基础物理学上册习题解答和分析 第八章热力学基础题解和分析
大学物理第八章习题及答案
V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。
大学物理第八章习题及答案
V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。
(仅供参考)第八章-热力学答案
【参考答案】热力学过程的功用过程曲线下的面积求
a-b 过程中
Qab
A
E
S 矩形
i 2
R T.......................................(1)
而 acba 循环过程净吸热量
Q A/ S半圆...........................................................(2)
(A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小.
1
姓名 __________ 学号 ____________
《大学物理Ⅰ》答题纸 第八章
(D) 等压过程中最大,等温过程中最小. 【参考答案】 参考【基础训练 4】题附图
由
p AVA TA
《大学物理Ⅰ》答题纸 第八章
=
(1) 3
1
T0
压强 p=
(1) 3
P0
【参考答案】已知绝热过程的体积变化,求温度的变化,选绝热过
程方程V0 1 T0 V 1 T
p
∴
T
(V0 ) 1 V
T0
(1) 1 3
T0
pc
c
同理已知绝热过程的体积变化,求压强的变
化,选绝热过程方程 P0V0 PV
有
(A) p0.
(B) p0 / 2. (C) 2γp0. (Dp)0 p0 / 2γ.
【参考答案】该过程是绝热的自由膨胀过程,所以 Q 0 A 0
由热力学第一定律
由V /
2V0
P/
p0 2
E 0
∴ T 0
2.【基础训练 10】 [D ]一定量的气体作绝热自由膨胀,设其热力
热力学习题及答案解析
热力学习题及答案解析热力学是物理学中的一个重要分支,研究热量和能量转化的规律。
在学习热力学的过程中,经常会遇到一些题目,下面我将针对几个常见的热力学学习题目进行解析。
1. 热力学第一定律是什么?请用自己的话解释。
热力学第一定律,也被称为能量守恒定律,它表明能量在系统中的转化是守恒的。
简单来说,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
这个定律可以用数学公式表示为:ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做的功。
2. 一个物体从20°C加热到80°C,热量变化是多少?要计算这个问题,我们需要使用热容量的概念。
热容量表示单位温度变化时物体吸收或释放的热量。
对于一个物体,它的热容量可以表示为C = m × c,其中m表示物体的质量,c表示物体的比热容。
假设这个物体的质量为1kg,比热容为4.18J/g°C。
那么它的热容量就是C =1kg × 4.18J/g°C = 4.18J/°C。
根据热力学第一定律,热量的变化等于系统内能的变化,即Q = ΔU。
由于这个物体只发生温度变化,内能的变化可以表示为ΔU = C × ΔT,其中ΔT表示温度的变化。
根据题目给出的信息,温度变化为80°C - 20°C = 60°C。
将这些数值代入公式,我们可以得到热量变化为Q = ΔU = C × ΔT = 4.18J/°C × 60°C = 250.8J。
所以,这个物体的热量变化为250.8J。
3. 一个气体在等温过程中吸收了300J的热量,对外做了100J的功,求系统内能的变化。
在等温过程中,温度保持不变,因此根据热力学第一定律,系统内能的变化等于吸收的热量减去对外做的功,即ΔU = Q - W。
根据题目给出的信息,吸收的热量Q = 300J,对外做的功W = 100J。
2022大学物理B-第8章热力学基础答案 (1)
第8章 热力学基础练习题一、选择题1、一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中[A ](A) 气体向外界放热 (B) 气体对外界作正功(C) 气体内能增加 (D) 气体内能减少2、一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度[B ] (A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定.3、一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为[B ] (A) –1200 J . (B) –700 J.(C) –400 J . (D) 700 J .4、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是[B ] (A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定.5、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于[D ] (A) 2/3. (B) 1/2.(C) 2/5. (D) 2/7.6、有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量是[A ](A) 6 J. (B) 5 J.(C) 3 J. (D) 2 J. 解:这是等容过程,做功为零,根据热力学第一定律:Vp S 1S 2)(21212T T R iE E Q -=-=ν氢气为双原子分子,自由度为5,氨气为多原子分子,自由度为6,体积、压强和温度相等,意味着两者摩尔数相同氢气吸热为5)(2512121=-=-=T T R E E Q ν氨气吸热为)(2612122T T R E E Q -=-=ν有5612=Q Q ,故62=Q 7、一定量某理想气体所经历的循环过程是:从初态(V 0,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等体升温回复到初态温度T 0,最后经等温过程使其体积回复为V 0,则气体在此循环过程中[B ] (A) 对外作的净功为正值. (B) 对外作的净功为负值. (C) 内能增加了. (D) 从外界净吸的热量为正值.8、某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示.A →B 表示的过程是[A ] (A) 等压过程. (B) 等体过程.(C) 等温过程. (D) 绝热过程.9、一定质量的理想气体完成一循环过程.此过程在V -T 图中用图线1→2→3→1 描写.该气体在循环过程中吸热、放热的情况是[ C ](A) 在1→2,3→1 过程吸热;在2→3 过程放热 (B) 在2→3 过程吸热;在1→2,3→1 过程放热 (C) 在1→2 过程吸热;在2→3,3→1 过程放热 (D) 在2→3,3→1 过程吸热;在1→2 过程放热10、关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是平衡过程;②平衡过程一定是可逆过程;③不可逆过程发生后一定找不到另一过程使系统和外界同时复原;④非平衡过程一定是不可逆过程.以上说法,正确的是[ C ](A) ①②③. (B) ②③④.(B) ①③④. (D) ①②③④.11、如图所示为一定量的理想气体的p —V 图,由图可得出结论[ C ](A) ABC 是等温过程. (B) B A T T >. (C) B A T T <.(D) B A T T =.12、一摩尔单原子理想气体从初态(1p 、1V 、1T )准静态绝热压缩至体积为2V 其熵[ A ](A) 增大. (B) 减小.(C) 不变. (D) 不能确定.二、填空题1、已知一定量的理想气体经历p -T 图上所示的循环过程,图中各过程的吸热、放热情况为: (1) 过程1-2中,气体__________. (2) 过程2-3中,气体__________.(3) 过程3-1中,气体__________. 答案:吸热;放热;放热2、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中: (1) 温度升高的是__________过程; (2) 气体吸热的是__________过程.答案: BM 、CM ;CM解:如果以C Q B T A T T T T T ,,,,分别表示A 、T 、B 、Q 、C 点的温度,显然C Q B T A T T T T T >>>>,而MT 是等温线,T M T T =故有:M A T T >,AM 是降温过程C B M T T T >>,BM 、CM 是升温过程A E E Q +-=12三个过程中,体积是被压缩的,A 都是负的,即A<0, AM 过程是降温过程,p TO1 23)33m -0)(2<-=-A M A M T T R iE E ν0<+-=A E E Q A M AM ,AM 过程是放热的 BM 过程是升温的0)(2>-=-B M B M T T R iE E ν功为过程曲线所围面积QM BM A A >=)(2Q M Q M T T R iE E -=-ν 由于Q B T T >所以Q M B M T T T T -<-B M B M Q M Q M E E T T R iT T R i E E -=->-=-)(2)(2νν 即B M BM E E A ->0<+-=BM B M BM A E E QBM 过程是放热的 CM 过程是升温的0)(2>-=-C M C M T T R iE E νQM CM A A <=)(2Q M Q M T T R iE E -=-ν 由于Q C T T <Q M C M T T T T ->-C M C M Q M Q M E E T T R iT T R i E E -=-<-=-)(2)(2νν 即C M CM E E A ->0>+-=CM C M CM A E E QCM 过程是吸热的3、有ν摩尔理想气体,作如图所示的循环过程acba ,其中acb 为半圆弧,b -a 为等压线,p c =2p a .令气体进行a -b 的等压过程时吸热Q ab ,则在此循环过程中气体净吸热量 Q _______Q ab . (填入:>,<或=) 答案:<解:根据热力学第一定律,循环过程内能变化为零,循环过程的净吸热量为该循环过程曲线所围面积))(2(21)2(212122a c ab a b P P V V V V r Q --=-==πππ)(41)2)(2(21a b a a a a b V V P P P V V -=--=ππ 而等压过程的吸热为:(22)(,R i T T C Q a b m p ab +=-=νν 4、 一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.答案: 500 7005、一定量的理想气体,从p ─V 图上状态A 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试画出这三种过程的p ─V 图曲线.在上述三种过程中: (1) 气体对外作功最大的是___________过程; (2) 气体吸热最多的是____________过程.答案:等压;等压。
基础物理学上册习题解答和分析 第八章热力学基础题解和分析
习题八8-1 如果理想气体在某过程中依照V=pa 的规律变化,试求:(1)气体从V 1膨胀到V 2对外所作的功;(2)在此过程中气体温度是升高还是降低?分析 利用气体做功公式即可得到结果,根据做正功还是负功可推得温度的变化。
解:(a) ⎪⎪⎭⎫ ⎝⎛-===⎰⎰21222112121V V a dV V apdV W v v v v (b) 降低 8-2 在等压过程中,0.28千克氮气从温度为293K 膨胀到373K ,问对外作功和吸热多少?内能改变多少?分析 热力学第一定律应用。
等压过程功和热量都可根据公式直接得到,其中热量公式中的热容量可根据氮气为刚性双原子分子知其自由度为7从而求得,而内能则由热力学第一定律得到。
解:等压过程: 2121()()m W P V V R T T M=-=-()32808.31373293 6.651028J =⨯⨯-=⨯ ()()J T T C Mm Q p 4121033.229337331.82728280⨯=-⨯⨯⨯=-=据J E W E Q 41066.1,⨯=∆+∆=8-3 1摩尔的单原子理想气体,温度从300K 加热到350K 。
其过程分别为(1)容积保持不变;(2)压强保持不变。
在这两种过程中求:(1)各吸取了多少热量;(2)气体内能增加了多少;(3)对外界作了多少功分析 热力学第一定律应用。
一定量的理想气体,无论什么变化过程只要初末态温度确定,其内能的变化是相同的。
吸收的热量则要根据不同的过程求解。
解: 已知气体为1 摩尔单原子理想气体31,2V m C R M==(1) 容积不变。
()()J T T C Mm Q V 25.62330035031.82312=-⨯⨯=-=根据E Q W W E Q ∆==+∆=,0,。
气体内能增量J E 25.623=∆。
对外界做功0=W . (2) 压强不变。
215()8.31(350300)1038.75,2p m Q C T T J M=-=⨯⨯-=J E 25.623=∆,J J J W 5.41525.62375.1038=-=8-4 一气体系统如题图8-4所示,由状态a 沿acb 过程到达b 状态,有336焦耳热量传入系统,而系统作功126焦耳,试求: (1) 若系统经由adb 过程到b 作功42焦耳,则有多少热量传入系统?(2) 若已知J E E a d 168=-,则过程ad 及db 中,系统各吸收多少热量?(3)若系统由b 状态经曲线bea 过程返回状态a,外界对系统作功84焦耳,则系统与外界交换多少热量?是吸热还是放热?分析 热力学第一定律应用。
第八章 热力学基础习题解答
第8章 热力学基础8.13 一系统由如图所示的状态a 沿abc 到达c ,吸收了350J 的热量同时系统对外做功126J 。
(1)如经adc 过程,系统对外做功42J ,问系统吸热多少?(2)当系统由状态c 沿曲线ac 回到状态a 时,外界对系统做功为84J ,问系统是吸热还是放热,在这一过程中系统与外界之间传递的热量为多少?解 (1)当系统由状态a 沿abc 到达c 时,根据热力学第一定律,吸收的热量Q 和对外所做的功W 的关系是:Q = ΔE + W ,其中ΔE 是内能的增量.Q 和W 是过程量,也就是与系统经历的过程有关,而ΔE 是状态量,与系统经历的过程无关。
当系统沿adc 路径变化时,可得:Q 1 = ΔE 1 + W 1, 这两个过程的内能的变化是相同的,即:ΔE 1 = ΔE= Q –W , 则系统吸收的热量为:Q 1 = Q – W + W 1 =350–126+42= 266J 。
(2)当系统由状态c 沿曲线ac 回到状态a 时,可得:Q 2 = ΔE 2 + W 2,其中,ΔE 2 = –ΔE ,W 2 = –84J ,可得:Q 2 = –(Q – W ) + W 2 =–(350–126) –84=–308J , 可见:系统放出热量,传递热量的大小为308J 。
8.14 一气缸内贮有10mol 的单原子理想气体,外力压缩气体做功209J ,气体温度升高1℃。
试计算气体内能增量和所吸收的热量。
解 单原子分子的自由度为i = 3,1mol 理想气体内能的增量为2iE R T ∆=∆=38.3112⨯⨯=12.465J10mol 气体内能的增量为124.65J .气体对外所做的功为W = -209J ,所以气体吸收的热量为Q = ΔE + W =124.65-209= -84.35J8.15 一圆柱形汽缸的截面积为222.510m -⨯,内盛有0.01kg 的氮气,活塞重10kg ,外部大气压为5110Pa ⨯,当把气体从300K 加热到800K 时,设过程进行无热量损失,也不考虑摩擦,问(1)气体做功多少?(2)气体容积增大多少?(3)内能增加多少? 解 (1)系统可以看成等压准静态过程,VW pdV p V ==∆⎰由理想气体状态方程 'm pV RT M=得 33'0.018.31(800300) 1.4810J 2810m W p V R T M --=∆=∆=⨯⨯-=⨯⨯ (2)因气体压强5502109.810 1.04102.510m g p p Pa S -⨯=+=+=⨯⨯活塞 由状态方程'm pV RT M=可得 235'0.015008.31 1.421028 1.0410m T V R m M p -∆∆==⨯⨯=⨯⨯ (3)氮气的自由度为5,由理想气体内能公式2iE RT ν=可得内能增加30.0158.31500 3.710J 2282i E R T ν∆=∆=⨯⨯⨯=⨯习题8.13图8.16 1mol 氧气由状态1变化到状态2,所经历的过程如图所示,一次沿1→a →2路径,另一次沿1→2直线路径.试分别求出这两个过程中内能的变化ΔE 、对外界所作的功W 以及系统吸收的热量Q 。
《大学物理》热力学基础练习题及答案解析
《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
8热力学
习题及参考答案第八章 热力学 参考答案思考题8-1 “功、热量和内能都是系统状态的单值函数”这种说法对吗?如有错请改正。
8-2 质量为M 的氦气(视为理想气体),由同一初态经历下列两种过程:(1)等体过程;(2)等压过程。
温度升高了ΔT ,要比较这两种过程中气体内能的改变,有一种解答如下:(1) 等体过程T C ME V V ∆∆μ= (2) 等压过程T C ME p p ∆∆μ=∵V p C C ,∴Vp E E ∆∆以上解答是否正确?如有错误请改正。
8-3 摩尔数相同的氦气和氮气(视为理想气体),从相同的初状态(即p 、V 、T 相同)开始作等压膨胀到同一末状态,下列有关说法有无错误?如有错误请改正。
(1)对外所作的功相同; (2)从外界吸收的热量相同; (3)气体分子平均速率的增量相同。
8-4 一定量的理想气体,从p-V 图上同一初态A 开始,分别经历三种不同的过程过渡到不同的末态,但末态的温度相同,如图所示,其中A →C 是绝热过程,问:(1)在A →B 过程中气体是吸热还是放热?为什么? (2)在A →D 过程中气体是吸热还是放热?为什么?8-5 在下列理想气体各种过程中,哪些过程可能发生?哪些过程不可能发生?为什么?(1)等体加热时,内能减少,同时压强升高; (2)等温压缩时,压强升高,同时吸热; (3)等压压缩时,内能增加,同时吸热; (4)绝热压缩时,压强升高,同时内能增加。
8-6 甲说:“系统经过一个正的卡诺循环后,系统本身没有任何变化。
”乙说:“系统经过一个正的卡诺循环后,不但系统本身没有任何变化,而且外界也没有任何变化。
”甲和乙谁的说法正确?为什么?8-7 从理论上讲,提高卡诺热机的效率有哪些途径?在实际中采用什么办法? 8-8 关于热力学第二定律,下列说法如有错误请改正: (1)热量不能从低温物体传向高温物体;(2)功可以全部转变为热量,但热量不能全部转变为功。
8-9 理想气体经历如图所示的abc 平衡过程,则该系统对外作功A ,从外界吸收的热量Q 和内能的增量ΔE 的正负情况为(A )ΔE >0,Q >0,A <0; (B )ΔE >0,Q >0,A >0; (C )ΔE >0,Q <0,A <0; (D )ΔE <0,Q <0,A >0。
《大学物理》习题册题目及答案第8单元--热力学基础(二)
第8单元 热力学基础(二)序号 学号 姓名 专业、班级一 选择题一 选择题[ B ]1.在下列各种说法中,哪些是正确的 (1)热平衡过程就是无摩擦的、平衡力作用的过程。
~(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在p-V 图上可用一连续曲线表示。
(A)(1)、(2) (B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4) `[ B ]2.下面所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在物理上可能实现的循环过程的图的符号。
[ D ]3.设有以下一些过程:(1) 两种不同气体在等温下互相混合。
(2) 理想气体在定容下降温。
(3) 液体在等温下汽化。
(4) "(5) 理想气体在等温下压缩。
(6) 理想气体绝热自由膨胀。
在这些过程中,使系统的熵增加的过程是: (A)(1)、(2)、(3); (B)(2)、(3)、(4); (C)(3)、(4)、(5); (D)(1)、(3)、(5)。
[ A ]4.一定量的理想气体向真空作绝热自由膨胀,体积由1V 增至2V ,在此过程中气体的(A) 内能不变,熵增加; (B) 内能不变,熵减少; )(C) 内能不变,熵不变; (D) 内能增加,熵增加。
二 填空题1. 热力学第二定律的克劳修斯叙述是:热量不能自动地从低温物体传向高温物体; 开尔文叙述是:不可能制成一种循环动作的热机,只从单一热源吸热完全转变为有用功而其它物体不发生任何变化。
2. 从统计的意义来解释:不可逆过程实际上是一个 从概率较小的状态到概率较大的状态的转变过程。
.一切实际过程都向着状态的概率增大(或熵增加)的方向进行。
3. 熵是大量微观粒子热运动所引起的无序性的定量量度。
若一定量的理想气体经历一个等温膨胀过程,它的熵将增加 (填入:增加,减少,不变)。
三 计算题*1.一致冷机用理想气体为工作物质进行如图所示的循环过程,其中ab 、cd 分别是温度为T 2、T 1的等温过程,bc 、da 为等压过程.试求该致冷机的致冷系数. 解:在ab 过程中,外界作功为 1221ln ||p p RT M MA mol =' 在bc 过程中,外界作功 )(||121T T R M MA mol -=''在cd 过程中从低温热源T 1吸取的热量2Q '等于气体对外界作的功2A ',其值为 ='='22A Q 122ln p p RT M Mmol 在da 过程中气体对外界作的功为 )(122T T R M M A mol -='' 致冷系数为 22112||||A A A A Q w ''-'-''+''=%)(ln )(ln ln1212112122121T T p pT T T p p T p p T ----+=p121T T T -=2.已知一定量的理想气体经历如图所示的循环过程。
热力学基础习题答案
热力学基础习题答案热力学基础习题答案热力学是物理学中的一个重要分支,研究的是能量转化和能量流动的规律。
在学习热力学的过程中,习题是非常重要的一部分,通过解答习题可以加深对热力学理论的理解和应用。
下面将给出一些热力学基础习题的答案,希望对大家的学习有所帮助。
1. 一个物体的体积为V,温度为T,压强为P。
如果将该物体的体积减小到原来的一半,温度保持不变,那么压强会发生怎样的变化?答案:根据热力学的理论,当温度不变时,物体的压强与体积成反比。
因此,当物体的体积减小到原来的一半时,压强将增加到原来的两倍。
2. 一个气体在等温过程中,体积从V1变为V2,压强由P1变为P2。
如果V1/V2 = 2,那么P1/P2等于多少?答案:根据热力学的理论,当气体在等温过程中,压强与体积成反比。
因此,P1/P2 = V2/V1 = 1/2。
3. 一个系统的内能为U,对外做功为W,吸收的热量为Q。
根据热力学第一定律,系统的内能变化ΔU等于什么?答案:根据热力学第一定律,系统的内能变化ΔU等于吸收的热量Q减去对外做的功W,即ΔU = Q - W。
4. 一个物体的热容为C,质量为m,温度变化ΔT。
根据热力学的理论,物体吸收或释放的热量Q等于什么?答案:根据热力学的理论,物体吸收或释放的热量Q等于物体的热容C乘以物体的质量m乘以温度变化ΔT,即Q = C * m * ΔT。
5. 一个系统的熵变为ΔS,吸收的热量为Q。
根据热力学第二定律,系统对外做的功W等于什么?答案:根据热力学第二定律,系统对外做的功W等于吸收的热量Q减去系统的熵变ΔS,即W = Q - ΔS。
6. 一个物体的热容为C,质量为m,温度变化ΔT。
如果将该物体的温度从T1变为T2,吸收或释放的热量Q等于什么?答案:根据热力学的理论,物体吸收或释放的热量Q等于物体的热容C乘以物体的质量m乘以温度变化ΔT,即Q = C * m * ΔT。
通过以上习题的解答,我们对热力学的基础知识有了更深入的理解。
(完整版)大学物理学(课后答案)第8章
第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。
则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。
而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。
8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。
开始时它们的压强和温度都相同。
现将3 J 热量传给氦气,使之升高到一定的温度。
若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。
故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。
故正确的是(C )。
8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。
又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。
大学物理答案8.第八章
⼤学物理答案8.第⼋章第⼋章热⼒学第⼀和第⼆定律思考题8-13 强光照射物体,可以使物体的温度上升,导致物体内能的改变。
试问这⼀过程属于热量传递还是⼴义的做功。
8-14 储⽓瓶中的⼆氧化碳急速喷出,瓶⼝处会出现固态的⼆氧化碳----⼲冰。
为什么?8-15 ⽇常⽣活中有“摩擦⽣热”的提法,从物理上讲正确的表述是什么?8-16 有⼈说:只有温度改变时,才有吸热或放热现象。
这种说法正确吗?试举例说明之。
8-17 微元dW、dQ和dU与具体微元过程有关吗?微元dQT呢?8-18 参考§8.4关于开尔⽂表述与克劳修斯表述等价性的证明,试⽤反证法证明卡诺循环与克劳修斯表述的等价性。
8-19 等温膨胀过程的熵变⼤于零,有⼈说这表明此过程是不可逆的过程。
这种说法正确吗?8-20 基于克劳修斯表述证明两条绝热线不可能相交。
8-21 定义状态量焓H=U+pV。
对准静态且只有压强做功的过程,证明dH=Tds+Vdp,并说明该量在等压过程中的物理意义。
8-22报载,⼀⼩孩在夏季午睡时,由于长时间压着⼀个⼀次性打⽕机,导致打⽕机破裂,其⽪肤轻度冻伤。
试思考其中的物理原因。
8-23 ⼀般来说,物体吸热(放热)温度上升(下降),其热容量为正值。
但是对于⾃引⼒系统,热容量可能取负值。
试以第七章例7.3为例说明之。
习题8-1 某⼀定量氧⽓原处于压强P1=120atm 、体积V1=1.0L 、温度t1=27摄⽒度的状态,经(1)绝热膨胀,(2)等温膨胀,(3)⾃由膨胀,体积增⾄V2=5.0L 。
求这三个过程中⽓体对外做功及末状态压⼒值。
解:112120, 1.0,300 5.0p atm V l T K V l====氧⽓的775225p vC R R C γ=== (1)绝热膨胀:111611122212() 1.2810a V p V p V p p P V ---===? 1412[1()] 1.44101V pVW J V γγ-=-=?- (2)等温过程:111611122212() 1.2810a V p V p V p p P V ---=∴==? 1412[1()] 1.44101V pVW J V γγ-=-=?- (3)⾃由膨胀,T 不变 622.4310a p P =? W=08-2 将418.6J 的热量传给标准态下的5.00×10-3kg 的氢⽓[Cv,m=20.331J/(mol.k)] (1) 若体积不变,这热量变为什么?氢⽓的温度变为多少? (2) 若温度不变,这热量变为什么?氢⽓的压强及体积变为多少? (3) 若压强不变,这热量变为什么?氢⽓的温度和体积变为多少?解:(1)V 不变5131416.8, 1.01310,273.15 510Q W U Q J P Pa T K M Kg-?=+?∴?==?==?50, 8.05522M QW Q U R T T KM R µµ?=?=?=∴?== 273.158.05281.2()T K ∴=+=(2)T 不变12211123111111 0, 1.0775.610QMRT V VMU Q W RT Ln e V V MRT MPV RT V m P µµµµ-===∴===∴==?223112225.610 1.0776.0310() 9.4110 ( )PV V m P Pa V --∴=??=?==? (3)P 不变22321212221211111 , 5.85(),72273.15 5.7279.0()5.7210P MQQ C T T K M R T K V V T MRTT MRT V V m T T T PT P µµµµ??===∴=+======?1125()121.6 299.02M W P V V J U R T J µ=-=?== 计算结果Q U W ?≠?+是因为Cp 和Cv 近似取值,若取实验值20.331,28.646v p C C ==可得:25.845,279.0,297.1T K T K U J ?==?=8-3有20.0L 的氢⽓,温度为27摄⽒度,压强为P=1.25105pa 。
(完整版)大学物理学(课后答案)第8章
第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。
则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。
而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。
8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。
开始时它们的压强和温度都相同。
现将3 J 热量传给氦气,使之升高到一定的温度。
若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。
故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。
故正确的是(C )。
8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。
又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。
大学物理(华中科技版)第8章习题答案
第8章 热力学基础8-1.一定量的理想气体,其体积和压强依照V =p a的规律变化,其中a 为已知常数,试求:(1)气体从体积V 1膨胀到V 2所作的功;(2)体积为V 1时的温度T 1与体积为V 2时的温度T 2之比. 解:(1):⎰⎰⎪⎪⎭⎫ ⎝⎛-===21212122211V V V V V V a dV VaPdV W (2): 111nRT V P = 1221V V T T =8-2.摩尔数相同的三种气体:H e 、N 2、CO 2 (均视为刚性分子的理想气体),它们从相同的初态出发,都经历等容吸热过程,若吸取相同的热量, 则:(1)三者的温度升高相同;(2)三者压强的增加也相同.上述两个结论是否正确?如有错误请作出正确的解答. 解:因为Q T R i m M E =∆=∆2若Q 相同,但自由度不同,故温度改变也不同。
T R mvM P ∆=∆体积不变,温度增量不同,压强的增量不同8-3.一系统由习题8-3图中的a 态沿acb 到达b 态时,吸收热量350J ,同时对外作功126J 。
(1) 如果沿adb 进行,则系统作功42J ,问这种情况下系统吸收多少热量?(2) 当系统由b 态沿曲线bea 返回a 态时,如果外界对系统作功84J ,问这种情况下系统是吸热还是放热?热量传递多少?(3)若J E E a d 168=-,试求沿ad 及db 各吸热多少?习题8-3图解: W E Q +=∆)J (224126350=-=-=acb acb acb W Q E ∆(1)∵内能是态函数,故acb abd E E ∆=∆故 )J (26642224=+=+=adb adb adb W E Q ∆ (2) ba acb ba ba ba W E W E Q +-=+=∆∆ )J (30884224-=--=放热 (3) adb a d ad ad ad W E E W E Q +-=+=)(∆ )J (21042168=+= d b db db E E O E Q -=+∆= )()(d a a b E E E E -+-=168)()(-=---=ab a d a b E E E E E ∆ )J (56168224168=-=-=acb E ∆8-4.1mol 单原子理想气体,从300K 加热到350K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功?(1)容积保持不变;(2)压强保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题八8-1 如果理想气体在某过程中依照V=pa 的规律变化,试求:(1)气体从V 1膨胀到V 2对外所作的功;(2)在此过程中气体温度是升高还是降低?分析 利用气体做功公式即可得到结果,根据做正功还是负功可推得温度的变化。
解:(a) ⎪⎪⎭⎫ ⎝⎛-===⎰⎰21222112121V V a dV V apdV W v v v v (b) 降低 8-2 在等压过程中,0.28千克氮气从温度为293K 膨胀到373K ,问对外作功和吸热多少?内能改变多少?分析 热力学第一定律应用。
等压过程功和热量都可根据公式直接得到,其中热量公式中的热容量可根据氮气为刚性双原子分子知其自由度为7从而求得,而内能则由热力学第一定律得到。
解:等压过程: 2121()()m W P V V R T T M=-=-()32808.31373293 6.651028J =⨯⨯-=⨯ ()()J T T C Mm Q p 4121033.229337331.82728280⨯=-⨯⨯⨯=-=据J E W E Q 41066.1,⨯=∆+∆=8-3 1摩尔的单原子理想气体,温度从300K 加热到350K 。
其过程分别为(1)容积保持不变;(2)压强保持不变。
在这两种过程中求:(1)各吸取了多少热量;(2)气体内能增加了多少;(3)对外界作了多少功分析 热力学第一定律应用。
一定量的理想气体,无论什么变化过程只要初末态温度确定,其内能的变化是相同的。
吸收的热量则要根据不同的过程求解。
解: 已知气体为1 摩尔单原子理想气体31,2V m C R M==(1) 容积不变。
()()J T T C Mm Q V 25.62330035031.82312=-⨯⨯=-=根据E Q W W E Q ∆==+∆=,0,。
气体内能增量J E 25.623=∆。
对外界做功0=W . (2) 压强不变。
215()8.31(350300)1038.75,2p m Q C T T J M=-=⨯⨯-=J E 25.623=∆,J J J W 5.41525.62375.1038=-=8-4 一气体系统如题图8-4所示,由状态a 沿acb 过程到达b 状态,有336焦耳热量传入系统,而系统作功126焦耳,试求: (1) 若系统经由adb 过程到b 作功42焦耳,则有多少热量传入系统?(2) 若已知J E E a d 168=-,则过程ad 及db 中,系统各吸收多少热量?(3)若系统由b 状态经曲线bea 过程返回状态a,外界对系统作功84焦耳,则系统与外界交换多少热量?是吸热还是放热?分析 热力学第一定律应用。
根据对于初末态相同而过程不同的系统变化,内能变化是相同的特点,确定出内能的变化。
结合各过程的特点(如等体过程不做功)和热力学第一定律即可求得。
解:已知acb 过程中系统吸热336Q J =,系统对外作功126W J =,根据热力学第一定律求出b 态和a 态的内能差:J W Q E 210=-=∆ (1) 42W J =, 故JW E Q adb 252=+∆=(2) 经ad 过程,系统作功与adb 过程做功相同,即W=42J,故J W E Q ad ad ad 21042168=+=+∆=,经db 过程,系统不作功,吸收的热量即内能的增量()()J E E E E E E E a d a b d b db 42168210=-=---=-=∆所以J W E Q db db db 42=+∆=(3) J W bea 84-=,210bea E E J ∆=-∆=-,故.294J W E Q bea bea bea -=+∆=系统放热.8-5 如题图8-5所示。
某种单原子理想气体压强随体积按线性变化,若已知在A,B 两状态的压强和体积,求: (1)从状态A 到状态B 的过程中,气体做功多少?(2)内能增加多少?(3)传递的热量是多少?分析 利用气体做功的几何意义求解,即气体的功可由曲线下的面积求得。
而内能变化则与过程无关,只需知道始末状态即可。
解:(1) 气体作功的大小为斜线AB 下的面积()()()A B A B A A B P P V V P V V W --+⨯-=21()()A B B A V V P P -+=21VO题图8-4VOV A V B题图8-5(2) 气体内能的增量为: ()A B V T T C Mm E -=∆ ①据 RT Mm PV =mR M V P T AA A A =②mRM V P T BB B B =③②③代入① ()A A BB V P V P E -=∆23(3)气体传递的热量()()()A A BBA B B A V P VP V V P P W E Q -+-+=+∆=23218-6一气缸内贮有10摩尔的单原子理想气体,在压缩过程中,外力作功200焦耳,气体温度升高一度,试计算: (1) 气体内能的增量;(2)气体所吸收的热量;(3)气体在此过程中的摩尔热容量是多少?分析 利用内能变化公式和热力学第一定律,求解压缩过程中的热量。
再根据摩尔热容量定义即可得到此过程中的摩尔热容量。
解:据()J T T C Mm E V 65.124131.8231012=⨯⨯⨯=-=∆又据热力学第一定律:124.6520075.35Q E W J =∆+=-=- 1摩尔物质温度升高(或降低)1度所吸收的热量叫摩尔热容量,所以1175.357.53510C J m olK---==-⋅⋅8-7一定量的理想气体,从A 态出发,经题图8-7所示的过程,经 C 再经D 到达B 态,试求在这过程中,该气体吸收的热量.分析 比较图中状态的特点可知A 、B 两点的内能相同,通过做功的几何意义求出气体做功,再利用热力学第一定律应用求解。
解:由图可得: A 态: 5810A A P V =⨯ ;B 态: 5810B B P V =⨯∵ A A B B P V P V =,根据理想气体状态方程可知 B A T T =, 0E ∆= 根据热力学第一定律得:6()() 1.510A C A B B D Q E W W P V V P V V J =∆+==-+-=⨯8-8 一定量的理想气体,由状态a 经b 到达c .如图8-8所示,abc 为一直线。
求此过程中(1)气体对外作的功;(2)气体内能的增量;(3) 气体吸收的热量.分析 气体做功可由做功的几何意义求出;比较图中状态的特点可求解内能变化,再利用热力学第一定律求解热量。
解:(1) 气体对外作的功等于线段c a 下所围的面积 531(13) 1.01310210405.22W J -=⨯+⨯⨯⨯⨯=(2) 由图看出 a a c c P V P V = a c T T ∴= 内能增量 0=∆E . (3)由热力学第一定律得 405.2QEW J =∆+=。
8-9 2mol 氢气(视为理想气体)开始时处于标准状态,后经等温过程从外界吸取了400 J 的热量,达到末态.求末态的压强.(普适气体常量R =8.31J·mol -2·K -1)分析 利用等温过程内能变化为零,吸收的热量等于所作的功的特点。
再结合状态变化的特点2211P V P V =求解。
解:在等温过程中, 0T ∆= , 0E ∆=21ln()m Q E W W R T V V M=∆+==得 21ln0.0882(/)V Q V m M RT==即211.09V V = 。
末态压强 12120.92V P P atm V ==8-10为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?分析 结合内能和等压过程功的公式首先求得内能,再由热力学第一定律可得热量。
解:等压过程 m W P V R T M=∆=∆ 内能增量 11(/)22E m M iR T iW ∆∆==53)题图8-7题图8-8双原子分子 5=i ∴ 172Q E W iW W J ∆=+=+=8-11一定量的刚性理想气体在标准状态下体积为 231.010m ⨯,如题图8-11所示。
求下列各过程中气体吸收的热量:(1)等温膨胀到体积为 232.010m ⨯; (2) 先等体冷却,再等压膨胀到(1)中所到达的终态.分析 等温过程吸收的热量可以直接利用公式求解。
A →C →B 过程的吸收热量则要先求出功和内能变化,再应用第一定律求解。
解:(1) 如图,在A →B 的等温过程中,0=∆T E ,∴ 221111d d V V T T V V p V Q W P V V V===⎰⎰)/ln(1211V V V p =将51 1.01310P pa =⨯,231 1.010V m =⨯ 和232 2.010V m =⨯代入上式,得 27.0210T Q J =⨯ (2) A →C 等体和C →B 等压过程中 ∵A 、B 两态温度相同,0AC B E ∴∆=∴ 221()ACB ACB ACB ACB CB Q E W W W P V V ∆=+===- 又 2121()0.5P V V P atm ==∴ 5220.5 1.01310(21)10 5.0710AC B Q J =⨯⨯⨯-⨯=⨯8-12质量为100g 的氧气,温度由10°C 升到60°C ,若温度升高是在下面三种不同情况下发生的:(1)体积不变;(2)压强不变;(3)绝热过程。
在这些过程中,它的内能各改变多少?分析 理想气体的内能仅是温度的函数,内能改变相同。
解:由于理想气体的内能仅是温度的函数,在体积不变,压强不变,绝热三种过程中,温度改变相同,内能的改变也相同(氧为双原子分子)()J T T C Mm E V 3246)283333(31.8253210012=-⨯⨯⨯=-=∆8-13 质量为0.014千克的氮气在标准状态下经下列过程压缩为原体积的一半:(1)等温过程;(2)等压过程;(3)绝热过程,试计算在这些过程中气体内能的改变,传递的热量和外界对气体所作的功.(设氮气可看作理想气体)分析 理想气体的内能仅是温度的函数,因此首先要利用过程方程求得各个过程的温度变化,从而可得到其内能。
再利用内能、做功等相应公式和热力学第一定律可求得各量。
解:(1) 等温过程p pp 12题图8-111221121142ln 8.31273ln 7.8610287.8610E V V mQ RT J M V V W Q J∆===⨯⨯=-⨯==-⨯(2)等压过程:213213212121471()8.31(273273) 1.991028221451()8.31(273273) 1.421028225.710P V T T m Q C T T J M m E C T T JMW J==-=⨯⨯⨯⨯-=-⨯∆=-=⨯⨯⨯⨯-=-⨯=-⨯(3) 绝热过程:212111T V T V --=γγ,其中,1221,57V V C C VP ===γ,)2(25211521T V T V =∴2273360.23T T K ==⨯=()J T T C Mm E V 10.906)27323.360(31.825281412=-⨯⨯⨯=-=∆即: 0,906.10,906.10Q E J W J =∆==-8-14有1 mol 刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27℃,若经过一绝热过程,使其压强增加到16 atm .试求: (1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度.分析 (1)理想气体的内能仅是温度的函数,因此首先要利用过程方程求得温度变化,从而由内能公式可得到其内能。