第十届华杯赛决赛小学组试题及解答

合集下载

华杯赛数学竞赛试题及答案

华杯赛数学竞赛试题及答案

华杯赛数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若一个数的平方根是4,那么这个数是:A. 16B. -16C. 8D. 42. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π4. 一个数的立方是-64,这个数是:A. -4B. 4C. -2D. 25. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是6. 以下哪个数是无理数?A. 3.1416B. 0.33333(无限循环)C. πD. 根号2二、填空题(每题5分,共20分)1. 一个数的平方是25,那么这个数是______。

2. 一个数的倒数是1/4,那么这个数是______。

3. 如果一个数的立方根是2,那么这个数是______。

4. 一个数的绝对值是10,那么这个数可能是______。

三、解答题(每题10分,共50分)1. 一个长方体的长、宽和高分别是8厘米、6厘米和5厘米,求这个长方体的体积。

2. 一个圆的半径是7厘米,求这个圆的周长和面积。

3. 一个直角三角形的两条直角边分别为9厘米和12厘米,求这个直角三角形的斜边长度。

4. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。

求这个数列的第10项。

答案一、选择题1. A2. A3. B4. A5. C6. C二、填空题1. ±52. 43. 84. ±10三、解答题1. 长方体的体积 = 长× 宽× 高= 8 × 6 × 5 = 240 立方厘米。

2. 圆的周长= 2πr = 2 × π × 7 = 14π 厘米,面积= πr² = π × 7² = 49π 平方厘米。

3. 直角三角形的斜边长度= √(a² + b²) = √(9² + 12²) =√(81 + 144) = √225 = 15 厘米。

“华杯赛”赛前训练

“华杯赛”赛前训练

“华杯赛”赛前训练模拟试题小学组决赛卷(五)一、填空题1、在下列分数中,分数值最大的一个与分数值最小的一个的乘积是 。

51,1017,6112,611,712,296 2、有红、蓝、白三颜色的袜子各三只,如蒙上眼睛拿这些袜子,为保证拿到两双(每双颜色要相同)袜子,至少要拿 只。

3、首位是8,其余各位数字都不相同,并能被9整除的七位数中,最小的是 。

4、学校商店出售每支5角的铅笔,很少有人买,但经过降价,一下子全部库存铅笔都卖光,共卖得31.93元,问库存 支这种铅笔,每支降价 元。

5、请把1~9这九个不同的数字填在方框里(如右图),使加法和乘法两个算式都成立。

其中有3个数字的位置已填好,请你填上其它数字。

6、小猫咪咪第一天逮了一只老鼠,第二天逮了两只老鼠,它每天逮的老鼠都比前一天多一只,咪咪前后十天一共逮了 只老鼠。

7、5□5□5□5□5,请在□中填入“+”、“-”、“×”、“÷”四个符号(每个符号只填一次),组成一个算式,在各种各样的填法组成的算式中,算式结果的最大值是 。

二、解答题1、五个大球与三个小球共重42克,五个小球与三个大球共重38克,则大球与小球各重多少克?2、计算下列之值:1999×-1998×3、王强做算术题,原题是“某数”除以7然后加72,由于他为粗心,除法做成乘法,加法做成减法,可是答还是对的。

那么该数是多少?4、有一个天平,只有5克和30克砝码各一个,现在要把300克的盐分成3等份。

问最少需要用天平称几次?如何称?5、设N 等于五个连续奇数的乘积,N 的末位数字是多少?6、仓库里有一批8米长的钢筋,现在要截出3米长的钢筋根,2米长的钢筋80根,那么最少要用多少根8米长的钢筋?7、体育课小组同学单打乒乓球比赛,小组长交来每人各打几场的统计数字。

甲3场,乙5场,丙4场,丁4场,另外两名同学一个打了2场,另一个打了5场,这个统计数字正确吗?8、48名少先队员选中队长,候选人是甲、乙、丙三人,开票中途累计,甲得13票,乙得10票,丙得7票,得票最多的人当选,问以后甲至少再得多少票才能当选?。

小学华杯赛试题及答案

小学华杯赛试题及答案

小学华杯赛试题及答案【篇一:各届华杯赛真题集锦-含答案哦!】届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则a、b、c处填的数各是多少? 4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?【篇二:六年级华杯赛奥数竞赛模拟题(30套)】=txt>一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2 姓名得分一、填空题:1.用简便方法计算下列各题:(3)100+99-98-97+?+4+3-2-1=______.2.上右面算式中a代表_____,b代表_____,c代表_____,d代表_____(a、b、c、d各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.6.如图中,能看到的方砖有______块,看不到的方砖有______块. 7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若p点在岸上,则a点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点b,他脱鞋的次数与穿鞋的次数和是奇数,那么b点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,1 5 6 7 8 9 10 11 12 13 14 152025 2627 28 29 3035 40 41 42 43 44 4546 47 48 49 50 55 56 57 58 59 603.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3 姓名得分一、填空题:2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5. 2.如图,把四边形abcd的各边延长,使得ab=ba′,bc=cb′cd=dc′,daad′,得到一个大的四边形a′b′c′d′,若四边形abcd的面积是1,求四边形a′b′c′d′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4 姓名得分【篇三:2015小高华杯赛答案及解析】=txt>决赛试题b(小学高年级组)一、填空题(每小题10份,共80分)1. 计算:57.6?81845?28.8?5?14.4?80?1212?________.【难度】★【考点】计算:提取公因数【答案】121【解析】原式?57.6?818415?28.8?5?14.4?80?12228.8165?28.8?1845?14.4?80?121228.82005?14.4?80?121228.84014.4240121212122. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题【答案】13【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁?60?20?15?12?13(棵)3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.【难度】★★【考点】行程:时钟问题【答案】106【解析】4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数【答案】122【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★【考点】计数:组合计数【答案】7【解析】用a1,a2,a3,a4,a5,a6,a7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7?2?2?7条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.a2必与两个点连接虚线,不妨记为a1,a3,而a3必然再与一个点连接虚线,记为a4;a4虚线连接a5,否则剩下3个点互为敌国关系;a5虚线连接a6,否则剩下两个点无法由2条虚线连接;a6虚线连接a7,最后a7只能虚线连接a1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表a1,a2,a3,a4,a5,a6,a7)6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】设其中最小的四位数为abcd,一共可组成4?3?2?1?24个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为6??a?b?c?d??1111?106656,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形abc的面积为1,do:ob?1:3,eo:oa?4:5,则三角形doe的面积为________.【难度】★★★★【考点】几何:等积变形【答案】11135【解析】ye12xab设三角形doe的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形dce的面积为y,则有ceyy?4x?5 be?4x?12x?x12x?15x,得y?14411x,则三角形doe的面积为4?114?5?12?15?135.118. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合【答案】4【解析】设三个数的个位分别为a,b,c⑴如果a,b,c都相等,则只能都为0;⑵如果a,b,c中有两个相等,①a,a,c且a?c,必有c?a?10?a,则c?10,与c为数字矛盾;②a,a,c且a?c,则有c?a?a,a?a?10?c,则a?5,c?0;⑶如果a,b,c都不相等,设a?b?c,则c?b?10?a,c?a?10?b,则c?10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾2位为a5,b5,则a5?b5?100ab?50?a?b??25,若?a?b?为奇数,则乘积末尾3位为75;若?a?b?为偶数则乘积为25,在乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】原数的数字和为1?2?3??9?1?0?1?1?48,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.x4y15【难度】★★★【考点】几何:长方体正方体【答案】x?3,y?12。

华杯赛试题及答案

华杯赛试题及答案

华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 中国数学奥林匹克竞赛B. 中国数学华罗庚杯竞赛C. 中国数学华杯赛D. 全国青少年数学华罗庚杯竞赛答案:D2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华杯赛的试题难度级别是?A. 初级B. 中级C. 高级D. 专家级答案:C二、填空题(每题5分,共20分)1. 华杯赛的全称是________。

答案:全国青少年数学华罗庚杯竞赛2. 华杯赛的举办周期是________。

答案:每年一次3. 华杯赛的参赛对象是________。

答案:初中生4. 华杯赛的试题难度级别是________。

答案:高级三、解答题(每题10分,共30分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的第10项。

答案:该等差数列的公差为3,所以第10项为2 + 3 * (10 - 1) = 31。

2. 一个圆的半径为5,求该圆的面积。

答案:圆的面积公式为πr²,所以面积为π * 5² = 25π。

3. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。

答案:根据勾股定理,斜边长度为√(3² + 4²) = 5。

四、证明题(每题10分,共30分)1. 证明:如果一个三角形的两边相等,则这个三角形是等腰三角形。

答案:设三角形ABC中,AB = AC,根据等腰三角形的定义,如果一个三角形有两边相等,则这个三角形是等腰三角形,所以三角形ABC是等腰三角形。

2. 证明:如果一个四边形的对角线互相垂直平分,则这个四边形是菱形。

答案:设四边形ABCD中,对角线AC和BD互相垂直平分,根据菱形的定义,如果一个四边形的对角线互相垂直平分,则这个四边形是菱形,所以四边形ABCD是菱形。

第十届到十四届华罗庚金杯试题

第十届到十四届华罗庚金杯试题

第十届华杯赛初赛试题(2005年3月19日)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家哥伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九. 2004年的冬至为12月21日,2005年的立春是2月4日。

问立春之日是几九的第几天?3.右图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形。

问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶。

若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米。

求三项的总距离。

6.如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。

其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问:这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示。

若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组。

问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本。

如果按批发价购买,每本便宜2元,恰好多买4本。

问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈。

问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升。

请你观察第12分钟时吊瓶图像中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”。

现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°。

华杯赛小学组集训题:综合训练8(含答案)

华杯赛小学组集训题:综合训练8(含答案)

华杯赛小学组集训题:综合训练861.有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?62.小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?63.同样走 100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?64.一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.65.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B 地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?66.甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C左边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?68.小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?69.小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.70.小明从家到学校时,前一半路程步行后一半路程乘车,从学校回家时,前1/3时间乘车,后2/3时间步行,结果去学校的时间比回家所用的时间多2小时,已知小明步行的速度为每小时5千米,乘车速度为每小时15千米,那么小明从家到学校的路程是()千米?答案解析(仅供参考)61.108062.48*2+16=112(分)速度比:16:112=1:7小名走完一个全程,李刚走完7个全程,所以共追上3次63.10864.11265.乙丙时间比:40:50=4:5甲丙时间比:60:80=3:4甲乙时间比:15:1610/(16-15)*15=150(分)66.1867,A8,D2,B1,C5,E468.4469.300,2070.150。

华杯赛数学试题及答案

华杯赛数学试题及答案

华杯赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于它本身,这个数可能是?A. 0B. 1C. 2D. 3答案:A、B3. 如果一个三角形的两边长分别为3和4,那么第三边的长度x满足的条件是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 2 < x < 6答案:C4. 一个圆的半径是2,那么它的周长是多少?A. 4πB. 6πC. 8πD. 10π答案:C5. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:无正确选项,因为所有选项都可以化简。

6. 如果一个数列的前三项是2, 4, 6,那么第四项是多少?A. 8B. 10C. 12D. 14答案:A7. 一个长方体的长、宽、高分别是3cm、4cm、5cm,那么它的体积是多少?A. 60cm³B. 120cm³C. 180cm³D. 240cm³答案:A8. 一个等差数列的前三项是2, 5, 8,那么第六项是多少?A. 14B. 15C. 16D. 17答案:B9. 一个等比数列的前三项是2, 6, 18,那么第四项是多少?A. 54B. 42C. 24D. 12答案:A10. 一个数的立方等于它本身,这个数可能是?A. 0B. 1C. -1D. 以上都是答案:D二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 如果一个数的绝对值是4,那么这个数可能是________或________。

答案:4或-413. 一个圆的直径是10,那么它的面积是________。

答案:25π14. 如果一个三角形的内角和是180度,其中一个角是90度,另外两个角的度数之和是________。

华赛杯试题及答案六年级

华赛杯试题及答案六年级

华赛杯试题及答案六年级华赛杯试题及答案(六年级)一、选择题(每题2分,共10分)1. 下列哪个数是最小的自然数?A. 0B. 1C. 2D. 3答案:A2. 一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

那么,一个数的倍数的个数是:A. 有限的B. 无限的C. 不确定D. 没有答案:B3. 一个长方体的长、宽、高分别为3cm、2cm、1cm,它的体积是:A. 6立方厘米B. 12立方厘米C. 18立方厘米D. 24立方厘米答案:A4. 一个数除以真分数,商一定大于这个数。

这个说法是:A. 正确B. 错误C. 不确定D. 无法判断答案:B5. 一个数的平方等于它本身,这个数可能是:A. 0B. 1C. 0和1D. 以上都不是答案:C二、填空题(每题2分,共20分)6. 一个数的最小倍数是它本身,最大因数也是它本身,这个数是________。

答案:17. 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;而一个数的倍数的个数是________。

答案:无限的8. 一个长方体的长、宽、高分别为3cm、2cm、1cm,它的表面积是________平方厘米。

答案:229. 一个数除以真分数,商一定大于这个数,这个说法是________的。

答案:错误10. 一个数的平方等于它本身,这个数可能是________。

答案:0和1三、解答题(每题10分,共30分)11. 一个长方体的长、宽、高分别为4cm、3cm、2cm,求它的体积和表面积。

解:体积 = 长 ×宽 ×高 = 4cm × 3cm × 2cm = 24立方厘米表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高) = 2 × (4cm × 3cm + 4cm × 2cm + 3cm × 2cm) = 52平方厘米答案:体积是24立方厘米,表面积是52平方厘米。

第十届华杯赛口试试题及解案

第十届华杯赛口试试题及解案

第十届华杯赛口试试题题1.(共答题1)粤++=10在上面的算式中,粤、惠、州、华、罗、庚、金、杯、赛代表1~9这九个不同的数字。

请给出一种填数法,使得等式成立。

题2.(群答题1)跳绳的时候,可以认为绳子的中间点在同一个圆周上运动。

如果小光用0.5秒跳一个“单摇”,用0.6秒跳一个“双摇”,则跳“单摇”时绳中间点的速度和跳“双摇”时绳中间点的速度之比是多少?(说明:“单摇”是脚离地面一次,绳子转一圈;“双摇”是脚离地面一次,绳子转两圈。

) 题3.(必答题A1)如图,阴影正方形的顶点分别是大正方形EFGH各边的中点,分别以大正方形各边的一半为直径向外作半圆,再分别以阴影正方形的各边为直径向外作半圆,形成8个“月牙形”。

这8个“月牙形”的总面积为5平方厘米,问大正方形EFGH的面积是多少平方厘米?题4.(必答题A2)两个自然数a,b的最小公倍数等于50,问a+b有多少种可能的数值?题5.(必答题A3)如图所示,三角形ABC中,点X,Y,Z分别在线段AZ,BX,CY上,且YZ=2ZC,ZX =3XA,XY=4YB,三角形XYZ的面积等于24,求三角形ABC的面积。

题6.(必答题A4)你能在3×3的方格表(如图)中填入彼此不同的9个自然数(每个格子里只填一个数),使得每行、每列及两条对角线上三个数的乘积都等于2005吗?若能,请填出一例,若不能,请说明理由。

题7.(必答题A5)已知长方形的长为8,宽为4,将长方形沿一条对角线折起压平,如图所示。

求重叠部分(灰色三角形)的面积。

题8.(必答题A6)开始有三个数为1,1,1,每次操作把其中的一个数换成其他两数的和。

问经过10次操作后所得的三个数中,最大数的最大可能值是多少?题9.(群答题2)中国古代的“黑火药”配制中硝酸钾、硫磺、木炭的比例为15∶2∶3。

今有木炭50千克,要配制“黑火药”1000千克,还需要木炭多少千克?题10.(群答题3)图中的大正方形ABCD的面积是18平方厘米,灰色正方形MNPQ的边MN在对角线BD 上,顶点P在边BC上,Q在边CD上。

第十届华杯赛决赛小学组试题及答案详解

第十届华杯赛决赛小学组试题及答案详解

一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:公元历2005 1985 1910希伯莱历5746伊斯兰历1332印度历19272.计算:① ×+÷ = ();②= ()。

3.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。

一个字节由8个“位”组成,记为B。

常用KB,MB等记存储空间的大小,其中1KB=1024B,1MB=1024KB。

现将240MB的教育软件从网上下载,已经下载了70%。

如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。

(精确到分钟)4.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。

如果它们满足等式ab+c=2005,则a+b+c=()。

5.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是元,如果改用乙等油漆,每平方米的费用降低为元,一个集装箱可以节省元,则集装箱总的表面积是()平方米,体积是()立方米。

7.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。

现在将这列自然数排成以下数表:0 3 8 15 …1 2 7 14 …4 5 6 13 …9 10 11 12 ………………规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。

8.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是()平方厘米。

图2二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。

“华杯赛”赛前训练模拟题(小学组决赛卷二)

“华杯赛”赛前训练模拟题(小学组决赛卷二)

“华杯赛”赛前训练模拟题(小学组决赛卷2)1、 找规律填数:31,21,32,43,98, ( ) 2、 将1至9这9个数排成一行,使得第二个数能整除第一个数,第三个数能整除前两个数的和,第四个数能整除前3个数的和……第九个数能整除前8个数的和.如果第一个数是6,第四个数是2,第五个数是1,请问排在最后的数是几?3、 从1开始,依次写出1234…20032004,这个多位数除以9的余数是多少?4、 某种商品,如果减少定价的5%卖出,可得6250元的利润;如果减去定价的25%卖出,就会亏损1750元.问这种商品的购入价是多少元?5、 李师傅计划做一批零件,如果他每小时多做10个,可提前1小时完成任务;如果他每小时再多做20个,则又可提前1小时完成任务.问李师傅计划做多少个零件?6、 如图所示,在三角形ABC 中,D 为BC 的中点,AE CE 31,AD 和BE 相交F 点,已知三角形ABC 的面积为42平方厘米,求三角形BDF 的面积.7、上表中“全月应纳税所得额”是从月工资薪金收入中减去800元后的余额,它与相应税率的乘积就是应交的税款数.(1) 李医生在2000年六月份的工资薪金收入为2860元,这个月他应纳税款是多少元?(2) 赵先生在2000年五月份共交纳了1185元个人工资薪金收入所得税,问这个月赵先生的工资薪金收入共多少元?8、如图所示,从A 到B ,步行走粗线道ADB 需要32分钟,乘车细线道A →C →D →E →B 需22.5分钟.已知D →E →B 段的距离是D →B 段距离的4倍,A →C→D 段的距离是A →D 段的距离的5倍,车速是步行速度的6倍,问先从A 至D 步行,再从D →E →B 乘车所需要的总时间是多少分钟?9、某省博物馆早晨7∶30开门,晚上8∶30关门.某天下午在博物馆门口有一少年问一长者:“现在是几点?”长者回答说:“从开门到现在时间的21,加上现在到关门时间的31,就是现在的时间.”问现在的时间是下午几点?。

六年级华赛杯试题及答案

六年级华赛杯试题及答案

六年级华赛杯试题及答案一、选择题(每题5分,共50分)1. 下列哪个数是质数?A. 15B. 23C. 35D. 49答案:B2. 一个长方体的长、宽、高分别为5厘米、4厘米和3厘米,那么它的体积是多少立方厘米?A. 20B. 30C. 60D. 1203. 一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。

那么,一个数的倍数个数是:A. 有限的B. 无限的C. 唯一的D. 无法确定答案:B4. 如果一个三角形的两边长分别为3厘米和5厘米,那么第三边长可能是:A. 1厘米B. 2厘米C. 4厘米D. 8厘米5. 一个圆的周长是6.28厘米,那么它的直径是:A. 1厘米B. 2厘米C. 3厘米D. 4厘米答案:B6. 一个数除以1/4等于这个数乘以:A. 1/4B. 4C. 1/2D. 2答案:B7. 一个数的30%是15,那么这个数是:A. 50B. 30C. 45D. 60答案:A8. 一个数的倒数是1/5,那么这个数是:A. 5B. 1/5C. 1/3D. 3答案:A9. 一个数的1/4加上它的1/3等于1/2,那么这个数是:A. 1/2B. 1C. 3/4D. 4/5答案:B10. 一个数的2/3等于另一个数的3/4,如果这个数是18,那么另一个数是:A. 16B. 24C. 12D. 20答案:B二、填空题(每题5分,共30分)11. 一个数的平方等于36,那么这个数是______。

答案:6或-612. 一个数的1/5加上2等于这个数的1/3,那么这个数是______。

答案:1013. 一个圆的半径是4厘米,那么它的面积是______平方厘米。

答案:50.2414. 一个等腰三角形的底边长是6厘米,如果它的周长是18厘米,那么它的腰长是______厘米。

答案:615. 一个数的3/4等于另一个数的2/3,如果这个数是12,那么另一个数是______。

答案:916. 一个数的2倍加上3等于这个数的3倍减去5,那么这个数是______。

第十届华杯赛决赛试题答案

第十届华杯赛决赛试题答案

第十届华杯赛决赛试题答案2008-04-19 22:37分类:华杯赛字号:大大中中小小第十届华杯赛决赛试题一、填空(每题10分,共80分)12.计算:①18.3×0.25+5.3÷0.4-7.13 = ();②= ()。

3.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。

一个字节由8个“位”组成,记为B。

常用KB,MB等记存储空间的大小,其中1KB=1024B,1MB=1024KB。

现将240MB的教育软件从网上下载,已经下载了70%。

如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。

(精确到分钟)4.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。

如果它们满足等式ab+c=2005,则a+b+c=()。

5.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。

7.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。

现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。

8.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是()平方厘米。

图2二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。

请仔细观察这个美丽的图案,并且回答风筝形砖的四个内角各是多少度?10.有2、3、4、5、6、7、8、9、10和11共10个自然数,①从这10个数中选出7个数,使这7个数中的任何3个数都不会两两互质;②说明从这10个数中最多可以选出多少个数,这些数两两互质。

第十届总决赛小学组二试x.doc

第十届总决赛小学组二试x.doc

第十届华杯赛总决赛二试试题及解答解答题(共6题,每题10分,写出解答过程)1.如右图,四边形ABCD中,对角线AC和BD 交于O点。

已知:AO=1,并且,那么OC的长是多少?2.将化成小数等于0.5,是个有限小数;将化成小数等于0.090…,简记为,是纯循环小数;将化成小数等于0.1666……,简记为,是混循环小数。

现在将2004个分数,,,…,化成小数,问:其中纯循环小数有多少个?3.计算。

4.表示一个十进制的三位数,若等于由a,b,c三个数码所组成的全体两位数的和,写出所有满足上述条件的三位数。

5.由,可以断定26最多能表示为3个互不相等的非零自然数的平方和,请你判定360最多能表示为多少个互不相等的非零自然数的平方之和?6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多2块,第二名小朋友的糖果比第三名小朋友的糖果多2块,…,即前一名小朋友总比后一名小朋友多2块糖果。

他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友2块糖果,第二名小朋友给第三名小朋友4块糖果,…,即每一名小朋友总是将前面传来的糖果再加上自己的2块传给下一名小朋友,当游戏进行到某一名小朋友收到上一名小朋友传来的糖果但无法按规定给出糖果时,有两名相邻小朋友的糖果数的比是13∶1,问最多有多少名小朋友?参考答案:1. OC的长是.2.其中纯循环小数有801个.3. 原式=.4.共有三个三位数满足条件,它们是:132,264,396.5. 360最多能表示为9个互不相等的非零自然数的平方之和,表达式是:.6.最多有25名小朋友.1.【解】△AOB与△COB等高,所以△AOB的面积∶△COB的面积=AO∶OC,又△AOD与△COD等高,所以△AOD的面积∶△COD的面积=AO∶OC,△ABD=△AOB+△AOD,△CBD=△COB+△COD所以△ABD的面积∶△CBD的面积=AO∶OC,已知△ABD的面积∶△CBD的面积=3∶5所以AO∶OC=3∶5,OC=AO,AO=1,OC=.2.【解】凡是分母的质因素仅含2和5的,化成小数后为有限小数,凡是分母的质因素不含2和5的,化成小数后为有限小数后为纯循环小数,所以本题实际上是问从2到2005的2004个数中,不含质因数2或5的共有多少个.这2004个数中,含质因数2的有2004÷2=1002个,含质因数5的有2005÷5=401个,既含2又含5的有2000÷10=200个,所以可以化成纯循环小数的有2004-1002-401+200=801个. 3.【解】原式==×()=4.【解】即求满足a×100+b×10+c=(a+b+c)×10×2+(a+b +c)×2=22×(a+b+c)的a、b、c.上式为:100a+10b+c=22a+22b+22c,也即:78a-12b-21c=0因为12×9+21×9=297,297÷78<4,所以a仅可能为1、2、3,如果a=1,即78=12b+21c,c=,c只需用1、2、3试验,经验证b=3,c=2符合条件;如果a=2,即156=12b+21c,c=,经验证b=6,c=4,符合条件;如果a=3,即234=12b+21c,c=,经验证b=9,c=6,符合条件.所以,共有三个三位数满足条件,它们是:132,264,396. 5.【解】将1到18的平方列表:要想得到尽量多的数的平方和,尽量取较小的数,从开始:=385,已经大于360了,刚好比360大25=,所以360最多可以表示为9个互不相等的非零自然数的平方和,即:360=6.【解】设有n名小朋友,共传k圈(最后一名传k-1圈),中断时各人手中糖数为a. 先研究a的取值,0中断(最后一名手中无糖可传)时,=2nk-2,=0,=2n-4;1中断(最后一名手中只有一块糖)时,=2nk-1,=1,=2n-3.分六种情况讨论:(1)0中断,∶=13∶1,即=,显然无解.(2)0中断,∶=13∶1,即==> 26n-52=2nk-2 => n (13-k)=25,可得n=25,k=12(n=5,k=8舍去)(3)0中断,∶=13∶1,即==> 26nk-26=2n-4 =>n (13k-1)=11,无整数解.(4)1中断,,∶=13∶1,即==> 2nk-1=13 => nk =7,可得n=7,k=1(n=1,k=7舍去)(5)1中断,∶=13∶1,即==> 26n-39=2nk-1 =>n (13-k)=19,可得n=19,k=12(6)1中断,∶=13∶1,即==> 26nk-13=2n-3 =>n (13k-1)=5,无整数解.由以上分析可得,最多有25位小朋友.美文欣赏1、走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。

华杯赛试题及答案六年级

华杯赛试题及答案六年级

华杯赛试题及答案六年级华杯赛试题及答案(六年级)一、选择题(每题5分,共20分)1. 一个数的1/3等于另一个数的1/4,那么这个数与另一个数的比是:A. 3:4B. 4:3C. 1:1D. 无法确定答案:B2. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,那么它的体积是:A. 480立方厘米B. 400立方厘米C. 360立方厘米D. 480立方厘米答案:C3. 一个数的1/2与另一个数的1/3相等,这两个数的比是:A. 2:3B. 3:2C. 1:1D. 无法确定答案:B4. 一个数的3倍加上这个数的2倍等于45,这个数是多少?A. 9B. 15C. 10D. 5答案:B二、填空题(每题5分,共30分)5. 一个圆的半径是5厘米,那么它的周长是________厘米。

答案:31.46. 一个数的5倍是30,那么这个数是________。

答案:67. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是________平方厘米。

答案:2368. 一个数的3/4等于另一个数的1/2,那么这个数与另一个数的比是________。

答案:2:39. 一个数的2/3等于24,那么这个数是________。

答案:3610. 一个数的4倍减去这个数等于36,那么这个数是________。

答案:12三、解答题(每题15分,共45分)11. 一个长方体的长、宽、高分别是12厘米、10厘米和8厘米,求它的体积和表面积。

解答:长方体的体积 = 长 ×宽 ×高 = 12 × 10 × 8 = 960立方厘米。

长方体的表面积 = 2 ×(长 ×宽 + 长 ×高 + 宽 ×高) = 2 ×(12 × 10 + 12 × 8 + 10 × 8) = 2 × (120 + 96 + 80) = 2 × 296 = 592平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十届华杯赛决赛小学
组试题及解答
Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
第十届华杯赛决赛小学组试题及解答
一、填空(每题10分,共80分)
1.下表中每一列为同一年在不同历法中的年号,请完成下表:
2.计算:
① ×+÷ = ( ); ②= ( )。

3.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。

一个字节由8个“位”组成,记为B。

常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。

现将240MB的教育软件从网上下载,已经下载了70%。

如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。

(精确到分钟)
4.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。

如果它们满足等式ab+c=2005,则a+b+c=( )。

5.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是元,如果改用乙等油漆,每平方米的费用降低为元,一个集装箱可以节省元,则集装箱总的表面积是()平方米,体积是()立方米。

7.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。

现在将这列自然数排成以下数表:
规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。

8.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是()平方厘米。

图2
二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。

请仔细观察这个美丽的图案,并且回答风筝形砖的四个内角各是多少度
10.有2、3、4、5、6、7、8、9、10和11共10个自然数,
①从这10个数中选出7个数,使这7个数中的任何3个数都不会两两互质;
②说明从这10个数中最多可以选出多少个数,这些数两两互质。

11.一个直角三角形的三条边的长度是3、4、5,如果分别以各边为轴旋转一周,得到三个立体。

求这三个立体中最大的体积和最小的体积的比。

12.A码头在B码头的上游,“2005号”遥控舰模从A码头出发,在两个码头之间往返航行。

已知舰模在静水中的速度是每分钟200米,水流的速度是每分钟40米。

出发20分钟后,舰模位于A码头下游960米处,并向B码头行驶。

求A码头和B码头之间的距离。

三、解答下列各题,要求写出详细过程(每题15分,共30分)13.已知等式其中A,B是非零自然数,求A+B的最大值。

14.两条直线相交,四个交角中的一个锐角或一个直角称为这两条直线的“夹角”(见图4)。

如果在平面上画L条直线,要求它们两两相交,并且“夹角”只能是15°、30°、45°、60°、75°、90°之一,问:
(1)L的最大值是多少
(2)当L取最大值时,问所有的“夹角”的和是多少
一、填空
1. 145 3. 10005与10020
二、解答题
4. 红色八边形的面积是
5. 至少有25名小朋友
6. 甲到过山顶9次
1.【解】甲跑1000米,乙跑了950米,乙跑1000米,丙跑900米,
所以甲跑1000米时,丙跑了950×=855(米),丙距终点1000-855=145(米).
2.【解】设中间数为n则(n-2)×n×(n+2)=2***3,又知(n -2)×(n+2)<,而=19683,所以,n应大于27,而
7×9×1=63,故最小数应为27,27×29×31=24273,符合题意,并且是唯一解.
3.【解】能被15整除的最小5位数是10005,10005+15=10020,按照题目所给的操作,只需将这两个五位数取为10005和10020,则经过1次操作,较小的数变为15,较大的数变为10005,再经若干此次操作,较小的数一直不变,较大的数每次减少15,直到较大的数变为30,再经一次操作两个数都变成了15.
4.【解】如图,易知蓝边正方形面积为,△ABD面积为,△BCD面积为,
所以△ABC面积为-=,可证AE∶EB=1∶4,
黄色三角形面积为△ABC的,等于,由此可得,所求八边形的面积是:.
至此,我们对各部分的面积都已计算出来,如下图所示.
【又解】设O 为正方形中心(对角线交点),连接OE 、OF ,分别与AF 、BG 交于M 、N ,设AF 与EC 的交点为P ,连接OP ,△MOF 的面积为
正方形面积的,N 为OF 中点,△OPN 面积等于△FPN 面积,又△OPN
面积与△OPM 面积相等,所以△OPN 面积为△MOF 面积的,为正方形面积的
,八边形面积等于△OPM 面积的8倍,为正方形面积的.
5.【解】不超过15元可购买商品的方法有:
共12种方法,所以如果有25人,必然会有3人购买的商品完全相同.答:至少有25名小朋友.
6.【解】不妨设想为在一条直线上的运动,将上山的路程看作下山路程的倍,并设AC=1,则CB=2,下山路程=2,将上山、下山一个全程看作5,重复在一条直线上进行.如下图:
B点表示山顶,甲到达山顶所走的路程可以表示为:5×n-2(其中n 为整数,表示到达山顶的次数),此时乙所走的路程为(5×n-2)×,乙处于的位置为(5×n-2)×÷5=(5×n-2)÷6的余数,设此余数为k,当0<k≤1时,乙刚好处于AC段.因为所求为甲第二次在山顶上看到乙在AC段上爬,可以从n=1开始,依次求出,列表如下:
即当甲第二次在山顶上看到乙在AC段上爬时(包括此时),甲到过山顶9次.。

相关文档
最新文档