断进化和升级。
以下是单片机技术未来的发展趋势:1、新型处理器:单片机处理器将逐步从8位和16位向32位和64位迈进,处理能力将得到显著提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嵌入式系统发展与应用引言不论是日常生活中经常使用的家庭自动化产品、家用电器、手提电话、自动柜员机(ATM),还是各行各业的办公设备、现代化医疗设备、航空电子、计算机网络设备、用于工业自动化和监测的可编程逻辑控制器(PLC),甚至是娱乐设备的固定游戏机和便携式游戏机等都属于嵌入式系统。
嵌入式系统始于微型机时代的嵌入式应用,通过将微型机嵌入到一个对象体系中,实现对象系统的智能化控制。
随着科技的不断发展,在单片机时代,嵌入式系统以器件形态迅速进入到传统电子技术领域中,以电子技术应用工程师为主体,实现传统电子系统的智能化。
而后,随着后PC时代的到来,网络、通信技术得以发展;同时,嵌入式系统软、硬件技术有了很大的提升,形成了基于嵌入式系统软、硬件平台,以网络、通信为主的非嵌入式底层应用的计算机应用模式。
1嵌入式系统的概念与发展1.1 嵌入式系统的概念嵌入式系统是以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统,对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。
嵌入式系统主要由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序等4个部分组成,它是集软硬件于一体的可独立工作的“器件”。
它必然是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。
1.2 嵌入式系统发展纵观嵌入式系统的发展历程,大致经历了以下四个阶段:(1)无操作系统阶段嵌入式系统最初的应用是基于单片机的,大多以可编程控制器的形式出现,具有监测、伺服、设备指示等功能通常应用于各类工业控制和飞机、导弹等武器装备中,一般没有操作系统的支持,只能通过汇编语言对系统进行直接控制,运行结束后再清除内存。
这些装置虽然已经初步具备了嵌入式的应用特点,但仅仅只是使用8位的CPU芯片来执行一些单线程的程序,因此严格地说还谈不上系统的概念。
这一阶段嵌入式系统的主要特点是:系统结构和功能相对单一,处理效率较低,存储容量较小,几乎没有用户接口。
由于这种嵌入式系统使用简便、价格低廉,因而曾经在工业控制领域中得到了非常广泛的应用,但却无法满足现今对执行效率、存储容量都有较高要求的信息家电等场合的需要。
(2)简单操作系统阶段20世纪80年代,随着微电子工艺水平的提高,Ic制造商开始把嵌入式应用中所需要的微处理器、I/O接口、串行接口以及RAM、ROM等部件统统集成到一片VLSI中,制造出面向I /0设计的微控制器,并一举成为嵌入式系统领域中异军突起的新秀。
与此同时,嵌入式系统的程序员也开始基于一些简单的操作系统开发嵌入式应用软件,大大缩短了开发周期、提高了开发效率。
(3)实时操作系统阶段20世纪9O年代,在分布控制、柔性制造、数字化通信和信息家电等巨大需求的牵引下,嵌入式系统进一步飞速发展,而面向实时信号处理算法的DSP产品则向着高速度、高精度、低功耗的方向发展。
随着硬件实时性要求的提高,嵌入式系统的软件规模也不断扩大,逐渐形成了实时多任务操作系统(RTOS),并开始成为嵌入式系统的主流。
这一阶段嵌入式系统的主要特点是:操作系统的实时性得到了很大改善,已经能够运行在各种不同类型的微处理器上,具有高度的模块化和扩展性。
此时的嵌入式操作系统已经具备了文件和目录管理、设备管理、多任务、网络、图形用户界面(GUI)等功能,并提供了大量的应用程序接口(API),从而使得应用软件的开发变得更加简单。
(4)面向Internet阶段21世纪无疑将是一个网络的时代,将嵌入式系统应用到各种网络环境中去的呼声自然也越来越高。
目前大多数嵌入式系统还孤立于Internet之外,随着Internet的进一步发展,以及Internet技术与信息家电、工业控制技术等的结合日益紧密,嵌入式设备与Internet的结合才是嵌入式技术的真正未来。
信息时代和数字时代的到来,为嵌入式系统的发展带来了巨大的机遇,同时也对嵌入式系统厂商提出了新的挑战。
目前,嵌入式技术与Internet技术的结合正在推动着嵌入式技术的飞速发展,嵌入式系统的研究和应用产生了如下新的显著变化:2 嵌入式系统的组成与特点一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成嵌入式计算机系统是整个嵌入式系统的核心,由硬件层、中间层、系统软件层和应用软件层组成。
执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。
执行装置可以很简单,如手机上的一个微小型的电机,当手机处于震动接收状态时打开;也可以很复杂,如智能机器狗,上面集成了多个微上控制电机和多种传感器,从而可以执行各种复杂的动作和感受种状态信息。
如图2-1所示嵌入式计算机系统。
图2-1嵌入式计算机系统下面对嵌入式计算机系统的组成进行介绍2.1 系统硬件层硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O接口(A/D、D/A、I/O等)。
在一嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。
其中操作系统和应用程序都可以固化在ROM中。
2.2 系统中间层硬件层与软件层之间为中间层,也称为硬件抽象层或者板级支持包,它半系统上层软件与底层硬件分离开来,使系统的底层驱动程序与硬件无关,上层软件开发人员无需关心底层硬件的具体情况,根据BSP层提供的接口即可进行开发。
该层一般包含相关底层硬件的初始化、数据的输入/输出操作和硬件设备的配置功能。
实际上,BSP是一个介于操作系统和底层硬件之间的软件层次,包括了系统中大部分与硬件联系紧密的软件模块。
设计一个完整的BSP需要完成两部分工作:嵌入工系统的硬件初始化的BSP功能,设计硬件相关的设备驱动。
2.3 系统软件层系统软件层由实时多任务操作系统、文件系统、图形用户接口、网络系统及通用组件模块组成。
RTOS是嵌入式应用软件的基础和开发平台。
嵌入式操作系统(Embedded Operation System,EOS)是一种用途广泛的系统软件,过去它主要应用于工业控制和国防系统领域。
EOS负责嵌入系统的全部软、硬件资源的分配、任务调度,控制、协调并发活动。
它必须体现其所在系统的特征,能够通过装卸某些模块来达到系统所要求的功能。
已推出一些应用比较成功的EOS产品系列。
随着Internet技术的发展、信息家电的普及应用及EOS的微型化和专业化,EOS开始从单一的弱功能向高专业化的强功能方向发展。
嵌入式操作系统在系统实时高效性、硬件的相关依赖性、软件固化以及应用的专用性等方面具有较为突出的特点。
EOS是相对于一般操作系统而言的,它除具有了一般操作系统最基本的功能,还有以下功能:如任务调度、同步机制、中断处理、文件处理等。
3 嵌入式系统的特点与分类3.1 嵌入式系统的特点(1)系统内核小由于嵌入式系统一般是应用于小型电子装置的,系统资源相对有限,所以内核较之传统的操作系统要小得多。
比如Enea公司的OSE分布式系统,内核只有5K。
(2)专用性强嵌入式系统的个性化很强,其中的软件4种嵌入式操作系统的调度机制系统和硬件的结合非常紧密,一般要针对硬件进行系统的移植,即使在同一品牌、同一系列的产品中也需要根据系统硬件的变化和增减不断进行修改。
同时针对不同的任务,往往需要对系统进行较大更改,程序的编译下载要和系统相结合,这种修改和通用软件的“升级”是完全两个概念。
(3)系统精简嵌入式系统一般没有系统软件和应用软件的明显区分,不要求其功能设计及实现上过于复杂,这样一方面利于控制系统成本,同时也利于实现系统安全。
(4)高实时性高实时性的系统软件(OS)是嵌入式软件的基本要求。
而且软件要求固态存储,以提高速度;软件代码要求高质量和高可靠性。
(5)多任务的操作系统嵌入式软件开发要想走向标准化,就必须使用多任务的操作系统。
嵌入式系统的应用程序可以没有操作系统直接在芯片上运行;但是为了合理地调度多任务、利用系统资源、系统函数以及和专用库函数接口,用户必须自行选配RTOS(Real-Time Operating System)开发平台,这样才能保证程序执行的实时性、可靠性,并减少开发时间,保障软件质量。
(6)需要开发工具和环境嵌入式系统开发需要开发工具和环境。
由于其本身不具备自主开发能力,即使设计完成以后用户通常也是不能对其中的程序功能进行修改的,必须有一套开发工具和环境才能进行开发,这些工具和环境一般是基于通用计算机上的软硬件设备以及各种逻辑分析仪、混合信号示波器等。
开发时往往有主机和目标机的概念,主机用于程序的开发,目标机作为最后的执行机,开发时需要交替结合进行。
3.2 嵌入式系统的分类嵌入式系统是将先进的计算机技术、半导体技术和电子技术和各个行业的具体应用相结合后的产物,这一点就决定了它必然是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。
目前根据其发展现状,嵌入式计算机可以分成下面几类:(1)、单个微处理器这类系统可以在小型设备中(如温度传感器、烟雾和气体探测器及断路器)找到。
这类设备是供应商根据设备的用途来设计的。
这类设备受Y2K影响的可能性不大。
(2)、不带计时功能的微处理器装置这类系统可在过程控制、信号放大器、位置传感器及阀门传动器等中找到。
这类设备也不太可能受到Y2K的影响。
但是,如果它依赖于一个内部操作时钟,那么这个时钟可能受Y2K 问题的影响。
(3)、带计时功能的组件这类系统可见于开关装置、控制器、电话交换机、电梯、数据采集系统、医药监视系统、诊断及实时控制系统等。
它们是一个大系统的局部组件,由它们的传感器收集数据并传递给该系统。
这种组体可同Pc机一起操作,并可包括某种数据库(如事件数据库)。
(4)、在制造或过程控制中使用的计算机系统对于这类系统,计算机与仪器、机械及设备相连来控制这些装置的工作。
这类系统包括自动仓储系统和自动发货系统。
在这些系统中,计算机用于总体控制和监视,而不是对单个设各直接控制。
过程控制系统可与业务系统连接(如根据销售额和库存量来决定定单或产品量)。
4 嵌入式系统的应用与发展趋势4.1 嵌入式系统的应用(1)工业控制基于嵌入式芯片的工业自动化设备将获得长足的发展,已经有大量的8、16、32 位嵌入式微控制器在应用中,网络化是提高生产效率和产品质量、减少人力资源主要途径,如工业过程控制、数字机床、电力系统、电网安全、电网设备监测、石油化工系统。
就传统的工业控制产品而言,低端型采用的往往是8位单片机。
但是随着技术的发展,32位、64位的处理器逐渐成为工业控制设备的核心,在未来几年内必将获得长足的发展。
(2)交通管理在车辆导航、流量控制、信息监测与汽车服务方面,嵌入式系统技术已经获得了广泛的应用,内嵌GPS模块,GSM模块的移动定位终端已经在各种运输行业获得了成功的使用。