浙江高考立体几何难题
两道浙江高考立体几何压轴小题赏析
两道浙江高考立体几何压轴小题赏析
罗山高中高尤琼
2016和2017年,浙江高考考了立体几何压轴小题,题目新颖有趣,很有挖掘价值,体现了数学的核心素养和数学思想的应用。
在立体几何中,判定和证明空间的线线、线面以及面面之间的位置关系(主要是平行与垂直的位置关系),计算空间图形中的几何量(主要是角与距离)是两类基本问题.正确揭示空间图形与平面图形的联系,并有效地实施空间图形与平面图形的转换是分析和解决这两类问题的关键.
这两道题都很新颖,考查学生想象力,江浙一带,人杰地灵,数学题比较灵活。
总之,就是把空间立体问题转化成平面问题,运用平面几何知识、相似、解析几何、基本不等式、解三角形等方法加以解决。
浙江高考数学压轴题:立体几何选择题学生版
浙江高考数学压轴题:立体几何选择题1.已知在矩形ABCD 中,2AB =,4=AD ,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示,沿EF 将四边形AEFB 翻折成A EFB '',则在翻折过程中,二面角B CD E '--的大小为θ,则tan θ的最大值为( )A B C D 2.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中][0,1,0,1λμ⎡⎤∈∈⎣⎦,则( ) A .当1λ=时,△1AB P 的周长为定值B .当1μ=时,三棱锥1P A BC -的体积不是定值C .当12λ=时,有且仅有一个点P ,使得AP BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P3.已知三棱锥P ABC -三条侧棱,,PA PB PC 两两互相垂直,且2PA PB PC ===,,M N 分别为该三棱锥的内切球和外接球上的动点,则,M N 两点间距离的最小值为( )A .2+B 1C .2D 2-4.已知△ABC 在平面β内,不重合的两点P ,Q 在平面β同侧,在点M 从P 运动到Q 的过程中,记四面体M -ABC 的体积为V ,点A 到平面MBC 的距离为d ,则可能的情况是( )A .V 保持不变,d 先变大后变小B .V 保持不变,d 先变小后变大C .V 先变大后变小,d 不断变大D .V 先变小后变大,d 不断变小5.在三棱锥S ABC -中,,,SA SB SC 两两垂直且相等,若空间中动一点P 满足SP x SA y SB z SC →→→→=++,其中0,1,1x y z ≥≥≥且125x y z ++≤.记SP 与平面ABC 所成的角为θ,则sin θ的最大值为( )A .13BC .1D6.如图,在长方体1111ABCD A B C D -中,3AB =,5AD =,14AA =,点F 是1AA 的中点,点E 为棱BC 上的动点,则平面1C EF 与平面11ABB A 所成的锐二面角正切的最小值是( )A .513 BC D .135 7.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小,若15,25,30AB cm AC cm BCM ==∠=︒,则tan θ的最大值是( ).(仰角θ为直线AP 与平面ABC 所成的角)A B C D 8.已知棱长为2的正方体1111ABCD A B C D -,点A 在空间直角坐标系O xyz -的x 轴上移动,点C 在平面yOz 上移动,则1OC OB ⋅的最大值是( )A .2B .1C .4+D .69.如图,在三棱锥P ABC -中,5AB AC PB PC ====,4PA =,6BC =,点M 在平面PBC 内,且AM =,设异面直线AM 与BC 所成的角为α,则cos α的最大值为( )A B C .25 D 10.正三棱锥A BCD -中G 为BC 的中点,H 为BG 上的任意上点,设AH 与CD 所成的角的大小为1θ,AH 与平面BCD 所成的角的大小为2θ,二面角A BC D --的大小为3θ,则( )A .213θθθ≤≤B .123θθθ≤≤C .231θθθ≤<D .312θθθ≤≤11.已知三棱锥P ABC -,其中PA ⊥平面ABC ,2PA =,2AB AC ==,2BAC π∠=.已知点Q 为棱PA (不含端点)上的动点,若光线从点Q 出发,依次经过平面PBC 与平面ABC 反射后重新回到点Q ,则光线经过路径长度的取值范围为( )A .(1+B .)4C .4⎫⎪⎭D .( 12.如图,平面OAB ⊥平面α,OA α⊂,OA AB =,120OAB ∠=︒.平面α内一点P 满足PA PB ⊥,记直线OP 与平面OAB 所成角为θ,则tan θ的最大值是( )A B .15 C D .1313.如图,四边形ABCD 中90A CBD ∠=∠=︒,30CDB ∠=︒,AB AC =,沿直线BC 将ABC 折成A BC ',使点A '在平面BCD 上的射影在BCD △内(不含边界),记二面角A BC D '--的平面角大小为α,直线A B '、A D '与平面BCD 所成角分别为β、γ,则( )A .αβγ>>B .βαγ>>C .αγβ>>D .γβα>>14.已知直角梯形ABCD 满足://, AD BC CD DA ⊥,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD C ',且AD BD CD '''<<,二面角 , , D AB C D BC A D AC B '''------的平面角大小分别为,,αβγ,直线, , D A D B D C '''与平面ABC 所成角分别是123,,θθθ,则( )A .123,θθθαγβ>>>>B .123,θθθαβγ<<>>C .123,θθθαβγ>><<D .123,θθθαβγ<<<<15.已知菱形ABCD ,60DAB ∠=︒,E 为边AB 上的点(不包括A B ,),将ABD △沿对角线BD 翻折,在翻折过程中,记直线BD 与CE 所成角的最小值为α,最大值为β( )A .αβ,均与E 位置有关B .α与E 位置有关,β与E 位置无关C .α与E 位置无关,β与E 位置有关D .αβ,均与E 位置无关16.如图,已知锐二面角l αβ--的大小为1θ,A α∈,B β∈,M l ∈,N l ∈,AM l ⊥,BN l ⊥,C ,D 为AB ,MN 的中点,若AM MN BN >>,记AN ,CD 与半平面β所成角分别为2θ,3θ,则( )A .122θθ<,132θθ<B .122θθ<,132θθ>C .122θθ>,132θθ<D .122θθ>,132θθ>17.已知正四面体P ABC -,Q 为ABC 内的一点,记PQ 与平面PAB PAC PBC 、、所成的角分别为,,αβγ,则下列不等式恒成立的个数为( )①222sin sin sin 2αβγ++≥ ②222cos os 2cos c αβγ++≥③222tan an 1tan t αβγ++≤ ④2221111tan an tan t αβγ++≤ A .0 B .1 C .2 D .318.如图,矩形ABCD 中,已知2AB =,4BC =,E 为AD 的中点. 将ABE △沿着BE 向上翻折至A BE ',记锐二面角A BE C '--的平面角为α,A B '与平面BCDE 所成的角为β,则下列结论不可能成立的是( )A .sin αβ=B αcos β=C .α2β<D .πα4β-> 19.如图,在大小为1θ的锐二面角l αβ--中,A α∈,B β∈,M 、N l ∈,AM l ⊥,BN l ⊥,C 、D 分别为AB 、MN 的中点.记直线AN 与半平面β的夹角为2θ,直线CD 与半平面β的夹角为3θ.若AM MN BN >>,则( )A .122θθ<,132θθ<B .122θθ<,132θθ>C .122θθ>,132θθ<D .122θθ>,132θθ>20.在三棱锥D ABC -中,222AD AB AC BC ===,点A 在面BCD 上的投影G 是BCD △的垂心,二面角G AB C --的平面角记为α,二面角G BC A --的平面角记为β,二面角G CD A --的平面角记为γ,则( )A .αβγ>>B .αγβ>>C .βγα>>D .γβα>>21.如图,在三棱锥A BCD -中,AB BC ⊥,BC CD ⊥,E ,F 分别为BC ,AD 的中点,记平面ABC 与平面BCD 所成的角为1θ,直线AC ,EF 与平面BCD 所成的角分别为2θ,3θ,若AB BC CD >>,则( )A .12θθ>, 132θθ<B .12θθ>,132θθ>C .12θθ<,132θθ<D .12θθ<,132θθ>22.如图,在等边三角形ABC 中,,D E 分别是线段,AB AC 上异于端点的动点,且BD CE =,现将三角形ADE 沿直线DE 折起,使平面ADE ⊥平面BCED ,当D 从B 滑动到A 的过程中,则下列选项中错误的是( )A .ADB ∠的大小不会发生变化B .二面角A BDC --的平面角的大小不会发生变化 C .BD 与平面ABC 所成的角变大 D .AB 与DE 所成的角先变小后变大23.已知底面ABCD 为正方形的四棱锥P ABCD -,P 点的射影在正方形ABCD 内,且P 到BC 的距离等于PD 的长,记二面角P AB C 的平面角为α,二面角P CD A --的平面角为β,二面角P AD C --平面角为γ,则下列结论可能成立的是( )A .αβγ==B .αγβ=<C .αβγ=<D .αβγ>=24.如图,长方形ABCD 中,AB =1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23CD 25.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ',所成二面角A DE B '--的平面角为α,则( )A .A DB A EC α∠≥∠'≥' B .A EC A DB α∠≥∠'≥'C .A DB A EC α≥∠'∠≥'D .A EC A DB α≥∠'∠≥' 26.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .⎤⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .⎡⎢⎣⎦D .⎡⎢⎣⎦ 27.如图,在矩形ABCD 中,AD AB <,将ACD △沿AC 翻折至ACD '△,设直线AD '与直线BC 所成角为α,直线BD '与平面ACD '所成角为β,二面角A CD B '--的平面角为γ,当γ为锐角时( )A .αβγ>>B .γβα>>C .γαβ>>D .αγβ>> 28.如图,在长方形ABCD 中,AD CD <,现将ACD △沿AC 折至1ACD △,使得二面角1A CD B --为锐二面角,设直线1AD 与直线BC 所成角的大小为α,直线1BD 与平面ABC 所成角的大小为β,二面角1A CD B --的大小为γ,则,,αβγ的大小关系是( )A .αβγ>>B .αγβ>>C .γαβ>>D .不能确定29.如图,在四棱锥P ABCD -中,APB BPC CPD DPA ∠=∠=∠=∠,平面ADP ⊥平面DCP ,若APC α∠=,BPD β∠=,AP 与平面DCP 所成的角为γ,则以下结论正确的是( )A .γβα<<B .βαγ<<C .βγα<<D .γαβ<<30.在长方体1111ABCD A B C D -中,1AB =,1BC CC ==E ,F ,G 分别为AD ,AB ,11C D 上的点,AE ED =,AF FB =,11(4)DG GC λλ=≥,分别记二面角1G EF D --,G EF C --,G FB C --的平面角为α,β,γ,则( ) A .αβγ>>B .βγα>>C .γβα>>D .与λ有关31.如图,在菱形ABCD 中,60BAD ∠=︒,线段AD ,BD 的中点分别为E ,F ,现将ABD △沿对角线BD 翻折,则异面直线BE 与CF 所成的角的取值范围是A .,63ππ⎛⎫ ⎪⎝⎭B .,62ππ⎛⎤ ⎥⎝⎦C .,32ππ⎛⎤ ⎥⎝⎦D .2,33ππ⎛⎫ ⎪⎝⎭ 32.三棱锥P ABC -中,AB BC ⊥,D 是棱AB 上的动点,点P 在平面的射影在ABC 内部,PD 与BC 所成的角为α,PD 与面ABC 所成的角为β,二面角P AB C 为λ,则( )A .βαλ≤≤B .βλα≤≤C .λβα≤≤D .λαβ≤≤33.记{},min ,,a a b a b b a b ≤⎧=⎨>⎩,已知矩形ABCD 中,2AB AD =,E 是边AB 的中点,将ADE 沿DE 翻折至A DE '(A '不在平面BCD 内),记二面角A BC D '--为α,二面角A CD E '--为β,二面角A DE C '--为γ,二面角A BE D '--为θ,则{}min ,,,αβγθ=( )A .αB .βC .γD .θ 34.在四面体ABCD 中,BCD ∆为等边三角形,2ADB π∠=,二面角B AD C --的大小为α,则α的取值范围是()A .0,6π⎛⎤ ⎥⎝⎦B .0,4π⎛⎤⎥⎝⎦ C .0,3π⎛⎤ ⎥⎝⎦ D .0,2π⎛⎤⎥⎝⎦。
高考数学复习、高中数学 立体几何热点问题附答案解析
CG AC
n n
0, 0,
即
x 2x
3z 0, y 0.
所以可取n=(3,6,– 3 ).
又平面BCGE的法向量可取为m=(0,1,0),所以 cosn, m
nm
3
.
| n || m | 2
因此二面角B–CG–A的大小为30°.
【规范训练】 解 (1)因为 PA 底面 ABCD , BC 平面 ABCD ,
PF2,所以 PE⊥PF.
3
3
可得 PH= ,EH= .
2
2
( ) ( ) ( ) ( ) 3
3
→
33 →
3
则 H(0,0,0),P 0,0, 2
,D
-1,- ,0 2
,DP=
1, , 2
2
,HP= 0,0, 2
为平面 ABFD
的一个法向量.
设 DP 与平面 ABFD 所成角为 θ,
→→ 3
|HP·DP| 4 3
所以 AB1⊥平面 A1B1C1.
(2)解 设直线 AC1 与平面 ABB1 所成的角为 θ.
→
→
→
由(1)可知AC1=(0,2 3,1),AB=(1, 3,0),BB1=(0,0,2).
设平面 ABB1 的法向量 n=(x,y,z).
→
{ ) { ) 由
n·AB=0, →
n·BB1=0,
即
x+ 3y=0, 2z=0,
所以 PA BC .因为 ABCD 为正方形,所以 AB BC ,
又因为 PA AB A ,所以 BC 平面 PAB .因为 AE 平面 PAB ,
所以 AE BC .因为 PA AB , E 为线段 PB 的中点,
浙江省高考数学文科解答题(立体几何)
立体几何(04年)如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2=AB ,1=AF ,M 是线段EF 的中点。
(Ⅰ)求证AM ∥平面BDE ; (Ⅱ)求证⊥AM 平面BDF ;(Ⅲ)求二面角B DF A --的大小。
(05年)如图,在三棱锥ABC P -中,BC AB ⊥,PA BC AB 21==,点O 、D 分别是AC 、PC 的中点,⊥OP 底面ABC 。
(Ⅰ)求证OD ∥平面PAB ;(Ⅱ)求直线OD 与平面PBC 所成角的大小。
(06年)如图,在四棱锥ABCD P -中,底面为直角梯形,AD ∥BC ,︒=∠90BAD ,⊥PA 底面ABCD ,且BC AB AD PA 2===,M 、N 分别是PC 、PB 的中点。
(Ⅰ)求证:DM PB ⊥;BCPDAo(Ⅱ)求BD与平面ADMN所成的角。
(07年)在如图所示的几何体中,⊥EA 平面ABC ,⊥DB 平面ABC , BC AC ⊥,且AE BD BC AC 2===,M 是AB 的中点。
(Ⅰ)求证:EM CM ⊥;(Ⅱ)求DE 与平面EMC 所成角的正切值。
(08年)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,︒=∠=∠90CEF BCF ,3=AD ,2=EF 。
(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角C EF A --所的大小为︒60?(09年)如图,⊥DC 平面ABC ,BE ∥DC ,22====DC EB BC AC ,︒=∠120ACB ,P ,Q 分别是AE ,AB 的中点。
(Ⅰ)证明:PQ ∥平面ACD ;(Ⅱ)求AD 与平面ABE 所成角的正弦值。
(10年)如图,在平行四边形ABCD 中,BC AB 2=,︒=∠120ABC ,E 为线段AB 的中点,将ADE ∆沿直线DE 翻折成DE A '∆,使平面⊥DE A '平面BCD ,F 为线段C A '的中点。
浙江高考(理数)立体几何的一些解法
浙江高考(理数)立体几何的一些解法原题呈现如图,在四棱锥BCDE A -中,平面⊥ABC 平面BCDE ,090CDE BED ∠=∠=,2,1,AB CD DE BE AC ====(1)证明:⊥DE 平面ACD ; (2)求二面角E AD B --的大小4681012141618EA【标准答案】. (I )在直角梯形BCDE 中,由1DE BE ==,2CD =得,BD BC ==由2AC AB ==,则222AB AC B C=+,即A C B C ⊥,又平面⊥ABC 平面BCDE ,从而AC ⊥平面BCDE ,所以AC DE ⊥,又DE DC ⊥,从而DE ⊥平面ACD ; (II )方法一:作BF AD ⊥,与AD 交于点F ,过点F 作FG DE ,与AE 交于点G ,连结BG ,由(I )知,DE AD ⊥,则FG AD ⊥,,所以BFG ∠是二面角E AD B --的平面角,在直角梯形BCDE 中,由222CD BD BC =+,得BD BC ⊥,又平面⊥ABC 平面BCDE ,得BD ⊥平面ABC ,从而,BD AB ⊥,由于AC ⊥平面BCDE ,得:AC CD ⊥,在Rt ACD 中,由2CD =,AC ,得AD =,46810121416EA在Rt AED 中,1DE =,AD =得AE =在Rt A B D 中,BD 2AB =,AD =,得3BF =23AF AD =,从而23GF =,在,ABE ABG 中,利用余弦定理分别可得2cos 143BAE BG ∠==,在BFG中,222cos 2GF BF BG BFG BF GF +-∠==⋅,所以6BFG π∠=,即二面角E AD B --的大小是6π. 方法二:以D 为原点,分别以射线,DE DC 为,x y 轴的正半轴,建立空间直角坐标系D xyz -如图所示,由题意可知各点坐标如下:()()()(()0,0,0,1,0,0,0,2,0,,1,1,0D E C A B ,设平面ADE 的法向量为()111,,m x y z =,平面ABD 的法向量为()222,,n x y z =,可算得(0,2,AD =-,()(1,1,0,1,2,DB AE ==-,由00m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩得,1111102020y x y ⎧-=⎪⎨-=⎪⎩,可取(0,1,m =,由0n AD n BD ⎧⋅=⎪⎨⋅=⎪⎩得,22220200y x y ⎧-=⎪⎨+=⎪⎩,可取(1,1,2n =,于是3cos ,m n m n m n⋅〈〉==,由题意可知,所求二面角是锐角,故二面角E AD B --的大小是6π. 4681012141618第二问【个人解法】方法一:利用方向向量解答,过B 作BF AD ⊥,垂足为F ,则 方向1:二面角的平面角与直线DE 和FB 所成的角大小相等,22221152()(21)12233DE FB DB EF DF EB ⋅=+--=+--=cos ,||||3DE FBDE FB DE FB ⋅<>==所以二面角的平面角大小为030。
2023年高考数学----立体几何中的交线问题典型例题讲解
2023年高考数学----立体几何中的交线问题典型例题讲解【规律方法】几何法【典型例题】例1.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.【解析】过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,由于平面//α平面PBC ,平面PBC ⋂平面ABD PB =,,平面PBC ⋂平面ACD PC = 所以//,//m BP n PC ,所以BPC ∠或其补角即为m ,n 所成的平面角,设正四棱锥ABCD 的棱长为1,,01AP x x =<<,则1PD x =−,在ABP中,由余弦定理得:cos601BP =+, 同理cos601PC =+, 故在PBC 中,()()22222221211112cos 11221211324x x PB PC BC BPC PB PC x x x x x −+−+−∠===−=−⋅−+−+⎛⎫−+ ⎪⎝⎭, 由于2133244x ⎛⎫−+≥ ⎪⎝⎭,则212231324x ≤⎛⎫−+ ⎪⎝⎭,进而2112131324x −≥⎛⎫−+ ⎪⎝⎭,当12x =时取等号, 故cos BPC ∠的最小值为13,进而sinBPC ∠= 故sin BPC ∠, 故答案为:3例2.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.【解析】设外接球半径为r ,外接球球心到底面的距离为h ,则2243h r r h +==+,所以r两球相交形成形成的图形为圆,如图,在PDO △中,661cos DPO +−∠==sin DPO ∠=在1PDO △中,1sin DO PD DOP =∠=所以交线长度为2π=.例3.(2022·福建福州·三模)已知正方体1111ABCD A B C D −1A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________. 【答案】2π 【解析】正方体中,1AA ⊥平面ABCD ,所以平面ABCD 与球的截面是以A 为圆心的圆,且1,所以球面与底面ABCD 的交线为以A 为圆心,1为半径的弧,该交线为1242ππ⨯=. 故答案为:2π.例4.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.【解析】因为2AB BC AC ===,所以ABC 是边长为2的等边三角形,所以边长为2=122ABC S △=⨯设D 到平面ABC 的距离为d ,12BCD S △=,所以A BCD D ABC V V −−=,所以11=33BCD ABC AD S d S △△⨯⨯⨯⨯,解得d =,则1d <, 所以以D 为球心,1为半径的球与平面ABD ,平面ACD ,平面BCD 的交线为14个半径为1的圆的弧线,与面ABC所以交线总长度为:121324ππ⨯⨯⨯+=..。
立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破
立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
浙江省历年高考立体几何大题总汇(题目与答案)
1.(本题满分15 分)如图,平面PAC ⊥平面ABC ,ABC 是以AC 为斜边的等腰直角三角形。
E,F ,O分别为PA, PB, PC 的中点,AC 16, PA PC 10 。
(I )设 C 是OC 的中点,证明:PC // 平面BOE ;(II )证明:在ABO 内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA , OB 的距离。
zyx2.如图,在棱长为 1 的正方体ABCD -A1B1C1D1 中,P 是侧棱CC1 上的一点,CP=m ,(Ⅰ)试确定m,使得直线AP 与平面BDB 1D1 所成角的正切值为 3 2 ;(Ⅱ)在线段A1C1 上是否存在一个定点Q,使得对任意的m,D1Q 在平面APD 1 上的射影垂直于AP,并证明你的结论。
3. 如图甲,△ABC 是边长为 6 的等边三角形,E,D 分别为AB 、AC 靠近B、C 的三等分点,点G 为BC 边的中点.线段AG 交线段ED 于F 点,将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB 、AC 、AG 形成如图乙所示的几何体。
(I)求证BC⊥平面AFG ;(II)求二面角B-AE -D 的余弦值..4 在如图所示的几何体中,EA 平面ABC,DB 平面ABC,AC BC ,AC BC BD 2AE ,M是AB的中点.(1)求证:CM EM ;D(2)求CM与平面CDE所成的角ECAMB4.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BCF CEF ,AD 3,E F 2.90D(Ⅰ)求证:AE ∥平面DCF ;AC (Ⅱ)当AB 的长为何值时,二面角 A EF C 的大小为60 ?BF E(第18 题)25.如图,在矩形ABCD 中,点E,F 分别在线段AB ,AD 上,AE=EB=AF= FD 4.沿直3线EF 将AEF 翻折成A' EF , 使平面A' EF 平面BEF.(I)求二面角A' FD C 的余弦值;(II )点M ,N 分别在线段FD,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使 C与A' 重合,求线段FM 的长.6.如图,在三棱锥P-ABC 中,AB =AC,D 为BC 的中点,PO⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP⊥BC;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。
专题10 立体几何-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(解析版)
连 ,在正方体 中,
M是 的中点,所以 为 中点,
又N是 的中点,所以 ,
平面 平面 ,
所以 平面 .
因为 不垂直 ,所以 不垂直
则 不垂直平面 ,所以选项B,D不正确;
在正方体 中, ,
平面 ,所以 ,
,所以 平面 ,
平面 ,所以 ,
且直线 是异面直线,
所以选项C错误,选项A正确.
故选:A.
本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力,属于基础题.
【2021·江苏高考】在正三棱柱 中, ,点P满足 ,其中 , ,则
A.当 时, 的周长为定值
B.当 时,三棱锥 的体积为定值
C.当 时,有且仅有一个点P,使得
而 面BCD, 面BCD, ,
面BCD, 面BCD,
, 是直角三角形,且 ,
设DF与面DBC所成角为 ,则 即为CH与面DBC的夹角,
且 ,
在 中, ,
,
.
【知识点】线面垂直的判定、直线与平面所成的角、面面垂直的性质、线面垂直的性质
【解析】本题主要考查空间直线互相垂直的判定和性质,以及直线与平面所成角的几何计算问题,考查了空间想象能力和思维能力,平面与空间互相转化是能力,几何计算能力,以及逻辑推理能力,本题属综合性较强的题.
D.当 时,有且仅有一个点P,使得 平面
【答案】BD
【知识点】圆柱、圆锥、圆台的侧面积、表面积和体积
【解析】解:对于A,当 时, ,即 ,所以 ,
故点P在线段 上,此时 的周长为 ,
当点P为 的中点时, 的周长为 ,
当点P在点 处时, 的周长为 ,
2004—2019浙江高考真题《立体几何》汇编
2004−2019浙江高考真题《立体几何》汇编三视图1. (2009浙江文12理12)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .2. (2010浙江文8)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .3352cm 3B .3320cm 3C .3224cm 3D .3160cm 33. (2010浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .侧视图俯视图正视图侧视图俯视图侧视图俯视图4. (2011浙江文7)某几何体的三视图如图所示,则这个几何体的直观图可以是( )5. (2011浙江理3)某几何体的三视图如图所示,则这个几何体的直观图可以是( )6. (2012浙江文3)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .13cmB .23cmC .33cmD .63cmDC BA侧视图俯视图正视图DCB A 侧视图俯视图正视图侧视图俯视图正视图7. (2012浙江理11)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于 3cm .8. (2013浙江文5)已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .1083cmB .1003cmC .923cmD .843cm9. (2013浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 3cm .侧视图俯视图正视图俯视图侧视图正视图侧视图正视图3410. (2014浙江文3)某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .723cmB .903cmC .1083cmD .1383cm11. (2014浙江理3)某几何体的三视图(单位:cm )如图所示,则该几何体的表面积是( )A .902cmB .1292cmC .1322cmD .1382cm12. (2015浙江文2理2)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .403cm俯视图侧视图正视图俯视图侧视图正视图侧视图正视图13. (2016浙江理11)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 2cm ,体积是 3cm .14. (2016浙江文9)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 2cm ,体积是 3cm .15. (2017浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是()A .12π+B .32π+C .312π+D .332π+俯视图正视图316. (2018浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .817. (2019浙江4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh 柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是( ) A .158B .162C .182D .324俯视图正视图俯视图侧视图正视图点、直线、平面位置关系18. (2005浙江文7理6)设α,β为两个不同的平面,l ,m 为两条不同的直线,且l α⊂,m β⊂.有如下两个命题:①若αβ∥,则l m ∥;②若l m ⊥,则αβ⊥.那么( ) A .①是真命题,②是假命题 B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题19. (2007浙江文7理6)若P 是两条异面直线l ,m 外的任意一点,则( )A .过点P 有且仅有一条直线与l ,m 都平行B .过点P 有且仅有一条直线与l ,m 都垂直C .过点P 有且仅有一条直线与l ,m 都相交D .过点P 有且仅有一条直线与l ,m 都异面20. (2008浙江文9)对两条不相交的空间直线a 与b ,必存在平面α,使得( )A .a α⊂,b α⊂B .a α⊂,b α∥C .a α⊥,b α⊥D .a α⊂,b α⊥21. (2009浙江文4)设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若l α⊥,αβ⊥,则l β⊂B .若l α∥,αβ∥,则l β⊂C .若l α⊥,αβ∥,则l β⊥D .若l α⊥,αβ⊥,则l β⊥22. (2010浙江理6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,l m ∥,则m α⊥C .若l α∥,m α⊂,则l m ∥D .若l α∥,m α∥,则l m ∥23. (2011浙江文4)若直线l 不平行于平面α,且l α⊄,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都想交24. (2011浙江理4)下列命题中错误的是( )A .如果αβ平面⊥平面,那么平面α内一定存在直线平行于平面βB .如果αβ平面不垂直于平面,那么平面α内一定不存在直线垂直于平面βC .如果αγ平面⊥平面,βγ平面⊥平面,l αβ=,那么l γ⊥平面D .如果αβ平面⊥平面,那么平面α内所有直线都垂直于平面β25. (2012浙江文5)设直线l 是直线,α,β是两个不同的平面.( )A .若l α∥,l β∥,则αβ∥B .若l α∥,l β⊥,则αβ⊥C .若αβ⊥,l α⊥,则l β⊥D .若αβ⊥,l α∥,则l β⊥26. (2013浙江文4)设m ,n 是两条不同的直线,α,β是两个不同的平面.( )A .若m α∥,n α∥,则m n ∥B .若m α∥,m β∥,则αβ∥C .若m n ∥,m α⊥,则n α⊥D .若m α∥,αβ⊥,则m β⊥27. (2014浙江文6)设m ,n 是两条不同的直线,α,β是两个不同的平面.( )A .若m n ⊥,n α∥,则m α⊥B .若m β∥,βα⊥,则m α⊥C .若m β⊥,n β⊥,n α⊥,则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥28. (2015浙江文4)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂.( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若l β∥,则αβ∥D .若αβ∥,则l m ∥29. (2016浙江文2理2)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m α∥,n β⊥,则( ) A .m l ∥ B .m n ∥C .n l ⊥D .m n ⊥30. (2018浙江6)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m n ∥”是“m α∥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件小题31. (2004浙江文15)已知α平面⊥β平面,l αβ=,P 是空间一点,且P 到平行α,β的距离分别是1,2,则点P 到l 的距离为 .32. (2004浙江理16)已知平面α和平面β相交于直线l ,P 是空间一点,P A ⊥α,垂足为A ,PB ⊥β,垂足为B ,且1PA =,2PB =,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 .33. (2004浙江文10理10)如图,在正三棱柱111ABC A B C -中,已知1AB =,D 在棱1BB 上,且1BD =,若AD 与平面11AA C C 所成的角为α,则sin α=( ) ABCDDB 1A 1C 1CBA34. (2005浙江文12理12)设M ,N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE沿DE 折起,使二面角A DE B --为45°,此时点A 在平面BCDE 内的射影为点B ,则M ,N 的连线与AE 所成角的大小等于 .35. (2006浙江文8)如图,正三棱柱111ABC A B C -的各棱长都为2,E ,F 分别是AB ,11A C 的中点,则EF 的长是( ) A .2BCD36. (2006浙江理9)如图,O 是半径为1的球的球心,点A ,B ,C 在球面上,OA ,OB ,OC 两两垂直,E ,F 分别是大圆弧AB 与AC 的中点,则点E ,F 在该球面上的球面距离是( ) A .4π B .3π C .2π D.4B 1C 1A 1FE CBA37. (2006浙江文14)如图,正四面体ABCD 的棱长为1,平面α过棱AB ,且CD α∥,则正四面体上的所有点在平面α内的射影构成的图形面积是 .38. (2006浙江理14)正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .39. (2007浙江文17理16)已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=︒.若对于β内异于O 的任意一点Q ,都有45POQ ∠≥︒,则二面角AB αβ--的大小是 .40. (2008浙江文15理14)如图,已知球O 的面上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA AB BC ===O 的体积等于 .BDACαBDACαDBCA41. (2008浙江理10)如图,AB 是平面α的斜线段...,A 为斜足.若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( ) A .圆B .椭圆C .一条直线D .两条平行直线42. (2009浙江理5)在三棱柱111ABC A B C -中,各棱长相等,侧棱垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是( ) A .30° B .45°C .60°D .90°43. (2009浙江理17)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD △沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是 .PABαKFDCBA44. (2012浙江理10)已知矩形ABCD ,1AB =,BC .将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对于任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直45. (2013浙江理10)在空间中,过点A 作平面π的垂线,垂足为B ,记()B f A π=.设α,β是两个不同的平面,对空间任意一点P ,()1Q f f P βα=⎡⎤⎣⎦,()2Q f f P αβ⎡⎤=⎣⎦,恒有12PQ PQ =,则( ) A .α平面与β平面垂直 B .α平面与β平面所成的(锐)二面角为45° C .α平面与β平面平行 D .α平面与β平面所成的(锐)二面角为60°46. (2014浙江文10理17)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15m AB =,25m AC =,30BCM ∠=︒,则tan θ的最大值是 .(仰角θ为直线AP 与平面ABC 所成角)PMCB A47. (2015浙江文7)如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支48. (2015浙江理8)如图,已知ABC △,D 是AB 的中点,沿直线CD 将ACD △翻折成A CD '△,所成( ) A .A DB α'∠≤B .A DB α'∠≥C .A CB α'∠≤D .A CB α'∠≥49. (2015浙江理13)如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .αPBAA'DCBAMNDCBA50. (2016浙江文14)如图,已知平面四边形ABCD ,3AB BC ==,1CD =,AD =90ADC ∠=︒.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是 .51. (2016浙江理14)如图,在△ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体PBCD 的体积的最大值是 .52. (2017浙江9)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角 为α,β,γ,则( ) A .γαβ<<B .αγβ<<C .αβγ<<D .βγα<<D'DC APDCBARCQBP A D53. (2018浙江8)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( ) A .123θθθ≤≤ B .321θθθ≤≤ C .132θθθ≤≤ D .231θθθ≤≤54. (2019浙江8)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<大题55. (2004浙江文19)如图,已知正方形ABCD 和矩形ACEF所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点. (1)求证:AM ∥平面BDE ; (2)求证:AM ⊥平面BDF ; (3)求二面角A DF B --的大小.M FEDCBA56. (2004浙江理19)如图,已知正方形ABCD 和矩形ACEF所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点. (1)求证:AM ∥平面BDE ; (2)求二面角A DF B --的大小;(3)试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60︒.57. (2005浙江文18)如图,在三棱锥P ABC -中,AB BC ⊥,12AB BC PA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)求直线OD 与平面PBC 所成角的大小.58. (2005浙江理18)如图,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC . (1)求证:OD ∥平面PAB ;(2)当12k =,求直线PA 与平面PBC 所成角的大小;(3)当k 取何值时,O 在平面PBC 内的射影恰好为PBC △的重心?MFEDCBA59. (2006浙江文17)如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点. (1)求证:PB DM ⊥;(2)求BD 与平面ADMN 所成角.60. (2006浙江理17)如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点. (1)求证:PB DM ⊥;(2)求CD 与平面ADMN 所成的角.61. (2007浙江理19)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且2AC BC BD AE ===,M 是AB 的中点.(1)求证:CM EM ⊥;(2)求CM 与平面CDE 所成的角.62. (2007浙江文20)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点.(1)求证:CM EM ⊥;(2)求DE 与平面EMC 所成角的正切值.63. (2008浙江文20理18)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,90BCF CEF ∠=∠=︒,AD ,2EF =.(1)求证:AE DCF ∥平面;(2)当AB 的长为何值时,二面角A EF C --的大小为60°?64. (2009浙江文19)如图,DC ⊥平面ABC ,EB DC ∥,22AC BC EB DC ====,120ACB ∠=︒,P ,Q 分别为AE ,AB 的中点. (1)证明:PQ ACD ∥平面;(2)若AD 与平面ABE 所成角的正弦值.FEDCBA QPCDEBA65. (2009浙江理20)如图,平面PAC ⊥平面ABC ,ABC △是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为P A ,PB ,AC 的中点,16AC =,10PA PC ==. (1)设G 是OC 的中点,证明:FG ∥平面BOE ;(2)证明:在ABO △内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.66. (2010浙江文20)如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE △沿直线DE 翻折成A DE '△,使平面A DE '⊥平面BCD ,F 为线段A C '的中点. (1)求证:BF ∥平面A DE ';(2)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.67. (2010浙江理20)如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,243AE EB AF FD ====, 沿直线EF 将AEF △翻折成A EF '△,使平面A EF '⊥平面BEF . (1)求二面角A FD C '--的余弦值;(2)点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '中和,求线段FM 的长.GF EPOCBAA'MFED CBANM A'F EDCB A68. (2011浙江文20)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上. (1)证明:AP BC ⊥;(2)已知8BC =,4PO =,3AO =,2OD =,求二面角B AP C --的大小.69. (2011浙江理20)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知8BC =,4PO =,3AO =,2OD =. (1)证明:AP BC ⊥;(2)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.70. (2012浙江文20)如图,在侧棱垂直底面的四棱柱1111ABCD A B C D -中,AD ⊥AB,AB =2AD =,4BC =,12AA =,E 是1DD 的中点,F 是平面11B C E 与直线1AA 的交点.(1)证明:(i )11EF A D ∥;(ii )111BA B C EF ⊥平面;(2)求1BC 与11B C EF 平面所成角的正弦值.OPDCBAOPDCBAD 1C 1B 1A 1EF B D CA71. (2012浙江理20)如图,在四棱锥P ABCD -中,底面是边长为的菱形,120BAD ∠=︒,且PA ABCD ⊥平面,PA =,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ PC ⊥,垂足为点Q ,求二面角A MN Q --的平面角的余弦值.72. (2013浙江文20)如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,2AB BC ==,AD CD ==PA 120ABC ∠=︒.G 为线段PC 上的点. (1)证明:BD ⊥平面P AC ;(2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BGD ,求PGGC的值.73. (2013浙江理20)如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,2AD =,BD =.M是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =. (1)证明:PQ BCD ∥平面;(2)若二面角C BM D --的大小为60°,求BDC ∠的大小.QMNDABPGDB APQPMDBA74. (2014浙江文20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC =(1)证明:AC BCDE ⊥平面;(2)求直线AE 与平面ABC 所成角的正切值.75. (2014浙江理20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC(1)证明:DE ACD ⊥平面; (2)求二面角B AD E --的大小.76. (2015浙江文18)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14AA =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:11A D A BC ⊥平面;(2)求直线1A B 和平面11BB C C 所成的角的正弦值.BED CABED CAC 1B 1A 1DC BA77. (2015浙江理17)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14AA =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:11A D A BC ⊥平面;(2)求二面角11A BD B --的平面角的余弦值.78. (2016浙江文18)如图,三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.79. (2016浙江理17)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(1)求证:BF ⊥平面ACFD ;(2)求二面角B AD F --的平面角的余弦值.C 1B 1A 1DC BA80. (2017浙江19)如图,已知四棱锥P −ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,22PC AD DC CB ===,E 为PD 的中点. (1)证明:CE ∥平面P AB ;(2)求直线CE 与平面PBC 所成角的正弦值.81. (2018浙江19)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===. (1)证明:1111AB A B C ⊥平面;(2)求直线1AC 与平面1ABB 所成的角的正弦值.82. (2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11A B 的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.ED CBAPC 1B 1A 1CBAC 1B 1A 1FECBA。
立体几何难题解析附有答案详解
立体几何试题分析[设计思路]围绕前两年高考试题的类型以及常考的知识点和解题方法设计,通过对2005和2006浙江省立体几何试题及2006年部分省市的试题的研究大致预测2007年立体几何试题的类型。
[设计理念]略[考点回顾] 常考的知识点有线面平行、垂直;两个平面垂直的判定和性质;线线角、线面角、二面角;向量坐标运算;线面角公式、二面角公式、点到平面的距离。
考查的(能力)方法有:逻辑推理能力;空间想象能力。
一、2005——2006浙江省试题分析 1、(2005浙江18).如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kPA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)求证:OD ∥平面PAB(Ⅱ) 当k =21时,求直线PA 与平面PBC 所成角的大小;(Ⅲ) 当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?[简析]:本题考查的知识点有:线面平行的判定;线线角、线面角、二面角;两个平面垂直的判定和性质;向量坐标运算;线面角公式。
考查的(能力)方法有:逻辑推理能力;空间想象能力。
[试题结构]: 以底面是等腰直角三角形的三棱锥为载体结合线面垂直,以及面面垂直,证明线面平行,求线面角,并由点的垂足的位置确定参数k 的值。
1、(2005浙江18).解:2、(2006浙江17)如图,在四棱锥P A B C D -中,底面为直角梯形,A D ∥B C ,90B A D ∠=︒,ABC D O PP A ⊥底面A B C D ,且2PA AD AB BC ===,M 、N分别为PC 、PB 的中点. (Ⅰ) 求证:P B D M ⊥;(Ⅱ) 求C D 与平面A D M N 所成的角。
[简析]:本题考查的知识点有:空间线线、线面关系、空间向量的概念;。
考查的(能力)方法有:逻辑推理能力;空间想象能力。
[试题结构]:以底面是直角梯形的四棱锥为载体,结合线面垂直及特殊的线段长度关系,证明两异面直线垂直,并求线面角。
专题05 立体几何专项高考真题总汇(带答案与解析)
专题05立体几何(选择题、填空题)1.【2021·浙江高考真题】某几何体的三视图如图所示,则该几何体的体积是()A .32B .3C.2D.【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,,下底为12=,故1111131222ABCD A B C D V -=⨯+⨯⨯=,故选:A.2.【2021·北京高考真题】某四面体的三视图如图所示,该四面体的表面积为()A .332+B .4C .33D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【解析】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213333112242+⨯⨯⨯+⨯=,故选:A.3.【2021·浙江高考真题】如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.【2021·全国高考真题(理)】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为()A .212B .312C .24D .34【答案】A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.【2021·全国高考真题(理)】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D6.【2021·全国高考真题】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B.C .4D.【答案】B【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l =.故选:B.7.【2021·北京高考真题】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【解析】由题意,一个半径为()200100mm 2=的圆面内的降雨充满一个底面半径为()20015050mm 2300⨯=,高为()150mm 的圆锥,所以积水厚度()22150150312.5mm 100d ππ⨯⨯==⨯,属于中雨.故选:B.8.【2021·全国高考真题】在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,13,0,12A ⎛⎫ ⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则13,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫= ⎪ ⎪⎝⎭,11,,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.9.【2021·全国高考真题(理)】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.10.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514-B .512-C .514D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-由题意得212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去).故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.11.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.12.【2020年高考全国II 卷理数】已知△ABC 是面积为934O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A 3B .32C .1D .32【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=⨯-,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.13.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A .2B .4+42C .3D .4+23【答案】C 【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:22AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考天津】若棱长为为A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12+D .12+【答案】D 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.17.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A 【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.18.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.19.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B 【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 【答案】D【解析】解法一:,PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==364466,π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,221221222x x x ∴+=∴==,,,PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,62R ∴=,34466338V R ∴=π=π⨯=,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.21.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.22.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.23.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.24.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA 上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PB αβ===<=,即αβ>;在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.25.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.26.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r =,其体积:34233V r =π=π.故答案为:23π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.27.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.28.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯⨯,圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.29.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,为半径的球面与侧面BCC 1B 1的交线长为________.【答案】22π.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B = ,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,,1D E =,所以||EP ===,所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧 FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得 22FGπ==.故答案为:22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.30.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm ,∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.31.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.32.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.33.【2019年高考天津卷理数】2的正方形,5若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,的正方形,借助勾股定理,2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.34.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是▲.【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.35.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,22,21)122BG GE CH x GH x x x ∴===∴=⨯+=+=,1x ∴=1.。
2024年高考数学压轴题专项训练:立体几何压轴题十大题型汇总(解析版)(共65页)(1)
立体几何压轴题十大题型汇总命题预测本专题考查类型主要涉及点立体几何的内容,主要涉及了立体几何中的动点问题,外接球内切球问题,以及不规则图形的夹角问题,新定义问题等。
预计2024年后命题会继续在以上几个方面进行。
高频考法题型01几何图形内切球、外接球问题题型02立体几何中的计数原理排列组合问题题型03立体几何动点最值问题题型04不规则图形中的面面夹角问题题型05不规则图形中的线面夹角问题题型06几何中的旋转问题题型07立体几何中的折叠问题题型08不规则图形表面积、体积问题题型09立体几何新定义问题题型10立体几何新考点题型01几何图形内切球、外接球问题解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.1(多选)(23-24高三下·浙江·开学考试)如图,八面体的每个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一个平面内,如果四边形ABCD 是边长为2的正方形,则()A.异面直线AE 与DF 所成角大小为π3B.二面角A -EB -C 的平面角的余弦值为13C.此八面体一定存在外接球D.此八面体的内切球表面积为8π3【答案】ACD=|OA |=|OB |=|OC |=|OD |可判断C 项,运用等体积法求得内切球的半径,进而可求得内切球的表面积即可判断D 项.【详解】连接AC 、BD 交于点O ,连接OE 、OF ,因为四边形ABCD 为正方形,则AC ⊥BD ,又因为八面体的每个面都是正三角形,所以E 、O 、F 三点共线,且EF ⊥面ABCD ,所以以O 为原点,分别以OB 、OC 、OE 为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,如图所示,则O (0,0,0),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),E (0,0,2),F (0,0,-2),对于A 项,AE =(0,2,2),DF=(2,0,2),设异面直线AE 与DF 所成角为θ,则cos θ=|cos AE ,DF |=|AE ⋅DF||AE ||DF |=22×2=12,所以θ=π3,即异面直线AE 与DF 所成角大小为π3,故A 项正确;对于B 项,BE =(-2,0,2),BA =(-2,-2,0),BC=(-2,2,0),设面ABE 的一个法向量为n=(x 1,y 1,z 1),则n ⋅BE=0n ⋅BA =0 ⇒-2x 1+2z 1=0-2x 1-2y 1=0,取x 1=1,则y 1=-1,z 1=1,则n=(1,-1,1),设面BEC 的一个法向量为m=(x 2,y 2,z 2),则n ⋅BE=0n ⋅BC =0⇒-2x 2+2z 2=0-2x 2+2y 2=0,取x 2=1,则y 2=1,z 2=1,则m=(1,1,1),所以cos n ,m =n ⋅m |n ||m |=1-1+13×3=13,又因为面ABE 与BEC 所成的二面角的平面角为钝角,所以二面角A -EB -C 的平面角的余弦值为-13,故B 项错误;对于C 项,因为|OE |=|OF |=|OA |=|OB |=|OC |=|OD |=2,所以O 为此八面体外接球的球心,即此八面体一定存在外接球,故C 项正确;对于D 项,设内切球的半径为r ,则八面体的体积为V =2V E -ABCD =2×13S ABCD ⋅EO =2×13×2×2×2=823,又八面体的体积为V =8V E -ABO =8V O -ABE =8×13S EAB ⋅r =8×13×12×22×sin π3×r =833r ,所以833r =823,解得r =63,所以内切球的表面积为4πr 2=4π×632=8π3,故D 项正确.故选:ACD .2(2024·浙江宁波·二模)在正四棱台ABCD -A 1B 1C 1D 1中,AB =4,A 1B 1=2,AA 1=3,若球O 与上底面A 1B 1C 1D 1以及棱AB ,BC ,CD ,DA 均相切,则球O 的表面积为()A.9πB.16πC.25πD.36π【答案】C【分析】根据勾股定理求解棱台的高MN =1,进而根据相切,由勾股定理求解球半径R =52,即可由表面积公式求解.【详解】设棱台上下底面的中心为N ,M ,连接D 1B 1,DB ,则D 1B 1=22,DB =42,所以棱台的高MN =B 1B 2-MB -NB 1 2=3 2-22-2 2=1,设球半径为R ,根据正四棱台的结构特征可知:球O 与上底面A 1B 1C 1D 1相切于N ,与棱AB ,BC ,CD ,DA 均相切于各边中点处,设BC 中点为E ,连接OE ,OM ,ME ,所以OE 2=OM 2+ME 2⇒R 2=R -1 2+22,解得R =52,所以球O 的表面积为4πR 2=25π,故选:C3(2024·河北石家庄·二模)已知正方体的棱长为22,连接正方体各个面的中心得到一个八面体,以正方体的中心O 为球心作一个半径为233的球,则该球O 的球面与八面体各面的交线的总长为()A.26πB.463π C.863π D.46π【答案】B【分析】画出图形,求解正方体的中心与正八面体面的距离,然后求解求与正八面体的截面圆半径,求解各个平面与球面的交线、推出结果.【详解】如图所示,M 为EF 的中点,O 为正方体的中心,过O 作PM 的垂线交于点N ,正八面体的棱长为2,即EF =2,故OM =1,OP =2,PM =3,则ON =63,设球与正八面体的截面圆半径为r ,如图所示,则r =2332-ON 2=2332-632=63,由于MN =ZN =33,NJ =NI =63,所以IJ =233,则∠INJ =π2,平面PEF 与球O 的交线所对应的圆心角恰为π2,则该球O 的球面与八面体各面的交线的总长为8×14×2π×63 =463π故选:B 4(多选)(2022·山东聊城·二模)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是()A.底面椭圆的离心率为22B.侧面积为242πC.在该斜圆柱内半径最大的球的表面积为36πD.底面积为42π【答案】ABD【分析】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,作出过斜圆柱底面椭圆长轴的截面,截斜圆柱得平行四边形,截圆柱得矩形,如图,由此截面可得椭圆面与圆柱底面间所成的二面角的平面角,从而求得椭圆长短轴之间的关系,得离心率,并求得椭圆的长短轴长,得椭圆面积,利用椭圆的侧面积公式可求得斜椭圆的侧面积,由斜圆柱的高比圆柱的底面直径大,可知斜圆柱内半径最大的球的直径与圆柱底面直径相等,从而得其表面积,从而可关键各选项.【详解】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,如图,矩形ABCD 是圆柱的轴截面,平行四边形BFDE 是斜圆柱的过底面椭圆的长轴的截面,由圆柱的性质知∠ABF =45°,则BF =2AB ,设椭圆的长轴长为2a ,短轴长为2b ,则2a =2⋅2b ,a =2b ,c =a 2-b 2=a 2-22a 2=22a ,所以离心率为e =c a =22,A 正确;EG ⊥BF ,垂足为G ,则EG =6,易知∠EBG =45°,BE =62,又CE =AF =AB =4,所以斜圆柱侧面积为S =2π×2×(4+62)-2π×2×4=242π,B 正确;2b =4,b =2,2a =42,a =22,椭圆面积为πab =42π,D 正确;由于斜圆锥的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球表面积为4π×22=16π,C 错.故选:ABD .5(21-22高三上·湖北襄阳·期中)在正方体ABCD -A 1B 1C 1D 1中,球O 1同时与以A 为公共顶点的三个面相切,球O 2同时与以C 1为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,AB 1为准线的抛物线经过O 1,O 2,设球O 1,O 2的半径分别为r 1,r 2,则r1r 2=.【答案】2-3/-3+2【分析】首先根据抛物线的定义结合已知条件得到球O 2内切于正方体,设r 2=1,得到r 1=2-3,即可得到答案.【详解】如图所示:根据抛物线的定义,点O 2到点F 的距离与到直线AB 1的距离相等,其中点O 2到点F 的距离即半径r 2,也即点O 2到面CDD 1C 1的距离,点O 2到直线AB 1的距离即点O 2到面ABB 1A 1的距离,因此球O 2内切于正方体.不妨设r 2=1,两个球心O 1,O 2和两球的切点F 均在体对角线AC 1上,两个球在平面AB 1C 1D 处的截面如图所示,则O 2F =r 2=1,AO 2=AC 12=22+22+222=3,所以AF =AO 2-O 2F =3-1.因为r 1AO 1=223,所以AO 1=3r 1,所以AF =AO 1+O 1F =3r 1+r 1,因此(3+1)r 1=3-1,得r 1=2-3,所以r1r 2=2- 3.故答案为:2-3题型02立体几何中的计数原理排列组合问题1(2024·浙江台州·二模)房屋建造时经常需要把长方体砖头进行不同角度的切割,以契合实际需要.已知长方体的规格为24cm ×11cm ×5cm ,现从长方体的某一棱的中点处作垂直于该棱的截面,截取1次后共可以得到12cm ×11cm ×5cm ,24cm ×112cm ×5cm ,24cm ×11cm ×52cm 三种不同规格的长方体.按照上述方式对第1次所截得的长方体进行第2次截取,再对第2次所截得的长方体进行第3次截取,则共可得到体积为165cm 3的不同规格长方体的个数为()A.8B.10C.12D.16【答案】B【分析】根据原长方体体积与得到的体积为165cm 3长方体的关系,分别对长宽高进行减半,利用分类加法计数原理求解即可.【详解】由题意,V 长方体=24×11×5=8×165,为得到体积为165cm 3的长方体,需将原来长方体体积缩小为原来的18,可分三类完成:第一类,长减半3次,宽减半3次、高减半3次,共3种;第二类,长宽高各减半1次,共1种;第三类,长宽高减半0,1,2 次的全排列A 33=6种,根据分类加法计数原理,共3+1+6=10种. 故选:B2(2023·江苏南通·模拟预测)在空间直角坐标系O -xyz 中,A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,则三棱锥O -ABC 内部整点(所有坐标均为整数的点,不包括边界上的点)的个数为()A.C 310B.C 39C.C 210D.C 29【答案】B【分析】先利用空间向量法求得面ABC 的一个法向量为n =1,1,1 ,从而求得面ABC 上的点P a ,b ,c 满足a +b +c =10,进而得到棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,再利用隔板法与组合数的性质即可得解.【详解】根据题意,作出图形如下,因为A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,所以AB =-10,10,0 ,AC=-10,0,10 ,设面ABC 的一个法向量为n=x ,y ,z ,则AB ⋅n=-10x +10y =0AC ⋅n=-10x +10z =0,令x =1,则y =1,z =1,故n=1,1,1 ,设P a ,b ,c 是面ABC 上的点,则AP=a -10,b ,c ,故AP ⋅n=a -10+b +c =0,则a +b +c =10,不妨设三棱锥O -ABC 内部整点为Q s ,t ,r ,则s ,t ,r ∈N *,故s ≥1,t ≥1,r ≥1,则s +t +r ≥3,易知若s +t +r =10,则Q 在面ABC 上,若s +t +r >10,则Q 在三棱锥O -ABC 外部,所以3≤s +t +r ≤9,当s +t +r =n ,n ∈N *且3≤n ≤9时,将n 写成n 个1排成一列,利用隔板法将其隔成三部分,则结果的个数为s ,t ,r 的取值的方法个数,显然有C 2n -1个方法,所有整点Q s ,t ,r 的个数为C 22+C 23+⋯+C 28,因为C r n +C r -1n =n !r !n -r !+n !r -1 !n +1-r !=n +1-r n !+rn !r !n +1-r !=n +1 !r !n +1-r!=C rn +1,所以C 22+C 23+⋯+C 28=C 33+C 23+⋯+C 28=C 34+C 24+⋯+C 28=⋯=C 38+C 28=C 39.故选:B .【点睛】关键点睛:本题解决的关键是求得面ABC 上的点P a ,b ,c 满足a +b +c =10,从而确定三棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,由此得解.3(2024·重庆·模拟预测)从长方体的8个顶点中任选4个,则这4个点能构成三棱锥的顶点的概率为()A.2736B.2935C.67D.3235【答案】B【分析】首先求出基本事件总数,再计算出这4个点在同一个平面的概率,最后利用对立事件的概率公式计算可得.【详解】根据题意,从长方体的8个顶点中任选4个,有C 48=70种取法,“这4个点构成三棱锥的顶点”的反面为“这4个点在同一个平面”,而长方体有2个底面和4个侧面、6个对角面,一共有12种情况,则这4个点在同一个平面的概率P =1270=635,所以这4个点构成三棱锥的概率为1-635=2935.故选:B .4(多选)(2024·重庆·模拟预测)如图,16枚钉子钉成4×4的正方形板,现用橡皮筋去套钉子,则下列说法正确的有(不同的图形指两个图形中至少有一个顶点不同)()A.可以围成20个不同的正方形B.可以围成24个不同的长方形(邻边不相等)C.可以围成516个不同的三角形D.可以围成16个不同的等边三角形【答案】ABC【分析】利用分类计算原理及组合,结合图形,对各个选项逐一分析判断即可得出结果.【详解】不妨设两个钉子间的距离为1,对于选项A ,由图知,边长为1的正方形有3×3=9个,边长为2的正方形有2×2=4个,边长为3的正方形有1个,边长为2的正方形有2×2=4个,边长为5的有2个,共有20个,所以选项A 正确,对于选项B ,由图知,宽为1的长方形有3×3=9个,宽为2的长方形有4×2=8个,宽为3的长方形有5个,宽为2的有2个,共有24个,所以选项B 正确,对于选项C ,由图知,可以围成C 316-10C 34-4C 33=516个不同的三角形,所以选项C 正确,对于选项D ,由图可知,不存在等边三角形,所以选项D 错误,故选:ABC .5(2024·上海浦东新·模拟预测)如图ABCDEF -A B C D E F 为正六棱柱,若从该正六棱柱的6个侧面的12条面对角线中,随机选取两条,则它们共面的概率是.【答案】611【分析】根据题意,相交时分为:在侧面内相交,两个相邻面相交于一个点,相隔一个面中相交于对角线延长线上,分别分析几种情况下对角线共面的个数,再利用古典概型的概率计算公式,计算结果即可.【详解】由题意知,若两个对角线在同一个侧面,因为有6个侧面,所以共有6组,若相交且交点在正六棱柱的顶点上,因为有12个顶点,所以共有12组,若相交且交点在对角线延长线上时,如图所示,连接AD ,C D ,E D ,AB ,AF ,先考虑下底面,根据正六边形性质可知EF ⎳AD ⎳BC ,所以E F ⎳AD ⎳B C ,且B C =E F ≠AD ,故ADC B 共面,且ADE F 共面,故AF ,DE 相交,且C D ,AB 相交,故共面有2组,则正六边形对角线AD 所对应的有2组共面的面对角线,同理可知正六边形对角线BE ,CF 所对的分别有两组,共6组,故对于上底面对角线A D ,B E ,C F 同样各对两组,共6组,若对面平行,一组对面中有2组对角线平行,三组对面共有6组,所以共面的概率是6+12+12+6C 212=611.故答案为:611.题型03立体几何动点最值问题空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,结合空间距离,确定动点的轨迹形状;结合等体积法求得点到平面的距离,结合线面角的定义求解.1(多选)(2024·浙江台州·二模)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为平面ABCD 内一动点,且直线D 1P 与平面ABCD 所成角为π3,E 为正方形A 1ADD 1的中心,则下列结论正确的是()A.点P 的轨迹为抛物线B.正方体ABCD -A 1B 1C 1D 1的内切球被平面A 1BC 1所截得的截面面积为π6C.直线CP 与平面CDD 1C 1所成角的正弦值的最大值为33D.点M 为直线D 1B 上一动点,则MP +ME 的最小值为11-266【答案】BCD【分析】对于A ,根据到D 点长度为定值,确定动点轨迹为圆;对于B ,理解内切球的特点,计算出球心到平面的距离,再计算出截面半径求面积;对于C ,找到线面所成角的位置,再根据动点的运动特点(相切时)找到正弦的最大值;对于D ,需要先找到P 点位置,再将立体问题平面化,根据三点共线距离最短求解.【详解】对于A ,因为直线D 1P 与平面ABCD 所成角为π3,所以DP =1tan π3=33.P 点在以D 为圆心,33为半径的圆周上运动,因此运动轨迹为圆.故A 错误.对于B ,在面BB 1D 1D 内研究,如图所示O 为内切球球心,O 1为上底面中心,O 2为下底面中心,G 为内切球与面A 1BC 1的切点.已知OG ⊥O 1B ,OG 为球心到面A 1BC 1的距离.在正方体中,O 1B =62,O 2B =22,O 1O 2=1.利用相似三角形的性质有OG O 2B =OO 1O 1B,即OG 22=1262,OG =36.因此可求切面圆的r 2=122-362=16,面积为π6.故B 正确.对于C ,直线CP 与平面CDD 1C 1所成角即为∠PCD ,当CP 与P 点的轨迹圆相切时,sin ∠PCD 最大.此时sin ∠PCD =13=33.故C 正确.对于D ,分析可知,P 点为BD 和圆周的交点时,MP 最小.此时可将面D 1AB 沿着D 1B 翻折到面BB 1D 1D 所在平面.根据长度关系,翻折后的图形如图所示.当E ,M ,P 三点共线时,MP +ME 最小.因为O 2P =33-22,O 1O 2=1,所以最小值为12+33-222=11-266,故D 正确.故选:BCD2(多选)(2024·江苏扬州·模拟预测)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为平面ABCD 内一动点,则()A.若M 在线段AB 上,则D 1M +MC 的最小值为4+22B.平面ACD 1被正方体内切球所截,则截面面积为π6C.若C 1M 与AB 所成的角为π4,则点M 的轨迹为椭圆D.对于给定的点M ,过M 有且仅有3条直线与直线D 1A ,D 1C 所成角为60°【答案】ABD迹方程判断C ,合理转化后判断D 即可.【详解】对于A ,延长DA 到E 使得AE =2,则D 1M +MC =EM +MC ≥EC =4+22,等号在E ,M ,C 共线时取到;故A 正确,对于B ,由于球的半径为12,球心到平面ACD 1的距离为36,故被截得的圆的半径为14-112 =66,故面积为π66 2=π6,故B 正确,对于C ,C 1M 与AB 所成的角即为C 1M 和C 1D 1所成角,记CM =xCD +yCB ,则x 2+y 2+1=2(y 2+1),即x 2-y 2=1,所以M 的轨迹是双曲线;故C 错误,对于D ,显然过M 的满足条件的直线数目等于过D 1的满足条件的直线l 的数目,在直线l 上任取一点P ,使得D 1P =D 1A =D 1C ,不妨设∠PD 1A =π3,若∠PD 1C =π3,则AD 1CP 是正四面体,所以P 有两种可能,直线l 也有两种可能,若∠PD 1C =2π3,则l 只有一种可能,就是与∠AD 1C 的角平分线垂直的直线,所以直线l 有三种可能.故选:ABD3(多选)(2023·安徽芜湖·模拟预测)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,棱AB 的中点为M ,过点M 作正方体的截面α,且B 1D ⊥α,若点N 在截面α内运动(包含边界),则()A.当MN 最大时,MN 与BC 所成的角为π3B.三棱锥A 1-BNC 1的体积为定值23C.若DN =2,则点N 的轨迹长度为2πD.若N ∈平面A 1BCD 1,则BN +NC 1 的最小值为6+23【答案】BCD【分析】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,构建空间直角坐标系,证明M ,F ,H ,G ,F ,E 共面,且DB 1⊥平面MEFGHI ,由此确定平面α,找到MN 最大时N 的位置,确定MN 与BC 所成角的平面角即可判断A ,证明A 1BC 1与平面α平行,应用向量法求M 到面A 1BC 1的距离,结合体积公式,求三棱锥A 1-BNC 1的体积,判断B ;根据球的截面性质确定N 的轨迹,进而求周长判断C ,由N ∈平面A 1BCD 1确定N 的位置,通过翻折为平面图形,利用平面几何结论求解判断D .【详解】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,连接EF ,FG ,GH ,HI ,IM ,ME ,连接GM ,FI ,因为FG ∥A 1C 1,A 1C 1∥AC ,AC ∥MI ,又FG =12A 1C 1 =12AC =MI 所以FG ∥MI ,FG =MI ,所以四边形FGIM 为平行四边形,连接FI ,MG ,记其交点为S ,根据正方体性质,可构建如下图示的空间直角坐标系,则A (2,0,0),A 1(2,0,2),B (2,2,0),C 1(0,2,2),B 12,2,2 ,M (2,1,0),E (2,0,1),F (1,0,2),G (0,1,2),H (0,2,1),I (1,2,0),S 1,1,1 ,因为DB 1 =2,2,2 ,SM =1,0,-1 ,SI =0,1,-1 ,SH =-1,1,0 ,SG =-1,0,1 ,SF =0,-1,1 ,SE =1,-1,0 ,所以DB 1 ⋅SM =0,DB 1 ⋅SI =0,DB 1 ⋅SH =0,DB1 ⋅SG =0,DB 1 ⋅SF =0,DB 1 ⋅SE =0所以M ,E ,F ,G ,H ,I 六点共面,因为DB 1 =2,2,2 ,MI =-1,1,0 ,ME =0,-1,1 ,所以DB 1 ⋅MI =-2+2+0=0,DB 1 ⋅ME =0-2+2=0,所以DB 1 ⊥MI ,DB 1 ⊥ME ,所以DB 1⊥MI ,DB 1⊥ME ,又MI ,ME ⊂平面MEFGHI ,所以DB 1⊥平面MEFGHI ,故平面MEFGHI 即为平面α,对于A ,N 与G 重合时,MN 最大,且MN ⎳BC 1,所以MN 与BC 所成的角的平面角为∠C 1BC ,又BC =CC 1 ,∠BCC 1=90°,所以∠C 1BC =π4,故MN 与BC 所成的角为π4,所以A 错误;对于B ,因为所以DB 1 =2,2,2 ,A 1C 1 =-2,2,0 ,BC 1=-2,0,2 ,所以DB 1 ⋅A 1C 1 =-4+4+0=0,DB 1 ⋅BC 1 =-4+0+4=0,所以DB 1 ⊥A 1C 1 ,DB 1 ⊥BC 1 ,所以DB 1⊥A 1C 1,DB 1⊥BC 1,又A 1C 1,BC 1⊂平面A 1BC 1,所以DB 1⊥平面A 1BC 1,又DB 1⊥平面MEFGHI ,所以平面A 1BC 1∥平面MEFGHI ,所以点N 到平面A 1BC 1的距离与点M 到平面A 1BC 1的距离相等,所以V A 1-BNC 1=V N -A 1BC 1=V M -A 1BC 1,向量DB 1 =2,2,2 为平面A 1BC 1的一个法向量,又MB =(0,1,0),所以M 到面A 1BC 1的距离d =DB 1 ⋅MB DB 1=33,又△A 1BC 1为等边三角形,则S △A 1BC 1=12×(22)2×32=23,所以三棱锥A 1-BNC 1的体积为定值13×d ×S △A 1BC 1=23,B 正确;对于C :若DN =2,点N 在截面MEFGHI 内,所以点N 的轨迹是以D 为球心,半径为2的球体被面MEFGHI 所截的圆(或其一部分),因为DS =1,1,1 ,DB 1 =2,2,2 ,所以DB 1 ∥DS ,所以DS ⊥平面MEFGHI ,所以截面圆的圆心为S ,因为DB 1 =2,2,2 是面MEFGHI 的法向量,而DF =(1,0,2),所以D 到面MEFGHI 的距离为d =m ⋅DFm=3,故轨迹圆的半径r =22-(3)2=1,又SM =2,故点N 的轨迹长度为2πr =2π,C 正确.对于D ,N ∈平面A 1BCD 1,N ∈平面MEFGHI ,又平面A 1BCD 1与平面MEFGHI 的交线为FI ,所以点N 的轨迹为线段FI ,翻折△C 1FI ,使得其与矩形A 1BIF 共面,如图,所以当B ,N ,C 1三点共线时,BN +NC 1 取最小值,最小值为BC 1 ,由已知C 1I =C 1F =5,BI =1,FI =22,过C 1作C 1T ⊥BI ,垂足为T ,则C 1T =2,所以IT=C 1I2-C 1T 2=3=BT 2+C T 2=3+12+2=6+23,所以BN +NC 1 的最小值为6+23,D 正确;故选:BCD【点睛】关键点点睛:本题解决的关键在于根据截面的性质确定满足条件的过点M 的截面位置,再结合异面直线夹角定义,锥体体积公式,球的截面性质,空间图形的翻折判断各选项.4(多选)(2024·福建厦门·一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 【答案】ACD【分析】A 由线面平行的判定证明;B 设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,分析取最小值的对应情况即可判断;C 把五面体ABCDEF 补成直三棱柱FGI -EKJ ,取AB ,GI 的中点M ,H ,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,结合V (x )=V FGI -EKJ -2V F -ABIG 并应用导数研究最值;D 先分析特殊情况:△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,再借助左视图、正视图研究内切圆半径分析一般情况判断.【详解】A :由题设BC ⎳AD ,AD ⊂面ADEF ,BC ⊄面ADEF ,则BC ⎳面ADEF ,由面BCEF ∩面ADEF =EF ,BC ⊂面BCEF ,则BC ⎳EF ,BC ⊂面ABCD ,EF ⊄面ABCD ,则EF ⎳平面ABCD ,对;B :设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,点F 到面ABCD 的距离,仅在面FAB ⊥面ABCD 时取得最大值,当EF =x =BC 时tan α取最小值,即α取最小值,即二面角A -EF -B 取最小值,所以EF =x ∈(0,+∞),二面角先变小后变大,错;C :当BC =2,如图,把五面体ABCDEF 补成直三棱柱FGI -EKJ ,分别取AB ,GI 的中点M ,H ,易得FH ⊥面ABCD ,FM =3,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,V (x )=V ABCDEF =V FGI -EKJ -2V F -ABIG =12×23×3sin θ×(2+6cos θ)-2×13×3sin θ×23×3cos θ=63sin θ+63sin θcos θ,令f (θ)=0⇒2cos 2θ+cos θ-1=0,可得cos θ=12或cos θ=-1(舍),即θ=π3,0<θ<π3,f (θ)>0,f (θ)递增,π3<θ≤π2,f(θ)<0,f (θ)递减,显然θ=π3是f (θ)的极大值点,故f (θ)max =63×32+63×32×12=272.所以五面体ABCDEF 的体积V (x )最大值为272,C 对;D :当BC =32时,△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,此时正三棱柱内最大的求半径r =34<32,故半径为32的球不能内含于五面体ABCDEF ,对于一般情形,如下图示,左图为左视图,右图为正视图,由C 分析结果,当五面体ABCDEF 体积最大时,其可内含的球的半径较大,易知,当∠FMH =π3时,FH =332,IH =3,IF =392,设△FIG 的内切圆半径为r 1,则12×332×23=12r 1×23+2×392 ,可得r 1=332+13>32,另外,设等腰梯形EFMN 中圆的半径为r 2,则r 2=34tan π3=334>r 1=332+13,所以,存在x 使半径为32的球都能内含于五面体ABCDEF ,对.故选:ACD【点睛】关键点点睛:对于C 通过补全几何体为棱柱,设∠FMH =θ0<θ≤π2得到五面体ABCDEF 的体积关于θ的函数;对于D 从特殊到一般,结合几何体视图研究内切圆判断最大半径是否大于32为关键.5(多选)(2024·广西南宁·一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB+yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为63【答案】AD【分析】对于A ,确定M 的位置,利用侧面展开的方法,求线段的长,即可判断;对于B ,利用平移法,作出异面直线所成角,解三角形,即可判断;对于C ,结合线面垂直以及距离确定点M 的轨迹形状,即可确定轨迹长度;对于D ,利用等体积法求得M 点到平面AB 1D 1的距离,结合线面角的定义求得AM 与平面AB 1D 1所成角的正弦值,即可判断.【详解】对于A ,在AB 上取点H ,使AH =14AB ,在DC 上取点K ,使DK =14DC ,因为x =14,z =0,y ∈0,1 ,即AM =14AB +yAD ,故M 点在HK 上,将平面B 1HKC 1与平面AHKD 沿着HK 展开到同一平面内,如图:连接B 1D 交HK 于P ,此时B ,P ,D 三点共线,B 1M +MD 取到最小值即B 1D 的长,由于AH =14AB =12,∴BH =32,则B 1H =22+32 2=52,故AB 1=52+12=3,∴B 1D =(B 1A )2+AD 2=32+22=13,即此时B 1M +MD 的最小值为13,A 正确;对于B ,由于x =y =1,z =12时,则AM =AB +AD +12AA 1 =AC +12CC 1 ,此时M 为CC 1的中点,取C 1D 1的中点为N ,连接BM ,MN ,BN ,则MN ∥CD 1,故∠BMN 即为异面直线BM 与CD 1所成角或其补角,又MN =12CD 1=2,BM =22+12=5,BN =(BC 1)2+(C 1N )2=8+1=3,故cos ∠BMN =BM 2+MN 2-BN 22BM ⋅MN =5 2+2 2-3225⋅2=-1010,而异面直线所成角的范围为0,π2,故异面直线BM 与CD 1所成角的余弦值为1010,B 错误;对于C ,当x +y +z =1时,可得点M 的轨迹在△A 1BD 内(包括边界),由于CC 1⊥平面ABCD ,BD ⊂平面ABCD ,故CC 1⊥BD ,又BD ⊥AC ,AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1,故BD ⊥平面ACC 1,AC 1⊂平面ACC 1,故BD ⊥AC 1,同理可证A 1B ⊥AC 1,A 1B ∩BD =B ,A 1B ,BD ⊂平面A 1BD ,故AC 1⊥平面A 1BD ,设AC 1与平面A 1BD 交于点P ,由于V A -A 1BD =V A 1-ABD =13×12×2×2×2=43,△A 1BD 为边长为22的正三角形,则点A 到平面A 1BD 的距离为AP =4313×34×22 2=233,若AM =253,则MP =AM 2-AP 2=223,即M 点落在以P 为圆心,223为半径的圆上,P 点到△A 1BD 三遍的距离为13×32×22=63<223,即M 点轨迹是以P 为圆心,223为半径的圆的一部分,其轨迹长度小于圆的周长42π3,C 错误;因为当x +y =1,z =0时,AM =AB +AD,即M 在BD 上,点M 到平面AB 1D 1的距离等于点B 到平面AB 1D 1的距离,设点B 到平面AB 1D 1的距离为d ,则V B -AB 1D 1=V D 1-ABB 1=13S △ABB 1⋅A 1D 1=13×12×2×2×2=43,△AB 1D 1为边长为22的正三角形,即13S △A 1BD ⋅d =13×34×22 2×d =43,解得d =233,又M 在BD 上,当M 为BD 的中点时,AM 取最小值2,设直线AM 与平面AB 1D 1所成角为θ,θ∈0,π2,则sin θ=d AM =233AM≤2332=63,即AM 与平面AB 1D 1所成角的正弦值的最大值为63,D 正确,故选:AD【点睛】难点点睛:本题考查了空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,难点在于C ,D 选项的判断,对于C ,要结合空间距离,确定动点的轨迹形状;对于D ,要结合等体积法求得点到平面的距离,结合线面角的定义求解.题型04不规则图形中的面面夹角问题利用向量法解决立体几何中的空间角问题,关键在于依托图形建立合适的空间直角坐标系,将相关向量用坐标表示,通过向量的坐标运算求空间角,其中建系的关键在于找到两两垂直的三条直线.1(2024·浙江台州·二模)如图,已知四棱台ABCD -A 1B 1C 1D 1中,AB =3A 1B 1,AB ∥CD ,AD ⊥AB ,AB =6,CD =9,AD =6,且AA 1=BB 1=4,Q 为线段CC 1中点,(1)求证:BQ ∥平面ADD 1A 1;(2)若四棱锥Q -ABB 1A 1的体积为3233,求平面ABB 1A 1与平面CDD 1C 1夹角的余弦值.【答案】(1)证明见解析(2)217【分析】(1)分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD ,取DD 1的中点E ,连接QE ,AE ,由四边形ABQE 为平行四边形,得到BQ ∥AE ,然后利用线面平行的判定定理证明;(2)先证明AD ⊥平面ABB 1A 1,再以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,求得平面CDD 1C 1的法向量为m =x ,y ,z ,易得平面ABB 1A 1的一个法向量为n=0,1,0 ,然后由cos m ,n=m ⋅n m n 求解.【详解】(1)证明:如图所示:分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD .∵A 1B 1=13AB ,∴PC 1=13PC ,∴CQ =QC 1=C 1P ,取DD 1的中点E ,连接QE ,AE ,∵QE ⎳CD ⎳AB ,且QE =123+9 =6=AB ,∴四边形ABQE 为平行四边形.∴BQ ∥AE ,又AE ⊂平面ADD 1A 1,BQ ⊄平面ADD 1A 1,∴BQ ∥平面ADD 1A 1;(2)由于V Q -ABB 1A 1=23V C -ABB 1A 1,所以V C -ABB 1A 1=163,又梯形ABB 1A 1面积为83,设C 到平面ABB 1A 1距离为h ,则V C -ABB 1A 1=13S 梯形ABB 1A 1⋅h =163,得h =6.而CD ∥AB ,AB ⊂平面ABB 1A 1,CD ⊄平面ABB 1A 1,所以CD ∥平面ABB 1A 1,所以点C 到平面ABB 1A 1的距离与点D 到平面ABB 1A 1的距离相等,而h =6=AD ,所以AD ⊥平面ABB 1A 1.以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,易得△PAB 为等边三角形,所以A 0,0,0 ,B 6,0,0 ,C 9,6,0 ,D 0,6,0 ,P 3,0,33设平面CDD 1C 1的法向量为m=x ,y ,z ,则m ⋅DP=x ,y ,z ⋅3,-6,33 =3x -6y +33z =0m ⋅DC=x ,y ,z ⋅9,0,0 =9x =0,得x =0,y =32z ,不妨取m =0,3,2 ,又平面ABB 1A 1的一个法向量为n=0,1,0 .则,平面ABB 1A 1与平面CDD 1C 1夹角的余弦值为217.2(2024·浙江杭州·二模)如图,在多面体ABCDPQ 中,底面ABCD 是平行四边形,∠DAB =60°,BC=2PQ =4AB =4,M 为BC 的中点,PQ ∥BC ,PD ⊥DC ,QB ⊥MD .(1)证明:∠ABQ =90°;(2)若多面体ABCDPQ 的体积为152,求平面PCD 与平面QAB 夹角的余弦值.【答案】(1)证明见解析;(2)31010.【分析】(1)根据余弦定理求解DM =3,即可求证DM ⊥DC ,进而根据线线垂直可证明线面垂直,即可得线线垂直,(2)根据体积公式,结合棱柱与棱锥的体积关系,结合等体积法可得PM =h =33,即可建立空间直角坐标系,求解法向量求解.【详解】(1)在△DCM 中,由余弦定理可得DM =DC 2+MC 2-2DC ⋅MC cos60°=3,所以DM 2+DC 2=CM 2,所以∠MDC =90°,所以DM ⊥DC .又因为DC ⊥PD ,DM ∩PD =D ,DM ,DP ⊂平面PDM ,所以DC ⊥平面PDM ,PM ⊂平面PDM .所以DC ⊥PM .由于PQ ⎳BM ,PQ =BM =2,所以四边形PQBM 为平行四边形,所以PM ∥QB .又AB ∥DC ,所以AB ⊥BQ ,所以∠ABQ =90°.(2)因为QB ⊥MD ,所以PM ⊥MD ,又PM ⊥CD ,DC ∩MD =D ,DC ,MD ⊂平面ABCD ,所以PM ⊥平面ABCD .取AD 中点E ,连接PE ,设PM =h .设多面体ABCDPQ 的体积为V ,则V =V 三棱柱ABQ -PEM +V 四棱锥P -CDEM =3V A -PEM +V 四棱锥P -CDEM =3V P -AEM +V 四棱锥P -CDEM=S △AEM ×h +13S 四边形CDEM ×h =S △AEM ×h +132S △AEM ×h =53S △AEM ×h =53×12×2×1×sin 2π3h =152.解得PM =h =33.建立如图所示的空间直角坐标系,则A -3,2,0 ,B -3,1,0 ,C 3,-1,0 ,D 3,0,0 ,P 0,0,33 ,Q -3,1,33 ,M 0,0,0 .则平面QAB 的一个法向量n=1,0,0 .所以CD =0,1,0 ,PD=3,0,-33 ,设平面PCD 的一个法向量m=x ,y ,z ,则m ⋅CD=0,n ⋅PD =0,即y =0,3x -33z =0, 取m=3,0,1 .所以cos θ=m ⋅n m ⋅n=31010.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何高考题 姓名 1、正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .
2、多面体上,位于同一条棱两端的顶点称为相邻的,如图,
正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是:
①3; ②4; ③5; ④6; ⑤7 以上结论正确的为______________。
(写出所有正确结论的编号..
)
3、过平行六面体1111D C B A ABCD -任意两条棱的中点作直线, 其中与平面11D DBB 平行的直线共有 ( ) A .4条 B .6条 C .8条 D .12条
4、若P 是平面α外一点,则下列命题正确的是 ( )
(A )过P 只能作一条直线与平面α相交 (B )过P 可作无数条直线与平面α垂直 (C )过P 只能作一条直线与平面α平行 (D )过P 可作无数条直线与平面α平行 5、如图,在四棱锥P-ABCD 中,底面为直角梯形,AD ∥BC,∠BAD=90°,PA ⊥底面ABCD ,且PA =AD=AB=2BC,M 、N 分别为PC 、PB 的中点. (1)求证:PB ⊥DM;
(2) 求CD 与平面ADMN 所成的角的正切值
6、如图,已知正三棱柱ABC-A 1B 1C 1的侧棱长和底面边长均
A
B
C
D
A 1
B 1
C 1
D 1
α
M A1
C 1
B1
B C
A
N
为1,M 是底面BC 边上的中点,N 是侧棱CC 1上的点,且CN =2C 1N.
(Ⅰ)求二面角B 1-AM -N 的平面角的余弦值; (Ⅱ)求点B 1到平面AMN 的距离。
7、如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,
且PA AB =,点E 是PD 的中点.
(Ⅰ)求证:AC PB ⊥;
(Ⅱ)求证://PB 平面AEC ; (Ⅲ)求二面角E AC B --的大小.
8、如图,O 是半径为l 的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧AB 与AC 的中点,则点E 、F 在
该球面上的球面距离是 ( ) (A)
4π (B)3π (C)2
π
(D)42π
9、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是
( ) A .16πB .20πC .24πD .32π
10、在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA
=CP:PB =1:2(如图1)。
将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2) (Ⅰ)求证:A 1E ⊥平面BEP ;
F
E
O
B
A
C
D
P
(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小; (Ⅲ)求二面角B -A 1P -F 的余弦值大小。
11、如图,在四棱锥P-ABCD 中,底面为直角梯形,AD ∥BC,∠BAD=90°,PA ⊥底面ABCD,且PA =AD=AB=2BC,M 、N 分别为PC 、PB 的中点. 变式1:求面PAB 与面PCD 所成角 利用面积射影或转化为有棱二面角
变式2:E 为AD 中点,求面PAB 与面PCE 所成角
12、棱长为2的正四面体的四个顶点都在同一个球面上, 若过该球球心的一个截面如图1,则图中三角形(正四面体的截面)的面积是 ( )
A .
22 B .2
3 C .2 D .3 13、在等腰梯形ABCD 中,AB=2DC=2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P -DCE 三棱锥的外接球的体积为( ) (A)
2734π (B)26π (C)86π (D)24
6π
A
P F
E
C B A 1
E
F
C
P B
图1 图2
图1
14、如图4,已知两个正四棱锥P-ABCD 与Q-ABCD 的高分别为1和2,AB=4. (Ⅰ)证明PQ ⊥平面ABCD;
(Ⅱ)求异面直线AQ 与PB 所成的角的余弦值; (Ⅲ)求点P 到平面QAD 的距离.
15、已知正方形ABCD .E 、F 分别是AB 、CD 的中点,将ADE 沿DE 折起,如图所示,
记二面角A DE C --的大小为(0)θθπ<<.
(I) 证明//BF 平面ADE ;
(II)若ACD 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值.
C
D
F
C
D
E
F
Q P
A
D
B。