救护车扬声器发声电路
电子技术 项目7 制作与调试救护车警笛模拟电路
目标
3.素养目标 (1)能够在教师引导下完成每个任务相关理论知识的学习,并能举一反三; (2)在任务计划阶段,要总体考虑电路布局与连接规范,使电路美观实用; (3)在任务实施阶段,要首先具备健康管理能力,即注意安全用电和劳动保护, 同时注重6S(整理、整顿、清扫、清洁、素养和安全)的养成和环境保护; (4)专心专注、精益求精要贯穿任务完成始终,不惧失败; (5)小组成员间要做好分工协作,注重沟通和能力训练。
知识链接 7.1.1 RC波形变换电路
任任务务71.1.1分识析别与与设检计测波二形极产管生变换电路
1.脉冲的概念
脉冲(pulse)通常是指电子技术中经常运用的一种像脉搏似的短暂起伏 的电冲击(电压或电流)。主要特性有波形、幅度、宽度和重复频率。脉 冲是相对于连续信号在整个信号周期内短时间发生的信号,大部分信号周 期内没有信号,就像人的脉搏一样。
任任务务71.1.1分识析别与与设检计测波二形极产管生变换电路
4.RC微分电路
知识链接
7.1.1 RC波形变换电路
RC微分电路,就是一种应用十分广泛的对脉冲信号进行变换的电路,它通常 把矩形脉冲信号变换成正、负双向尖脉冲。在数学上,这种尖脉冲近似等于 矩形波的微分形式,故有微分电路之称。微分电路的特点是输出能很快反映 输入信号的跳变成分。即它能把输入信号中的突然变化部分选择出来。其输 出的脉冲宽度很窄,与原来输入脉冲宽度较宽的波形相比,包含有“微分” 的意思。
现在一般指数字信号,它已经是一个周期内有一半时间有信号。计算 机内的信号就是脉冲信号,又叫数字信号。如何利用电路搭建产生脉冲信 号呢?我们可以尝试下面的电路。
7.1.1 RC波形变换电路
任任务务71.1.1分识析别与与设检计测波二形极产管生变换电路
救护车扬声器发声电路
一、 设计方案该电路主要通过两片555定时器模拟救护车扬声器发声电路,输出周期性变化的高频信号和低频信号,驱动扬声器发出高音低音周期交替的警报声。
将两片555定时器分别连接成多谐振荡器,其中555(1)的作用是控制高频声音和低频声音的持续时间,其输出Vo1是555(2)的控制电压;555(2)的作用是控制高低音的频率,作为压控振荡器将555(1)输出的高低电平转化为频率,驱动扬声器发出响声。
二、 技术原理1.555定时器器件特性555定时器是一种中规模集成电路,外形为双列直插8脚结构,体积很小,使用起来方便。
集成时基电路555的电源电压范围较宽,可在5~16V 范围内使用(TTL 型,若为CMOS 型的555芯片,则电压范围可在2~18V 内),电路的输出有缓冲器,因而有较强的带负载能力。
双极型时基集成电路最大的灌电流和拉电流都在200mA 左右,因而可直接推动TTL 或CMOS 电路中的各种电路,包括能直接推动蜂呜器、小型继电器、喇叭和小型电动机等器件。
集成555定时器有双极性型和CMOS 型两种产品。
它们的逻辑功能和外部引线排列完全相同。
其主要参数见表1.1.基于以上对555定时器参数及性能的分析,认为以555定时器搭建的电路能够驱动小功率扬声器发音,选择适当的外部电阻电容等器件与555定时器配合使用能够使此设计得以实现。
2.555定时器内部结构及工作原理1> 内部结构:555定时器的内部电路框图及逻辑符号和管脚排列分别如图1和图2所示。
V i1(TH ):高电平触发端,简称高触发端,又称阈值端,标志为TH 。
V i2(TR ):低电平触发端,简称低触发端,标志为TR 。
V CO :控制电压端。
V O :输出端。
Dis :放电端。
Rd :复位端。
555定时器内含一个由三个阻值相同的电阻R 组成的分压网络,产生31V CC 和32V CC 两个基准电压;两个电压比较器C 1、C 2;一个由与非门G 1、G 2组成的基本RS 触发器(低电平触发);放电三极管T 和输出反相缓冲器G 3。
救护车音响电路(模拟电路)
总成绩:一、设计题目救护车音响电路二、设计任务设计一个救护车音响电路,并进行模拟仿真。
三、设计要求①采用两个555时基电路组成两个多谐振荡器。
②第一个时基电路产生低频振荡,振荡频率为0.9~14.4HZ,第二个时基电路产生振荡频率约为700HZ,使扬声器发出呜呜的声音。
③用示波器观察振荡波形。
④写出设计总结报告四、设计内容1.①采用两个555时基电路组成两个多谐振荡器。
②第一个时基电路产生低频振荡,振荡频率为0.9~14.4HZ,第二个时基电路产生振荡频率约为700HZ,使扬声器发出呜呜的声音。
2.电路原理图3.计算与仿真分析f =取C1=10uF,RA1=10k欧,RB1=5k欧取C2=0.1uF, RA2=10K欧,RB2=5K欧仿真:低频高频多谐振荡五、设计环境Proteus六、仪器设备及元器件EEL—69模拟、数字电子技术实验箱一台直流稳压电源一台双踪示波器一台数字万用表一块2个555芯片,两个10K欧电阻,两个5K欧电阻,一个10uF电容,一个0.1uF电容,一个100uF电容,一个扬声器,导线若干。
七、调试流程1.挑选芯片、电阻、电容等元件,并测量电阻实际阻值;2.连接电路,打开电源,听扬声器的发声情况;3.用示波器分别测量低频振荡电路和高频振荡电路的频率;4.调整各电阻阻值,各个振荡电路频率符合要求,并且扬声器发声合格;5.测量各个电阻的实际阻值,记录各元件参数振荡电路波形参数;6.关闭电源,整理实验台。
八、调试后实际参数及现象(1).调试该电路时实际参数为:R1=9.826k欧,R2=4.5662k欧,R3=9.814k欧,R4=5.203k欧,低频振荡频率=6.172Hz高频振荡频率=884.9Hz符合实验要求(2)波形占空比对发声效果影响较大,适当增大占空比可以使发生效果更佳。
九、设计总结本设计使用两个555时基电路,第一个时基电路产生低频振荡,振荡频率为0.9~14.4HZ,第二个时基电路产生振荡频率约为700HZ,使扬声器发出呜呜的声音。
救护车扬声器发声电路
一、 设计方案该电路主要通过两片555定时器模拟救护车扬声器发声电路,输出周期性变化的高频信号和低频信号,驱动扬声器发出高音低音周期交替的警报声。
将两片555定时器分别连接成多谐振荡器,其中555(1)的作用是控制高频声音和低频声音的持续时间,其输出Vo1是555(2)的控制电压;555(2)的作用是控制高低音的频率,作为压控振荡器将555(1)输出的高低电平转化为频率,驱动扬声器发出响声。
二、 技术原理1.555定时器器件特性555定时器是一种中规模集成电路,外形为双列直插8脚结构,体积很小,使用起来方便。
集成时基电路555的电源电压范围较宽,可在5~16V 范围内使用(TTL 型,若为CMOS 型的555芯片,则电压范围可在2~18V 内),电路的输出有缓冲器,因而有较强的带负载能力。
双极型时基集成电路最大的灌电流和拉电流都在200mA 左右,因而可直接推动TTL 或CMOS 电路中的各种电路,包括能直接推动蜂呜器、小型继电器、喇叭和小型电动机等器件。
集成555定时器有双极性型和CMOS 型两种产品。
它们的逻辑功能和外部引线排列完全相同。
其主要参数见表1.1.基于以上对555定时器参数及性能的分析,认为以555定时器搭建的电路能够驱动小功率扬声器发音,选择适当的外部电阻电容等器件与555定时器配合使用能够使此设计得以实现。
2.555定时器内部结构及工作原理1> 内部结构:555定时器的内部电路框图及逻辑符号和管脚排列分别如图1和图2所示。
V i1(TH ):高电平触发端,简称高触发端,又称阈值端,标志为TH 。
V i2(TR ):低电平触发端,简称低触发端,标志为TR 。
V CO :控制电压端。
V O :输出端。
Dis :放电端。
Rd :复位端。
555定时器内含一个由三个阻值相同的电阻R 组成的分压网络,产生31V CC 和32V CC 两个基准电压;两个电压比较器C 1、C 2;一个由与非门G 1、G 2组成的基本RS 触发器(低电平触发);放电三极管T 和输出反相缓冲器G 3。
哈工大电工新技术实践救护车响铃
《电工学新技术实践》电子电路部分设计(模拟部分)救护车音响电路班号:姓名:学号:专业:学院:时间:分类 设计 制作 调试 功能实现 报告 成绩总成绩:一、设计任务救护车音响电路二、设计条件本设计基于学校实验室的环境,根据试验时所提提供的实验条件来完成设计任务。
试验室所提供的设备及元器件有:EEL —69模拟、数字电子技术实验箱 一台 直流稳压电源 一台 双踪示波器 一台 数字万用表 一块主要元器件 555时基电路、运放uA741、电阻、电容、导线等(EEL —69模拟、数字电子技术实验箱上有喇叭、芯片的插座;集成运算放大器实验插板上有不同参数值的电阻和电容,可任意选用)三、设计要求(1)采用两个555时基电路组成两个多谐振荡器。
(2)第一个时基电路产生低频振荡,振荡频率为0.9~14.4HZ ,第二个时基电路产生振荡频率约为700HZ ,使扬声器发出呜呜的声音。
(3)用示波器观察振荡波形。
四、设计内容采用555定时器构成两个多谐振荡器,第一个振荡频率在0.9~14.4HZ ,第二个振荡频率为700HZ ,由于低频振荡器的输出接到高频振荡器的复位端(4脚),因此在第一个振荡器输出高电平时,可以让第二个振荡器振荡;当第一个振荡器输出低电平时,第二个振荡器被复位,停止振荡。
扬声器便发出呜呜的声音。
对于555定时器设计相应电阻电容数值。
根据公式C R R T f B A )2(43.11+==可知,第一个要产生0.9~14.4HZ ,可以选用RA=RB=51k,C=1uF ,此时经计算可知振荡频率f=9.3HZ 。
第二个振荡器要产生700HZ 的频率,可以选用RA=0.5k,RB=10k,C=0.1uF ,此时经计算可知振荡频率f=697.6HZ 。
经过仿真分析,发现由于第一个振荡器输出的电压过小,无法使第二个振荡器正常工作,因此不能得到预期的波形,因此需要将第一个振荡器输出的电压进行放大,需要用到集成运放,采用同相比例运算电路,大约需要放大10倍,由公式11R R A fuf +=,可以选用以下电阻阻值Rf=10k,R1=1k,R2=1k 。
救护车音响设计报告
救护车音响设计报告 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】物理与电子电气工程学院电子技术课程设计报告学生姓名学号班级专业题目救护车音响电路设计指导教师年月一、设计指标熟悉555定时器的结构和工作原理接通电源能发出救护车声响学会用multisim10软件仿真实验电路二、设计方案(画出方框图)设计方案该电路主要通过两片555定时器模拟救护车扬声器发声电路,输出周期性变化的高频信号和低频信号,驱动扬声器发出高音低音周期交替的警报声。
将两片555定时器分别连接成多谐振荡器,其中555(1)的作用是控制高频声音和低频声音的持续时间,其输出Vo1是555(2)的控制电压;555(2)的作用是控制高低音的频率,作为压控振荡器将555(1)输出的高低电平转化为频率,驱动扬声器发出响声。
三、电路设计1、各功能模块电路的设计(用Multisim仿真)(1)低频电路低频波形(2)高频电路高频波形2、整体电路图(用Multisim仿真)由电路中RC组件的数值可以看出左边为低频振荡电路,按RC数值计算,它的振荡频率仅为1khz,右边为高频振荡电路。
A1的3脚输出方波脉冲经R3加至A2的5脚,对齐产生的高频信号脉冲进行调制,最后产生救护车模拟声响。
整体波形3、protues仿真波形图四、电路PCB设计1、Protel原理图设计2、Protel PCB图设计五、电路安装与调试1、计算分析该电路由两个双极型555定时器组成,均工作在多谐振状态,由图示参数可求出两振荡器频率,f1=1/T=((R1+Rs)*C1),当R1=10KΩ,R4=0~75K Ω,C1=10μF变化时,对应产生的频率为~,有根据要求f2=((R2+2R3)*C2)=700Hz,可推算出R2=6KΩ,R3=100KΩ,C2=10nF 时有最佳状态。
第一级振荡波形最小占空比为53%。
第二个定时器受控与第一个定时器的低频方波,当1输出方波为低电平,2的振荡电路发出高频信号;当2输出方波为高电平,2输出频率为700Hz振荡,因此扬声器上发出呜呜的节奏音响且节奏受到1发出波形占空比的控制。
救护车声响电路
一、设计目标在电子技术课中我们学到了许多有关电子技术方面的知识,其中我们学到了555芯片的原理与功能,那些只是书本上的理论知识,我们没有将这些所学的知识应用到实践中去,不能说明我们对555芯片已经熟知,所以通过此次的设计我们要对555芯片的内部结构及其级联等方面的应用有更深层次的了解。
比如应用一个555芯片可以带动扬声器发出声响,但这种声响声音单一,发音效果不太好听。
此次课程设计不仅为了提高我们对555芯片的认识,也是为了拓宽我们的知识面,提高综合素质二、救护车声响电路原理图三、基本原理555 定时器是模拟—数字混合式集成电路,利用它可以方便地构成脉冲产生、整形电路和定时、延时电路。
具有功能强,使用灵活、方便等优点,在数字设备、工业控制、家用电器、电子玩具等许多领域都得到了广泛的应用。
1、构成单稳态触发器电路如图9、2所示,接通电源→电容C充电(至2/3Vcc)→RS触发器置0→V0=0,T导通,C放电,此时电路处于稳定状态。
当2加入VI<1/3Vcc时,RS触发器置1,输出V0=1,使T 截止。
电容C开始充电,按指数规律上升,当电容C 充电到2/3Vcc时,A1翻转,使输出V0=0。
此时T又重新导通,C很快放电,暂稳态结束,恢复稳态,为下一个触发脉冲的到来作好准备。
其中输出V0脉冲的持续时间tw=1.1RC,一般取R=1kΩ--10MΩ,C>1000PF,只要满足VI的重复周期大于tp0 ,电路即可工作,实现较精确的定时。
图9、3 单稳态触发器图9、4 多谐振荡器2、多谐振荡器电路如图9、4所示,电路无稳态,仅存在两个暂稳态,亦不需外加触发信号,即可产生振荡(振荡过程自行分析)。
电容C在1/3Vcc--2/3Vcc之间充电和放电,输出信号的振荡参数为:周期T=0.7 C(R1+2R2)频率f=1/T=1.44/(R1+2R2)C,占空比D=( R1+R2 )/( R1+2R2)。
555电路要求R1与R2 均应大于或等于1kΩ ,使R1+R2 应小于或等于3.3MΩ。
数字逻辑课程设计 救护车发声电路设计
XXXXXX大学课程设计救护车发声电路的设计班级/ 学号XXXXXXXXXX学生姓名XXX指导教师XXXXXXXXX大学课程设计任务书课程名称数字逻辑课程设计院(系)计算机学院专业计算机科学与技术班级XXXXXXXX 学号XXXXXXXX 姓名XXX课程设计题目救护车发声电路的设计课程设计时间: 2010 年7 月5 日至2010 年7 月14 日课程设计的内容及要求:一、设计说明设计一个救护车的发声电路。
二、技术指标高音为1000Hz,低音为400Hz。
三、设计要求1. 在选择器件时,应考虑成本。
2. 根据技术指标通过分析计算确定电路形式和元器件参数。
3. 画出电路原理图(元器件标准化,电路图规范化)。
四、实验要求1.根据技术指标制定实验方案;验证所设计的电路。
2.进行实验数据处理和分析。
五、推荐参考资料1.沙占友、李学芝著. 中外数字万用表电路原理与维修技术.[M]北京:人民邮电出版社,1993年2.童诗白、华成英主编者. 模拟电子技术基础. [M]北京:高等教育出版社,2006年3.戴伏生主编. 基础电子电路设计与实践. [M]北京:国防工业出版社,2002年4.谭博学主编. 集成电路原理与应用. [M]北京:电子工业出版社,2003年六、按照要求撰写课程设计报告指导教师年月日负责教师年月日学生签字年月日成绩评定表评语、建议或需要说明的问题:成绩指导教师签字:日期:一、概述本次设计是一个基于555原理的发声电路,能发出救护车声音。
设计中的发声电路要有脉冲信号源,以及能够产生高频信号的振荡器把音频信号运载出去,我在这一点的设计上采用的是两个555时基集成电路接成振荡电路。
该电路是由一个555产生低频输出送给第2个555高频输出,通过给出的频率换算电路中各电阻的值产生人的耳朵能接受的频率范围(20~20000Hz),使扬声器发出“滴答、滴答”的声响。
二、方案论证按照设计要求,本次设计是模仿救护车声的电路,要有脉冲信号源以及能产生高频信号的振荡器把信号运载出去,我在这一点的设计上提出了一下两种不同的方案:方案一:方案一原理框图如图1所示。
哈工大电子综合设计10-救护车报警警笛电路
Harbin Institute of Technology电子技术综合设计10课程名称:电子技术设计题目:救护车报警警笛电路院系:机电工程学院班级:设计者:学号:指导教师:姜三勇10 救护车报警警笛电路一 设计要求:要求:(1)模拟救护车报警警笛的间歇声音。
(2)警灯闪亮显示。
二 设计方案及工作原理:(1)总体设计思路:救护车报警警笛电路由三部分组成:① 双音频警笛电路 ② 警灯交替闪亮电路(2)555多谐振荡器提供时钟信号:振荡周期:12(2)ln 2T R R C =+ 振荡频率:121(2)ln 2f T R R C ==+ 经计算得:T = 1s f= 1 HZ图一:555(1)多谐振荡器 (3)双音频警笛电路:救护车扬声器双音频发声电路主要有两片555芯片组成。
通过555(1)控制高频声音和低频声音的持续时间,555(2)作为压控振荡器将555(1)输出的高低电平转化为频率,驱 动扬声器发出两种不同音频的声音。
555(2)输出频率 近似等于(2)的频率 / (1)的频率。
图二:双音频警笛电路(555(2)部分)扬声器双频发声机理:555(1)主要通过输出占空比一定的方波信号控制555(2)的控制端电压,当输出的为高电平时,555(2)控制电压端为高电平,此时振荡频率较低,对应音频为低音;当输出为低电平时,555(2)控制电压端为低电平,此时振荡频率较高,对应音频为高音。
(4)灯交替闪亮电路:利用74ls160芯片进行计数,产生循环的八种状态,在计数器的输出端接两个数据选择器74LS151芯片,选择不同的输出状态,分别接两个LED晶体管,以实现交替闪亮。
图三:灯交替闪亮电路(5)元器件选择及参数:555芯片 2片发声器 1个74ls160 1片 LED灯 2个74ls151 2片LED灯 2个三整体设计电路:图四:整体设计电路图五:发声器两端示波器监测图像四设计总结:(一)问题:我使用了Buzzer的发声器,有时声音较小,为了验证设计的成功性,我在555(2)输出端所连接的发声器两端设置了模拟示波器,观测到了两种频率的波形,周期性出现,其中在观测波形时,应该适当减小模拟的最大步长,否则易出现波形失真。
救护车音响电路的设计
班号:学号:姓名:一、设计任务救护车音响电路的设计二、设计条件本设计基于学校实验室的环境,根据实验室提供的实验条件来完成实验任务。
实验室为该设计提供的仪器设备和主要元器件如下:EEL—69模拟、数字电子技术实验箱一台直流稳压电源一台双踪示波器一台数字万用表一块主要元器件有555时基电路和电阻、电容、导线等。
说明:EEL—69模拟、数字电子技术实验箱上有喇叭、芯片的插座;集成运算放大器实验插板上有不同参数值的电阻和电容,可任意选用。
三、设计要求①采用两个555时基电路组成两个多谐振荡器。
②第一个时基电路产生低频振荡,振荡频率为0.9~14.4HZ,第二个时基电路产生振荡频率约为700HZ,使扬声器发出呜呜的声音。
③用示波器观察振荡波形。
四、设计内容电路可以由5部分组成:多谐振荡电路、音响电路和电源组成。
1.电路原理图(含管脚接线)2.计算与仿真分析1)多谐振荡器X1的计算与仿真分析图(1)多谐振荡器X1是由555定时器构成的,则其振荡周期应为满足设计要求,图(1)为仿真分析的结果。
2)多谐振荡器X2的计算与仿真分析多谐振荡器X2是由555定时器构成的,则其振荡周期应为满足设计要求,图(2)为仿真分析的结果。
多谐振荡器X2受到多谐振荡器X1的影响,则最终波形如下图(4)3.元器件清单10K、100K、10K、151K电阻各一个,其中151K电阻可由100K和51K的电阻串联组成。
1μF,100μF ,5100pF的电容各一个。
555定时器2个。
扬声器一个。
导线若干。
救护车警笛电路
电子课程设计——救护车警笛电路学院:太原科技大学专业、班级:姓名:学号:指导老师: 2013年12月目录一.设计任务与要求 (3)二.总体框图 (3)三.选择器件 (4)四.功能模块 (9)五.总体设计电路图 (11)六.课程设计心得体会 (14)双音救护车一.任务设计与要求1、设计任务设计一个可以产生类似于救护车警笛声音的信号发生器2、任务要求(1)、高低两种音频交替出现。
(2)、高低音持续时间都在2秒以内。
二.总体框图1、电路结构根据设计要求,本次设计模仿救护车声的电路,要有脉冲信号源以及产生高频信号的振荡器把信号运载出去,我设计了如下方案,原理框图如图1所示。
图1救护车警笛电路原理框图2、设计方案将两片555定时器分别连接成多谐振荡器,其中555(1)的作用就是控制高频声音与低频声音的持续时间,其输出V o1就是555(2)的控制电压;555(2)的作用就是控制高低音的频率,作为压控振荡器将555(1)输出的高低电平转化为频率,驱动扬声器发出响声。
三.选择器件1.555定时器器件特性555定时器就是一种中规模集成电路,外形为双列直插8脚结构,体积很小,使用起来方便。
集成时基电路555的电源电压范围较宽,可在5~16V范围内使用(TTL型,若为CMOS型的555芯片,则电压范围可在2~18V 内),电路的输出有缓冲器,因而有较强的带负载能力。
双极型时基集成电路最大的灌电流与拉电流都在200mA左右,因而可直接推动TTL或CMOS电路中的各种电路,包括能直接推动蜂呜器、小型继电器、喇叭与小型电动机等器件。
集成555定时器有双极性型与CMOS型两种产品。
它们的逻辑功能与外部引线排列完全相同。
其主要参数见表1、表1(a)双极性型5G555的主要性能参数V TH即V i1 ,V TR即V i2。
(b) CMOS型7555的主要性能参数2、555定时器内部结构及工作原理 (1)内部结构图555定时器的内部电路框图及逻辑符号与管脚排列分别如图2与图3所示。
救护车音响电路实训报告
一、实训目的本次救护车音响电路实训旨在通过对救护车音响电路的组装、调试与故障排除,提高学生对电子电路的实践操作能力,加深对电路原理的理解,培养团队协作精神和解决问题的能力。
二、实训内容1. 救护车音响电路原理分析救护车音响电路主要由电源模块、放大器模块、扬声器模块和控制系统组成。
电源模块负责为整个电路提供稳定的电源;放大器模块负责将音频信号放大至扬声器所需的功率;扬声器模块负责将电信号转换为声音;控制系统则负责调节音量、切换频道等功能。
2. 救护车音响电路元器件准备根据电路图,准备好以下元器件:(1)电源模块:12V直流电源;(2)放大器模块:TDA7297音频放大器;(3)扬声器模块:4Ω,8Ω或16Ω扬声器;(4)控制系统:按键、电位器等;(5)连接线、焊锡、烙铁等工具。
3. 救护车音响电路组装(1)按照电路图连接电源模块、放大器模块、扬声器模块和控制系统;(2)检查电路连接是否正确,确保无短路、断路现象;(3)焊接电路,注意焊接质量,避免虚焊、冷焊;(4)检查焊接后的电路,确保无误。
4. 救护车音响电路调试(1)接通电源,检查电源模块输出电压是否稳定;(2)调节放大器模块的增益,使扬声器输出声音清晰;(3)调节控制系统,测试音量、频道切换等功能;(4)检查电路工作是否正常,如发现异常,及时排查故障。
5. 救护车音响电路故障排除(1)检查电源模块是否输出电压;(2)检查放大器模块是否正常工作;(3)检查扬声器模块是否损坏;(4)检查控制系统是否正常工作;(5)根据故障现象,分析故障原因,并进行相应的修复。
三、实训总结1. 通过本次实训,我们掌握了救护车音响电路的组装、调试与故障排除方法,提高了电子电路的实践操作能力。
2. 在实训过程中,我们学会了团队合作,相互学习、共同进步。
在遇到问题时,我们积极讨论、分析,最终解决了问题。
3. 本次实训使我们更加深入地理解了电子电路原理,为今后从事相关工作打下了坚实基础。
ne555救护车警笛电路
ne555 救护车警笛电路
救护车警笛电路
此电路可以模拟救护车发出的警笛音色。
电路由两只555、电阻电容、三极管、二极管、电位器及喇叭等组成,两只555 都工作在多谐振荡状态。
IC1 的工作频率比较低,频率由IC1 的第3 脚输出振荡方波,通过R2 用来控制IC2 的振荡频率。
因为555 的第5 脚控制端外接一个参考电压,可以改变触发电平值,当IC1 的第3 脚输出方波为低电平时,通过R2 加到IC2 的第5 脚,IC2 的振
荡频率就变低,当IC1 的第3 脚输出为高电平时,IC2 的振荡频率变高,其变化的信号通过C4,使喇叭BP 发出高、低音交错的鸣救护车的警笛声。
改变R3、R4、C3 的值,警笛声的频率也会发声相应的变化。
大功率扫频警笛电路图解
如图所示,电路由两个555 组成,第一个多谐振荡器的振荡频率在。
救护车声响报警电路心得体会
救护车声响报警电路心得体会
救护车声响报警电路是救护车上非常重要的部分,因为它可以及时提醒其他车辆和行人让道,确保救护车可以尽快抵达患者现场,对于救治患者至关重要。
以下是我对救护车声响报警电路的一些心得体会:
1. 声响报警电路的工作原理:救护车上的声响报警电路一般采用电磁提醒器,通过电磁感应产生声响,在车辆行驶中通过相应的开关控制发出一段连续的高频鸣叫声,提醒其他车辆和行人让道。
2. 需要注意的问题:在设计救护车声响报警电路时,需要注意的问题有很多,例如要选择合适的电磁提醒器,保证电路的稳定性和安全性,同时还需要考虑车辆行驶过程中电路遭受振动和冲击的情况等。
3. 质量问题:声响报警电路是救护车上重要的组成部分,质量问题直接影响到救护车的使用效果和安全性,因此需要选择质量可靠的声响报警电路,并在车辆保养维修过程中仔细检查和维护,确保其正常工作。
总之,救护车声响报警电路对于救护车的使用非常重要,需要我们在设计、安装和维护过程中非常重视。
救护车音响电路的设计
数字电路课程设计报告书课题名称 救护车音响电路的设计姓 名学 号 院、系、部 物理与电信工程系 专 业 电子信息工程指导教师※※※※※※※※※ ※※ ※※ ※※2006级学生数字电路 课程设计2008年07月06日救护车音响电路设计1 设计目的(1)熟悉555定时器的引脚安排。
(2)掌握555定时器的逻辑功能及使用方法。
(3)了解面包板结构及其接线方法。
(4)了解音响电路的组成及工作原理。
(5)熟悉音响电路的设计与制作。
2 设计思路根据555定时器组成的多谐振荡器的功能来设计电路。
3 设计过程3.1实验原理。
1)555定时器主要参数电源电压为4.5V ~18V,定时精度为1%,温度系数为50×610 /℃,最大输出电流为±200mA ,电源电流为15mA ,消耗功率为600mW ,工作温度范围为0℃~70℃。
图1 555时基集成芯片引脚排列三、成绩验收盖章2008年 月 日表1 555时基集成芯片功能表RU (4脚)TH U (6脚)TR U (2脚) OUT(O u ) (3脚) 放电端D (7脚)0 X X 1 > 2/3 DD U > 1/3 DD U 1 < 2/3 DD U > 1/3 DD U 1 < 2/3 DD U < 1/3 DD U 0保持原状态不变1对地导通对地导通 保持原状态不变与地断开 2)由555定时器组成的多谐振荡器的电路原理图如图2所示图2 555多谐振荡器接通电源后,电容C 被充电,当C 上升到2/3 V CC 时,使V O 为低电平,同时放电三极管T 导通,此时电容C 通过R2和T 放电,VC 下降。
当VC 下降1/3VCC 时,V0翻转为高电平。
电容器C 放电所需时间为TpL=R2Cln2≈0.7R2C当放电结束时,T 截止,VCC 将通过R1、R2向电容C 充电,Vc 由Vcc/3上升到2VCC/3所需的 时间为TpH=(R1+R2)Cln2≈0.7(R1+R2)C当VC 上升到2/3VCC 时,电路又翻转为低电平。
救护车响铃控制电路总结
救护车响铃控制电路总结
救护车的响铃控制电路是一个重要的系统,用于提醒路人和医务人员及时赶到病人身边。
下面是一个简单的救护车响铃控制电路总结:
1. 电源部分:救护车通常需要220V的电源,用于驱动各种电器设备和控制电路。
因此,电源部分需要连接到电源插座或电源变压器上。
2. 喇叭部分:救护车上的喇叭用于发出警报声,通知路人和医务人员。
因此,喇叭部分需要连接到喇叭插头上。
3. 鸣笛器部分:救护车鸣笛器部分需要连接到鸣笛器插头上,通过电流驱动鸣笛器发出声音。
4. 控制电路:控制电路包括主电路和控制电路两部分。
主电路部分用于控制鸣笛器、灯光和铃铛等各个设备的开关和亮度等参数,同时起到与电源部分的通信和协调作用。
控制电路部分用于根据病人的位置和环境等参数来控制鸣笛器和灯光的亮度和声音等参数。
5. 通信网络:救护车通常需要连接到警察局或其他紧急通信网络,以便及时与其他救护车和医务人员联系。
因此,通信网络部分需要连接到通信设备和网络接口上。
6. 报警系统:除了喇叭和鸣笛器以外,救护车还需要连接到报警系统,以便路人和医务人员能够及时收到警报并进行相应行动。
报警系统需要通过通信网络和电话或其他媒介向相关部门和人员发出警报。
救护车的响铃控制电路是一个复杂的系统,需要各种设备和组件的配合才能达到报警和救援的目的。
因此,在建设和维护救护车系统时,需要认真考虑各种设备和组件之间的连接和通信方式,以提高救护车的使用效率和救援效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路课程设计报告姓名;王开举班级:学号:10设计项目名称:救护车扬声器发生系统一 设计方案该电路主要通过两片555定时器模拟救护车扬声器发声电路,输出周期性变化的高频信号和低频信号,驱动扬声器发出高音低音周期交替的警报声。
将两片555定时器分别连接成多谐振荡器,其中555(1)的作用是控制高频声音和低频声音的持续时间,其输出Vo1是555(2)的控制电压;555(2)的作用是控制高低音的频率,作为压控振荡器将555(1)输出的高低电平转化为频率,驱动扬声器发出响声。
二. 技术原理1.555定时器器件特性555定时器是一种中规模集成电路,外形为双列直插8脚结构,体积很小,使用起来方便。
集成时基电路555的电源电压范围较宽,可在5~16V 范围内使用(TTL 型,若为CMOS 型的555芯片,则电压范围可在2~18V 内),电路的输出有缓冲器,因而有较强的带负载能力。
双极型时基集成电路最大的灌电流和拉电流都在200mA 左右,因而可直接推动TTL 或CMOS 电路中的各种电路,包括能直接推动蜂呜器、小型继电器、喇叭和小型电动机等器件。
集成555定时器有双极性型和CMOS 型两种产品。
它们的逻辑功能和外部引线排列完全相同。
其主要参数见表.基于以上对555定时器参数及性能的分析,认为以555定时器搭建的电路能够驱动小功率扬声器发音,选择适当的外部电阻电容等器件与555定时器配合使用能够使此设计得以实现。
定时器内部结构及工作原理1> 内部结构:555定时器的内部电路框图及逻辑符号和管脚排列分别如图1和图2所示。
V i1(TH ):高电平触发端,简称高触发端,又称阈值端,标志为TH 。
V i2(TR ):低电平触发端,简称低触发端,标志为TR 。
V CO :控制电压端。
V O :输出端。
Dis :放电端。
Rd :复位端。
555定时器内含一个由三个阻值相同的电阻R 组成的分压网络,产生31V CC 和32V CC 两个基准电压;两个电压比较器C 1、C 2;一个由与非门G 1、G 2组成的基本RS 触发器(低电平触发);放电三极管T 和输出反相缓冲器G 3。
Rd 是复位端,低电平有效。
复位后, 基本RS 触发器的Q 端为1(高电平),经反相缓冲器后,输出为0(低电平)。
V CO 为控制电压端,在V CO 端加入电压,可改变两比较器C 1、C 2的参考电压。
不加控制电压时,要在V CO 和地之间接0.01μF (电容量标记为103)电容。
放电管T l 的输出端Dis 为集电极开路输出。
2> 工作原理:分析图1的电路:在555定时器的V CC 端和地之间加上电压,当V CO 悬空时,比较器C 1的同相输入端接参考电压T V +=32V CC ,比较器C 2反相输入端接参考电压T V -=31V CC ;当V CO 接控制电压e V 时,比较器C 1的同相输入端接参考电压T V +=V e ,比较器C 2反相输入端接参考电压T V -=12V e 。
现做如下规定:.(a) 555的逻辑符号(b) 555的引脚排列图2 555定时器逻辑符号和引脚图1 555定时器内部结构..当TH 端的电压>T V +时,写为V TH =1,当TH 端的电压<T V +时,写为V TH =0。
当TR 端的电压>T V -时,写为V TR =1,当TR 端的电压<T V -时,写为V TR =0。
① 低触发:当输入电压V i2<T V - 且V i1<T V +时,V TR =0,V TH =0,比较器C 2输出为低电平,C 1输出为高电平,基本RS 触发器的输入端S =0、R =1,使Q =1,Q =0,经输出反相缓冲器后,V O =1,T 截止。
这时称555定时器“低触发”;② 保持:若V i2>T V - 且V i1<T V +,则V TR =1,V TH =0,S =R =1,基本RS 触发器保持,V O 和T 状态不变,这时称555定时器“保持”。
③ 高触发:若V i1>T V +,则V TH =1,比较器C 1输出为低电平,无论C 2输出何种电平,基本RS 触发器因R =0,使Q =1,经输出反相缓冲器后,V O =0,T 导通。
这时称555定时器“高触发”。
555定时器的“低触发”、“高触发”和“保持”三种基本状态和进入状态的条件(即V TH 、V TR 的“0”、“1”)整理为表2根据555定时器的控制功能,可以制成各种不同的脉冲信号产生与处理电路电路,例如,史密特触发器、单稳态触发器、自激多谐振荡器等。
定时器接成多谐振荡器1> 连接方法:将555定时器的V i1 和V i2连在一起结成施密特触发器,然后将V O 经RC 积分电路接回输入端即构成了多谐振荡器,如图3(a )所示。
2> 多谐振荡形成机理:初始时刻,Vc 为0时,V i2<T V - 且V i1<T V +,555定时器处于低触发状态,V O =1,T 截止,电容C 经过R1、R2充电;当Vc 上升到T V -时,V i2>T V - ,V i1<T V +,处于保持状态,电容继续充电,Vc 继续升高,V O =1,T 截止;当Vc= T V +时,V i1>T V +,555定时器处于高出发状态,V O =0,T 导通,电容C 经过R2、T 放电,Vc 降低,当Vc 下降到T V -时,V i2<T V - 且V i1<T V +,电路再次进入低触发状态,电容C 经过R1、R2充电……以此循环往复,电容Vc上的电压在T V -和T V +之间往复振荡,Vo 端输出具有一定占空比的方波脉冲,通过调节R W 或电容C ,可得到不同的时间常数;还可产生周期和脉宽可变的方波输出,波形如图3(b )所示。
3>相关公式推导:通过Vc 的波形球的电容C 的充电时间1T 和放电时间2T 计算公式如下: 充电时间1T 计算公式:()112lnCC T CC T V V T R R C V V -+-=+-放电时间2T 计算公式:2220lnln 0T T T T V VT R C R C V V ++---==-故电路的振荡周期为:()12122lnln CC T T CC T T V V VT T T R R C R C V V V -++--=+=++-当Vco 悬空(接电容后接地),T V +=32V CC T V -=31V CC 时,()112ln 2T R R C =+ 22ln 2T R C =振荡周期:12(2)ln 2T R R C =+ 振荡频率:121(2)ln 2f T R R C ==+二. 方案实施及结果分析1. 电路图设计及器件参数选择图3 救护车扬声器发声电路图图四救护车扬声器发声效果仿真图(a)图五 救护车扬声器发声效果仿真图(b )1>电路概述:所设计的救护车扬声器发声电路主要有两个连接为多谐振荡器的555定时器及相关外围组件组成。
具体电路图如图3所示。
通过555(1)控制高频声音和低频声音的持续时间,555(2)作为压控振荡器将555(1)输出的高低电平转化为频率,驱动扬声器发出响声。
2>扬声器高低音发声机理:555(1)主要通过1O V 输出占空比一定的方波信号控制555(2)的控制端电压,当1O V 输出为高电平时,555(2)控制电压端Vco 为高电平,由振荡频率f 的计算公式可知此时振荡频率较低,为低音;相对应,当1O V 输出为低电平时,555(2)控制电压端Vco 为低电平,此时振荡频率较高,为高音。
而高低音的持续时间则由555(1)决定。
3>电路元件选取及仿真:根据经验和查阅相关资料,同时参考相应模型,选取各电路元件参数,使555(1)输出电压周期数量级为毫秒级(ms ),高低音振荡周期数量级为微秒级(us )。
通过仿真软件Multisim 仿真电路,调节参数,观测波形。
结果如图4所示。
图4 救护车扬声器发声电路高低音输出波形2.计算结果与仿真结果:①计算高频声音和低频声音的持续时间:高音(高频信号)时间即为C1经R2放电时间T2,低音持续时间为C1经过R1、R2充电时间T1.高音持续时间:221ln 24T R C ms =≈(即为低电平持续时间)低音持续时间:1121cc 121()ln()ln26cc T T V V T R R C V V R R C ms-+-=+-≈+≈(即为高电平持续时间)②555(2)的5管脚输入电压可根据戴维南等效电路求得:(如图5)Vo1R310kΩRx 3.3kΩC133uF 45Vo1Ve 2/3Vcc 8v图5 555(2)控制端电压Ve 的戴维南等效电路图31135//(55) 3.32108 3.33313.33X CC X O O E X R k R V R V V V R R =+=Ω⨯+⨯+⨯==+ ③计算高频声音和低频声音振荡频率: 当1O V =0V 时,E V =, 高音振荡频率:12452521()lnln 211231100.005ln 1000.005ln 212617181582CC ECC EHV V V V H Hf R R C R C Hz T us f --=++=-⨯⨯+⨯-===仿真结果如图6所示:图6 高音振荡波形及周期显示()当1O V =12V 时,E V =12 3.338108.813.33V⨯+⨯≈ 低音振荡频率:12452521()ln ln 2112 4.41100.005ln 1000.005ln 2128.812221818CC ECC EL V V V V L Lf R R C R C Hz T us f --=++=-⨯⨯+⨯-===仿真结果如图7所示:图7 低音振荡波形及周期显示()3.误差分析与总结经过多次参数调整,可使仿真波形近似完美地符合计算结果。
输出振荡频率为1718Hz,持续时间为4ms的高音频信号以及振荡频率为1222Hz,持续时间为6ms的低音频信号,由其驱动扬声器发声即为救护车扬声器发声信号。
在仿真过程中由于受仿真软件的不确定性性质,高音频第一周期内存在一次漏波,但基本不影响高音发声;另外,若要使高低音循环周期达到秒级,虽然计算结果可通过参数选择实现,却无法用仿真结果验证。
参考文献:[1] 阎石著.数字电子技术基础(第五版). 高等教育出版社.、。