数列极限的运算法则
极限的四则运算(数列极限、函数极限)
a
k
,lim(C n
an)
Ca
。
例1、已知 lnim(6an bn ) 11 lnim(3an 2bn ) 7
求 lnim(2an bn ) 的值。
解:2an+bn=
1 15
(6an-bn)+
8 15
(3an+bn),
∴ lnim(2an bn )
3)
lim (
x
x3 2x2 1
x2 2x
) 1
KEY:1) 0(分子分母同除以x4); 2)0(分子有理化) 3)1/4(通分)
例3、(1)求
lim
x1
2x2 x3
x 1 2x2 1
的值。
x2 1
(2)求
lim
x1
2x2
x 1
的值
(见课本P87,注意其中的说明。)
3 5
( 2)n1 5
[1 ( 2)n ] 5
2
3 [(2)n1 55
( 2)2n1] 5
∴
lim
n
Tn
3 5
[ 1
1
2
5 1
4
]
3 (5 10) 5 . 5 3 21 7
5 25
例5、有一个边长为1的正方形,以其四边中点为顶点画 第二个正方形,再以第二个正方形的四边中点为顶点画
=
lim[ 1 n 15
(6an
bn
)
185(3an
2bn
)]
=
1 15
×11+
185×(-7)
大学高数极限运算法则
1.极限法则:极限是一个数列取极限值的概念,它表示一个数包含在另一个数中时,前者的值趋于后者。
2.链式法则:链式法则是极限的一种计算方法,即从一个已知限的出发,由此推出另外一个极限。
3.运算法则:
(1)可积性法则:假设函数有连续的极限,则在极限中乘以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相乘;
(2)可逆性法则:假设函数有连续的极限,则在极限中除以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相除;
(3)可幂次性:假设对函数求极限,则取出的极限结果等于该函数的幂次方的极限。
1.2.2-1.2.4 数列极限的性质和运算法则
xn
a
,
lim
n
yn
b
,
且 a b ,则 N N ,当 n N xn yn 。
2
数列极限的性质和运算法则
性质 1(唯一性)若{ xn } 收敛,则其极限唯一。
证明:用反证法。
假设
lim
n
xn
a
,
lim
n
xn
b ,( a b),取
ba 2
0,
∴收敛数列的极限是唯一的。
3
数列极限的性质和运算法则
性质 2(有界性) 若{ xn } 收敛,则{ xn } 必有界,
即 M 0, n N , 有 xn M 。
注证明:②①:收性设敛质ln数im2列的x必n等有价a界命,;题反是之:若有界xn数无列界未,必则收敛xn。发散。
lim
n
n3
lim
n
n(n
1)(2n 6n3
1)
1 3
11
数列极限的性质和运算法则
(2) lim[ 1 2 L n 1 2 L (n 1)] n
解: lim[ 1 2 L n 1 2 L (n 1)] n
lim[ n (n 1) n (n 1) ] lim 1 [ n2 n n2 n]
n yn lim yn b
n
说明:可以推广到有限多个数列的和差或乘积。
7
数列极限的性质和运算法则
思考:
① 若:{ xn } 收敛,{ yn } 发散, 它们的和、差、积、商 数列的敛散性如何?
② 若:{ xn } , { yn } 都发散呢?
2.5极限运算法则
(3) lim[Cf ( x)] C lim f ( x) CA ( C 是与x 无关的常数);
xX
xX
lim
f (x)
lim
xX
f (x)
A
(这里要求 B 0).
xX g( x) lim g( x) B
xX
注意: 利用极限四则运算法则求极限时,必须满足定理的条件: 参加求极限的函数应为有限个,每个函数的极限都必须 存在,在考虑商的极限时,还需要求分母的极限不为零。
例1、求极限 lim(3x2 2x 1) x1
解: lim(3x2 2x 1) lim 3x2 lim 2x lim 1
x1
x1
x1
x1
3lim x2 2lim x lim 1
x1
x1
x1
31 21 1 2
例2、求极限 lim 2x2 x 5 x2 3x 1
xX
x X
lim[ f ( x) g( x)] 是否存在 ? 为什么 ?
xX
答: 不存在 . 否则由
g(x) [ f (x) g(x)] f (x)
利用极限四则运算法则可知 lim g( x) 存在 , 与已知条件 x X
矛盾.
机动 目录 上页 下页 返回 结束
2. 试确定常数 k 使
lim x
8x2
7x
总结例4可得:
a0
lim
x
a0 xn b0 xm
a1 x n1 b1 x m1
an bm
b0 0
数列极限四则运算法则的证明
数列极限四则运算法则的证明work Information Technology Company.2020YEAR数列极限四则运算法则的证明设limAn=A,limBn=B,则有法则1:lim(An+Bn)=A+B法则2:lim(An-Bn)=A-B法则3:lim(An·Bn)=AB法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身)法则1的证明:∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.②设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)①式两端同乘|C|,得: |C·An-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证)法则2的证明:lim(An-Bn)=limAn+lim(-Bn) (法则1)=limAn+(-1)limBn (引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|An·Bn| =|An-0|·|Bn-0| <ε·ε=ε².由于ε是任意正数,所以ε²也是任意正数.即:对任意正数ε²,存在正整数N,使n>N时恒有|An·Bn-0|<ε².由极限定义可知,lim(An·Bn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A) (法则1)=A-A (引理2) =0.同理limbn=0.∴lim(An·Bn)=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB (法则1)=0+B·liman+A·limbn+limAB (引理3、引理2)=B×0+A×0+AB (引理1) =AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε引理5: 若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可法则4的证明:由引理4,当B≠0时(这是必要条件),正整数N1和正实数ε0,使得对正整数n>N1,有|Bn|≥ε0.由引理5,又正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对ε>0,正整数N2和N3,使得:当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1);当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1);现在,当n>max(N1,N2,N3)时,有|An/Bn-A/B|=|An*B-Bn*A|/|B*Bn|=|An(B-Bn)+Bn(An-A)|/|B*Bn|≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε法则5的证明:lim(An的k次方)=limAn·lim(An的k-1次方) (法则3) ....(往复k-1次) =(limAn)的k次方=A的k次方.。
数学分析 第二章21-2数列极限的准则、运算法则
2021/3/22
1
极限存在准则
1.定理3(夹逼准则)
若数列( xn )n1, ( yn )n1,(zn ) 满足下列条件:
(1) yn xn zn (n N),
(2)
lim
n
yn
lim
n
zn
a,
则数列
(
xn
)n1的极限存在,
且
lim
n
xna.Leabharlann 2021/3/222
证 yn a, zn a,(n )
xn
yn
a b.
3.lim xn a , (b 0).
y n n
b
2021/3/22
11
证1 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a ,
当 n N2时恒有 yn b ,
取 N max{ N1, N2 }, 当 n N时, 恒有 上两式同时成立,
M | b | (M | b |)
即lim n
xn
yn
ab
lim
n
xn
lim n
yn
特别地,两个无穷小量的积仍是无穷小量.
更一般,一个有界量与一个无穷小量的积仍
是无穷小量.
2021/3/22
15
证3 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a , 当 n N2时恒有 yn b ,
| (xn yn ) (a b) | | xn a | | yn b | 2
即lim( n
xn
yn )
a
b
1.5 极限的运算法则
o
x
例11
当a0 0, b0 0, m和n为非负整数时求 , a0 x m a1 x m 1 am lim 。 n n 1 x b x b x bn 0 1
x m a0 a1 x 1 am x m ) 解 原 式 l i m( n 1 n x x b0 b1 x bn x
单侧极限为 解 x 0是函数的分段点,两个
x 0
lim f ( x ) lim (1 x ) 1,
x 0
x 0
lim f ( x ) lim ( x 1) 1,
2 x 0
y 1 x
y x2 1
y
左右极限存在且相等,
1
故 lim f ( x ) 1.
n n
(1) lim ( xn yn ) A B
n
(2) lim xn yn AB
n
xn A (3) 当 yn 0 且 B 0时, lim n y n B
提示: 因为数列是一种特殊的函数 , 故此定理 可由 定理2.1/2.2 直接得出结论 .
第五节 极限的运算法则
一、极限的四则运算法则 二 、极限的复合运算法则 三、数列极限与函数极限的关系
第一章
一、 极限的四则运算法则
定理 1 . 若 lim f ( x) A , lim g ( x) B , 则有 证: 因 lim f ( x) A , lim g ( x) B , 则有
例2. 设有分式函数
其中
都是
多项式 , 若
证:
试证:
x x0 x x0
x x0
lim R( x)
数列极限的运算法则
数列极限的运算法则
数列是由一系列数字按照一定规律排列而成的序列,而数列的极限是指当数列中的项无限接近某个特定值时,该特定值就是该数列的极限。
数列的极限可以通过一些运算法则来求解,这些运算法则包括以下几个方面。
1. 线性运算法则:如果数列{an}和{bn}的极限分别为A和B,那么对于任意
实数c,数列{can}的极限为cA,数列{an+bn}的极限为A+B,数列{an-bn}的极限
为A-B。
2. 乘法运算法则:如果数列{an}和{bn}的极限分别为A和B,那么数列{anbn}的极限为AB。
3. 除法运算法则:如果数列{an}和{bn}的极限分别为A和B,且B不等于0,那么数列{an/bn}的极限为A/B。
4. 幂运算法则:如果数列{an}的极限为A,且m是一个正整数,那么数列{an^m}的极限为A^m。
5. 复合函数运算法则:如果函数f(x)在x=A处连续,并且数列{an}的极限为A,那么数列{f(an)}的极限为f(A)。
6. 夹逼准则:如果数列{an},{bn}和{cn}满足an≤bn≤cn,并且数列{an}和{cn}的极限都为A,那么数列{bn}的极限也为A。
7. 极限的唯一性:如果数列{an}的极限存在,那么该极限是唯一的。
这些运算法则可以帮助我们计算数列的极限,使得我们能够更加方便地求解数列的极限问题。
但需要注意的是,这些运算法则只适用于满足一定条件的数列,例如乘法运算法则中要求乘积数列的每一项都存在,除法运算法则中要求除数数列的每一项都不为0等。
在应用运算法则时,我们需要仔细分析数列的性质,确保运算的合理性。
函数极限的四则运算
x → x0 x→ x0
lim
f (x) g (x)
lim
=
a ( b ≠ 0 ). b
( x + 1)( x − 1) = lim x →1 ( x − 1)( 2 x + 1)
x +1 = lim x→1 2 x + 1
1+1 2 = = = lim ( 2 x + 1) 2 + 1 3
x →1 x →1
2
ax + x − 1 lim = 2, 求实数a的值. 2 x →1 x +2 2 ax + x − 1 =2 解: Q lim 2 x →1 x +2 2 ∴ a ⋅1 + 1 − 1 =2 2 1 +2
2
例5 已知
∴
2 x→2
2
解: ( x + 3 x ) = lim x + lim 3 x lim x→ 2 x→ 2
x → x0
lim [ f ( x ) ± g ( x ) ] = lim f ( x ) ± lim g ( x )
x → x0 x → x0
x → x0
lim x = x 0
n
n
x → x0
lim [Cf ( x )] = C lim f ( x )
x→2
=5
小结: 小结:
(1)概述极限的运算法则。 )概述极限的运算法则。 (2)本节课学习了两类计算函数极限 ) 的方法。 的方法。 (3) 通过各例求极限的过程可以看出, ) 通过各例求极限的过程可以看出, 在求有理函数的极限时, 在求有理函数的极限时,最后总 是归结为求下列极限: 是归结为求下列极限:
高等数学极限知识点总结
高等数学极限知识点总结
以下是高等数学极限知识点总结:
1. 极限的定义:极限是描述函数在某一点的行为的数学工具。
它包括数列的极限和函数的极限。
2. 极限的性质:包括唯一性,有界性,和收敛性。
3. 极限的四则运算法则:如果lim f(x),lim g(x)存在,那么对于加减乘除四种运算,极限都存在。
4. 极限的夹逼定理:如果一个数列被两个已知极限的数列夹在中间,那么这个数列的极限就是这两个数列的极限。
5. 函数极限的运算法则:如果lim f(x)存在,那么lim [f(x) + c] = lim f(x) + lim c,lim [f(x) c] = lim f(x) lim c,其中c是一个常数。
6. 无穷小和无穷大的概念:无穷小是一个趋于0的变量,无穷大是一个趋于无穷的变量。
7. 洛必达法则:当分子和分母的极限都存在时,可以求出函数的极限。
8. 泰勒级数:将一个函数表示为其各阶导数的无限和的方法。
9. 单侧极限和双侧极限:函数在某一点的单侧极限是指函数在该点的左侧或右侧的极限;双侧极限是指函数在这一点左侧和右侧的极限。
10. 连续性和可微性:如果一个函数在某一点的极限值等于该点的函数值,则称该函数在该点连续;如果一个函数在某一点的导数存在,则称该函数在该点可微。
以上就是高等数学极限的基本知识点,希望对你有所帮助。
数列极限地运算法则
3 5
n
n
1 9
0
方法小结:
lim
n
kpn tpn
cqn dqn
1、如果 p q ,那么分子、分母同除以pn; 2、如果 p q ,那么分子、分母同除以qn;
再利用lim rn ,求极限值. n
例3:计算下列数列的极限:
(1) lim(1 2 3 2010) 0
n n n n
lim1 lim 1
n
n n n
(2) lim 2n 1
2 1 lim n
n 3n 2 n 3 2
lim(2
n
1) n
2
lim(3 2) 3
(3) lim 2n 1 n n2 3n
n
lim
2 n
1 n2
n 1 3
n
lim( n
2 n
nn12
)
lim(1 3)
0
n
n
n
(4) lim n2 2n 3 n 2n2 3n 7
(7) 1 6
a 1 (8) b 1
(9)
2 5
,
4 5
(10) 0,4
(11) 1 3
例7、计算下列数列的极限:
(1) lim n
n 1 n2
n
lim
n n
1 1 1 n
1 2 1 n
lim ( n 1 n)( n 1 n) n ( n 2 n)( n 1 n)
lim
1
练习:
书 P-42 练习 7.7(3) 书 P-44 练习 7.7(4)
作业:
一课一练: P-28 练习 7.7(3) 一课一练: P-30 练习 7.7(4)
作业:
2.4极限运算法则
2n = lim
n n2 1 n2 1
化成 0 或 型 0
= lim
2
n
1
1 n2
1
1 n2
=
2
1
10 10
练习
求
x2 1
lim
x1
x2
2x
3
解 x 1时,分子,分母的极限都是零.
(0 型)先约去不为零的无穷小因子 0 x 1后再求极限.
lim
h0
h
3、
1 lim( x1 1
x
3 1 x3)
4、 lim x8
1 x 3 23 x
5、 lim ( x x x x)
x
6、
2x
lim
x
4
x
1 1
7、
lim
x1
x
x
m
m
x
xn n
2
练习题答案
一、1、-5;
5、0; 二、1、2;
5、1 ; 2
2、3;
6、0; 2、2x ; 6、0;
3、2;
7、1 ; 2
3、-1;
4、1 ; 5
8、(3)30 . 2
4、-2;
7、m n . mn
lim
x
2x3 5x3
3x2 4x2
5 1
2 lim
x 5
x 4 x
x3 1
x3
2. 5
小结:当a0 0,b0 0,m和 n为非负整数时有
a0 , 当 n m,
lim
x
a0 xm b0 xn
1.3.1数列极限的运算法则
(1)若n
N,xn1
xn
0,则xn 0, 则xn
;
(2)若n
N,xn1 xn
11,, 则则xxnn
;
(3)若xn1
f
(xn ),
f
(x) 0,则当当xx11
x2 ,xn x2 , xn
;
这是因为:若x1≤x2,由f(x)的单调递增性有 x2=f(x1)≤f(x2,)=x3,所以 x1≤x2≤x3,以此类推, 即可得到 {xn}是单调递增。
事实上, 0,按上确界定义 , aN an,使得a aN . 又由an的递增性,当n N时有a aN an.
而a是an的一个上界 ,故an ,都有an a a .
所以当n N时有 a an a .
即
lim
n
an
a.
同理可证有下界的递减 数列必有极限.
例1 证明数列{(1 1 )n}单调增加,{(1 1)n1}单调减少,
n
n
且收敛于同一极限.
证:
记
xn
(1
1 )n , n
yn
(1
1 )n1 n
利用平均值不等式
xn
(1
1 )n n
1
n(1 1) n
n 1
n1
1
xn1
xn
1 yn
(
n
n
)n1 1
1
(n
1) n
n
n
2
1
1
n2
1 yn1
yn
又由于 2 x1 xn yn y1 4
同理若x1 x2,由f(x)的单调递增性有 x2=f(x1)f(x2,)=x3,所以 x1x2x3,以此类推, 即可得到 {xn}是单调递减。
数列极限四则运算法则的证明
数列极限四则运算法则的证明设 limAn=A,limBn=B, 则有法则 1:lim(A n+B n)=A+B法则 2:lim(An-Bn)=A-B法则 3:lim(An • Bn)=AB法则 4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n T + g的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于?£>0(不论它多么小),总存在正数 N,使得对于满足n > N的一切Xn,不等式|Xn-A| <e都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身)法则1的证明:•••limAn=A,二对任意正数£ ,存在正整数N?,使n > N?寸恒有|An-A| <£ .(极限定义)同理对同一正数& ,存在正整数N?,使n > N?时恒有|Bn-B| <£ .②设N=max{N ?,N?},由上可知当n > N时①②两式全都成立.此时 |(An+Bn)-(A+B)|=|An-A)+(Bn- B)| < |AA|+|Bn-B| <£ + £ =2 £.由于&是任意正数,所以2 &也是任意正数.即:对任意正数2 £ ,存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 £.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理 2:若 limAn=A,贝U lim(C • An)=C(C・是常数)证明:vlimAn=A, 二对任意正数e ,存在正整数N,使n > N时恒有|An-A| Ve .(极限定义)①式两端同乘|C|,得:|C • -CA| v C e.由于e是任意正数,所以C e也是任意正数.即:对任意正数 C e ,存在正整数N,使n > N时恒有|C -C A n V C e.由极限定义可知,lim(C ・AAn=O0的话更好证)法则2的证明:lim(A n-B n)=limAn+lim(-Bn)( 法则 1)=limAn+(-1)limBn ( 引理 2)=A-B.为了证明法则3,再证明1个引理.引理 3:若 limAn=O,limBn=0, 贝U lim(An • Bn)=0.证明:vlimAn=0, 二对任意正数e ,存在正整数N ?,使n > N ?时恒有|An-0| Ve .(极限定义) 同理对同一正数 e ,存在正整数N?,使n > N?时恒有|Bn-0| Ve .④设N=max{N ?,N?},由上可知当n > N时③④两式全都成立.此时有 |An • =Bnn- 0| • \Bn<£•=££ 2.由于&是任意正数,所以£ 2也是任意正数即:对任意正数£ 2,存在正整数,使n> N时恒有|An -0|B< & 2.由极限定义可知,lim(A n • Bn )=0.法则3的证明:令an=An-A,bn=Bn-B.则 liman=lim(An-A)=limAn+lim(-A)( 法则 1)=A-A (引理 2) =0.同理 limbn=0./• lim(A n • Bn)=lim[(an+A)(bn+B)]=lim(an • bn+B • an+A • bn+AB)=lim(a n • bn )+lim(B • an )+lim(A • b法则mAB=0+B • liman+A • limbn+limAB引理 3、引理 2)=B x 0+A x 0+AB (引理 1) =AB.引理4:如果limXn=L 工0,则存在正整麵和正实数£ ,使得对任何正整数n>N,有|Xn| >£.证明:取£ =|L|/2>0, 则存在正整数使得对任何正整数n>N,有|Xn- L|< £ .于是有|Xn- > |L| |Xn- L| > -L£ = £引理5:若limAn存M,使得对所有正整数n,有|An| wM.证明:设limAn=A,则存在一个正整数N,使得对n>N 有|An- A| w 1,于是有|An| w |A|+1, 我们取 M=max(|A1|,...,|AN|,|A|+1) 即可法则4的证明:由引理4,当B M0时(这是必要条件),?正整数 N1和正实数£ 0,使得对正整数n>N1,有|Bn| 0.由引理5,又?正数M,K,使得使得对所有正整数n,有|An| < M,|Bn| < K.现在对?£ >0?正整数N2和N3,使得:当 n>N2,有|An- A|< £ 0*|B|* £ /(M+K+1);当 n>N3,有 |Bn- B|< £ 0*|B|* £ /(M+K+1);现在,当 n>max(N1,N2,N3)时,有|An/Bn-A/B|=|A n*B-B n*A|/|B*B n|=|A n( B-B n)+B n(An-A)|/|B*B n|w (|An|*|B-Bn|+|Bn|*|A- An|)/(|B|* £ 0)(M+K)/((M+K+1)< £法则5的证明:lim(An 的k次方)=limAn • lim(A的 k-1 次方)(法则 3)....(往复 k-1 次)=(limAn)的k次方=A的k次方.。
极限的性质与四则运算法则
例
求 极li限 m2x53x21。 x4x5 x3 7
计算过程
练习 求 极ln i限 m3n4n57n132。 答案 0 很容易可以看出,这一类的极限只和分子、分母的次数 以及(次数相等时)最高次项的系数有关。
例4 求xl i m27xx3334xx2215.
解 xl im 27xx3334xx2215xl im 72xx43xx1533
limf1(x)limf2(x)limfn(x)
推论4 如果 limf(x)存在 ,而k是正整 ,则数 limf[(x)]k [limf(x)]k.
推论5 如果 limf(x)存在且,不 而 k是 为正 零,整 则数 limf([x) ]k [lim f(x) ]k.
注 ⑴应用时必须注意条件,如极限存在、分母不为 零、偶次根号下非负等;
答案 a b
当x→-∞时结果为-(a+b),故x→∞ 时极限不存在
例7 求limx2 2x. x2 x2
解 原 l式 im x 2 2 xx 2 2 x x 2 x 2 x 2 2 x
lim x22x x 2x2 x2 2x
23 1 3
7. 3
x2
例2 求xl im 1x24x2x13.
解 lim (x22x3) 0, x 1
又 lim (4x1) 30,
x 1
limx22x3 0 0. x1 4x1 3
商的法则不能用
由无穷小与无穷大的关系,得 xl im 1x24x2x13.
0
lx i m b am nxxm n a bm n 1 1xxn m 11 a b00
a b
n m
数列极限的四则运算法则
数列极限的四则运算法则好嘞,今天咱们聊聊数列极限的四则运算法则。
听起来很严肃,对吧?其实这玩意儿就像你早上喝的豆浆,慢慢喝才有味道。
极限,这个词听上去高大上,其实说白了就是一个数列在无限逼近某个数字时的表现。
就像你追着一只小猫,越追越近,最后它就在你面前停下了。
这就是极限。
咱们得搞清楚,数列是什么东西。
数列就是一个个数字按一定规律排成的队伍。
想象一下,你在吃糖果,巧克力、牛奶糖、果仁糖,一颗接一颗,这些糖果就像数列里的数字。
你一开始可能就吃一颗,但随着时间推移,可能会吃到第十颗、第二十颗,甚至更多。
咱们要知道,每次吃到的新糖果代表数列中的一个数,慢慢地,你就会对它们的味道有个大概的了解。
极限的四则运算就像一场有趣的游戏。
加法、减法、乘法、除法,嘿,听起来是不是很简单?就像你和朋友一起吃火锅,大家分着吃,越吃越快乐。
先说加法,两个数列相加,就像把两盘菜放在一起,嘿嘿,味道更丰盛了。
假如你有两个数列,一个是2、4、6,另一个是3、5、7。
它们的极限分别是6和7,加起来,极限就是13。
这就跟你和朋友一起点了牛肉和虾,最后大家一起分享,肉虾双全,太幸福了。
再说减法,听上去似乎有点伤感。
两个数列相减,就像你从一盘菜里拿走一部分,虽然有点遗憾,但味道还是不错的。
比如说,数列A的极限是10,数列B的极限是4,AB的极限就是6。
别忘了,生活中总会有些失去,重要的是珍惜眼前的美好。
然后,咱们谈谈乘法,嘿,这个可真是让人激动。
两个数列相乘,就像把你最爱的两种口味的冰淇淋混合在一起。
假如一个数列的极限是2,另一个是3,它们的乘积的极限就是6。
这就像你吃到巧克力和香草的组合,哇,简直是味蕾的狂欢,幸福感直线飙升。
别忘了除法。
这个有点儿小心翼翼,毕竟不是所有的数都能被完美地分开。
就像你和朋友一起分披萨,不能让某个人分到0片,那可就没法玩了。
如果数列A的极限是8,B的极限是2,A除以B的极限就是4。
记住,除法的时候一定得小心,确保分母不是零,不然就得抓瞎。
极限的四则运算
一、数列的极限:1.极限的概念和运算法则数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a ,那么就说数列{a n }以a 为极限.数列极限的运算法则:如果A a n n =∞→lim ,Bb n n =∞→lim .则 ① ()B A b a n n n +=+∞→lim .② ()AB b a n n n =∞→lim .② ()0,0lim ≠≠=∞→B b B A b a n n n n .(注意:和与积中包含的数列个数必须是有限的,另外这些运算法则逆命题并不一定成立,例如,若已知()n n n b a ∞→lim 存在,n n a ∞→lim ,nn b ∞→lim 不一定存在,可以进行这样的改编,让学生自行判断和举反例。
)2.基本数列极限①为常数);C C C n (lim =∞→ ②);*(01lim N n n n ∈=∞→ ③);1|(|0lim <=∞→q q n n 而对于n n q lim ∞→,当1=q 时,1lim =∞→n n q ;当1||>q 或1-=q 时,n n q lim ∞→极限不存在。
3.无穷等比数列各项和当公比1||0<<q 时,无穷等比数列ΛΛn a a a a ,,,321的各项和为:);1||0(11lim <<-==∞→q q a S S n n(可以让学生解释各项和怎么由前n 项和公式演变而来,注意适用范围及两者区别)4.常见的数列极限可以归纳为两大类:第一类是两个关于自然数n 的多项式的商的极限:)0,0,,(.0;,*01110111lim ≠≠∈⎪⎩⎪⎨⎧>==++++++++----∞→l k l l l l k k k k n b a N l k k l k l b a b n b n b n b a n a n a n a 时,当时当ΛΛ当l k >时,上述极限不存在.第二类是关于n 的指数式的极限: ⎩⎨⎧=<=∞→时,当时;当111||,0lim q q q nn当1||>q或1-=q时,上述极限不存在(注意:求极限时,把常数项提到极限记号外面可以使运算变得很简洁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列极限的运算法则
(上海教育出版社高中课本数学高二第一学期第二课时)
一.教学目标:
掌握数列极限的运算法则,并会利用这些法则求简单的数列的极限。
二.教学重点:运用数列极限的运算法则求极限
教学难点:无限个数列极限的运算
教学过程:
1. 引入:
今天的主角是古希腊著名的数学家、物理学家阿基米德。
他提出了三次方程的几何解法,发现了以他的名字命名的螺线,他曾求出许多图形的面积和体积,极限的思想能够帮助我们解决很多几何图形面积体积的问题,今天我们也来做一次数学家,研究重现一下他这一贡献的过程。
我们来看这个例子,要计算由抛物线2y x =、x 轴以及直线x=1所围成的区域的面积S ,这是一个曲边三角形,不能用三角形的面积公式来计算,阿基米德是如何计算的呢首先把区间[0,1]分为两部分,那么作出的这一个矩形的面积必然小于曲边三角形面积,之后我们再尝试继续一分为二,那么作出这三个矩形,其面积比我们刚才计算的要大,但仍小于曲边三角形的面积,继续采取这种方法,增大区间段,不妨设把区间[0,1]分成n 个小区间,即用x 轴上的分点0,1231,,,.....,,n n n n n n
- 分隔;那么在每个小区间上作一个小矩形,使矩形的左上端点在抛物线上,这些矩形的高对应就是
222212310,(),(),(),.....,()n n n n n
-,我们来考虑这些矩形面积的总和: 2222222332
1112111123...(1)(1)(21)(1)(21)0()()....()66n n n n n n n n S n n n n n n n n n n -++++-----=⋅+⋅+⋅+⋅===我们不妨考察n S 与S 之间有何关系,我们尝试使n 越来越大,也就使分的每段区间越来越小,那么矩形可以要多窄有多窄,我们是不是就可以把n S 近似看作S 了呢,n 无限增大,矩形面积的和就可以无限逼近曲边三角形的面积~这就是一种极限的思想,当n 无限增大时,矩形面积的总和n S 可以近似等于曲边三角形的面积,它们之间的差极其小。
那么这个极限我们上节课已经学过了,结果是多少哇(1/3)非常好,这是大学中非常重要的一种积分的思想,我们看到了极限的重要性,那么大家更要认真学习,积极理解。
那么我们就来回顾一下上节课介绍的常见的三种数列极限。
(提问)不错,功课做的很足~我们上节课呢,介绍的f(n)/g(n)模型是常考点,但除此之外还有很多复杂的数列,他们的极限比较复杂,那么应该如何求呢我们学过实数的四则运算,今天我们就来探讨一下数列极限的四则运算性质:
揭示主题:数列极限的四则运算性质。
2. 概念详细讲解:
如果数列}{},{n n b a 极限存在,记作A ,B ,,lim ,lim B b A a n n n n ==∞
→∞→那么 B A b a n n n ±=±∞→)(lim B A b a n n n ⋅=⋅∞→)(lim )0(lim ≠=∞→B B A b a n
n n 特别地,如果当C b n =,C 是常数时,那么CA a C a C n n n n n =⋅=⋅∞→∞→∞
→lim lim )(lim 。
我们可以发现,和的极限可以转化成极限的和,加法运算与极限运算可以交换等等,但一定要注意必须保证}{},{n n b a 极限存在才能运用性质。
我们来看一下,lim ,lim B b A a n n n n ==∞→∞→是B A b a n n n ±=±∞
→)(lim 的什么条件 充分条件显然,非必要条件,举反例:n b n a n n -==,
那么如果把B A b a n n n ±=±∞→)(lim 换成B A b a n n n ⋅=⋅∞
→)(lim 呢 n b n a n n 1
,==
最后注意,运算法则可以推广到有限个数列的情况,比如,lim ,lim ,lim C C B b A a n n n n n n ===∞→∞→∞→那么
C B A C b a n n n n ±±=±±∞
→)(lim ,这里要注意必须要推广的话保证数列个数有限~ 那么我们来用今天的运算法则证明一下昨天我们所学的()()n g n a f n =
型极限的计算方法,由于分子分母()f n 、()g n 为n 的多项式,由于分子分母单独分离看极限都不存在,所以数列极限的运算性质不能直接利用,要想让它通过变形变化成我们前面熟悉的极限,不妨考虑1lim
0n n →∞=的类型,将分子分母同除以n 的最高次幂,那么发现分子分母每项的极限都存在了,这时就可以运用运算性质,直接根据系数比也可以得到这个结果,如果大家一时忘记了结论的话,可以采取分子分母同除以n 的最高次幂的方法,将分子分母转化成极限存在的形式,之后再利用性质求得极限值。
3. 巩固练习,在题目中强调几点注意点,接下来我们来做几个练习:
)43(lim n n -∞→ 已知,5lim =∞→n n a 3lim =∞→n n b ,求)43(lim n n n b a -∞→和n
n n n n b a b a +-∞→lim 。
)3
21(lim +-∞→n n n 13
23
443lim +++∞→+-n n n n n 求解指数型极限时,分子、分母同时除以分子、分母各项中底数绝对值最大的项的一个最高次幂,使得分子、分母中能出现n q (|q|<1)从而利用)1|(|0lim <=∞→q q n
n 求解。
讨论无限问题:
判断43页2.
)23741(lim 2222n
n n n n n -++++∞→K 是不是和上题相同,结果也是0呢 请做44页练习。
括号内每一项虽然都有极限,但括号内有有n 项,当n 趋向于无穷大时,括号内的项数不是有限的,因此不能直接利用和的极限性质,而应先求出括号内n 项的和,使其变成一个式子,再用性质求极限。
4. 最后我们来小结一下今天的内容:运算性质必须满足极限都存在、有限项;。