余弦定理教学设计
余弦定理教案设计
余弦定理教案设计教学内容:余弦定理一、教学目标1.了解余弦定理的概念和公式。
2.能够应用余弦定理解决三角形的边与角之间的关系问题。
3.提高学生的数学推理和解决问题的能力。
二、教学重点与难点:1.重点:理解余弦定理的概念和公式,应用余弦定理解决问题。
2.难点:灵活运用余弦定理解决各种实际问题。
三、教学准备:1.教材《数学》课本、教具:黑板、彩色粉笔、三角尺、直尺和练习题。
2.多媒体设备。
四、教学过程:1.导入引入:教师引导学生回顾正弦定理的概念和公式,并举例说明其应用。
然后介绍余弦定理的概念,并与正弦定理进行对比,引出余弦定理的公式。
2.理论讲解:教师通过多媒体展示余弦定理的公式:a² = b² + c² - 2bc cosA,其中a为三角形的一边,b、c为另外两边,A为夹角。
讲解余弦定理的推导过程,并注意解释其中的符号含义。
3.实例演示:教师通过具体的实例演示如何应用余弦定理解决问题,包括计算未知边长、未知角度等。
并让学生在黑板上模仿演示。
4.小组讨论:教师组织学生分成小组,每组完成几道余弦定理的练习题,要求学生相互讨论并解答问题。
教师巡视指导,及时纠正错误。
5.教师指导:教师在小组讨论的过程中,根据学生的理解情况和解答过程,及时给予指导和解释。
鼓励学生思考、提问和探讨。
6.全课总结:教师对余弦定理的应用进行总结,并强调余弦定理在解决实际问题中的重要性。
鼓励学生在学习中多加思考,灵活运用所学知识。
7.作业布置:布置相关的习题作业,并要求学生认真完成,巩固所学内容。
要求学生在实际生活中多加观察,发现并解决问题。
五、教学反思:本次教学中,我注意引导学生主动参与学习,提高他们的解决问题和表达能力。
在教学中,要注意理论与实践相结合,引导学生将所学知识应用到实际问题中去解决。
同时,要及时纠正错误,鼓励学生勇于提问和探索。
通过这样的教学方式,可以更好地帮助学生理解和掌握余弦定理的概念和运用。
余弦定理教案设计
余弦定理教案设计一、教学目标:1.知识目标:了解余弦定理的概念和计算公式。
2.能力目标:能够运用余弦定理解决实际问题,并扩展到其他三角形的计算中。
3.情感目标:培养学生的数学思维和解决问题的能力,提高他们的数学兴趣和学习兴趣。
二、教学重点:1.余弦定理的定义和计算公式。
2.运用余弦定理解决实际问题。
三、教学难点:1.运用余弦定理解决实际问题。
2.引导学生理解余弦定理的原理和意义。
四、教学过程:1.导入(5分钟)首先,老师可以设置一个问题引发学生的思考,比如两条直角边分别为3cm和4cm的直角三角形,求斜边的长度。
2.概念讲解(10分钟)通过上述问题引发学生的思考,引出正弦定理的概念,并简单解释其意义和应用范围。
3.公式推导(15分钟)根据直角三角形的定义和勾股定理,老师可以引导学生推导出余弦定理的公式:c^2 = a^2 + b^2 - 2abcosC。
4.实例演练(20分钟)通过几个实例的演示,引导学生运用余弦定理解决实际问题。
比如已知一个三角形的两边和夹角,求第三边的长度。
5.练习与拓展(20分钟)老师可以提供一些练习题供学生独立解答,并引导学生想一想如何扩展余弦定理到其他类型的三角形中。
6.深化与拓展(15分钟)引导学生思考并讨论如何应用余弦定理解决实际问题,比如船只的航行问题、建筑物的高度测量等。
7.总结与归纳(5分钟)老师与学生一起总结整个学习内容,以及余弦定理的概念、公式和应用范围。
8.小结反思(5分钟)帮助学生回顾整个学习过程,了解自己的学习情况和存在的问题,借助老师的指导进行思考和反思。
五、教学辅助手段:1.教具准备:黑板、彩色粉笔、教学PPT等。
2.工具准备:尺子、直角三角板等。
六、教学评价与反馈:1.教师可以设置一些练习题和思考题,对学生的综合能力和问题解决能力进行评价。
2.教师可以利用课后作业和课堂讨论等形式,对学生的学习情况和问题进行反馈。
余弦定理的教案(通用3篇)
余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。
4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。
5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。
6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。
7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。
三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
“余弦定理”教学设计
“余弦定理”教学设计作为一位不辞辛劳的人民教师,可能需要进行教学设计编写工作,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么应当如何写教学设计呢?下面是作者整理的“余弦定理”教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
“余弦定理”教学设计1教材分析这是高三一轮复习,内容是必修5第一章解三角形。
本章内容准备复习两课时。
本节课是第一课时。
标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。
通过本节学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形。
(2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。
本章内容与三角函数、向量联系密切。
作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。
学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。
教学目标知识目标:(1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。
(2)学生学会分析问题,合理选用定理解决三角形综合问题。
能力目标:培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。
情感目标:通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。
教学方法探究式教学、讲练结合重点难点1、正、余弦定理的对于解解三角形的合理选择;2、正、余弦定理与三角形的有关性质的综合运用。
余弦定理教案设计
余弦定理教案设计一、教学目标1. 知识与技能:(1)理解余弦定理的定义和表达式;(2)学会运用余弦定理解决三角形中的边角关系问题。
2. 过程与方法:(1)通过观察和分析,引导学生发现余弦定理的规律;(2)运用几何画板或实物模型,直观演示余弦定理的应用。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生合作交流、解决问题的能力。
二、教学重点与难点1. 教学重点:(1)余弦定理的定义和表达式;(2)运用余弦定理解决三角形中的边角关系问题。
2. 教学难点:(1)余弦定理在实际问题中的应用;(2)灵活运用余弦定理解决复杂问题。
三、教学准备1. 教师准备:(1)熟悉余弦定理的相关知识;(2)准备几何画板或实物模型。
2. 学生准备:(1)掌握三角形的性质;(2)了解勾股定理。
四、教学过程1. 导入新课(1)回顾三角形的性质和勾股定理;(2)提出问题:如何解决三角形中的边角关系问题?2. 探究新知(1)引导学生观察和分析三角形中的边角关系;(2)引导学生发现余弦定理的规律;(3)给出余弦定理的定义和表达式。
3. 动手实践(1)让学生利用几何画板或实物模型,验证余弦定理;(2)让学生尝试解决一些简单的三角形边角关系问题。
4. 拓展应用(1)让学生运用余弦定理解决复杂问题;(2)引导学生发现余弦定理在实际生活中的应用。
五、课堂小结1. 回顾本节课所学内容,总结余弦定理的定义和表达式;2. 强调余弦定理在解决三角形边角关系问题中的应用;3. 鼓励学生课后思考和探索余弦定理在其他领域的应用。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组合作交流的表现,评价学生的学习态度和合作能力。
2. 作业评价:通过学生提交的作业,评价学生对余弦定理的理解和运用情况,以及解题的准确性。
3. 课后反馈评价:通过与学生的交流或家长反馈,了解学生对余弦定理的掌握程度和在学习过程中遇到的问题。
高中数学《余弦定理》教案
高中数学《余弦定理》教案第一章:导入与概念介绍1.1 导入教师通过一个实际问题引入余弦定理的概念,例如在直角三角形中,斜边与两个直角边的关系。
引导学生思考如何用数学表达式来描述这个关系。
1.2 余弦定理的概念教师介绍余弦定理的定义,即在三角形中,任意一边的平方等于其他两边平方和与这两边乘积的余弦的两倍之和。
用数学表达式表示为:a^2 = b^2 + c^2 2bccosA。
第二章:证明与推导2.1 余弦定理的证明教师引导学生思考如何证明余弦定理。
通过画图和几何推理,引导学生理解并证明余弦定理。
可以使用三角形的正弦定理和余弦定理的平方关系来证明。
2.2 余弦定理的推导教师引导学生利用余弦定理推导出其他相关的定理,例如正弦定理。
引导学生理解余弦定理与其他定理之间的关系。
第三章:余弦定理的应用3.1 求解三角形的问题教师通过例题展示如何使用余弦定理求解三角形的问题。
引导学生运用余弦定理计算三角形的边长和角度。
3.2 求解三角形的面积教师引导学生利用余弦定理推导出三角形的面积公式,并引导学生运用该公式计算三角形的面积。
第四章:余弦定理的拓展4.1 余弦定理在几何中的应用教师引导学生思考余弦定理在几何中的应用,例如求解三角形的面积、角度等问题。
4.2 余弦定理在物理中的应用教师引导学生思考余弦定理在物理中的应用,例如振动问题、波动问题等。
第五章:巩固与练习5.1 巩固知识教师通过例题和练习题帮助学生巩固余弦定理的理解和应用。
引导学生运用余弦定理解决不同类型的问题。
5.2 练习题教师布置一些练习题,让学生独立完成,巩固对余弦定理的理解和应用。
第六章:解三角形问题6.1 解三角形的概念教师介绍解三角形的概念,即通过已知的三角形一边和两个角,求解其他两边和角度。
引导学生理解解三角形的重要性。
6.2 利用余弦定理解三角形教师通过例题展示如何利用余弦定理解三角形问题。
引导学生运用余弦定理计算三角形的边长和角度。
第七章:余弦定理与向量7.1 向量与余弦定理的关系教师介绍向量与余弦定理的关系,即向量的点积与余弦定理的关系。
余弦定理教案
余弦定理教案【余弦定理教案】一、教学目标1. 理解余弦定理的概念和原理。
2. 学会运用余弦定理解决实际问题。
3. 培养学生的逻辑思维和问题解决能力。
二、教学准备1. 教材《数学》2. 教学课件3. 黑板和粉笔4. 教学实例和练习题三、教学过程【引入】1. 使用生活中的实例引入余弦定理的概念,例如:树木倾斜、建筑物斜倚等。
2. 引发学生思考,概括出三角形中的边与角之间的关系。
【讲解】1. 介绍余弦定理的定义和公式:c² = a² + b² - 2abcosC。
2. 解读余弦定理中的各个变量及其意义:c为第三边,a和b为两边,C为夹角。
3. 通过示例演示如何运用余弦定理计算三角形的边长和角度。
4. 引导学生发现余弦定理的应用范围和特点。
【示范】1. 给出几道实际问题,如建筑物斜坡的高度计算、航海中船舶航线的计算等。
2. 详细演示解决实际问题的步骤和计算方法。
3. 注重解题思路的讲解,培养学生的问题解决思维能力。
【练习】1. 分发练习题,让学生独立完成。
2. 审阅学生练习题,及时纠正错误,解答疑惑。
3. 批评与表扬结合,激发学生的学习兴趣和主动性。
【拓展】1. 引导学生思考余弦定理与正弦定理的关系和区别。
2. 鼓励学生自主学习与探究,拓展应用。
四、课堂总结1. 通过本节课的学习,希望学生能够熟练掌握余弦定理的应用方法。
2. 提醒学生在实际问题中合理选择使用余弦定理还是其他方法。
五、课后作业1. 完成课后练习题。
2. 总结复习余弦定理的要点和注意事项。
六、教学反思本节课通过引入实际问题,结合示范和练习,使学生理解和掌握了余弦定理的原理和应用方法。
教材和课件的使用,以及实践演示的方式,能够有效地提高学生的学习兴趣和主动性。
需要注意的是,在讲解过程中要注重与学生的互动,引导他们思考,并及时纠正误区,保证学习效果的最大化。
(完整版)《余弦定理》教案完美版
《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。
从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义和意义,掌握余弦定理的表达式。
2. 培养学生运用余弦定理解决三角形问题的能力。
3. 培养学生的逻辑思维能力和数学素养。
二、教学重点与难点1. 教学重点:余弦定理的定义和表达式,运用余弦定理解决三角形问题。
2. 教学难点:余弦定理的推导过程,运用余弦定理解决复杂三角形问题。
三、教学方法1. 采用问题驱动法,引导学生主动探究余弦定理。
2. 利用几何画板或实物模型,直观展示三角形中余弦定理的应用。
3. 开展小组讨论,培养学生的合作能力和解决问题的能力。
四、教学准备1. 教师准备PPT,内容包括余弦定理的定义、表达式和应用实例。
2. 准备几何画板或实物模型,用于展示三角形中余弦定理的应用。
3. 准备相关练习题,用于巩固所学知识。
五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考,激发学生的学习兴趣。
2. 新课讲解:讲解余弦定理的定义和表达式,引导学生理解余弦定理的意义。
3. 实例演示:利用几何画板或实物模型,展示三角形中余弦定理的应用。
4. 小组讨论:让学生分组讨论如何运用余弦定理解决实际问题,培养学生的合作能力和解决问题的能力。
5. 练习巩固:让学生解答相关练习题,巩固所学知识。
6. 总结:对本节课的内容进行总结,强调余弦定理的重要性。
7. 作业布置:布置适量作业,让学生进一步巩固余弦定理的应用。
六、教学延伸1. 引导学生思考余弦定理在实际生活中的应用,例如测量三角形的角度、计算三角形的面积等。
2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。
七、课堂小结1. 让学生回顾本节课所学内容,总结余弦定理的定义、表达式和应用。
2. 强调余弦定理在解决三角形问题中的重要性。
八、课后作业1. 完成教材上的相关练习题,巩固余弦定理的知识点。
九、教学反馈1. 在下一节课开始时,检查学生的作业完成情况,了解学生对余弦定理的掌握程度。
余弦定理教案
余弦定理教案一、教学目标1.知识目标:理解余弦定理的推导过程,掌握余弦定理的公式及其应用。
2.能力目标:培养学生运用余弦定理解题的能力,发展学生的逻辑思维和推理能力。
3.情感目标:激发学生学习数学的兴趣,培养他们的团队协作精神。
二、教学重点和难点1.重点:余弦定理的公式及其应用。
2.难点:余弦定理的推导过程以及如何根据实际问题选择适当的解法。
三、教学过程1.导入:回顾上节课学过的正弦定理,引导学生思考余弦定理与正弦定理的关系。
2.呈现新知识:通过实例和图形的演示,向学生介绍余弦定理的概念和公式。
强调余弦定理在解决三角形问题中的作用。
3.推导过程:详细讲解余弦定理的推导过程,引导学生理解余弦定理的实质。
通过例题解析,让学生熟悉余弦定理的应用。
4.课堂练习:布置相关练习题,要求学生运用所学知识解决具体问题。
及时反馈学生练习中出现的问题,强调解题思路和计算步骤的规范性。
5.归纳小结:总结本节课的主要内容,强调余弦定理的重要性以及在实际问题中的应用。
四、教学方法和手段1.教学方法:采用直观教学法和例题解析法,引导学生主动思考和动手实践。
组织小组讨论,鼓励学生相互交流和合作。
2.教学手段:利用多媒体课件展示图形和实例,帮助学生更好地理解余弦定理。
同时,注重传统板书的运用,加强学生对关键步骤的记忆和理解。
五、课堂练习、作业与评价方式1.课堂练习:设计相关练习题,要求学生运用余弦定理解题。
教师巡视课堂,及时发现并纠正学生的错误。
2.作业:布置适量的课后练习题,要求学生按时完成。
强调解题思路的清晰性和答案的准确性。
3.评价方式:采用多种评价方式,包括教师评价、学生互评和学生自评等。
综合评价学生的知识掌握情况、解题能力和学习态度等方面。
六、辅助教学资源与工具1.教学课件:制作精美的多媒体课件,包含余弦定理的推导过程、公式和应用实例等。
2.教学工具:准备三角板、量角器和计算器等工具,辅助学生进行课堂练习和解题计算。
余弦定理优秀教学设计优秀5篇
余弦定理优秀教学设计优秀5篇作为一位杰出的教职工,时常会需要准备好教案,借助教案可以提高教学质量,收到预期的教学效果。
怎样写教案才更能起到其作用呢?下面是的我为您带来的余弦定理优秀教学设计优秀5篇,希望大家可以爱好并共享出去。
余弦定理教案篇一《余弦定理》教案一、教材分析《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。
本节课的紧要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,中学的勾股定理、必修一中的向量学问、上一课时的正弦定理都是本节课内容学习的学问基础,同时又对本节课的学习供应了确定的方法引导。
其次,余弦定理在高中解三角形问题中有侧紧要的地位,是解决各种解三角形问题的常用方法,余弦定理也常常运用于空间几何中,所以余弦定理是高中数学学习的一个特别紧要的内容。
二、教学目标学问与技能:1、理解并把握余弦定理和余弦定理的推论。
2、把握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。
过程与方法:1、通过从实际问题中抽象出数学问题,培育同学学问的迁移本领。
2、通过直角三角形到一般三角形的过渡,培育同学归纳总结本领。
3、通过余弦定理推导证明的过程,培育同学运用所学学问解决实际问题的本领。
情感态度与价值观:1、在交流合作的过程中加强合作探究、团结协作精神,体验解决问题的成功喜悦。
2、感受数学一般规律的美感,培育数学学习的喜好。
三、教学重难点重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发觉和推导过程以及多解情况的判定。
四、教学用具一般教学工具、多媒体工具(以上均为命题教学的准备)余弦定理教案篇二一、教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等改换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。
余弦定理优秀教学设计【优秀7篇】
余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。
下面我分别从教材分析。
教学目标的确定。
教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
四、教学过程的设计为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。
具体过程如下:1、创设情境,引入课题利用多媒体引出如下问题:A地和B地之间隔着一个水塘现选择一地点C,可以测得的大小及,求A、B两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
余弦定理教学教案
余弦定理教学教案第一章:余弦定理的定义与基本概念教学目标:1. 让学生理解余弦定理的定义和背景。
2. 让学生掌握余弦定理的基本概念。
教学内容:1. 余弦定理的定义:在三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边与夹角余弦值的乘积的两倍。
2. 余弦定理的符号表示:c²= a²+ b²2abcos(C)。
3. 余弦定理的应用场景:解决三角形边长和角度的问题。
教学活动:1. 引入余弦定理的概念,通过实际例子让学生感受余弦定理的应用。
2. 讲解余弦定理的定义和符号表示,让学生理解并记住余弦定理的表达式。
3. 进行一些简单的练习题,让学生巩固余弦定理的应用。
作业:a. 三角形ABC中,AB = 5cm,BC = 7cm,AC = 8cm,求角A的余弦值。
b. 三角形DEF中,DE = 8cm,DF = 10cm,EF = 12cm,求角D的余弦值。
第二章:余弦定理的应用教学目标:1. 让学生掌握余弦定理在解决三角形问题中的应用。
教学内容:1. 使用余弦定理解决三角形边长问题。
2. 使用余弦定理解决三角形角度问题。
教学活动:1. 通过实际例子讲解如何使用余弦定理解决三角形边长问题。
2. 通过实际例子讲解如何使用余弦定理解决三角形角度问题。
3. 进行一些练习题,让学生巩固余弦定理的应用。
作业:a. 三角形ABC中,AB = 5cm,BC = 7cm,角A = 30°,求AC的长度。
b. 三角形DEF中,DE = 8cm,DF = 10cm,角D = 45°,求EF的长度。
第三章:余弦定理的扩展与应用教学目标:1. 让学生了解余弦定理的扩展形式。
2. 让学生掌握余弦定理在解决实际问题中的应用。
教学内容:1. 余弦定理的扩展形式:在任意三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边与夹角余弦值的乘积的两倍。
2. 余弦定理在解决实际问题中的应用:例如在工程测量、建筑设计等领域。
余弦定理教案
余弦定理教案关键信息项1、教学目标理解余弦定理的推导过程。
掌握余弦定理的公式及其应用。
能够运用余弦定理解决三角形中的相关问题。
2、教学重难点重点:余弦定理的公式及推导过程。
难点:灵活运用余弦定理解决实际问题。
3、教学方法讲授法练习法讨论法4、教学工具多媒体设备黑板、粉笔5、教学时间总时长:X分钟讲解:X分钟练习:X分钟讨论:X分钟1、教学导入11 回顾三角形中的正弦定理,引导学生思考在已知两边及其夹角的情况下,如何求解三角形的第三边。
111 通过实际问题引入,如已知三角形的两边长度和它们的夹角,求第三边的长度。
2、余弦定理的推导21 利用向量的方法推导余弦定理。
211 设三角形的三边分别为a、b、c,对应的夹角分别为A、B、C。
212 以向量的形式表示三角形的边和角的关系。
213 经过向量运算,得出余弦定理的表达式:$c^2 = a^2 + b^22ab\cos C$,同理可得$a^2 = b^2 + c^2 2bc\cos A$,$b^2 = a^2 +c^2 2ac\cos B$。
3、余弦定理的公式解读31 详细分析余弦定理公式中各项的含义。
311 强调边与角的对应关系。
312 解释余弦值与边的长度之间的关系。
4、余弦定理的应用41 已知两边及其夹角,求第三边。
411 通过例题进行讲解,让学生掌握计算方法。
412 让学生进行课堂练习,巩固所学知识。
42 已知三边,求三个角。
421 介绍利用余弦定理求角的方法。
422 给出相应的例题和练习。
5、课堂讨论51 组织学生讨论余弦定理与正弦定理的区别和联系。
511 引导学生思考在不同情况下如何选择使用正弦定理或余弦定理。
6、课堂总结61 回顾余弦定理的推导过程和公式。
611 总结余弦定理的应用方法和注意事项。
7、课后作业71 布置与余弦定理相关的书面作业,包括计算题和证明题。
711 要求学生思考生活中可以用余弦定理解决的实际问题。
8、教学反思81 对教学过程中的优点和不足之处进行反思。
余弦定理的教案
余弦定理的教案
活动一:探索余弦定理
目标:理解并应用余弦定理解决三角形相关问题。
活动准备:
1. 教师准备一些直角三角形和非直角三角形的模型或图形。
2. 准备白板、笔和纸张。
活动步骤:
1. 引入余弦定理的概念:教师向学生解释余弦定理是一个三角形中的一个定理,用于计算两个边和夹角之间的关系。
2. 学生小组讨论:将学生分成小组,每个小组选择一个直角三角形或非直角三角形的模型或图形。
让学生观察并讨论它们之间边长和夹角的关系。
3. 教师演示:教师在白板上画出一个直角三角形或非直角三角形,并标记出边长和夹角。
然后,教师使用余弦定理计算两个边和夹角之间的关系,并解释计算过程。
4. 学生实践:学生使用余弦定理计算自己所选的直角三角形或非直角三角形中的边长和夹角之间的关系。
他们可以自由选择方法,可以使用计算器。
5. 答案分享和讨论:学生将自己的计算结果和解题思路与小组分享,并讨论彼此之间的差异。
6.应用实例:教师提供一些实际问题,鼓励学生运用余弦定理解决这些问题,如计算航空器的航班路径、建筑物的斜坡角度等等。
7.总结:教师述求学生总结余弦定理的公式和应用范围。
活动延伸:
学生可以通过在实际场景中使用余弦定理来解决更多的问题,如测量高楼的高度、计算陡坡的角度等。
可以鼓励学生在小组中分享和讨论解题过程,并提供反馈。
《余弦定理》教案(含答案)
《余弦定理》教案(含答案)第一章:余弦定理的定义与基本概念教学目标:1. 了解余弦定理的定义及其在几何中的应用。
2. 掌握余弦定理的表达式。
3. 能够运用余弦定理解决简单的问题。
教学内容:1. 余弦定理的定义:在一个三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边长度与它们夹角的余弦值的乘积的两倍。
2. 余弦定理的表达式:c²= a²+ b²2ab cos(C),其中c为斜边,a和b为其他两边,C为斜边与a边的夹角。
教学活动:1. 引入三角形的基本概念,引导学生思考三角形中边与角之间的关系。
2. 给出余弦定理的定义,通过示例解释余弦定理的含义和应用。
3. 推导余弦定理的表达式,并解释各符号的含义。
4. 引导学生进行实际例题的计算,巩固余弦定理的应用。
作业:a. ∠A = 30°, a = 5, b = 12b. ∠B = 45°, b = 8, c = 10第二章:余弦定理在直角三角形中的应用教学目标:1. 掌握余弦定理在直角三角形中的应用。
2. 能够解决直角三角形中涉及边长和角度的问题。
教学内容:1. 直角三角形的特殊性质:在一个直角三角形中,余弦定理可以简化为c²= a ²+ b²(其中c为斜边,a和b为直角边)。
2. 利用余弦定理解决直角三角形中的问题:通过已知的边长和角度,求解其他边长和角度。
教学活动:1. 回顾直角三角形的基本概念,引导学生思考直角三角形中边与角之间的关系。
2. 给出余弦定理在直角三角形中的应用,通过示例解释余弦定理在直角三角形中的简化形式。
3. 引导学生进行实际例题的计算,巩固余弦定理在直角三角形中的应用。
作业:a. ∠A = 30°, a = 3, 求解b和c的值。
b. ∠B = 45°, b = 5, 求解a和c的值。
第三章:余弦定理在非直角三角形中的应用教学目标:1. 掌握余弦定理在非直角三角形中的应用。
余弦定理教案(5篇)
余弦定理教案(5篇)余弦定理教案(5篇)余弦定理教案范文第1篇【关键词】学习方式;预习方式;科技手段;教学效率课堂教学效率是关于学习收益和教学时间的综合概念,是指在课堂单位时间内同学的学习收益与老师、同学的教学活动量在时间尺度上的量度。
同学的学习方式,会直接影响到学习收益,从而影响到教学效率。
传统的课堂教学过于强调同学的接受学习、机械训练和对结果学问的教学,表面上看似教学效率高,实质忽视了很重要的一个方面,即同学对过程学问与方法的理解与获得,长远来看不利于同学今后的学习与进展。
同学学问的猎取与力量的提高基本上是在课堂内完成的,所以课堂上应通过老师的设计与引导,使同学能够转变传统的学习方式,从而提高课堂教学效率。
通过实践,我们发觉是现阶段比较符合新课程改革课堂教学基本理念的一种模式,具有很大的研讨价值与空间,是一种理念的革新。
“学案导学”突出同学的自学行为,注意学法指导,培育同学学习力量、情感态度,做到把学习的主动权真正还给了同学,从而提高了课堂教学效率,也解决了课时紧急的冲突。
1 转变备课和预习方式“工欲善其事,必先利其器”,备课是上好课的先决条件,要想提高课堂教学效率,课前不仅老师要做好充分的预备,而且同学也要做相应的预备或预习。
1.1 师生共同备课。
在传统备课模式下,备课时老师对同学的设想,与其在课堂教学实施中的实际状况,有的时候出入较大。
师生共同备课转变了传统备课中,老师依据自己的理解和以往的主观阅历来“备同学”的状况。
老师在集体备课的基础上,实行每班选出三名具有不同数学学业水平的同学,事先让他们依据课本进行初步预习,然后以座谈的方式,了解他们在预习中的困惑,这样更简单在“导学案”编制过程中有的放矢,以提高它在实施过程中的效率,从而使“备同学”这一环节更加客观、精确。
1.2 同学依据“导学案”进行预习。
老师历来强调课前预习的重要性,但由于同学没有具体、周密的预习指导性材料,导致他们对预习缺乏乐观性与主动性,更是由于最重要的检查环节较弱,使同学的课前预备工作有很强的随便性,有的同学走过场。
高中《正弦和余弦定理》数学教案4篇
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:1.1《正弦定理与余弦定理》教案(新人教版必修5)(原创)
余弦定理
一、教材依据:人民教育出版社(A版)数学必修5第一章第二节
二、设计思想:
1、教材分析:余弦定理是初中“勾股定理”内容的直接延拓,是解三角形这一章知识的一个重要定理,揭示了任意三角形边角之间的关系,是解三角形的重要工具,余弦定理与平面几何知识、向量、三角形有着密切的联系。
因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
2、学情分析:这节课是在学生已经学习了正弦定理及有关知识的基础上,转入对余弦定理的学习,此时学生已经熟悉了探索新知识的数学教学过程,具备了一定的分析能力。
3、设计理念:由于余弦定理有较强的实践性,所以在设计本节课时,创设了一些数学情景,让学生从已有的几何知识出发,自己去分析、探索和证明。
激发学生浓厚的学习兴趣,提高学生的创新思维能力。
4、教学指导思想:根据当前学生的学习实际和本节课的内容特点,我采用的是“问题教学法”,精心设计教学内容,提出探究性问
题,经过启发、引导,从不同的途径让学生自己去分析、探索,从而找到解决问题的方法。
三、教学目标:
1、知识与技能:
理解并掌握余弦定理的内容,会用向量法证明余弦定理,能用余弦定理解决一些简单的三角度量问题
2.过程与方法:
通过实例,体会余弦定理的内容,经历并体验使用余弦定理求解三角形的过程与方法,发展用数学工具解答现实生活问题的能力。
3.情感、态度与价值观:
探索利用直观图形理解抽象概念,体会“数形结合”的思想。
通过余弦定理的应用,感受余弦定理在解决现实生活问题中的意义。
四、教学重点:
通过对三角形边角关系的探索,证明余弦定理及其推论,并能应用它们解三角形及求解有关问题。
五、教学难点:余弦定理的灵活应用
六、教学流程:
(一)创设情境,课题导入:
1、复习:已知A=0
45,b=16解三角形。
(可以让学生板练)
30,C=0
2、若将条件C=0
45改成c=8如何解三角形?
设计意图:把研究余弦定理的问题和平面几何中三角形全等判定的方法建立联系,沟通新旧知识的联系,引导学生体会量化
的思想和观点。
师生活动:用数学符号来表达“已知三角形的两边及其夹角
解三角形”:已知△ABC ,BC=a,AC=b,和角C ,求解c,B,A
引出课题:余弦定理
(二)设置问题,知识探究
1、探究:我们可以先研究计算第三边长度的问题,那么我们又从那些角度研究这个问题能得到一个关系式或计算公式呢?
设计意图:期望能引导学生从各个不同的方面去研究、探索得到余弦定理。
师生活动:从某一个角度探索并得出余弦定理
2、①考虑用向量的数量积:如图 A C
B B ca a c b A
bc c b a C ab b a c C
ab b a b a b a c c b a c ,c AB b CA a CB c cos 2cos 2,cos 2cos 2))((,,,222222222222-+=-+=-+=-+=--=⋅=∴-====引导学生证明
即那么设
②还可以考虑用解析几何中的两点间距离公式来研究:
引导学生运用此法来进行证明
3、余弦定理:三角形中任何一边的平方等于其他两边的平方的
和减去这两边与它们的夹角的余弦的积的两倍。
(可以让学生自己总结,教师补充完整)
(三)典型例题剖析:
1、例1:在△ABC中,已知b=2cm,c=2cm,A=1200,解三角形。
教师分析、点拨并板书证明过程
总结:已知三角形的两边和它们的夹角解三角形,基本思路是先由余弦定理求出第三边,再由正弦定理求其余各角。
变式引申:在△ABC中,已知b=5,c=53,A=300,解三角形。
2、探究:余弦定理是关于三角形三边和一个角的一个关系式,把这个关系式作某些变形,是否可以解决其他类型的解三角形问题?
设计意图:(1)引入余弦定理的推论(2)对一个数学式子作某种变形,从而得到解决其他类型的数学问题,这是一种基本的研究问题的方法。
师生活动:对余弦定理作某些变形,研究变形后所得关系式的应用。
因此应把重点引导到余弦定理的推论上去,即讨论已知三边求角的问题。
引入余弦定理的推论:cosA=
bc a
c b
2
2 2
2-+,
cosB=
ac b
c a
2
2 2
2-
+, cosC=
ab c
b a
2
2 2
2-
+
公式作用:(1)、已知三角形三边,求三角。
(2)、若A为直角,则cosA=0,从而b2+c2=a2
若A为锐角,则cosA>0, 从而b2+c2>a2
若A为钝角,则cosA﹤0, 从而b2+c2﹤a2
2
,3
,2
6
2
:2+
∆
=
=
例,2
,
=
c
A
B
C
已知在
b
中
a
求
ABC、
、
先让学生自己分析、思索,老师进行引导、启发和补充,最后师生一起求解。
总结:对于已知三角形的三边求三角这种类型,解三角形的基本思路是先由余弦定理求出两角,再用三角形内角和定理求出第三角。
(可以先让学生归纳总结,老师补充)
变式引申:在△ABC中,a:b:c=2:6:(3+1),求A、B、C。
让学生板练,师生共同评判
3、三角形形状的判定:
例3:在△ABC中,acosA=bcosB,试确定此三角形的形状。
(教师引导学生分析、思考,运用多种方法求解)
求解思路:判断三角形的形状可有两种思路,一是利用边之间的关系来判定,在运算过程中,尽可能地把角的关系化为边的关系;二是利用角之间的关系来判定,将边化成角。
变式引申:在△ABC中,若(a+b+c)(b+c-a)=3bc,并且sinA=2sinBcosC,判断△ABC的形状。
让学生板练,发现问题进行纠正。
(四)课堂检测反馈:
1、已知在△ABC中,b=8,c=3,A=600,则a=( )
A 2
B 4
C 7
D 9
2、在△ABC 中,若a=3+1,b=3-1,c=10,则△ABC 的最大角的度数为( ) A 1200 B 900 C 600 D 1500
3、在△ABC 中,a:b:c=1:3:2,则A :B :C=( )
A 1:2:3
B 2:3:1
C 1:3:2
D 3:1:2
4、在不等边△ABC 中,a 是最大的边,若a 2<b 2+c 2,则∠A 的取值范围是( ) A (
2π,π) B (2,4ππ) C (2
,3ππ) D (0,2π) 5、在△ABC 中,AB=5,BC=6,AC=8,则△ABC 的形状是( )
A 锐角三角形
B 直角三角形
C 钝角三角形
D 非钝角三角形
(五)课时小结:
(学生自己归纳、补充,培养学生的口头表达能力和归纳概括能力,教师总结)
运用多种方法推导出余弦定理,并灵活运用余弦定理解决解三角形的两种类型及判断三角形的形状问题。
(六)课后作业:课本第10页A 组3(2)、4(2);B 组第2题
(七)教学反思:
本堂课的设计,立足于所创设的情境,注重提出问题,引导学生自主探索、合作交流,亲身经历了提出问题、解决问题的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受到了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实。