大一第一学期期末高等数学(上)试题及答案
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷及答案详解大一高等数学期末考试试卷(一)一、选择题(共12分)x,2,0,ex,fx(),1. (3分)若为连续函数,则的值为( ). a,axx,,,0,(A)1 (B)2 (C)3 (D)—1fhf(3)(3),,,2。
(3分)已知则的值为( ). limf(3)2,,h,02h1(A)1 (B)3 (C)-1 (D) 2,223. (3分)定积分的值为( )。
1cos,xdx,,,2(A)0 (B)—2 (C)1 (D)2 4。
(3分)若在处不连续,则在该点处()。
xx,fx()fx()0(A)必不可导(B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)23x1((3分)平面上过点,且在任意一点处的切线斜率为的曲线方程(0,1)(,)xy为。
124(sin)xxxdx,,2. (3分) . ,,112xlimsin3. (3分) = 。
x,0x324. (3分) 的极大值为。
yxx,,23三、计算题(共42分)xxln(15),lim。
1. (6分)求 2x,0sin3xxe,y,,2. (6分)设求y. 2x,12xxdxln(1)。
,3。
(6分)求不定积分,x,3,1,x,,fxdx(1),,4。
(6分)求其中()fx,1cos,x,,0x,1,1.ex,,,1yxt5. (6分)设函数由方程所确定,求 edttdt,,cos0yfx,()dy.,,00 26。
(6分)设求 fxdxxC()sin,,,fxdx(23)。
,,,n3,,7。
(6分)求极限 lim1。
,,,,,nn2,,四、解答题(共28分),1. (7分)设且求 fxx(ln)1,,,f(0)1,,fx()。
,,,,2。
(7分)求由曲线与轴所围成图形绕着轴旋转一周所得旋xxyxxcos,,,,,,22,,转体的体积。
323. (7分)求曲线在拐点处的切线方程. yxxx,,,,324194. (7分)求函数在上的最小值和最大值。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷(一)一、选择题(共12分) 1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分) 1. (6分)求20ln(15)lim.sin 3x x x x →+2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x xe x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程0cos 0y xt e dt tdt +=⎰⎰所确定,求.dy6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、 填空题(每小题3分,共18分) 1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y.3. =⎪⎭⎫ ⎝⎛+∞→xx x x 21lim.4.曲线xy 1=在点⎪⎭⎫ ⎝⎛2,21处的切线方程为 . 5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 . 6.=+⎰dx x x 21arctan . 二、 单项选择题(每小题4分,共20分) 1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ; () C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-; () C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、 计算(每小题6分,共36分) 1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx x x 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C e x dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → e1.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为1-=x y . (3)已知xxxeef -=')(,且0)1(=f , 则=)(x f =)(x f 2)(ln 21x .(4)曲线132+=x x y 的斜渐近线方程为 .9131-=x y(5)微分方程522(1)1'-=++y y x x 的通解为.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点.(C) 1x 是极值点.,())(,22x f x(D) ())(,11x f x 是拐点,2x 是极值点图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .x y y y x '''--= (B )23e .xy y y '''--=(C )23e .x y y y x '''+-= (D )23e .xy y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ). (A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B) ()().=⎰df x f x (C) [()]().d f x dx f x =⎰ (D) ()().fx dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分). 1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分=x x x x x ln 1ln lim1+-→ 2分= xx x x x x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分) .sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222(1) =2arctan 2 =2d x C =----------+------+---------⎰⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分)35)1(323323=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2122312*20101*2-56012,31.1()111.21(1)1x x x x r r r r e C e y x b x b e b b y x x e +=----------==----------+-------=+-----------=-=-=-------------解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图0220322203*********RRP g R x g R x g R ρρρρ=---------=--------=--------=----------------⎰⎰)分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aabab ba axf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D. (1) (3) 求D 的面积A;(2) (4) 求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+= 1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为.1x e y =1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y 2分(2) 切线xe y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1x e x ≥+.解法一:2112xe e x x xξ=++≥+解法二:设() 1.x f x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分 当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分 所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷(一)一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为( ).(A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= .4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1.(6分)求2ln(15)lim.sin 3x x x x→+2. (6分)设y =求.y '3.(6分)求不定积分2ln(1).x x dx +⎰ 4.(6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0yxte dt tdt +=⎰⎰所确定,求.dy 6.(6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1.(7分)设(ln )1,f x x '=+且(0)1,f =求().f x2.(7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭及x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4.(7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、填空题(每小题3分,共18分)1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y.3. =⎪⎭⎫⎝⎛+∞→xx x x 21lim.4.曲线xy 1=在点⎪⎭⎫ ⎝⎛2,21处的切线方程为 .5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 . 6.=+⎰dx xx 21arctan . 二、单项选择题(每小题4分,共20分)1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ;() C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-;() C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx x x 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C ex dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → =_____e 1________.(2)曲线x x y ln =上及直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且)1(=f , 则=)(x f ______=)(x f 2)(ln 21x _____ .(4)曲线132+=x x y 的斜渐近线方程为 _______.9131-=x y __(5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点. (C) 1x 是极值点.,())(,22x f x 是拐点(D) ())(,11x f x 是拐点,2x 是极值点. 图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .xy y y x '''--= (B )23e .xy y y '''--= (C )23e .xy y y x '''+-=(D )23e .x y y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ).(A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B) ()().=⎰df x f x (C) [()]().d f x dx f x =⎰ (D) ()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分). 1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim1-+-→ 1分=x x x x x ln 1ln lim1+-→ 2分= x x x xx x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 及22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分).sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222 =2arctan 2 =2C =----------------+---------⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分). 1.(本题6分)解微分方程256xy y y xe '''-+=.212-56012,31r r r r +=----------==----------解:特征方程分特征解.分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------⎰⎰分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aab a b b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线及曲线x y ln =及x 轴围成平面图形D.(1) (3) 求D 的面积A;(2) (4)求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方xyy1程是).(1ln 000x x x x y -+= ----1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为 .1x e y =----1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y ----2分(2) 切线xe y 1=及x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =及x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+ 解法二:设() 1.xf x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1xe x ≥+。
大一上学期高数期末考试试题(五套)详解答案
2010级高等数学(上)A 解答一、填空题:(每题3分,共18分)(请将正确答案填入下表,否则不给分)1.已知极限01lim 2=⎪⎪⎭⎫⎝⎛--+∞→b ax x x x ,则常数b a ,的值分别是(空1)。
解:0x b a 1x x lim b ax 1x x x 1lim x 2x =⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ ⇒1-a=0⇒a=1⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=∞→∞→x 1x x lim ax 1x x lim b 2x 2x 1x111lim 1x x lim 1x x x x lim x x 22x -=+-=+-=⎪⎪⎭⎫ ⎝⎛+--=∞→∞→∞→ 或:01x b x )b a (x )a 1(lim b ax 1x x lim 2x 2x =⎪⎪⎭⎫⎝⎛+-+--=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ 所以1-a=0,a+b=0⇒a=1,b=-1。
或:⎪⎪⎭⎫⎝⎛++--+-=⎪⎪⎭⎫ ⎝⎛--+∞→∞→1x 1b ax 1x 1x lim b ax 1x x lim 2x 2x 01x 1)b 1(x )a 1(lim 1x 1b ax 1x lim x x =⎪⎭⎫ ⎝⎛+++--=⎪⎭⎫ ⎝⎛++---=∞→∞→ 所以1-a=0,1+b=0⇒a=1,b=-1。
2.函数xx x x x f 323)(23---=的第一类间断点是(空2)。
解:f(x)在x=3,0,-1处无定义,是间断点。
121)3x )(1x (x 3x lim x 3x 2x 3x lim)x (f lim 3x 233x 3x =-+-=---=→→→,x=3是第一类间断点。
∞=---=-→-→x3x 2x 3x lim)x (f lim 231x 1xx=-1是第二类间断点。
∞=---=→→x3x 2x 3x lim)x (f lim 230x 0xx=0是第二类间断点。
3.设函数)(x f 可导,)(1)(2x f x g +=,则)('x g =(空3)。
高数(大一上)期末试题及答案
高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
高数(大一上)期末试题及答案
第一学期期末考试试卷(1)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: . 一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(xe xf x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( )A 、等于0B 、等于1C 、等于eD 、不存在3、曲线xxe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e 4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101xdx C 、⎰+∞+02/31x dx D 、⎰+∞22ln xx dx5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( ) A 、)()(x g x f -<- B 、)()(x g x f '<'C 、)(lim )(lim 0x g x f xx xx →→< D 、⎰⎰<0000)()(x x dx x g dx x f三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xyy x 确定,求0|=x dy 。
大一第一学期期末高等数学(上)试题及答案
第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分) .d )1(22x x x ⎰+求3、(本小题5分) 求极限limarctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e ty y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分) .求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分) .d cos sin 12cos x x x x ⎰+求二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =22、(本小题3分) ⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分) 因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分) 原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞ '=--y e e x x 2122()驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值 15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222 =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题( 本 大 题10分 ) 证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 20=+→x x x 。
大一第一学期期末高等数学(上)试题及答案
(本小题5分)第一学期期末高等数学试卷、解答下列各题(本小题5分)x 3 12x 162x 3(本小题5分)求 x 2 2 dx. (1 x )(本小题5分)(本小题5分) 求-^dx. 1 x(本小题5分)求— 1 t 2 dt .dx 0(本小题5分)求 cot 6 x esc 4 xdx.(本小题5分)求-1 1 , 求 1 p cos dx. x x(本小题5分)设X e2t cost确定了函数y y e si nt(本小题5分)求'x 1 xdx .0 ■(本小题1、2、3、4、5、6、7、8、9、10、 11、 12、13、求函数 y 4 2xx 2的单调区间丫(本小题5分) sin x dx.求2 2 0 8 sin 2 x (本小题5分) 设 x(t) e kt(3cos t 4sin t),求 dx .设函数y y (x )由方程y 2 in y 2 x 6所确定,求史 dx (本大题共16小题, 总计80分)求极限 limx 2 9x 212x求极限 limarctan xx.1 arcsin xy(x),求乎dx14、 (本小题5分)求函数y 2e x e x 的极值15、 (本小题5分)2 2 2 2求极限 lim & “ (2x“ (3xD d°x Dx(10x 1)(11x 1)16、 (本小题5分)cos2x .求dx.1 sin xcosx二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省.(本大题6分)设f (x ) x (x 1)( x 2)( x 3),证明f (x ) 0有且仅有三个实根一学期期末高数考试(答案)、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)23x 212 26x 18x 122、(本小题3分)x 2\ 2x )1 d(1 x 2) 2(1 x 2)2c.3、(本小题3分) 因为 arctanx而 limarcsin — 02 x x2、(本小题7分)2求由曲线y -和y2三、解答下列各题所围成的平面图形绕 0X 轴旋转所得的旋转体的 体积.解:原式 limx 2lim 歿 x 212x18(19、 116 151故 limarcta n x arcs in o x x求—1 t2 dt .dx 0 '原式 2x 1 x 4cot 6 x(1 1 .7cot x 7(本小题4分) 2求1 工-x2cot x)d(cot x)1. 9cot x c.91cos^d(^) x x2(本小题4分)求 x 1 xdx.令 J 1 x ui u4、 5、(本小题3分)x .dx1 x1 x 1dx 1 x . dx dx1 xx ln 1 x(本小题3分)c.6、(本小题4分)cot 5 6 x csc 4 xd x8、1 (本小题4分) x e 2^st确定了函数y y e si nty(x),求 dy dx解:dy dxe 2t (2sin tt22e (cost 2tsin t ) e t (2 sint cost)22~(cost 2t sin t )cost)7、cos 1dx. x原式1 si n — x2u2)du 原式 2 (u41 \32(—)5 39、116 15解: dxx (t)dt13、(本小题6分)设函数y y (x )由方程y 2 ln y 2 x 6所确定,求鱼dx2yy 空 6x 5 y3yx 57厂14、(本小题6分)求函数y 2e x ex , 2x1、y 2e (e y1 1驻点:x -| n —2 2由于 y 2e x e x 0故函数有极小值,,1n "2)2 210、(本小题5分) 求函数 y 4 2x x 2的单调区间解: 函数定义域(11、 12、 设 y 当x当x 当xX)2 2x 2(1 1, y 01, y0函数单调增区间为,11, y 0函数的单调减区间为1,(本小题5分)sin x ,2— dx.8 sin x2d cosx 09 cos 2 x原式1, 3 cosx ln ---------- 6 3 cosx丄In 26(本小题x (t )6分)e kt (3cos t 4sin t),求dx .e kt (43k)cos t (4k 3 )sin t dtx的极值解.定义域),且连续V x264d(*si n2x 1) 1 丄 si n2x2 1In 1 -si n2x c2、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 沿, 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省•512设晒谷场宽为x,则长为 ----- 米,新砌石条围沿的总长为512xL 2x —— x (x 0)L c 51222x唯— •驻点 x 16 L1024 小3x即 x 16为极小值点 故晒谷场宽为16米,长为51232米时,可使新砌石条围沿16所用材料最省2、(本小题8分)15、(本小题 求极限 原式 2 2 2(x 1)(2x 1) (3x 1)2(10x 1)(10x 1)(11x 1)1 2 1 2 1 2 (1 -)2 (2 -)2 (3 -)2(10 丄)2x x x x1 1(10 -)(11 -)x x 10 11 216 10 11lim x lim x 16、(本小题7 210分) cos2x dx 1 sin xcosx cos2x 1 l sin2xdx2求由曲线y -和y2,8x 22x 3 x 10, x 1 4-)2x 32 (rdx 4x 40(匚6x)dx4J 1 5 (——x 4 5 1 1 7. -------x ) 64 7 04 1 1 512 44(—— )—5 7 35二、解答下列各题(本大题10分)设f (x) x(x 1)( x2)(x 3),证明f (x) 0有且仅有三个实根证明:f (x)在(,)连续,可导,从而在[0,3];连续,可导.又 f(0)f(1)f(2)f(3)则分别在[0,1],[1,2],[2,3]上对f(x)应用罗尔定理得,至少存在1(0,1), 2 (1,2), 3(2,3)使f ( !) f ( 2) f ( 3)即f (x) 0至少有三个实根,又f (x) 0,是三次方程,它至多有三个实根 由上述f (x)有且仅有三个实根高等数学(上)试题及答案D 、不存在2、下列变量中,是无穷小量的为(、填空题(每小题 3分,本题共 15分)1、2、时,f (x)x e 2x在x 0处连续.3、dx ln x ,则巴dyx/x+14、 曲线yx 在点(0, 1 )处的切线方程是y=x+15、 若 f (x)dxsin2x C ,C 为常数,则 f (x)2cos2x —。
大一上学期(第一学期)高数期末考试题(有标准答案)详解
、单项选择题
1设f(x)cos x(x sin x),则在x 0处有(
).
(A)f(0)
2(B)f(0)1(C)f(0)0(D)
f(X)不可导.
c设(x)1
2.1
X,(x) 3 33x,则当x1时(
X
)
(A)(x)与
(x)是同阶无穷小,但不是等价无穷小;
(B)(X)与(X)
是等价无穷小;
(C)(X)是比(x)高阶的无穷小;(D)(X)是比(x)高阶的
无穷小.
Xቤተ መጻሕፍቲ ባይዱ
(X)0 (2t x)f(t)dt,其中f(x)在区间上(1,1)二阶可导且
0,则().
函数F(x)必在x0处取得极大值;
函数F(x)必在x0处取得极小值;
函数F(x)在x0处没有极值,但点(0,F(0))为曲线yF(x)的拐点;
17.设函数f(x)在0,上连续,且0
证明:在0,内至少存在两个不同的点1,2,使f(1)f( 2)0.(提
x
F(x) f(x)dx
示:设0
解答
一、单项选择题(本大题有4小题,每小题4分,共16分)
1、D2、A3、C4、C
、填空题(本大题有4小题,每小题4分,共16分)
9.解:方程两边求导
x y
e(1y)cos(xy)(xy y) 0
四、解答题(本大题10分)
14.已知上半平面内一曲线y y(x) (x0),过点(01),且曲线上任一点M(X0,y0)处切线斜率数值上等于此曲线与x轴、y轴、直线xX。所围成 面积的2倍与该点纵坐标之和,求此曲线方程.
五、解答题(本大题10分)
15.过坐标原点作曲线y ln x的切线,该切线与曲线y ln x及x轴围
(完整版)大一第一学期期末高等数学(上)试题及答案
第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分) .d )1(22x x x ⎰+求3、(本小题5分) 求极限limarctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e ty y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分) .求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222Λ16、(本小题5分) .d cos sin 12cos x x x x ⎰+求二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =22、(本小题3分) ⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分) 因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分) 原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞ '=--y e e x x 2122()驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值 15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222Λ =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题( 本 大 题10分 ) 证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 20=+→x x x 。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷一、选择题共12分1. 3分若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为 .A1 B2 C3 D-12. 3分已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为 . A1 B3 C-1 D123. 3分定积分22ππ-⎰的值为 . A0 B-2 C1 D24. 3分若()f x 在0x x =处不连续,则()f x 在该点处 .A 必不可导B 一定可导C 可能可导D 必无极限二、填空题共12分1.3分 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. 3分 1241(sin )x x x dx -+=⎰ . 3. 3分 201lim sin x x x→= . 4. 3分 3223y x x =-的极大值为 . 三、计算题共42分1. 6分求20ln(15)lim .sin 3x x x x→+ 2. 6分设2,1y x =+求.y ' 3. 6分求不定积分2ln(1).x x dx +⎰4. 6分求30(1),f x dx -⎰其中,1,()1cos 1, 1.x x x f x x e x ⎧≤⎪=+⎨⎪+>⎩5. 6分设函数()y f x =由方程00cos 0y xt e dt tdt +=⎰⎰所确定,求.dy 6. 6分设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. 6分求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题共28分1. 7分设(ln )1,f x x '=+且(0)1,f =求().f x2. 7分求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. 7分求曲线3232419y x x x =-+-在拐点处的切线方程.4. 7分求函数y x =[5,1]-上的最小值和最大值.五、证明题6分设()f x ''在区间[,]a b 上连续,证明标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 31;y x =+ 2 2;3 3 0; 4 0.三、 1 解 原式205lim3x x x x →⋅= 5分 53= 1分 2 解22ln ln ln(1),12x y x x ==-++ 2分2212[]121x y x x '∴=-++ 4分 3 解 原式221ln(1)(1)2x d x =++⎰ 3分222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰ 2分 2221[(1)ln(1)]2x x x C =++-+ 1分 4 解 令1,x t -=则 2分3201()()f x dx f t dt -=⎰⎰ 1分1211(1)1cos t t dt e dt t -=+++⎰⎰ 1分210[]t e t =++ 1分21e e =-+ 1分5 两边求导得cos 0,y e y x '⋅+= 2分 cos y xy e '=- 1分cos sin 1xx =- 1分cos sin 1xdy dx x ∴=- 2分6 解 1(23)(23)(22)2f x dx f x d x +=++⎰⎰ 2分 21sin(23)2x C =++ 4分 7 解 原式=23323lim 12nn n ⋅→∞⎛⎫+ ⎪⎝⎭ 4分=32e 2分四、1 解 令ln ,x t =则,()1,t t x e f t e '==+ 3分 ()(1)t f t e dt =+⎰=.t t e C ++ 2分(0)1,0,f C =∴= 2分().x f x x e ∴=+ 1分2 解 222cos x V xdx πππ-=⎰ 3分 2202cos xdx ππ=⎰ 2分 2.2π= 2分3 解 23624,66,y x x y x '''=-+=- 1分 令0,y ''=得 1.x = 1分当1x -∞<<时,0;y ''< 当1x <<+∞时,0,y ''> 2分 (1,3)∴为拐点, 1分该点处的切线为321(1).y x =+- 2分 4 解1y '=-= 2分 令0,y '=得3.4x = 1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭ 2分 ∴最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭ 2分 五、证明()()()()()()bba a x a xb f x x a x b df x '''--=--⎰⎰ 1分 [()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰ 1分[2()()b a x a b df x =--+⎰ 1分{}[2()]()2()b b a a x a b f x f x dx =--++⎰ 1分()[()()]2(),b a b a f a f b f x dx =--++⎰ 1分移项即得所证. 1分。
(完整版)大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷一、选择题(共12分)1. (3分)若为连续函数,则的值为( ).2,0,(),0x e x f x a x x ⎧<=⎨+>⎩a (A)1 (B)2 (C)3 (D)-12. (3分)已知则的值为( ).(3)2,f '=0(3)(3)lim2h f h f h →--(A)1 (B)3 (C)-1 (D)123. (3分)定积分的值为().(A)0 (B)-2 (C)1 (D)24. (3分)若在处不连续,则在该点处( ).()f x 0x x =()f x (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点,且在任意一点处的切线斜率为的曲线方(0,1)(,)x y 23x 程为 .2. (3分) .1241(sin )x x x dx -+=⎰3. (3分) = .201lim sinx x x→4. (3分) 的极大值为 .3223y x x =-三、计算题(共42分)1.(6分)求2ln(15)lim.sin 3x x x x →+2.(6分)设求y =.y '3.(6分)求不定积分2ln(1).x x dx +⎰4.(6分)求其中3(1),f x dx -⎰,1,()1cos 1, 1.x xx f x xe x ⎧≤⎪=+⎨⎪+>⎩5.(6分)设函数由方程所确定,求()y f x =0cos 0y xte dt tdt +=⎰⎰.dy 6.(6分)设求2()sin ,f x dx x C =+⎰(23).f x dx +⎰7.(6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1.(7分)设且求(ln )1,f x x '=+(0)1,f =().f x 2.(7分)求由曲线与轴所围成图形绕着轴旋转一cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭x x 周所得旋转体的体积.3.(7分)求曲线在拐点处的切线方程.3232419y x x x =-+-4.(7分)求函数上的最小值和最大值.y x =+[5,1]-五、证明题(6分)设在区间上连续,证明()f x ''[,]a b 1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰标准答案一、 1 B; 2 C; 3 D; 4 A.二、 123 0;4 0.31;y x =+2;3三、 1 解 原式 5分25lim3x x xx→⋅=1分53=2解2分2ln ln ln(1),2xy x ==-+4分21221xy x '∴=-+3 解 原式 3分221ln(1)(1)2x d x =++⎰2分222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰1分2221[(1)ln(1)]2x x x C =++-+4解 令则2分1,x t -=1分321()()f x dx f t dt -=⎰⎰1分1211(1)1cos t tdt e dt t -=+++⎰⎰ 1分210[]t e t =++1分21e e =-+5两边求导得2分cos 0,yey x '⋅+= 1分cos y xy e'=-1分cos sin 1xx =-2分cos sin 1xdy dx x ∴=-6解2分1(23)(23)(22)2f x dx f x d x +=++⎰⎰ 4分21sin(23)2x C =++7解 原式= 4分23323lim 12n n n ⋅→∞⎛⎫+⎪⎝⎭=2分32e 四、1 解 令则3分ln ,xt =,()1,t t x e f t e '==+=2分()(1)t f t e dt =+⎰.t t e C ++ 2分(0)1,0,f C =∴=1分().x f x x e ∴=+2解3分222cos x V xdx πππ-=⎰2分2202cos xdx ππ=⎰2分2.2π=3解1分23624,66,y x x y x '''=-+=-令得1分0,y ''= 1.x =当时, 当时,2分1x -∞<<0;y ''<1x <<+∞0,y ''>为拐点,1分(1,3)∴该点处的切线为2分321(1).yx =+-4解2分1y '=-=令得1分0,y '=3.4x =2分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭最小值为最大值为2分∴(5)5y -=-+35.44y ⎛⎫= ⎪⎝⎭五、证明1分()()()()()()bbaax a x b f x x a x b df x '''--=--⎰⎰ 1分[()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰ 1分[2()()ba x ab df x =--+⎰1分 {}[2()]()2()bba a x ab f x f x dx =--++⎰ 1分()[()()]2(),b a b a f a f b f x dx =--++⎰移项即得所证. 1分。
大一高等数学期末考试试卷及答案详
大一高等数学期末考试试卷及答案详解大一高等数学期末考试试卷(一)一、选择题(共12分)x,2,0,ex,fx(),1. (3分)若为连续函数,则的值为( ). a,axx,,,0,(A)1 (B)2 (C)3 (D)-1 fhf(3)(3),,,2. (3分)已知则的值为( ). limf(3)2,,h,02h1(A)1 (B)3 (C)-1 (D) 2,223. (3分)定积分的值为( ). 1cos,xdx,,,2(A)0 (B)-2 (C)1 (D)2 4. (3分)若在处不连续,则在该点处( ).xx,fx()fx()0(A)必不行导(B)肯定可导(C)可能可导(D)必无极限二、填空题(共12分)23x1((3分)平面上过点,且在任意一点处的切线斜率为的曲线方程(0,1)(,)xy 为. 124(sin)xxxdx,,2. (3分) . ,,112xlimsin3. (3分) = . x,0x324. (3分)的极大值为. yxx,,23三、计算题(共42分)xxln(15),lim.1. (6分)求2x,0sin3xxe,y,,2. (6分)设求y. 2x,12xxdxln(1).,3. (6分)求不定积分,x,3,1,x,,fxdx(1),,4. (6分)求其中()fx,1cos,x,,0x,1,1.ex,,,1yxt5. (6分)设函数由方程所确定,求edttdt,,cos0yfx,()dy.,,0026. (6分)设求fxdxxC()sin,,,fxdx(23).,,,n3,,7. (6分)求极限lim1.,,,,,nn2,,四、解答题(共28分),1. (7分)设且求fxx(ln)1,,,f(0)1,,fx().,,,,2. (7分)求由曲线与轴所围成图形围着轴旋转一周所得旋xxyxxcos,,,,,,22,,转体的体积.323. (7分)求曲线在拐点处的切线方程. yxxx,,,,324194. (7分)求函数在上的最小值和最大值. [5,1],yxx,,,1五、证明题(6分),,设在区间上连续,证明fx()[,]abbbba,1,, fxdxfafbxaxbfxdx()[()()]()()().,,,,,,,aa22(二)一、填空题(每小题3分,共18分)2x,1x,1,,fx,,,1(设函数,则是的第类间断点. fx2x,3x,22,,,2(函数,则. y,y,ln1,xx2 x,1,,( 3 . ,lim,,x,, x,,11,,y,4(曲线在点处的切线方程为. ,2,,x2,,32,,,1,45(函数在上的最大值,最小值. y,2x,3xxarctandx,6(. ,21,x2二、单项选择题(每小题4分,共20分) 1(数列有界是它收敛的( ) . ,,xn必要但非充分条件;充分但非必要条件;,,,,A B充分必要条件;无关条件.,,,,C D 2(下列各式正确的是( ) .1,x,xxdx,,C; ; ln,,edx,e,C,,A B ,,x111,,dx,ln1,2x,Cdx,lnlnx,C; .,,,,C D ,,xlnx1,2x2,,,3(设在上,且,则曲线在上.,,,,,,,,,,,,fxa,bfx,0fx,0y,fxa,b沿轴正向上升且为凹的;沿轴正向下降且为凹的;,,,,A xB x,,沿轴正向上升且为凸的;,,沿轴正向下降且为凸的. C xD xx,04(设,,,则,,在处的导数( ). fx,xlnxfx1,1,,,,等于;等于; A B0,,,,等于;不存在. C D,,limfx,25(已知,以下结论正确的是( ).,x,1x,1x,1,,,,,,函数在处有定义且;函数在处的某去心邻域内有定义;Af1,2Bx,1x,1,,,,函数在处的左侧某邻域内有定义;函数在处的右侧某邻域内有定义. C D 三、计算(每小题6分,共36分)12limsinx1(求极限:. x,0x2,,,2.已知,求. yy,ln1,xsinx,,3.求函数x,0的导数. y,x2xdx4. . ,21,xxcosxdx5. . ,11yx,,,y,fx6.方程确定函数,求y. y,x322x四、(10分)已知为的一个原函数,求.,,,,xfxdxefx,,x五、(6分)求曲线的拐点及凹凸区间. y,xex,,,六、(10分)设,,,求. fxdx,xe,1,C,,fx,(三)一、填空题(本题共5小题,每小题4分,共20分). 112xlim(cosx)e,x0(1) =_____________.y,xlnxx,y,1,0y,x,1(2)曲线上与直线平行的切线方程为_________.12(lnx)x,x,f(x),f(x),f(1),0f(e),xe2(3)已知,且,则___________ .2x11y,x,.y,393x,1(4)曲线的斜渐近线方程为_________ 7522y222,y,(x,1),C(x,1).yx,,,(1)3x,1(5)微分方程的通解为_________二、选择题(本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是( D )1111dx,0dx,,2,,2,,11xx(A) (B),,1,,1,,,dx,,,dx,4,11xx(C) (D) f(x)[a,b]f'(x)(2)函数在内有定义,其导数的图形如图1-1所示,则( D ). x,x12(A)都是极值点. y,,,,x,f(x),x,f(x),1122y,f(x)(B)都是拐点.,,xx,f(x)122(C)是极值点.,是拐点.,,x,f(x)xax1121(D)是拐点,是极值点. xObx2图1-1xxx,2yCCx,,,eee12(3)函数满意的一个微分方程是( D ).xx,,,,,,yyyx,,,23e.yyy,,,23e.(A) (B)xx,,,,,,yyyx,,,23e.yyy,,,23e.(C) (D)fxfxh,,,,,,00limxh,f(x)00h(4)设在处可导,则为( A ). ,,fx,fx,,,,00(A) . (B) . (C) 0. (D)不存在.(5)下列等式中正确的结果是( A ).4,(())().fxdxfx,dfxfx()().,,,(A) (B),dfxdxfx[()]().,fxdxfx()().,,,(C) (D)三、计算题(本题共4小题,每小题6分,共24分).x1lim(,)x,1xx,1ln1(求极限.xlnx,x,1x1limlim(,)x,1x,1(x,1)lnxxx,1ln解= 1分lnxlimx,1x,1,lnxx = 2分xlnxlimx,1x,1,xlnx = 1分1lnx1,lim,x,11lnx12,,= 2分 2x,lnsint,dydy,2y,cost,tsinty,xdxdx2.方程确定为的函数,求与.,dyy(t),,tsint,,dxx(t)解(3分)2,dy(tsint),,sinttant,tsint.2,x(t)dx (6分)arctanxdx,xx(1),3. 4.计算不定积分.arctanarctanxx解:分dxdx,,,,,,,,,,,,22,,(1),xxx(1),=2arctanarctan2xdx,,,,,,,分,2()分=arctan2xC,,,,,,,,,,3xdx,01,1,x4.计算定积分.33,,xx(11x)3,dxdx,,(1,1,x)dx,,00,,x,,11x0解(3分)332523(1),,,,x,330 (6分) 1,x,t(或令)(四)一(填空题(每小题4分,5题共20分):5112xxlim()ex,,2e,x1( . 014xx,2005xxeedx1,,,,,,,,,1e2(.xy,dy2t,,edtx,x,0,yyx,()1e,13(设函数由方程确定,则. dxx12xtftdtfx()(),2,,,,,fxfx,f(0),11e4.设可导,且,,则.二(选择题(每小题4分,4题共16分):xf(x),lnx,,k(0,,,)k,0e1(设常数,则函数在内零点的个数为( B ).(A) 3个; (B) 2个; (C) 1个; (D) 0个.,,y,4y,3cos2x2(微分方程的特解形式为( C ),,yAx,cos2yAxx,cos2(A); (B);*,yAxxBxx,,cos2sin2y,Asin2x(C); (D)3(下列结论不肯定成立的是( A )db,,,,fxdx,fxdx,,,,,,c,d,a,bca(A) (A)若,则必有;bfxdx,0,,,,,a,bf(x),0a(B) (B)若在上可积,则;,,fxaT(C) (C)若是周期为的连续函数,则对任意常数都有a,TT,,,,fxdx,fxdx,,0a; xtftdt,,,,,fx0(D) (D)若可积函数为奇函数,则也为奇函数.1x1,e,,fx,1xf(x)x,02,3e4.设,则是的( C ).(A)连续点; (B)可去间断点; (C)跳动间断点; (D)无穷间断点.三(计算题(每小题6分,5题共30分):223,xxedx,1(计算定积分. 0112222,x,t,t23,设x,t则xedx,tedt,,tde,,,00022解: -------22,,21,t,t,,te,edt,,,002,,-------22113,2,t,2,,e,e,,e0222 --------2sinxxdx5,cosx2(计算不定积分.6xsinx111xdx,,dxxd(),,,5444,,,,,cosx4cosx4cosxcosx,,解: --------3x12,,(tanx,1)dtanx4,4cosx4x113,,tanx,tanx,C44cosx124 -----------3x,a(t,sint),,,,t,y,a(1,cost),2,3(求摆线在处的切线的方程.,(a(,1),a)2解:切点为-------2asintdy,,k,,a(1,cost)dxt,t,22,1 -------2,,y,a,x,a(,1)y,x,(2,)a22切线方程为即. -------2x2F(x),cos(x,t)dt22,,F(x),2xcosx,(2x,1)cos(x,x)04.设,则. nnnnn(,1)(,2)(,3)?(2)x,limxnn,,nn5(设,求.ni1xln,ln(1,),nnn,1i解: ---------2n1i1limlnx,limln(1,),ln(1,x)dx,n,0,,,,nnnn,1i --------------2111xln(1,x),xdx,2ln2,10,01,x = ------------242ln2,1e,limxn,,ne故=标准答案一、1 B; 2 C; 3 D; 4 A.23二、1 2 3 0; 4 0. yx,,1;;3 xx,55三、1解原式6分,,lim2x,033xxex2lnlnln(1),?yx,,,,2解2分212x,xex12,?,,y[] 4分22xx,,121122,,,ln(1)(1)xdx3解原式3分,2712x222 2分,,,,,,[(1)ln(1)(1)]xxxdx,221,x 1222 1分,,,,,[(1)ln(1)]xxxC 24解令则2分xt,,1,32 1分fxdxftdt()(),,,,0112tt 1分,,,(1)dtedt,,,111cos,tt2 1分,,,0[]et12 1分,,,ee1y,5两边求导得2分eyx,,,cos0,cosx, 1分?y,,yecosx 1分,sin1x,cosx 2分?,dydxsin1x,1fxdxfxdx(23)(23)(22),,,,6解2分,,2 12,,,sin(23)xC 4分223n,3323,,2lim1,7解原式= =e 6分,,n,,n2,, tt,四、1解令ln,xt,则3分xefte,,,,()1, ttftedt()(1),,teC,,.= 2分,?fC(0)1,0,,?, 2分x 1分?,,fxxe().8,222解3分Vxdx,,cosx,,,2,22 ,2cos,xdx 2分,02, 2分,.2 2,,,3解1分yxxyx,,,,,3624,66,,,x,1.令得1分y,0,,,,,,,,,x11,,,,x当时,当时, 2分y,0;y,0,为拐点, 1分?(1,3)该点处的切线为2分yx,,,321(1). 1211,,x,y,,,1,4解2分 2121,,xx3,x,.令得1分y,0,435,,yyy(5)56,2.55,,(1)1,,,,,,,,, 2分,,44,,35,,y,.y(5)56,,,,,最小值为最大值为2分?,,44,,五、证明bb,,,()()()()()()xaxbfxxaxbdfx,,,,, 1分,,aabb,,,,,,,,[()()()]()[2()xaxbfxfxxabdx 1分,aab,,,,[2()()xabdfx 1分,abb,,,,,[2()]()2()xabfxfxdx 1分,,,aab,,,,,()[()()]2(),bafafbfxdx 1分,a 移项即得所证. 1分9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分) 1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分).d )1(22x x x⎰+求3、(本小题5分)求极限limarctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x求5、(本小题5分).求dt t dxd x ⎰+2216、(本小题5分) ⎰⋅.d csc cot 46x x x 求7、(本小题5分).求⎰ππ2121cos 1dx x x8、(本小题5分)设确定了函数求.x e t y e t y y x dy dx t t==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分).求dx x x ⎰+30110、(本小题5分)求函数 的单调区间y x x =+-422Y11、(本小题5分).求⎰π+202sin 8sin dx x x12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分)设函数由方程所确定求.y y x y y x dydx =+=()ln ,22614、(本小题5分) 求函数的极值y e e x x =+-215、(本小题5分)求极限lim()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分)二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分).8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题( 本 大 题6分 ) 设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→limx xx 261218 =22、(本小题3分)⎰+xx xd )1(22 ⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分)因为arctan x <π2而limarcsinx x →∞=1故limarctan arcsinx x x →∞⋅=14、(本小题3分)⎰-x x xd 1xx x d 111⎰----=⎰⎰-+-=x xx 1d d =---+x x c ln .15、(本小题3分)原式=+214x x6、(本小题4分)⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分).求⎰ππ2121cos 1dx x x 原式=-⎰cos ()1112x d x ππ=-sin112xππ=-1 8、(本小题4分)设确定了函数求.x e t y e t y y x dy dx t t==⎧⎨⎪⎩⎪=cos sin (),22解: dy dx e t t e t t t tt=+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )22229、(本小题4分).求dx x x ⎰+301令 1+=x u原式=-⎰24122()u u du=-2535312()u u =1161510、(本小题5分)求函数 的单调区间y x x =+-422解:),(+∞-∞函数定义域01)1(222='=-=-='y x x x y ,当(][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分).求⎰π+202sin 8sin dx xx原式=--⎰d x x cos cos 9202π=-+-163302lncos cos x x π=162ln12、(本小题6分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-解:dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分)设函数由方程所确定求.y y x y y x dydx =+=()ln ,2262265yy y y x '+'='=+y yx y 315214、(本小题6分)求函数的极值y e e x x =+-2解:定义域,且连续(),-∞+∞'=--y e e x x 2122()驻点:x =1212ln由于''=+>-y e e x x 2022)21ln 21(,,=y 故函数有极小值15、(本小题8分)求极限lim()()()()()()x x x x x x x →∞++++++++--121311011011112222原式=++++++++--→∞lim()()()()()()x x x x x x x 112131*********2222=⨯⨯⨯⨯=101121610117216、(本小题10分)dxxxdx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=xx d 2sin 211)12sin 21( =++ln sin 1122x c二、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,=2、(本小题8分).8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==解 :,,.x x x x x x 232311288204====V x x dx x x dxx =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x xπ=-π=35512)7151(44 三、解答下列各题( 本 大 题10分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230 证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 2=+→xx x 。
2、当k =1 时,⎪⎩⎪⎨⎧>+≤=00e)(2x k x x x f x 在0=x 处连续.3、设x x y ln +=,则______=dydxx/x+14、曲线x e y x-=在点(0,1)处的切线方程是y=x+15、若⎰+=C x dx x f 2sin )(,C 为常数,则=)(x f 2cos2x 。
二、 单项选择题(每小题3分,本题共15分)1、若函数xx x f =)(,则=→)(lim 0x f x ( D )A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( B )A. )0(1ln+→x x B. )1(ln →x x C. )0(cosx →x D. )2(422→--x x x3、满足方程0)(='x f 的x 是函数)(x f y =的(C ).A .极大值点B .极小值点C .驻点D .间断点 4、下列无穷积分收敛的是( B )A 、⎰+∞sin xdx B 、dx ex⎰+∞-02 C 、dx x ⎰+∞1D 、dx x⎰+∞01 5、设空间三点的坐标分别为M (1,1,1)、A (2,2,1)、B (2,1,2)。
则AMB ∠= AA 、3π B 、4π C 、2πD 、π 三、 计算题(每小题7分,本题共56分)1、求极限 xx x 2sin 24lim-+→ 。
2、求极限 )111(lim 0--→x x e x 3、求极限 2cos 12limx dt e xt x ⎰-→4、设)1ln(25x x e y +++=,求y '5、设)(x y f =由已知⎩⎨⎧=+=ty t x arctan )1ln(2,求22dx yd 6、求不定积分dx x x ⎰+)32sin(127、求不定积分 x x e xd cos ⎰8、设⎪⎪⎩⎪⎪⎨⎧≥+<+=011011)(x xx e x f x, 求⎰-2d )1(x x f四、 应用题(本题7分)求曲线2x y =与2y x =所围成图形的面积A 以及A 饶y 轴旋转所产生的旋转体的体积。
五、 证明题(本题7分)若)(x f 在[0,1]上连续,在(0,1)内可导,且0)1()0(==f f ,1)21(=f ,证明:在(0,1)内至少有一点ξ,使1)(='ξf 。
参考答案一。
填空题(每小题3分,本题共15分) 1、6e 2、k =1 . 3、xx+1 4、1=y 5、x x f 2cos 2)(= 二.单项选择题(每小题3分,本题共15分) 1、D 2、B 3、C 4、B 5、A 三.计算题(本题共56分,每小题7分)1.解:x x x 2sin 24lim-+→81)24(2sin 2lim 21)24(2sin lim 00=++=++=→→x x x x x x x x 2.解 :21lim 11lim )1(1lim )111(lim 0000=++=+--=---=--→→→→x x x x x x x x x x x x x x xee e e xe e e e x x e e x 3、解: 2cos 12limx dtext x ⎰-→exxe xx 212sin lim 2cos0-=-=-→ 4、解: )111(1122xxx y ++++=' 211x+=5、解:t tt t dx dy 21121122=++= 222232112()241d y t d dydxt dtt dt dx dxt t-+===-+ 6、解:C xd x dx x x ++=++-=+⎰⎰)32cos(21)332()32sin(21)32sin(12 7、 解: ⎰⎰=xxe x x x e d cos d cos⎰+=sinxdx e cos x x e x ⎰+=x de sin cos x x e xdx cos sin cos x e x e x e x x x ⎰-+=C x x e x ++=)cos (sin8、解:⎰⎰⎰⎰--+==-011112d )(d )(d )(d )1(x x f x x f x x f x x f …⎰⎰+++=-10011d 1d x x e xx 1001)1ln(d )11(x x e e xx +++-=⎰- 2ln )1ln(101++-=-x e)1ln()1ln(11e e +=++=-四.应用题(本题7分)解:曲线2x y =与2y x =的交点为(1,1), 于是曲线2x y =与2y x =所围成图形的面积A 为31]3132[)(10210232=-=-=⎰x x dx x x AA 绕y 轴旋转所产生的旋转体的体积为:()πππ10352)(1052142=⎥⎦⎤⎢⎣⎡-=-=⎰y y dy y y V 五、证明题(本题7分) 证明: 设x x f x F -=)()(,显然)(x F 在]1,21[上连续,在)1,21(内可导, 且 021)21(>=F ,01)1(<-=F . 由零点定理知存在]1,21[1∈x ,使0)(1=x F . 由0)0(=F ,在],0[1x 上应用罗尔定理知,至少存在一点)1,0(),0(1⊂∈x ξ,使01)()(=-'='ξξf F ,即1)(='ξf …(注:文档可能无法思考全面,请浏览后下载,供参考。