四年级奥数:加法原理解析2013
四年级奥数加法原理
一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类; ② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);加法原理 发现不同知识框架3、类类相加加法原理分类讨论中加法原理的应用树形图法、标数法及简单的递推树形图法标数法简单递推模块一、分类讨论中加法原理的应用(枚举法)【例 1】柯南去给步美买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,柯南买一种礼物可以有多少种不同的选法?【例 2】从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?【巩固】从1~50中每次取两个不同的数相加,和大于50的共有多少种取法?【例 3】甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少例题精讲种不同的订法?【巩固】光彦和元太共有《爆笑校园》不超过9本,他们各自有《爆笑校园》的数目有多少种可能的情况?【例 4】把一元钱换成角币,有多少种换法?人民币角币的面值有五角、二角、一角三种.【巩固】一把硬币全是2分和5分的,这把硬币一共有1元,问这里可能有多少种不同的情况?【例 5】袋中有3个相同红球,4个相同黄球和5个相同白球,家明从中任意拿出6个球,他拿出球的情况共有________种可能.【巩固】思思想将3个相同的小球放入A、B、C三个盒中,那么一共有________种不同的放法.【例 6】四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:一共有多少种不同的方法?【巩固】甲、乙、丙、丁4名同学排成一行。
2013秋季班四年级奥数第八讲(加乘原理)(学生版)
四年级奥数第八讲--乘法原理和加法原理---一、知识要点在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的,那么考虑完成这件事所有可能的做法,就要用到加法原理来解决。
一般地,如果完成一件事有k类方法,第一类方法中有m1种不同的方法,第二类方法中有m2种不同的方法,……,第k类方法中有m k种不同的方法,那么完成这件事一共有:N= m1+m2+…+m k种不同的方法,这就是加法原理。
还有这样一种情况,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事情共有多少种方法,就需要用到乘法原理来解决。
做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事一共有:N= m1×m2×…×m n种不同的方法,这就是乘法原理。
二、例题讲解【例1】书架上有5本不同的语文书,7本不同的数学书,4本不同的英语书,(1)如果是在书架上任意取一本书,共有种不同的取法。
(2)如果是在书架上各取一本书,共有种不同的取法。
【例2】用数字0、1、2、4、5组成三位数。
(1)可能组成个不相等的三位数。
(2)可能组成个没有重复数字的三位数。
(3)可能组成个没有重复数字的三位奇数。
(4)可能组成个没有重复数字的三位偶数。
(5)可能组成个没有重复数字且能被5整除的三位数。
【随堂练习】1、某信号兵用红,黄,蓝,绿四面旗中的三面从上到下挂在旗杆上的三个位置表示信号。
每次可挂1面或者2面或者3面,并且不同的顺序表示不同的信号。
一共可以表示出种不同的信号?(不挂旗则没有信号)2、(2008年第八届“春蕾杯”小学数学邀请赛四年级决赛)用0~5这六个数字可组成没有重复数字的四位偶数。
【例3】如下图,从A点沿直线不能经过P点走最短的路到B点有种不同的走法。
小学四年级奥数课件:加法原理
例2: 旗杆上最多可以挂两面信号旗,现有红色、
蓝色和黄色的信号旗各一面,如果用挂信号旗表 示信号,最多能表示出多少种不同的信号?
根据挂信号旗的面数可以将信号分为两类。第 一类是只挂一面信号旗,有红、黄、蓝3种;第二 类是挂两面信号旗,按前面学的乘法原理会有: 3×2=6种。所以,一共可以表示出不同的信号
例1: 从甲地到乙地,可以乘火车,也可以乘汽车,
还可以乘轮船。一天中火车有4班,汽车有3班, 轮船有2班。问:一天中乘坐这些交通工具从甲地 到乙地,共有多少种不同走法?
一天中乘坐火车有4种走法,乘坐汽车有3种走 法,乘坐轮船有2种走法,所以一天中从甲地到乙 地共有:4+3+2=9(种)不同走法。
例6: 右图中每个小方格的边长都是1。一只小虫从
直线AB上的O点出发,沿着横线与竖线爬行,可上 可下,可左可右,但最后仍要回到AB上(不一定 回到O点)。如果小虫爬行
的总长是3,那么小虫有多
少条不同的爬行路线?
பைடு நூலகம்
第一步往上,再往左右有两种可能(因为必须 回到AB线上), 分别是:(上1,左1,下1), (上1,右1,下1); 第一步往上,再往下也有两 种可能:(上1,下1,左1),(上1,下1,右1); 同理第一步往下也有4种可能;
例4: 用五种颜色给右图的五个区域染色,每个区
域染一种颜色,相邻的区域染不同的颜色。问: 共有多少种不同的染色方法?
在本例中没有一个区域与其它所有区域都相邻, 那么就要分颜色相同与不同两种情况分析。
当区域A与区域E颜色相同时,A有5种颜色可选; B有4种颜色可选;C有3种颜色可选;D也有3种颜色 可选。根据乘法原理,此时不同的染色方法有
再就是左右, 第一步往左,第二步分别上下各 一种:(左1,上1,下1),(左1,下1,上1); 第一步往左,第二步还往左右,则第三步也只能左 右,共4种;同理第一步往右也有6种情况。共有:
四年级升五年级奥数综合讲义第8讲-加法原理
第八讲 加法原理一、专题简析:加法原理是最基本的计算原理,什么叫加法原理?我们举例说明:文具盒里有2支钢笔,4支圆珠笔,5支铅笔。
如果从文具盒中任意取一支笔,有多少种不同的方法?从文具盒中任意取一支钢笔,有2种方法;任取一支圆珠笔,有4种方法;任取一支铅笔,有5种方法。
所以从文具盒中任取一支笔,有2+4+5=11种不同的取法。
加法原理:如果完成一件事有k 类方法,第一类有1m 种不同的方法,第二类有2m 种不同的方法,……,做第k 步有k m 种不同的方法,那么完成这件事共有:12k N m m m =+++……种不同分方法。
(注:每种方法都能完成这件事。
)二、典型例题例1:沿着图中的路线走。
不允许走重复路线,从A 到C 共有多少种不同的走法?练一练:从甲地到乙地有4条路线,从乙地到丙地有2条路线,从甲地到丙地有3条路线,那么,从甲地到丙地共有多少种种走法?例2:如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选2本不同学科的书阅读,那么共有多少种不同的选法?练一练:lan 老师要从6幅中国画、5幅油画、2幅水粉画中选2幅不同类型的画来装饰教室,有几种选法?例3:用五种颜色给图中的5个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。
问:共有多少种不同的染法?(五种颜色一次可以不用完)练一练:用五种颜色给图中的5个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。
问:共有多少种不同的染法?例4 :用1、2、3、4四个数字组成五位数,数字可以重复,至少有连续三位是1的五位数有多少个?练一练:数1447、1225、1031有些相同的特点,每个数都是以1开头的数字,且每个数恰有两个数字相同,这样的数有多少个?三、熟能生巧1.书架上4本不同的数学书、5本不同的语文书、6本不同的英语书。
(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,每种书各取一本,有多少种取法?(3)若从这些书中取不同的科目的书两本,有多少种取法?2.某信号兵用红黄蓝三面旗子从上到下挂在竖直的旗杆上表示信号,每次可以挂一面、二面、三面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?3.西瓜小学四、五、六年级共订300份报纸,每个年级至少订99份。
四年级奥数详解答案 第8讲 加法原理
四年级奥数详解答案第8讲第八讲加法原理一、知识概要1. 加法原理如果完成一件任务有几类方法,在第一类方法中有m1种不同的方法;在第二类中有m2种不同的方法;…在第n类方法中有m n种不同的方法;那么,完成这件任务总共就有N=m1+m2+…+m n种不同的方法。
这就是加法原理。
2. 意义加法原理是计数方法中的常用的重要原理之一,也常用于我们的生活实际,我们一定要掌握好这个原理。
二、典型题目精讲1. 一个盒子里装有5个小球,另一个盒子里装有9个小球,所有这些小球颜色各不相同。
若从两个盒子里任取一球,有多少种不同的取法?分析:要么从第一个盒子任取一球,有5种取法;要么从第二个盒子任取一球,有9种取法;总共则有9+5种取法。
解:5+9=14(种)答:有14种不同的取法。
2. 将5,6,7,8,9这五个数字从小到大排成一行,在这五个数中间任意插入加号(要求最少加一个加法) ,可以得到多少种不同的和?分析:因为5_6_7_8_9五个数之间有4个间隔,所以,要先成“加加号”这个任务,有四种不同的方法,是加法原理,我们分四步来解决。
第一步,加一个加号,有4种方法,第二步,加2个加号,有6种方法;第三步,加3个加号,有4种方法;第四步加4个加号,有1种方法。
解:4+6+4+1=15(种)答:可以得到15种不同的和。
3. 上海去江苏某地,每天有3班火车、6班汽车和4班轮船。
试问:乘坐这些交通工具有多少种不同的走法?分析:坐火车有3种走法,坐汽车有6种走法;坐轮船有4种走法。
不论乘坐哪种交通工具,都能完成“去江苏某地”的任务,故是加法原理。
解:3+6+4=13(种)答:乘坐这些交通工具有13种不同的走法。
4. 小明有1分、2分、5分硬币各一枚,用这些硬币能表示出多少种不同的布值?分析:用1枚表示时,有3种;用2枚表示时,有3种;用3枚表示时,有1种;再求一共有多少种,故运用加法原理。
解:3+3+1=7(种)答:能表示出7种不同的布值。
四年级下册奥数——加法原理与乘法原理
第5讲加法原理与乘法原理知识点、重点、难点加法原理与乘法原理是计数中最常用、也是最基本的两个原理.所谓计数,就是数数,把一些对象的具体数目数出来,当然,情况简单时可以一个一个地数,如果数目较大时,一个一个地数是不行的,利用加法原理和乘法原理,可以帮助我们计数.加法原理完成一件工作有n 种方式,用第1种方式完成有1m 种方法,用第2种方式完成有2m 种方法, ,用第n 种方式完成有n m 种方法.那么完成这件工作共有n m m m +++ 21种方法.乘法原理完成一件工作共需n 个步骤,完成第1个步骤有1m 种方法,完成第2个步骤有2m 种方法, ,完成第n 个步骤有n m 种方法.那么完成这件工作共有n m m m ⨯⨯⨯ 21种方法.注意:加法原理是分类计数,乘法原理是分步计数.例题精讲例1小高一家外出旅游,可以乘火车,也可以乘汽车,还可以坐飞机.经过网上查询,出发的那一天中火车有4班,汽车有3班,飞机有2班.任意选择其中一个班次,有多少种出行方法?例2用红、黄两种颜色给房子的屋顶、烟囱、门、窗四个部分涂色,每个部分只能涂一种颜色,一共有多少种不同的涂色方法?例3学校组织读书活动,要求每位同学读一本书.肖明到图书馆借书时,图书馆有不同的英语书150本,不同的科技书200本,不同的小说书100本.他要借一本书,问有多少种不同的选法?例4利用数字4321,,,一共可以组成多少个数字不重复的三位数?例5从甲地到乙地有4条路可以走,从乙地到丙地有2条路可以走,从甲地到丙地有3条路可以走,那么从甲地到丙地共有多少种不同的走法?例6书架有三层书,第一层放了15本小说,第二层放了10本漫画,第三层放了5本科普书,并且这些书都各不相同.请问:(1)如果从所有的书中任取1本,共有多少种不同的取法?(2)如果从每一层中各取1本,共有多少种不同的取法?(3)如果从中取出2本不同类别的书,共有多少种不同的取法?精选习题1.5个点之间可以连__________条线段.2.小琴、小惠、小梅三人报名参加运动会的跳绳、跳高和短跑这三个项目的比赛,每人只能参加一项比赛,不一定三项比赛都要有人参加.请问:报名的情况有多少种?3.萱萱要从4幅水墨画、3幅油画和2幅水彩画中选取两幅不同类型的画布置客厅,有几种选法?4.用数字54321、、、、可组成_______________个没有重复数字的三位数.5.各位数字之和等于10的三位数共有__________个.。
四上奥数3加法原理乘法原理
1.基本概念①加法原理:为了完成一件事,有几类方法。
第一类方法中有m种不同的方法,第二类方法中有m2种不同的方法... 第n类方法中有m n种不同的方法。
那么,完成这件事共有N=m+m i+…+m种不同的方法。
②乘法原理:为了完成一件事,需要几个步骤。
做第一步有m种不同的方法,做第二步有mi种不同的方法做第n步有m种不同的方法。
那么,完成这件事共有N=m x mt X — x m种不同的方法。
2.理解要点:①加法原理和乘法原理的本质区别:能否一步做完,一步骤为加法,多步骤为乘法②乘法原理为什么要用乘法去计算,和我们之前的搭配问题一样,本质是和的形式,也可以用树状图理解③要深刻站在题目的角度,寻找每一步骤拥有的方法种数,题目画出限制条件,全面考虑基础篇:1.每天从武汉到北京去,有6班火车,3班飞机,1班汽车。
请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同走法?2.学校开展“诵读经典”读书竞赛活动,小明要从4大名著、2本外国名著和3本科普书里任意选取一本书,共有多少种不同的选法?3.如图,从甲村去乙村有3条道路,从乙村去丙村有2条道路,从丙村去丁村有4条道路。
小华要从甲村经乙村、丙村去丁村,共有多少种不同的走法?4.如图,A B C是三个村庄,从A村到B村有2条路可走,从B村到C村有3条路可走,从A村到C村有4条路可走,从A村到C村共有多少种不同的走法?5.有四张卡片,上面分别写有0、1、2、4四个数字,从中任意抽出三张卡片组成三位数,这些卡片共可组成多少个不同的三位数?6.有五张卡片,卡片上写有数字1、2、3、4、5,从中任取两张卡片,摆放在一起,就可以组成一个两位数;请问:一共可以组成多少个不同的奇数?7.在实践活动课上,张老师发给每个学生一张简易地图(如图),地图上有A、B、C、D四个相邻的城市。
现从红、黄、蓝、绿四种颜料中选出若干种给地图涂色,要求相邻城市的颜色不同,有________ 种不同的涂色方法。
四上奥数——3加法原理-、乘法原理
加法原理、乘法原理1.基本概念①加法原理:为了完成一件事,有几类方法。
第一类方法中有m1种不同的方法,第二类方法中有m2种不同的方法……第n类方法中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法。
②乘法原理:为了完成一件事,需要几个步骤。
做第一步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有m n种不同的方法。
那么,完成这件事共有N=m1×m2×…×m n种不同的方法。
2.理解要点:①加法原理和乘法原理的本质区别:能否一步做完,一步骤为加法,多步骤为乘法②乘法原理为什么要用乘法去计算,和我们之前的搭配问题一样,本质是和的形式,也可以用树状图理解③要深刻站在题目的角度,寻找每一步骤拥有的方法种数,题目画出限制条件,全面考虑加乘原理歌:一件事情几类分,类类独立能完成,共有方法多少种?几类方法来相加;一件事情需几步,步步做好才完成,共有方法多少种?几步可能来相乘.基础篇:1.每天从武汉到北京去,有6班火车,3班飞机,1班汽车.请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同走法?2。
学校开展“诵读经典"读书竞赛活动,小明要从4大名著、2本外国名著和3本科普书里任意选取一本书,共有多少种不同的选法?3.如图,从甲村去乙村有3条道路,从乙村去丙村有2条道路,从丙村去丁村有4条道路。
小华要从甲村经乙村、丙村去丁村,共有多少种不同的走法?4。
如图,A、B、C是三个村庄,从A村到B村有2条路可走,从B村到C村有3条路可走,从A 村到C村有4条路可走,从A村到C村共有多少种不同的走法?5。
有四张卡片,上面分别写有0、1、2、4四个数字,从中任意抽出三张卡片组成三位数,这些卡片共可组成多少个不同的三位数?6.有五张卡片,卡片上写有数字1、2、3、4、5,从中任取两张卡片,摆放在一起,就可以组成一个两位数;请问:一共可以组成多少个不同的奇数?7.在实践活动课上,张老师发给每个学生一张简易地图(如图),地图上有A、B、C、D四个相邻的城市.现从红、黄、蓝、绿四种颜料中选出若干种给地图涂色,要求相邻城市的颜色不同,有种不同的涂色方法.8.如图,A、B、C、D、E五个区域分别用红、蓝、黄、白、绿五种颜色中的某一种涂染,若使相邻的区域涂不同的颜色,问:有几种不同的涂法?9.某信号兵用红、黄、蓝三面旗子从上到下挂在竖直的旗杆上表示信号,每次可以任挂一面、两面或三面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?10。
奥数加法原理
例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中火车有4班,汽车有3班,轮船有2班。
问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。
例2旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?分析与解:根据挂信号旗的面数可以将信号分为两类。
第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种。
所以一共可以表示出不同的信号3+6=9(种)。
以上两例利用的数学思想就是加法原理。
加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……在第n类方法中有mn种不同方法,那么完成这件任务共有N=m1+m2+…+m n种不同的方法。
乘法原理和加法原理是两个重要而常用的计数法则,在应用时一定要注意它们的区别。
乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。
例3两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。
因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。
根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。
例4用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。
问:共有多少种不同的染色方法?分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同。
因为上一讲例4中,区域A 与其它区域都相邻,所以区域A与其它区域的颜色都不相同。
四上奥数——3加法原理-、乘法原理
加法原理、乘法原理1.基本概念①加法原理:为了完成一件事,有几类方法。
第一类方法中有m1种不同的方法,第二类方法中有m2种不同的方法……第n类方法中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法。
②乘法原理:为了完成一件事,需要几个步骤。
做第一步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有m n种不同的方法。
那么,完成这件事共有N=m1×m2×…×m n种不同的方法。
2.理解要点:①加法原理和乘法原理的本质区别:能否一步做完,一步骤为加法,多步骤为乘法②乘法原理为什么要用乘法去计算,和我们之前的搭配问题一样,本质是和的形式,也可以用树状图理解③要深刻站在题目的角度,寻找每一步骤拥有的方法种数,题目画出限制条件,全面考虑加乘原理歌:一件事情几类分,类类独立能完成,共有方法多少种?几类方法来相加;一件事情需几步,步步做好才完成,共有方法多少种?几步可能来相乘.基础篇:1.每天从武汉到北京去,有6班火车,3班飞机,1班汽车.请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同走法?2。
学校开展“诵读经典"读书竞赛活动,小明要从4大名著、2本外国名著和3本科普书里任意选取一本书,共有多少种不同的选法?3.如图,从甲村去乙村有3条道路,从乙村去丙村有2条道路,从丙村去丁村有4条道路。
小华要从甲村经乙村、丙村去丁村,共有多少种不同的走法?4。
如图,A、B、C是三个村庄,从A村到B村有2条路可走,从B村到C村有3条路可走,从A 村到C村有4条路可走,从A村到C村共有多少种不同的走法?5。
有四张卡片,上面分别写有0、1、2、4四个数字,从中任意抽出三张卡片组成三位数,这些卡片共可组成多少个不同的三位数?6.有五张卡片,卡片上写有数字1、2、3、4、5,从中任取两张卡片,摆放在一起,就可以组成一个两位数;请问:一共可以组成多少个不同的奇数?7.在实践活动课上,张老师发给每个学生一张简易地图(如图),地图上有A、B、C、D四个相邻的城市.现从红、黄、蓝、绿四种颜料中选出若干种给地图涂色,要求相邻城市的颜色不同,有种不同的涂色方法.8.如图,A、B、C、D、E五个区域分别用红、蓝、黄、白、绿五种颜色中的某一种涂染,若使相邻的区域涂不同的颜色,问:有几种不同的涂法?9.某信号兵用红、黄、蓝三面旗子从上到下挂在竖直的旗杆上表示信号,每次可以任挂一面、两面或三面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?10。
四年级奥数基础教程第21讲 加法原理(二)
第21讲加法原理(二)我们通常解题,总是要先列出算式,然后求解。
可是对有些题目来说,这样做不仅麻烦,而且有时根本就列不出算式。
这一讲我们介绍利用加法原理在“图上作业”的解题方法。
例1小明要登上10级台阶,他每一步只能登1级或2级台阶,他登上10级台阶共有多少种不同的登法?分析与解:登上第1级台阶只有1种登法。
登上第2级台阶可由第1级台阶上去,或者从平地跨2级上去,故有2种登法。
登上第3级台阶可从第1级台阶跨2级上去,或者从第2级台阶上去,所以登上第3级台阶的方法数是登上第1级台阶的方法数与登上第2级台阶的方法数之和,共有1+2=3(种)……一般地,登上第n级台阶,或者从第(n—1)级台阶跨一级上去,或者从第(n—2)级台阶跨两级上去。
根据加法原理,如果登上第(n—1)级和第(n—2)级分别有a种和b种方法,则登上第n级有(a+b)种方法。
因此只要知道登上第1级和第2级台阶各有几种方法,就可以依次推算出登上以后各级的方法数。
由登上第1级有1种方法,登上第2级有2种方法,可得出下面一串数:1,2,3,5,8,13,21,34,55,89。
其中从第三个数起,每个数都是它前面两个数之和。
登上第10级台阶的方法数对应这串数的第10个,即89。
也可以在图上直接写出计算得出的登上各级台阶的方法数(见下图)。
例2在左下图中,从A点沿实线走最短路径到B点,共有多少条不同路线?分析与解:题目要求从左下向右上走,所以走到任一点,例如右上图中的D点,不是经过左边的E点,就是经过下边的F点。
如果到E点有a种走法(此处a=6),到F点有b种走法(此处b=4),根据加法原理,到D点就有(a+b)种走法(此处为6+4=10)。
我们可以从左下角A点开始,按加法原理,依次向上、向右填上到各点的走法数(见右上图),最后得到共有35条不同路线。
例3左下图是某街区的道路图。
从A点沿最短路线到B点,其中经过C点和D点的不同路线共有多少条?分析与解:本题可以同例2一样从A标到B,也可以将从A到B分为三段,先是从A到C,再从C到D,最后从D到B。
四年级奥数:加法原理
四年级奥数:加法原理(一)例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中火车有4班,汽车有3班,轮船有2班.问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法.例2旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?分析与解:根据挂信号旗的面数可以将信号分为两类.第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种.所以一共可以表示出不同的信号3+6=9(种).以上两例利用的数学思想就是加法原理.加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……在第n类方法中有mn种不同方法,那么完成这件任务共有N=m1+m2+…+m n种不同的方法.乘法原理和加法原理是两个重要而常用的计数法则,在应用时一定要注意它们的区别.乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.例3两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数.因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况.根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种).例4用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色.问:共有多少种不同的染色方法?分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同.因为上一讲例4中,区域A与其它区域都相邻,所以区域A与其它区域的颜色都不相同.本例中没有一个区域与其它所有区域都相邻,如果从区域A开始讨论,那么就要分区域A与区域E的颜色相同与不同两种情况.当区域A与区域E颜色相同时,A有5种颜色可选;B有4种颜色可选;C有3种颜色可选;D也有3种颜色可选.根据乘法原理,此时不同的染色方法有5×4×3×3=180(种).当区域A与区域E颜色不同时,A有5种颜色可选;E有4种颜色可选;B 有3种颜色可选;C有2种颜色可选;D有2种颜色可选.根据乘法原理,此时不同的染色方法有5×4×3×2×2=240(种).再根据加法原理,不同的染色方法共有180+240=420(种).例5用1,2,3,4这四种数码组成五位数,数字可以重复,至少有连续三位是1的五位数有多少个?分析与解:将至少有连续三位数是1的五位数分成三类:连续五位是1、恰有连续四位是1、恰有连续三位是1.连续五位是1,只有11111一种;中任一个,所以有3+3=6(种);3×4+4×3+3×3=33(种).由加法原理,这样的五位数共有1+6+33=40(种).在例5中,我们先将这种五位数分为三类,以后在某些类中又分了若干种情况,其中使用的都是加法原理.例6右图中每个小方格的边长都是1.一只小虫从直线AB上的O点出发,沿着横线与竖线爬行,可上可下,可左可右,但最后仍要回到AB上(不一定回到O点).如果小虫爬行的总长是3,那么小虫有多少条不同的爬行路线?分析与解:如果小虫爬行的总长是2,那么小虫从AB上出发,回到AB上,其不同路线有6条(见左下图);小虫从与AB相邻的直线上出发,回到AB上,其不同路线有4条(见右下图).实际上,小虫爬行的总长是3.小虫爬行的第一步有四种情况:向左,此时小虫还在AB上,由上面的分析,后两步有6条路线;同理,向右也有6条路线;向上,此时小虫在与AB相邻的直线上,由上面的分析,后两步有4条路线;同理,向下也有4条路线.根据加法原理,共有不同的爬行路线6+6+4+4=20(条)练习201.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船.如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?2.光明小学四、五、六年级共订300份报纸,每个年级至少订99份报纸.问:共有多少种不同的订法?3.将10颗相同的珠子分成三份,共有多少种不同的分法?4.在所有的两位数中,两位数码之和是偶数的共有多少个?5.用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色.问:共有多少种不同的染色方法?6.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?7.下图中每个小方格的边长都是1.有一只小虫从O点出发,沿图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线AB上的不同爬行路线有多少条?第21讲加法原理(二)我们通常解题,总是要先列出算式,然后求解.可是对有些题目来说,这样做不仅麻烦,而且有时根本就列不出算式.这一讲我们介绍利用加法原理在“图上作业”的解题方法.例1小明要登上10级台阶,他每一步只能登1级或2级台阶,他登上10级台阶共有多少种不同的登法?分析与解:登上第1级台阶只有1种登法.登上第2级台阶可由第1级台阶上去,或者从平地跨2级上去,故有2种登法.登上第3级台阶可从第1级台阶跨2级上去,或者从第2级台阶上去,所以登上第3级台阶的方法数是登上第1级台阶的方法数与登上第2级台阶的方法数之和,共有1+2=3(种)……一般地,登上第n级台阶,或者从第(n—1)级台阶跨一级上去,或者从第(n—2)级台阶跨两级上去.根据加法原理,如果登上第(n—1)级和第(n—2)级分别有a种和b种方法,则登上第n级有(a+b)种方法.因此只要知道登上第1级和第2级台阶各有几种方法,就可以依次推算出登上以后各级的方法数.由登上第1级有1种方法,登上第2级有2种方法,可得出下面一串数:1,2,3,5,8,13,21,34,55,89.其中从第三个数起,每个数都是它前面两个数之和.登上第10级台阶的方法数对应这串数的第10个,即89.也可以在图上直接写出计算得出的登上各级台阶的方法数(见下图).例2在左下图中,从A点沿实线走最短路径到B点,共有多少条不同路线?分析与解:题目要求从左下向右上走,所以走到任一点,例如右上图中的D点,不是经过左边的E点,就是经过下边的F点.如果到E点有a种走法(此处a=6),到F 点有b种走法(此处b=4),根据加法原理,到D点就有(a+b)种走法(此处为6+4=10).我们可以从左下角A点开始,按加法原理,依次向上、向右填上到各点的走法数(见右上图),最后得到共有35条不同路线.例3左下图是某街区的道路图.从A点沿最短路线到B点,其中经过C点和D点的不同路线共有多少条?分析与解:本题可以同例2一样从A标到B,也可以将从A到B分为三段,先是从A到C,再从C到D,最后从D到B.如右上图所示,从A到C有3种走法,从C到D 有4种走法,从D到B有6种走法.因为从A到B是分几步走的,所以应该用乘法原理,不同的路线共有3×4×6=72(条).例4沿左下图中箭头所指的方向从A到B共有多少种不同的走法?分析与解:如右上图所示,先标出到C点的走法数,再标出到D点和E点的走法数,然后标出到F点的走法数,最后标出到B点的走法数.共有8种不同的走法.例5有15根火柴,如果规定每次取2根或3根,那么取完这堆火柴共有多少种不同取法?分析与解:为了便于理解,可以将本题转变为“上15级台阶,每次上2级或3级,共有多少种上法?”所以本题的解题方法与例1类似(见下表).注意,因为每次取2或3根,所以取1根的方法数是0,取2根和取3根的方法数都是1.取4根的方法数是取1根与取2根的方法数之和,即0+1=1.依此类推,取n根火柴的方法数是取(n-3)根与取(n-2)根的方法数之和.所以,这串数(取法数)中,从第4个数起,每个数都是它前面第3个数与前面第2个数之和.取完15根火柴共有28种不同取法.练习211.小明要登15级台阶,每步登1级或2级台阶,共有多少种不同登法?2.小明要登20级台阶,每步登2级或3级台阶,共有多少种不同登法?3.有一堆火柴共10根,每次取走1~3根,把这堆火柴全部取完有多少种不同取法,4.在下图中,从A点沿最短路径到B点,共有多少条不同的路线?5.左下图是某街区的道路图,C点和D点正在修路不能通过,那么从A点到B 点的最短路线有多少条?6.右上图是八间房子的示意图,相邻两间房子都有门相通.从A点穿过房间到达B 处,如果只能从小号码房间走向大号码房间,那么共有多少种不同的走法?答案练习201.38种.2.10种.提示:没有年级订99份时,只有三个年级各订100份一种订法;只有一个年级订99份时,另外两个年级分别订100份和101份,有6种订法;有两个年级订99份时,另外一个年级订102份,有3种订法.3.8种.4.45个.提示:两个数码都是奇数的有5×5(个),两个数码都是偶数的有4×5(个).5.420种.解:如右图所示,按A,B,C,D,E顺序染色.若B,D颜色相同,则有5×4×3×1×3=180(种);若B,D颜色不同,则有5×4×3×2×2=240(种).共有不同的染色方法180+240=420(种).6.21个.提示:与例5类似,连续四位都是2的只有1种,恰有连续三位是2的有4种,恰有连续两位是2的有16种.7.10条.提示:第一步向下有5条,第一步向上有1条,第一步向左或向右各有2条.<!-- 尾部结束-->练习211.987种.2.114种.3.274种.提示:取走1根有1种方法,取走2根有2种方法,取走3根有4种方法.将1,2,4作为数列的前三项,从第4项起每项都是它前三项的和,得到1,2,4,7,13,24,44,81,149,274.第10项274就是取走10根火柴的方法数.4.56条.5.48条(见下图).6.55种.。
小学生4年级奥数专题解析:加法原理和乘法原理
小学生4年级奥数专题解析:加法原理和乘法原理这篇关于小学生四年级奥数专题解析:加法原理与乘法原理,是笔者特地为大家整理的,希望对大家有所帮助!1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?分析:从两个极端来考虑这个问题:为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页?分析:按数位分类:一位数:1~9共用数字1*9=9个;二位数:10~99共用数字2*90=180个;三位数:100~999共用数字3*900=2700个,所以所求页数不超过999页,三位数共有:2355-9-180=2166,2166÷3=722个,所以本书有722+99=821页。
3、上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页?分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数,利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)÷2=351个(351- 189)÷3=54,54+99=153页。
4、从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。
分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55 从极端考虑分成最小和的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55 最接近的两组为27+28 所以共有27-15+1=13个不同的积。
另从15到27的任意一数是可以组合的。
5、将所有自然数,自1开始依次写下去得到:12345678910111213……,试确定第206788个位置上出现的数字。
分析:与前面的题目相似,同一个知识点:一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置,还剩:206788-9-180-2700-36000=167899,167899÷5=33579……4 所以答案为33579+100=33679的第4个数字7.6、用1分、2分、5分的硬币凑成1元,共有多少种不同的凑法?分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5分的组合:其中5分的从1枚到19枚均可,有19种方法;2分和5分的组合:其中5分的有2、4、6、……、18共9种方法;1、2、5分的组合:因为5=1+2*2,10=2*5,15=1+2*7,20=2*10,……,95=1+2*47,共有2+4+7+9+12+14+17+19+22+24+27+29+32+34+37+39+42+44+47=461种方法,共有3+49+19+9+461=541种方法。