运筹学与最优化方法 第2章基本概念PPT课件
最优化理论与方法概述 ppt课件
PPT课件
17
3、 多元函数的Taylor展开
多元函数Taylor展开式在最优化理论中十分重要。 许多方法及其收敛性的证明都是从它出发的。
定理:设 f : Rn R具1 有二阶连续偏导数。则:
g* f (x*) 0,G* 2 f (x*)半正定
PPT课件
24
5、凸集、凸函数和凸规划
凸集和凸函数在非线性规划的理论中具有重要作用,下面 给出凸集和凸函数的一些基本知识。
定义1 设 D Rn,若对D中任意两点 x(1)与 x(2),连接 x(1)
与 x(2) 的线段仍属于D;换言之,对 x(1),x(2)∈D,
配料
每磅配料中的营养含量
钙
蛋白质
纤维
石灰石 谷物 大豆粉
0.380 0.001 0.002
0.00
0.00
0.09
0.02
0.50 PPT课件
0.08
每磅成本(元)
0.0164 0.0463 0.1250 4
解:根据前面介绍的建模要素得出此问题的数学模型如下:
设 x1 x2 x3 是生产100磅混合饲料所须的石灰石、谷物、
2 f 0 x1x3
故Hesse阵为:
2 f x22
2,
2 f 2, x2x3
2 f x32Leabharlann 2 2 2 0 2 f X 2 2 2
0 2 2
PPT课件
16
下面几个公式是今后常用到的:
(1)f X bT X ,则 f X b. 2 f X 0nn
2 f X
《运筹学第二章》课件
介绍《运筹学第二章》PPT课件内容和目标,运筹学的定义和特点。探索运 筹学的重要性和应用领域,以及运筹学的特点和原则。
线性规划
概念和模型
探索线性规划的定义和基本模型,展示线性规划在 决策和优化中的重要性。
解法和实例
介绍线性规划的常见解法和实际应用案例,展示线 性规划在生产和资源优化中的应用。
例,展示二维规划在资源分配和市场策
略中的应用。
3
优化技巧
分享二维规划的优化技巧和最佳实践, 帮助读者更好地应用二维规划解决问题。
网络流问题
概念和应用 解法和实例 问题扩展
阐述网络流问题的概念和常见应用领域,如流量 规划和运输优化。
介绍网络流问题的解法和实际应用案例,展示网 络流问题在供应链和通信网络中的应用。
2 求解方法
介绍排队论的常见求解方法和实际应用案例,帮助读者理解和解决实际排队问题。
3 模型分析
分享排队论中的模型分析技巧和最佳实践,帮助读者优化排队系统和提高服务质量。
进化算法
概念和原理
解释进化算法的概念和基本原理,如遗传算法和粒 子群优化。
应用领域
介绍进化算法在不同领域中的应用,如机器学习和 智能优化。
整数规划
概念和模型
阐述整数规划的概念和基本模型,展示整数规 划在离散决策中的重要性。
解法和实际应用
介绍整数规划的常见解法和实际应用,展示整 数规划在项目管理和物流优化中的应用。
二维规划
1
概念和模型
解释二维规划的定义和基本模型,展示
解法和实例
2
二维规划在多目标决策中的应用。
介绍二维规划的常见解法和实际应用案
探讨网络流问题态规划
《最优化方法》课件
5
2. 学习本课程所需的数学知识
向量、向量的模(范数)、向量的运算、 线性相关与无关、基. 矩阵的运算及性质、矩阵的秩、特征值、正定性。 向量函数、连续性、可微性、 梯度、海森矩阵、向量函数(多元函数)的Taylor定 理
6
3. 学习要求
掌握主要的优化模型的数学计算方法. 了解优化方法的数学原理. 了解现代优化方法. 熟练掌握应用数学软件计算优化问题.
3
二次大战以后,在军事运筹小组中工作过的一部分科 学家开始转入民用部门,他们把对军事系统最优化的研究 成果拓展到各种民用系统的研究上。
1947年美国数学家G.B.Dantzig在研究美国空军资源 配置时,提出了求解线性规划的有效方法—单纯形法。二 十世纪五十年代初,应用计算机求解线性规划获得成功。
2
运筹学这一名词最早出现于1938年。当时英,美等国盟军 在与德国的战争中遇到了许多错综复杂的战略和战术问题难以 解决,比如
(1)防空雷达的布置问题:
(2)护航舰队的编队问题:
为了应付上述各种复杂问题,英美等国逐批召集不同专业 背景的科学家,在三军组织了各种研究小组,研究的问题都是 军事性质的,在英国称为“Operational Research”,其他英语 国家称为“Operations Research”,意思是军事行动研究。这些 研究小组运用系统优化的思想,应用数学技术分析军事问题, 取得了非常理想的效果。
至五十年代末,一些工业先进国家的大型企业已经较 普遍地使用运筹学方法解决在生产经营管理中遇到的实际 问题,并取得了良好的效果,至六十年代中期,运筹学开 始应用于一些服务性行业和公用事业。
4
我国运筹学的研究始于五十年代中期,当时由钱学森教 授将运筹学从西方国家引入我国,以华罗庚教授为首的一大 批科学家在有关企事业单位积极推广和普及运筹学方法,在 建筑,纺织,交通运输,水利建设和邮电等行业都有不少应 用。关于邮递员投递的最佳路线问题就是由我国年轻的数学 家管梅谷于1962年首先提出的,在国际上统称为中国邮递员 问题。我国运筹学的理论和应用研究在较短时间内赶上了世 界水平。
最优化方法PPT
共117页第8页
同时太阳系这个"整体"又是它所属的"更大整 体"--银河系的一个组成部分。世界上的具体系统是 纷繁复杂的,必须按照一定的标准,将千差万别的 系统分门别类,以便分析、研究和管理,如:教育 系统、医疗卫生系统、宇航系统、通讯系统等等。 如果系统与外界或它所处的外部环境有物质、能量 和信息的交流,那么这个系统就是一个开放系统, 否则就是一个封闭系统。开放系统具有很强的生命 力,它可能促进经济实力的迅速增长,使落后地区 尽早走上现代化。如改革开放以来已大大增强了我 们的综合国力。而我国的许多边远山区农村,由于 交通不便,相对封闭,还处于比较落后的状态。
会科学和思维科学的相互渗透与交融汇流,产生了 具有高度抽象性和广泛综合性的系统论、控制论和 信息论。
系统论是研究系统的模式、性能、行为和规律 的一门科学。它为人们认识各种系统的组成、结构、 性能、行为和发展规律提供了一般方法论的指导。 系统论的创始人是美籍奥地利理论生物学家和哲学 家路德维格·贝塔朗菲。系统是由若干相互联系的 基本要素构成的,它是具有确定的特性和功能的有 机整体。如太阳系是由太阳及其围绕它运转的行星 (金星、地球、火星、木星等等)和卫星构成的。
从数学上比较一般的观点来看,所谓最优化问题可 以概括为这样一种数学模型:给定一个“函数”,F(X), 以及“自变量”X应满足的一定条件,求X为怎样的值时, F(X)取得其最大值或最小值。这里在函数和自变量两个 词上之所以打上引号,是想强调它们的含意比中学数学 和大学微积分中函数的定义要广泛得多。通常,称F(X) 为“目标函数”,X应满足的条件为“约束条件”。约 束条件一般用一个集合D表示为:X∈D。求目标函数 F(X)在约束条件X∈D下的最小值或最大值问题,就是一 般最优问题的数学模型,它还可以利用数学符号更简洁 地表示成:Min F(X)或Max F(X)。
运筹学PPT完整版
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
(2)
x j 0, j 1,2,, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 27
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
最优解:使目标函数达到最大值的可行解。
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
Page 2
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美国有人把运筹
学称之为管理科学(Management Science)。运筹学所研究的 问题,可简单地归结为一句话: “依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
Page 3
运筹学的主要内容
Page 4
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 5
❖选用教材 ➢ 《运筹学基础及应用》胡运权主编 哈工大出版社
❖参考教材 ➢ 《运筹学教程》胡运权主编 (第2版)清华出版社 ➢ 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 ➢ 《运筹学》(修订版) 钱颂迪主编 清华出版社
运筹学基础及应用(全套课件296P) ppt课件
我国朴素的运筹学思想:田忌赛马、丁渭修皇宫
1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为
“Operations Research”这个ppt课名件字一直延用至今。
2
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
16 y3
4 X2 1Leabharlann y4X1 0 , X2 0
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
ppt课件
6
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学;
大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际运筹学会 成立
ppt课件
11
第 2 章 线性规划的对偶 理论
最优化方法:第2章 线性规划
Z=CBB-1b+(σm+1,
σm+k ,
xm+1
σn
)
CB B-1b+σ m+k
xn
因为 m+k 0,故当λ→+∞时,Z→+∞。
用初等变换求改进了的基本可行解
假设B是线性规划 maxZ=CX,AX=b,X 0的可行基,则
AX=b
(BN)
XB XN
b
(I,B-1 N)
➢ 若在化标准形式前,m个约束方程都是“≤”的形式, 那么在化标准形时只需在一个约束不等式左端都加上一个松弛变 量xn+i (i=12…m)。
➢ 若在化标准形式前,约束方程中有“≥”不等式, 那么在化标准形时除了在方程式左端减去剩余变量使不等式变 成等式以外,还必须在左端再加上一个非负新变量,称为 人工变量.
单纯形法简介
考虑到如下线性规划问题 maxZ=CX AX=b X 0
其中A一个m×n矩阵,且秩为m,b总可以被调整为一 个m维非负列向量,C为n维行向量,X为n维列向量。
根据线性规划基本定理: 如果可行域D={ X∈Rn / AX=b,X≥0}非空有界, 则D上的最优目标函数值Z=CX一定可以在D的一个顶 点上达到。 这个重要的定理启发了Dantzig的单纯形法, 即将寻优的目标集中在D的各个顶点上。
非基变量所对应的价值系数子向量。
要判定 Z=CBB-1b 是否已经达到最大值,只需将
XB =B-1b-B-1NX N 代入目标函数,使目标函数用非基变量
表示,即:
Z=CX=(CBCN
)
XB XN
=CBXB +CNXN =CB (B-1b-B-1NXN )+CNXN
运筹学ppt课件
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划
学
整数规划
规
动态规划
划
多目标规划
学
双层规划
最优计数问题
科
组 合
网络优化
内
优 排序问题 化 统筹图
容
对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,
最优化方法全部课件
f x0
据此有
ⅰ) 等号成立当且仅当 p 与f x0 同方向或与 f x0
同方向。且当
p与
f x0
同方向时,f x0
p
取到最大值
f x0 。当 p 与 f x0 同方向时,f x0 取到最小值 p
f x0
第1章 预备知识
1.1 经典极值问题 1. 例子, 2. 数学模型 第一,无约束极值问题
min f x1, x2, , xn 或 max f x1, x2, , xn
解法:解方程组 第二,仅含等式约束的极值问题
min f x1, x2, , xn s.t. hi x1, x2, , xn 0, i 1, 2, ,l(l n)
p
思考:f x 与
f x f x f x
,
,,
的异同。
p
x1 x2
xn
根据极限理论,易见
若
f x0
p
0,则p方向是 f
x
在点
x0 处的上升方向;
若 f x0 0,则 p方向是 f x在点 p
x0
处的下降方向。
因此,方向导数的正负决定了函数值的升降。
例1.8 P19
几个常用函数的梯度公式
(1)若 f x C ,则 f x 0
(2) bT x b ;
(3) xTQx 2Qx ;
(4) xT x 2x .
,即 C 0 ;
2. Hesse矩阵
问:函数 f x 关于变量 x 的二阶导数又是什么?
1.5 梯度和Hesse矩阵
本段讨论都基于对函数 f x 可微的假定。
运筹学课件PPT课件
整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。
最优化第二章解析PPT课件
例2.6 考虑例2.5中的线性规划关于 B0 [a4,a2] 的
G-J方程组
x1 2x3 x4 1
x1 x2 x3 4 试把 a1 [1,1]T 和 a3 [2,1]T分别引入基,求新的基本
容许解。
ⅱ)下降性条件
新解 x x x N B b 1 , ,b k 1 ,0 ,b k 1 , ,b m ,0 , ,0 ,b k ,0 , ,0 T 。x N
那么,B 是容许基,且关- 于 B 的基本容许解的 7
目标函数值小于关于 B 的基本容许解的目标函数值。 定理2.12 在标准线性规划(2.21)中,假设: ⅰ)B[a1,a2, ,am ]是容许基;
ⅱ)非基本变量 x l 的判别数 l 0 ;
ⅲ)al B1al 0。 那么线性规划(2.21)存在可以使目标函数值任意减小的 容许解。
-
13
3. 初始基本容许解的产生
对于标准线性规划
m in c T x
s .t. A x b
(2.54)
x
0
,
引入 m 个人工变量 u1,u2, ,um,求解辅助线性规划——
一个典范线性规划
其中 e1,1,
m in e T u
s.t. Iu A x b
u
0,
x
0
,
,1T。
(2.55)
a1lxl
a1nxn b1
a2m1xm1 a2lxl a2nxn b2 (2.29)
xmamm1xm1 a- mlxl amnxn bm.
2
(2.29)称为关于基 B 的Gauss-Jordan方程组(G-J方程组)
典范线性规划的主约束即是一个G-J方程组。
G-J方程组的性质:
运筹课件PPT课件
它涉及到的问题包括最短路径、 最小生成树、最大流等。
图论与网络优化在计算机科学、 交通运输、通信网络等领域有 广泛应用,如路由算法、网络 设计等。
03 运筹学在现实生活中的应 用
生产与库存管理
01
02
03
生产计划
运筹学通过数学模型和算 法,帮助企业制定生产计 划,优化资源配置,提高 生产效率。
库存控制
Excel Solver的特点
Excel Solver易于使用
它提供了一个直观的用户界面,用户可以通过简单的拖放操作来定义问题。
Excel Solver具有广泛的适用性
它可以处理各种类型的优化问题,包括线性规划、整数规划、目标规划、非线性规划等。
Excel Solver具有高效性
它使用了多种优化算法,可以快速求解大规模问题。
它使用了高效的算法和优化的数据结构,可以快速地处理大规模数据和计算任务。
05 案例分析与实践
生产计划优化案例
总结词
生产计划是企业管理中的重要环节,通过优化生产计划可以提高企业的生产效率 和资源利用率。
详细描述
生产计划优化案例主要涉及如何根据市场需求、产品特性、生产能力等因素制定 合理的生产计划,以实现生产效益的最大化。具体包括对生产计划的制定、执行 、调整等环节进行优化,提高生产计划的准确性和灵活性。
运筹学的重要性
01
提高效率
降低成本
02
03
增强决策科学性
运筹学能够通过优化资源配置和 流程,提高系统的效率和生产力。
通过合理的资源配置和计划安排, 运筹学可以帮助企业降低成本和 资源消耗。
运筹学提供的数据分析和模型预 测等方法,有助于增强决策的科 学性和准确性。
运筹学第2章课件
目标函数是要求最大或最小的线性函数,形式为(z = c^T x + z_0),其中(c)是常数向量,(x)是决策变 量向量,(z_0)是常数。
决策变量是问题中需要求解的未知数,通常为非 负实数。
线性规划的几何解释
线性规划问题可以用几何图形直观地 表示。在二维空间中,目标函数和约 束条件可以表示为直线或线段,决策 变量则表示为平面上的点。
分配问题的应用非常广泛,如 资源分配、任务调度等。这些 案例展示了线性规划在优化资 源配置和提高总体效益方面的 巨大潜力。
04
线性规划的扩展
整数规划
01
整数规划问题
整数规划是一类特殊的线性规划问题,要求决策变量取整数值。整数规
划在现实生活中有广泛的应用,如生产计划、物流调度等。
02
求解方法
整数规划的求解方法包括穷举法、割平面法、分支定界法等。这些方法
第2章总结
• 线性规划的求解方法,包括图解 法、单纯形法和内点法等,以及 各种方法的适用范围和优缺点。
第2章总结
01 内容亮点
02
通过案例分析,使抽象的数学模型更加生动具体,易
于理解。
03
详细介绍了线性规划的求解方法,有助于学生掌握实
际操作技能。
第2章总结
练习与思考 结合实际案例,尝试建立线性规划模型并求解。 分析不同求解方法的适用场景,比较其优劣。
大规模优化问题
大规模优化问题是指决策变量数量庞大,导致计算复杂度极高的优化问题。这类问题在现实生活中很常见,如物流网 络优化、生产调度等。
近似算法
为了解决大规模优化问题,研究者们提出了许多近似算法。这些算法通过牺牲最优解的精度来换取更快的计算速度, 从而在实际应用中得到广泛应用。常见的近似算法包括贪心算法、遗传算法、模拟退火算法等。
最优化及最优化方法讲稿
最优化及最优化方法讲稿ppt xx年xx月xx日CATALOGUE目录•最优化问题概述•线性规划问题及其求解方法•非线性规划问题及其求解方法•动态规划问题及其求解方法•最优化算法的收敛性分析•最优化算法的鲁棒性分析•最优化算法的应用举例 - 解决生产调度问题01最优化问题概述最优化问题是一个寻找某个或多个函数的特定输入,以使该函数的输出达到最小或最大的问题。
定义根据不同的分类标准,可以将最优化问题分为线性规划、非线性规划、多目标规划、约束规划等。
分类最优化问题的定义与分类描述所追求的最小或最大值的函数。
目标函数约束条件数学模型限制搜索范围的约束条件。
目标函数和约束条件的数学表达。
03最优化问题的数学模型0201最优化问题的求解方法牛顿法利用目标函数的Hessian矩阵(二阶导数矩阵)进行搜索。
梯度下降法迭代搜索,逐步逼近最优解。
混合整数规划将整数变量引入优化模型中,求解整数规划问题。
模拟退火算法以概率接受劣质解,避免陷入局部最优解。
进化算法模拟生物进化过程的启发式搜索算法。
02线性规划问题及其求解方法线性规划问题定义:在一组线性约束条件下,求解一组线性函数的最大值或最小值的问题。
数学模型:将实际问题转化为线性规划模型,包括决策变量、目标函数和约束条件。
线性规划问题的求解方法 - 单纯形法基本概念:介绍单纯形法的相关概念,如基、可行解、最优解等。
单纯形法步骤:阐述单纯形法的基本步骤和算法流程,包括初始基可行解的求解、最优解的迭代搜索和最终最优解的确定。
单纯形法改进:介绍一些改进的单纯形法,如简化单纯形法、对偶单纯形法等。
线性规划问题的定义与数学模型通过一个具体的生产计划问题,说明如何建立线性规划模型并进行求解。
生产计划问题通过一个配货问题,说明如何运用线性规划模型解决实际问题。
配货问题通过一个投资组合优化问题,说明如何运用线性规划进行风险和收益的平衡。
投资组合优化问题线性规划问题的应用举例03非线性规划问题及其求解方法非线性规划问题定义:非线性规划问题是一类求最优解的问题,其中目标函数和约束条件均为非线性函数。
运筹学第二讲ppt课件 31页
一个算法的执行时间大致上等于其所有语句执行时间的总和, 而语句的执行时间则为该条语句的重复执行次数和执行一次所需时 间的乘积。
语句的频度(Frequency Count):一条语句的重复执行次数。 △ 算法的执行时间=∑原操作(基本操作)的执行次数(频度)× 原操作的执行时间 △ 设每条语句一次执行的时间都是相同的,为单位时间。这 样我们对时间的分析就可以独立于软硬件系统。
lim T(n)/n3 lim (2n33n22n1)/n32
n
n
一个算法的时间复杂度(Time Complexity)是该算法的执行时
间,记作T(n),T(n)是该算法所求解问题规模n的函数。
当问题的规模趋向无穷大时,T(n)的数量级称为算法的渐近时
间复杂度,记作
T(n)=〇(f(n))
(3) x++;
(4) for(i=1;i<=n;i++)
T(n)=〇(n2)
(5) for(j=1jj<=n;j++)
(6)
y++;
例1.7 变量计数之二
ni j
ni
n
1j i(i1)/2
(1) x=1;
i1 j1 k1 i1 j1
i1
(2) for(i=1;i<=n;i++) [n(n1)(2n1)/6n(n1)/2]/2
它表示随问题规模n的增大,算法执行时间的增长率和f(n)的
增长率相同,简称时间复杂度。我们就是要找这个f(n) 。
例1.5 交换x和y的值。
temp=x;
运筹学基础教学课件PPT
都江堰水利工程
Page 4
川西太守李冰 父子主持修建, 其目标是利用 岷江上游的水 资源灌溉川西 平原,追求的 效益还有防洪 与航运。其总 体构思是系统 思想的杰出运 用
北宋丁谓主持修复皇宫
Page 5
例2、北宋丁谓主持修复皇宫 面临的问题:木材、石材、 砖瓦等建筑材料如何取得?
修建如何进行?
大街 开封 皇宫
2、策略集
策 略:在对策中,局中人在整个决策过程中针对一系 列行动制定的完整行动方案。
策略集:每个局中人策略的全体集合。 局 势:每个局中人从自己的策略集合中选择一个策
略,构成一个局势。
3、赢得函数
利用全部局势集合上的一个实值函数,来描述 每个局势完结后局中人的得失的报酬数值。
对策的分类
Page 23
目标函数: 约束条件:1原材料的限制 2工时的限制 3座椅的限制 4非负限制 数学模型:
图解法
x2
1000
5x1+2.5x2≤2500
x1=400
800
Z=2600
600
400
Z=1800
Page 20
max Z=4x1+3x2
2x1 2x2 1600 5x1x1420.05x2 2500 x1 0、x2 0
线平衡率 秒表法/PTS
动作和方法研究
动改法
成本控制 设施规划
双手操作法 人机配合法
物流分析
防错法
PMP体系
PAC体系
系统设计
……
工作抽样法 流程程序法
五五法 其它
1工程学 2人机学(人因工程学) 3材料学 4管理学 5统计学 6运筹学 7系统工程学 8材料力学 9工程力学 10物流与设施规划
运筹学与最优化方法
( 1)
,d
(2)
,…,d
(m) m
R, d
(j)
n
(k)
0
记 L( d
(1)
,d
(2)
,…,d
(m)
)={ x = d j j =1
jR }
为由向量d , d , … , d 生成的子空间,简记为L。 n 正交子空间:设 L 为R 的子空间,其正交子空间为 n L ={ x R xTy=0 , y L } n n 子空间投影定理:设 L 为R 的子空间。那么 x R , 唯一 x L , y L , 使 z=x+y , 且 x 为问题 min ‖z - u‖ s.t. u L 的唯一解,最优值为‖y‖。 n 特别, L =R 时,正交子空间 L ={ 0 }(零空间)
x
x+y
点列的收敛:设点列{x(k)} R , x R 点列{x(k)}收敛到 x ,记 (k) = x lim‖x(k)- x‖ = 0 lim x (k) = x ,i lim x i k k ki
y
n
n
五、基本概念和符号(续)
1、向量和子空间投影定理
(3) 子空间:设 d
“若 xTy ≤ , yRn 且 y ≤ 0,则 x ≥ 0, ≥ 0 .” “若 xTy ≥ , yRn 且 y ≥ 0,则 x ≥ 0, ≤ 0 .” n “若 xTy ≥ , yR 且 y ≤ 0,则 x ≤ 0, ≤ 0 .” “若 xTy ≥ , y L Rn , 则 x L, ≤ 0 .”
一、什么是运筹学
为决策机构在对其控制下的业务活动进
行决策时,提供一门量化为基础的科学 方法。 或是一门应用科学,它广泛应用现有的 科学技术知识和数学方法,解决实际中 提出的专门问题,为决策者选择最优决 策提供定量依据。 运筹学是一种给出问题坏的答案的艺术, 否则的话,问题的结果会更坏。
2019运筹学与最优化方法.ppt
x2y2+
…+
xnyn
x , y 的距离: ‖x-y ‖= [(x-y)T(x-y)](1/2)
x 的长度: ‖x‖= [ xTx ](1/2)
三角不等式: ‖x + y ‖≤‖x‖+‖y‖
x
x+y
y
点列的收敛:设点列{x(k)}
Rn ,
x Rn
点列{x(k)}收敛到 x ,记
lim
k
x(k)
一阶中值公式:对x, , 使
f (x) = f (x*)+ [f (x*+(x-x*))]T(x-x*)
Lagrange余项:对x, , 记xx*+ (x-x*)
f (x) = f (x*)+ f T(x)(x-x*) + (1/2)(x-x*)T 2f (x )(x-x*)
1 )提出问题:目标、约束、决策变量、参数 2 )建立模型:变量、参数、目标之间的关系
表示 3 )模型求解:数学方法及其他方法 4 )解的检验:制定检验准则、讨论与现实的
一致性 5 )灵敏性分析:参数扰动对解的影响情况 6 )解的实施:回到实践中 7 )后评估:考察问题是否得到完满解决
四、运筹学模型的构造思路及评价
第一章 其它基础知识
复习下列知识:
线性代数的有关概念:向量与矩 阵的运算、向量的线性相关和线 性无关,矩阵的秩,正定、半正 定矩阵,线性空间等;
集合的有关概念:开集、闭集, 集合运算,内点、边界点等。
2f (x)=
2f /x1 2
2f /x1 x2
…
2f /x1 xn
2f /x2 x1 … 2f /xn x1
运筹学与最优化方法第2章
切线法(一维牛顿法) 设函数f(x)在(a,b)内有二阶连续导数
求解思路是:在初始探索点xk 处用泰勒展式作 f(x)的二次近似函 数g(x) ,再用 g(x) 的最小点作新的探索点。即
f ( x0 ) 令x0 a或b, x1 x0 为第1次探索点, , f ( x0 ) f ( xk ) xk 1 xk 为第k次探索点 f ( xk ) 则对给定的误差 ,当 f ( xk ) 时, 1 xk 1 xk f ( xk )
k
λk 1 2 3
ф′ (λk) 2 -3.5357 13.95
1/ф″(λk ) 1.1071 -1.2952 不收敛。 5 13.50
插值法: 用ф(λ)在2 或3 个点的函数值或导数值,构造2 次或 3次多项式作为ф(λ)的近似值,以这多项式的极小点 为新的迭代点。 3点2次,2点2次,4点3次,3点3次,2点3次等 以3点2次为例: 取λ 1,λ 2,λ3,求出ф(λ1), ф(λ2), ф(λ3)
x1 则把(2)代入上式得 若 x2
x1 a a (1 )(b a ) a (1 )(b a ) 2 (b a ) 5 1 2 2 (1 ) ,即 1 0 0.618 2
所以第 k 探索点的取法为
( x1 x2 ) g ( x3 ) ( x2 x3 ) g ( x1 ) ( x3 x1 ) g ( x2 ) ( x1 x2 )( x2 x3 )( x3 x1 )
( x1 x2 ) g ( x3 ) ( x2 x3 ) g ( x1 ) ( x3 x1 ) g ( x2 ) ( x1 x2 )( x2 x3 )( x3 x1 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
严格凸函数
凸函数
严格凹函数
11
2.2 凸集、凸函数和凸规划(续)
二、凸函数 1、凸函数及水平集:
定理: f(x) 为凸集 S 上的凸函数 S 上任 意有限点的凸组合的函数值不大于各点函 数值的凸组合。
思考:设f1, f2是凸函数,
1) 设1, 2 > 0, 1f1+2f2 , 1f1 - 2f2是否凸函
最优解: x*S,满足f (x*)≤ f (x), xS。则称
x*为(f S)的全局最优解(最优解), 记 g.opt.(global optimum),简记 opt. 最优值: x*为(f S)的最优解, 则称 f * = f (x*) 为 (f S)的最优值(最优目标函数值)
3
2.1 数学规划模型的一般形式(续)
数? 2) f(x)= max{ f1(x) , f2 (x) } , g(x)= min{ f1(x) ,
f2 (x) }是否凸函数?
12
2.2 凸集、凸函数和凸规划(续)
二、凸函数 1、凸函数及水平集:
定义:设集合 S Rn ,函数 f :SR, R ,
称 S = { x S∣f(x) ≤ } 为 f(x) 在 S 上 的 水平集。
f(x)
,f(x) : RnR
g(x) ≤ 0 , g(x) : RnRm
h(x) = 0 , h(x) : RnRl
当 f(x), gi(x) , hj(x)均为线性函数时,称线性 规划;若其中有非线性函数时,称非线性规划。
5
2.2 凸集、凸函数和凸规划
一、凸集
1、凸集的概念:
定义:设集合 S Rn,若x(1), x(2)S, [0,1], 必有 x(1)+(1- ) x(2) S ,则称 S 为凸集。
多胞形
单纯形
单纯形
8
2.2 凸集、凸函数和凸规划(续)
一、凸集 2、凸集的性质: 1) 凸集的交集是凸集;(并?) 2) 凸集的内点集是凸集;(逆命题是否成立?) 3) 凸集的闭包是凸集。 (逆命题是否成立?) 4) 分离与支撑: 凸集边界上任意点存在支撑超平面 两个互相不交的凸集之间存在分离超平面
m
j =1
j =1,
那么称
m
j=1
j x(j)
为x(1),
x(2),
…
ቤተ መጻሕፍቲ ባይዱ
,
x(m)的
凸组合。
•
比较:
z
=
m
j=1j
x(j)
jR — 构成线性组合 —— 线性子空间 j≥0 , j >0 — 构成半正组合 —— 凸锥 j≥0 , j =0 — 构成凸组合 —— 凸集
7
2.2 凸集、凸函数和凸规划(续)
规定:单点集 {x} 为凸集,空集为凸集。
注: x(1)+(1- ) x(2) = x(2)+(x(1)- x(2)) 是连接 x(1)与x(2)的线段 。
凸集
非凸集
非凸集
6
2.2 凸集、凸函数和凸规划(续)
一、凸集 1、凸集的概念:
例:证明集合 S = { x∣Ax = b } 是凸集。其
中,A为 mn矩阵,b为m维向量。 凸组合:设 x(1) , x(2) , … , x(m) Rn, j≥ 0
二、凸函数 2、凸函数的性质:
1) 方向导数:设 S Rn 为非空凸集,函数 f :SR , 再设 x* S, d 为方向,使当 > 0 充分小时有 x*+d S, 如果 lim [ f(x*+ d )-f(x*) ] / 存在(包括 )
第二章
基本概念 和 基本理论
1
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
第二章 基本概念和理论基础
2.1 数学规划模型的一般形式 min f(x) --------目标函数
(fS)
s.t. xS --------约束集合,可行集 其中,S Rn,f :S R,xS称(f S )的可行解
支撑
强分离
分离
非正常 分离 9
2.2 凸集、凸函数和凸规划(续)
一、凸集 3、凸锥:
定义:C Rn, 若 x C, > 0 有 x C, 则称
C 是以 0 为顶点的锥。如果 C 还是凸集,则 称为凸锥。 集合 { 0 }、Rn 是凸锥。
0
命题:C是凸锥C中任意有限点的半正组合属于S
10
严格l .opt .
严格g .opt .
l .opt .
4
2.1 数学规划模型的一般形式(续)
函数形式: min
(fgh) s.t.
矩阵形式: min
(fgh) s.t.
f(x), gi(x) , hj(x) : RnR
f(x)
gi(x) ≤ 0 , i = 1,2,…,m hj(x) = 0 , j = 1,2,…,l
一、凸集 1、凸集的概念:
定理:S是凸集S中任意有限点的凸组合属于S 多胞形 H(x(1) , x(2) , … , x(m) ):
由 x(1) , x(2) , … , x(m) 的所有凸组合构成。 单纯形:若多胞形 H(x(1) , x(2) , … , x(m) )满足,
x(2)-x(1) , x(3) -x(1) , … , x(m)- x(1) 线性无关。
定理:设集合 S Rn 是凸集,函数 f :SR是
凸函数,则对 R ,S 是凸集。
注:
1) 水平集的概念相当于在地形图中,海拔高度不高于某一 数值的区域。
2) 上述定理的逆不真。
考虑分段函数f(x)=1(x≥0)或0(x<0),函数非凸,但
任意水平集是凸集。
13
2.2 凸集、凸函数和凸规划(续)
局部最优解: x*S, x* 的邻域 N(x*) ,使满足 f (x*)≤ f (x), x S N(x*) 。则称 x*为(f S)的局部
最优解,记 l .opt.(local optimum)
在上述定义中,当x x* 时有严格不等式成立,则 分别称 x* 为(f S)的严格全局最优解和严格局部最 优解。
2.2 凸集、凸函数和凸规划(续)
二、凸函数 1、凸函数及水平集 定义: 设集合 S Rn 为凸集,函数 f :SR
若 x(1), x(2) S, ( 0 , 1 ) ,均有 f(x(1)+(1- ) x(2) ) ≤f(x(1))+(1- )f(x(2)) ,
则称 f(x) 为凸集 S 上的凸函数。 若进一步有上面不等式以严格不等式成立,则 称 f(x) 为凸集 S 上的严格凸函数。 当- f(x) 为凸函数(严格凸函数)时,则称 f(x) 为 凹函数(严格凹函数)。