5.3任意角的正弦函数,余弦函数,正切函数 ppt课件

合集下载

中职教育-数学(基础模块)上册课件:第5章 三角函数.ppt

中职教育-数学(基础模块)上册课件:第5章  三角函数.ppt
(4)奇偶性
正弦曲线关于原点O中心对称,因此正弦函数y=sin x是奇 函数.
(5)单调性
当x由-π/2增大到π/2时,正弦曲线逐渐上升,y=sin x的 值由-1增大到1;当x由π/2增大到3π/2时,正弦曲线逐渐下降, y=sin x的值由1减小到-1.
根据周期性可知,正弦函数在每一个区间
[-π/2+2kπ, π/2+2kπ](k∈Z)上都是增函数,其函数值 由-1增大到1;在每一个区间[π/2+2kπ,3π/2+2kπ](k∈Z)
学习目标:了解角的概念推广,理解弧度制的概念和意义, 理解任意角的正弦函数、余弦函数和正切函数;掌握利用计算 器求三角函数的值,理解同角三角函数的基本关系,了解诱导 公式的推导及简单应用,理解正弦函数的图像和性质;了解余 弦函数的图像和性质,掌握利用计算器求角度;了解“已知一 个角的三角函数值,求在指定范围内的角”的方法。
因此,所有与30°角终边相同的角(包括30°角),都 可以表示成30°与360°的整数倍的和,即都可以写成
30°+k ▪360°(k∈Z)的形式.所以,与30°角终边相
同的角的集合为
{β| β=30°+k ▪360°(k∈Z) }.
一般地,所有与角α终边相同的角(包括角α在内)都可
以写成α+k ▪360°(k∈Z)的形式,它们所组成的集合为 {β| β=α+k ▪360°(k∈Z) }
r
r
x
图5-8
根据相似三角形的知识,对于每一个确定的角α,其正弦、 余弦和正切(当x≠0时)的值都是唯一确定的,而与点P在角α 终边上的位置无关.
因此,正弦、余弦和正切都是以角α为自变量的函数,分 别称为角α的正弦函数、余弦函数和正切函数,它们都是角α的 三角函数.

中职数学基础模块上册《任意角的正弦函数、余弦函数和正切函数》ppt课件

中职数学基础模块上册《任意角的正弦函数、余弦函数和正切函数》ppt课件


故故ssiinn2475327 cos 4327
0, c00o,,s 275
0,
ttaann2475327 0. 0.
巩固知识 典型例题


例3 根据条件 sin 0 且 tan 0 , 确定 是第几象限的角.

y
y
++
-+

-o - x
+o - x
sinα
tanα
三 角 函 数
应用知识 强化练习 练习5.3.2

应用知识 强化练习 练习5.3.3
角 1.计算:
函 数
5sin 90 2cos 0 3 tan180 cos180 ;
2.计算:
cos tan 1 tan2 sin 3 cos
2
43 3
2
计算器
三 角 函 数
归纳小结 自我反思
本次课学习 哪些内容?
你会解决 哪些新问题?
体会到哪些 学习方法?
1.判断下列角的各三角函数符号
(1)525º;(2)-235
º;(3)
19 6;(4)来自3 4.2.根据条件 sin 0 且 tan 0 ,
确定 是第几象限的角.
三 角 函 数
自我探索 使用工具
观察计算器上的按键并阅读相关的使用说明书, 小组完成计算器计算三角函数值.
sin
cos
tan
0
2
3 2

x
运用知识 强化练习
练习5.3.1
已知角 的终边经过点 P, 求:角 的正弦、余弦、正切值:
⑴ P(3,−4); ⑵ P(−1,2); ⑶ P( 1 , 3 ).

《三角函数的概念》PPT教学课件(第1课时三角函数的概念)

《三角函数的概念》PPT教学课件(第1课时三角函数的概念)

象限.
(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最
后判断乘积的符号.
栏目导航
25
(1)C
[因为点P在第四象限,所以有tan cos
α>0, α<0,
由此可判断角α终边
在第三象限.]
(2)[解] ①∵145°是第二象限角,
∴sin 145°>0,
∵-210°=-360°+150°,
终边关于
x
轴对称,若
sin
α=15,则
交于点P(x,y), 则角β的终边与单位圆相交于点
sin β=________.
Q(x,-y),
由题意知y=sin α=15,所以sin β
=-y=-15.]
栏目导航
4.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos253π+tan-154π. [解] (1)sin 180°+cos 90°+tan 0°=0+0+0=0. (2)cos253π+tan-154π =cos8π+π3+tan-4π+π4 =cosπ3+tanπ4=12+1=32.
栏目导航
24
三角函数值符号的运用
【例 2】 (1)已知点 P(tan α,cos α)在第四象限,则角 α 终边在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(2)判断下列各式的符号:
①sin 145°cos(-210°);②sin 3·cos 4·tan 5.
[思路点拨] (1)先判断 tan α,cos α 的符号,再判断角 α 终边在第几
5.公式一
sin α cos α tan α
8
栏目导航
1.sin(-315°)的值是( )

任意角的三角函数(第二课时)PPT课件

任意角的三角函数(第二课时)PPT课件
于第一或第三象限。 因为① ②式都成立,所以角θ的终边只能位于第
三象限。 于是角θ是第三象限角。
2020年10月2日
12
(1). 若sinα=1/3,且α的终边经过点p(—1,y), 则α是第几象限的角?并求secα,tanα的值。
(答案:α为第二象限的角,sec3 2,tan2 2)
4
(2)下列四个命题中,正确的是 A.终边相同的角都相等 B.终边相同的角的三角函数相等 C.第二象限的角比第一象限的角大 D.终边相同的角的同名三角函数值相等
练习P19-4、5、6
2020年10月2日
10
例3 (1)
解: ①因为2500是第三象限的角,
所以cos 2500 <0。
②因为tan(11π/3)=tan(5π/3+2π)
=tan(5π/3),
而5π/3是第四象限角,所以
(2)
tan(11π/3)<0。
解: ①cos(9π/4)=cos(π/4+2π)
值的问题,可以转化为求0°~360° (0~2π)间角的三角函数值的问题。
2020年10月2日
9
应用举例 例 3 (1) 确定下列三角函数值的符号:
① cos2500
② tan(11π/3)
(2)求下列三角函数值: ① cos (9π/4) ② tan (-11π/6)
例4 求证,θ为第三象限角的充分必要条件是: sinθ<0 ① 且 tanθ>0 ②
2020年10月2日
1
温故知新
正弦函数、余弦函数、正切函数的定义? 正弦:sinα =MP =y/r 余弦:cosα =OM =x/r 正切:tanα=AT =y/x

单位圆与任意角的正弦余弦函数的定义课件

单位圆与任意角的正弦余弦函数的定义课件

对于任意一个角x,每增加2π的整数倍,其正弦、余弦
函数值均不变.所以,正弦、余弦函数值均是随角的变化 呈周期性变化的.我们把这种随自变量的变化呈周期性变 化的函数叫作周期函数.有
sin(x 2k) sin x,k Z cos(x 2k) cos x,k Z
正弦函数、余弦函数是周期函数,称 2 k(k Z, k 0) 为正弦函数、余弦函数的周期.
0
1 2
2 31
22
1
3 2
2 2
1 2
0
31 0
22
1 2
1 3 -1 3
22
2
3 -1 3
2
2
10
2
1 2
0
1 2
31
2
如图,已知角x,作出2π+x
y
P(x,y) x
O
x
终边相同的角的正弦函数值相等,
即 sin(x 2k) sin x, k Z ;
终边相同的角的余弦函数值相等, 即 cos(x 2k) cos x,k Z .
设op=r,根据三角形相似可知,
sin v y yBiblioteka r x2 y2 cos v x x
r x2 y2
. P(yu,v) P'(x, y)
O M M' x
说明:①三角函数的值与点在终边上的位置无关, 仅与角的大小有关
②上式为计算正、余弦函数值的第二种方式
当α在第一、二等象限时,sinα的符号如何?cosα呢?
在初中我们是如何定义锐角三角函数的?
P
c a
O bM
a
sin c
b
cos c
a
tan b
新知学习

任意角的三角函数PPT优秀课件

任意角的三角函数PPT优秀课件

2.确定下列三角函 符数 号值 :的
(1)sin256;
(2)cos(406);
23
(3)tan .
3
3.角 的终边 P (上 m ,5)且 ,有 co 一 sm (点 m 0),
13
求 sin co 值 s.
小结: 1.任意角的三角函数的定义; 2.三角函数的定义域; 3.正弦、余弦、正切函数的值在各象限的符号.
1.2.1任意角的三角函数(1)
问题1:你能回忆一下初中里学过的锐角三角函数(正弦, 余弦,正切)的定义吗?
在RtPO中 M
如何 将POM 放到平面直角 坐标系中?
sin PM
P
OP
co sOM OP
tanPM OM

O
M
锐角三角函数
问题2:将POM 放到平面直角坐, 标系中
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
(1)cos 7 ; (2)sin4(6)5; (3)tan11 .
12
3
解: (1) 7 是第二象限角 co, s7所 0.以
12
12
(2) 因为 4652360225,即465是第三象限角,所 sin(465)0.
(3) 因为 1125,即11 是第四象 ,所限 以角

任意三角函数的定义PPT课件

任意三角函数的定义PPT课件
加强数形结合数学思想的培养。
情感目标:培养合作交流、独立思考等良好的个性品质;
这里没以及有打用破成“规使、敢学于生创新掌的科握学…精神…。”、 教学“重使点:学任生意角学的会正弦…、…余弦”等、正通切的常定字义。眼,保 教学障难了点:学用生单位的圆主中的体有地向线位段,表示反三角映函了数值教。法
与学法的结合,尽量体现新教材新 理念。
加强。
第5页/共40页
二. 教法分析
(二)教学方法
建构主义认为,知识是在原有知识的基础上, 在人与环境的相互作用过程中,通过同化和顺应, 使自身的认知结构得以转换和发展。元认知理论指 出,学习过程既是认识过程又是情感过程,是“知、 情、意、行的” 和谐统一。结合本节课的具体内 容,确立讨论法和启发引导法为主要教学方法。
y
T
y
P
P
O MA
A
MO
y T
M
OA
P
T y
这几条与单位圆有关的有向线段 MP,OM,AT叫做角 的正弦线,余弦线, 正切线
MA
O
P
思考:当角 的终边在x轴上或在y 轴上时这些线有何特点?
T
第21页/共40页
技能演练
演--提供范例,规范解题格式; 演--设置平台,促进讨论交流; 演--学法指导,提炼求解步骤.
示例 理解
实质
理解
直观理解侧重数学符号、图形等,培养思维的具体和简 约,体现数形结合的思想;程序理解揭示内在联系,并 为后继学习三角函数的图象和性质奠定基础;示例理解 呼应引入,强化认识;归纳理解关注归纳思维,提升综 合能力;实质理解揭示了任意角的三角函数的内涵。
第20页/共40页
(3)三角函数的一种几何表示 利用单位圆有关的有向线段,作出正弦线,余弦线,正切线

第五章三角函数5.3任意角的正弦函数、余弦函数和正切函数分析

第五章三角函数5.3任意角的正弦函数、余弦函数和正切函数分析
课程名称:《数学》第周次 授课时间:年月日
授课班级
1421班
1431班
学 时
2
课 程 类 型
理论+习题课
课题或
章节题目
第五章 三角函数
5.3任意角的正弦函数、余弦函数和正切函数
教学目标
知识目标
理解任意角的三角函数的定义及定义域,理解三角函数在各象限的正负号,掌握界限角的三角函数值
能力目标
会利用定义求任意角的三角函数值,培养学生的观察能力
解 取角的公共范围得 为第四象限的角.
通过本次课程理解任意角的三角函数的定义及定义域,理解三角函数在各象限的正负号,掌握界限角的三角函数值,会利用定义求任意角的三角函数值,培养学生的观察能力。
P114 练习1、3、4T
情感目标
结合学生生活实际,创设情境,激发兴趣
教学要求
理解任意角的三角函数的定义及定义域,理解三角函数在各象限的正负号,掌握界限角的三角函数值,会利用定义求任意角的三角函数值,培养学生的观察能力。
教学重点
任意角的三角函数的定义及定义域
教学难点
判断三角函数在各象限的正负号,求任意角的三角函数值
教学方法
讨论、启发、设问
教学手段
教具
教案、板书
主要教学内容及步骤
时间分配(分钟)一、织教学二、导入新课三、讲授新课
四、课堂小结
五、布置作业
1'
2'
74'
2'
1'
板书
设计
第五章 三角函数
5.3任意角的正弦函数、余弦函数和正切函数
一、三角函数
二、定义域
三、练习
四、正负号
五、练习
讨 论
思考题
作 业

5.3 任意角的正弦函数、余弦函数和正切函数

5.3  任意角的正弦函数、余弦函数和正切函数

【课题】5.3任意角的正弦函数、余弦函数和正切函数
【教学目标】
知识目标:
⑴理解任意角的三角函数的定义及定义域;
⑵理解三角函数在各象限的正负号;
⑶掌握界限角的三角函数值.
能力目标:
⑴会利用定义求任意角的三角函数值;
⑵会判断任意角三角函数的正负号;
⑶培养学生的观察能力.
情感目标:
由三角函数的概念推导出任意角的三角函数值、三角函数的正负号以及界限角的三角函数值使学生体会到数学知识的内在统一性.
【教学重点】
⑴任意角的三角函数的概念;
⑵三角函数在各象限的符号;
⑶特殊角的三角函数值.
【教学难点】
任意角的三角函数值符号的确定.
【教学设计】
(1)在知识回顾中推广得到新知识;
(2)数形结合探求三角函数的定义域;
(3)利用定义认识各象限角三角函数的正负号;
(4)数形结合认识界限角的三角函数值;
(5)问题引领,师生互动.在问题的思考和交流中,提升能力.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
动脑思考 探索新知 是任意大小的角,点B
a c
0>,cos43270>,tan 22=⨯π所以,27角为第三象限角,
这类问题需要首先计算出界限角的三角函数值,然后再31206(1)2-⨯+⨯-⨯-=-.
3tan180+213tan tan sin cos 4332πππ
-+-+π.。

三角函数的概念 课件(39张)

三角函数的概念 课件(39张)







tan cos = × +1× = .



数学
方法总结
诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些
角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值
相等.其作用是可以把任意角转化为0°~360°之间的角.






因为 a<0,所以 a=- ,所以 P 点的坐标为( ,- ),



所以 sin α=- ,cos α= ,






所以 sin α+2cos α=- +2× = .
数学
[变式训练1-1] 若将本例中“a<0”删掉,其他条件不变,结果又是什么?



解:因为点 P 在单位圆上,则|OP|=1,即 (-) + () =1,解得 a=± .
②若 a<0,则 r=-5a,且 sin α=
-





-

-
=- ,cos α=
所以 sin α+2cos α=- +2× = .
= .
数学
方法总结
由角α终边上任意一点的坐标求其三角函数值
(1)已知角α的终边在直线上时,常用的解题方法有以下两种:
①先利用直线与单位圆相交,求出交点坐标,然后再利用正弦函数、余
弦函数、正切函数的定义求出相应三角函数值.

②在α的终边上任选一点 P(x,y),P 到原点的距离为 r(r>0),则 sin α= ,

【课题】5.3任意角的正弦函数、余弦函数和正切函数(第一课时)

【课题】5.3任意角的正弦函数、余弦函数和正切函数(第一课时)

【课题】5.3任意角的正弦函数、余弦函数和正切函数(第一课时) 【教学目标】
知识目标:
⑴理解任意角的三角函数的定义及定义域;
⑵理解三角函数在各象限的正负号;
⑶掌握界限角的三角函数值.
能力目标:
⑴会利用定义求任意角的三角函数值;
⑵会判断任意角三角函数的正负号;
⑶培养学生的观察能力.
【教学重点】
⑴任意角的三角函数的概念;
⑵三角函数在各象限的符号;
⑶特殊角的三角函数值.
【教学难点】
任意角的三角函数值符号的确定.
【教学设计】
(1)在知识回顾中推广得到新知识;
(2)数形结合探求三角函数的定义域;
(3)利用定义认识各象限角三角函数的正负号;
(4)数形结合认识界限角的三角函数值;
(5)问题引领,师生互动.在问题的思考和交流中,提升能力.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
B
c
a
动脑思考探索新知。

5.3.1 任意角的正弦函数、余弦函数和正切函数的概念

5.3.1  任意角的正弦函数、余弦函数和正切函数的概念

5.3.1 任意角的正弦函数、余弦函数和正切函数的概念一、教材分析1.教材的地位和作用:本节课是《任意角的正弦函数、余弦函数和正切函数》的第一课时,在此之前,学生已经学过“锐角三角函数”的相关知识以及“角的推广”,现在学习本节课是一个“从特殊到一般”的学习过程,学好此知识也为接下来学习“同角三角函数的基本关系”打好扎实的基础,因此它在知识体系上起着承上启下的作用。

另外三角函数知识在物理学、天文学、测量学、模具数控加工等领域均有重要的应用,因此它在现实生活中起着服务专业的作用。

2.学情分析及教材处理:本人所授课的班级为2012级数控专业班的学生,他们优点是思维形象直观,对专业兴趣浓厚,而且他们即将学习的数控专业知识中需要用到三角函数知识。

针对学生的优点,我对教材进行了适当的调整处理:○1增加信息化在教学中的运用,优化教师课堂教学,激发学生学习兴趣。

○2增加解决专业问题的实例,满足学生专业学习需求,体现数学的实用性。

不过中职学生也有自身的不足,那就是深入思考能力欠缺,计算能力比较薄弱。

针对学生的不足,我简化了定义的推导,强化了知识的应用。

同时让学生小组互助合作,借助计算器求值计算。

3.教学目标:➢知识目标:理解任意角三角函数的定义,能熟练运用相关知识解决实际问题。

➢能力目标:培养学生观察分析、探索归纳、解决问题的能力,提高学生信息素养。

➢情感目标:在学习中培养学生互教互学的合作精神,同时让学生感悟数学的实用性。

4.教学重点:任意角三角函数的定义。

5.教学难点:任意角三角函数定义在现实生活中的灵活应用。

二、教法、学法:在教学中,以数学家弗赖登塔尔的“数学现实”理论为指导,借助信息化手段辅助教学。

首先通过教师的动画演示,学生的观察思考,联系专业引入新课。

然后经过教师的启发诱导和学生的讨论交流,探究定义。

接着通过教师示范讲授例题,学生小组合作练习,巩固新知识。

最后通过教师的精讲点拨和学生的自主探究,将数学知识服务于专业。

单位圆与任意角的正弦函数余弦函数的定义课件

单位圆与任意角的正弦函数余弦函数的定义课件
解三角方程
利用单位圆上的点坐标,可以求解 三角方程,例如sinθ = 1/2对应的 角度θ。
04
正弦函数余弦函数 在任意角中的应用
正弦函数在任意角中的应用
定义
正弦函数是单位圆上点的纵坐标 ,表示与x轴的夹角。
性质
正弦函数具有周期性、对称性和 有界性等性质。
应用
在三角函数、解析几何、微积分 等领域有广泛应用。
三角函数定义
利用单位圆的性质,我们可以定义任意角的正弦函数和余弦函数。在单位圆上 ,正弦函数定义为y/r,余弦函数定义为x/r。
三角函数图像
利用单位圆,我们可以绘制出正弦函数和余弦函数的图像。在单位圆上,正弦 函数和余弦函数的值分别等于从原点到点P的y和x坐标的长度。
02
任意角的正弦函数 与余弦函数的定义
单位圆与任意角的正 弦函数余弦函数的定 义课件
目录
CONTENTS
• 单位圆的定义与性质 • 任意角的正弦函数与余弦函数的
定义 • 单位圆与正弦函数余弦函数的关
系 • 正弦函数余弦函数在任意角中的
应用
01
单位圆的定义与性 质
单位圆的定义
单位圆
在平面直角坐标系中,以原点为 圆心,以1为半径的圆。
邻边与斜边的比值。
在单位圆中,余弦函数表示为x 坐标与半径的比值,即
cosθ=x/r,其中θ为锐角,r为 半径。
余弦函数的周期也为360度,即 cos(θ+360)=cosθ。
正弦函数与余弦函数的性质
正弦函数和余弦函数具有对称性,即 sin(-θ)=-sinθ和cos(-θ)=cosθ。
正弦函数和余弦函数具有有界性,即 它们的取值范围都在[-1,1]之间。
正弦函数的值域

5.3诱导公式(第一课时)课件(人教版)

5.3诱导公式(第一课时)课件(人教版)
cosπ-αsinπ-α
(3)sin2kπ+23πcoskπ+43π(k∈Z).
-sinα-sinα
= -cosαsinα
=-csoinsαα
=-tanα.
例 3 化简下列各式:
(2) 1s+in225s0in°2+90co°cso7s9403°0°;
1+2sin360°-70°cos360°+70°
4-tanα
=-sin(α-55°)=2
2 3.
-2+3×3

=7.
4-3
例 3 化简下列各式:
题型三 三角函数式的化简
(1)tan2π-coαssαin--π2siπn-5απ-coαs6π-α;
sin2π-α
(2) 1s+ in225s0in°2+90co°cso7s9403°0°;
·sin-αcos-α cos2π-α [解] (1)原式=
解 (1)原式=sin(120°-4×360°)cos(30°+3×360°)+cos(60°-3×360°)sin(30° +2×360°)+tan(135°+360°)
=sin120°cos30°+cos60°sin30°+tan135°
= 23× 23+12×12-1=0.
答案
[跟踪训练1] 求下列各式的值: (1)sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°; (2)sin83πcos316π+tan-243π.
终边与单位圆的交点坐标如何?
α的终 y 边
o
x π+α的终边
α的终边
P(x , y)
y
o x Q(-x,-y) π+α的终边
形如 的三角函数值与 的三角函数值之间的关系

5.3《任意角的正弦函数、余弦函数和正切函数》课件(1)

5.3《任意角的正弦函数、余弦函数和正切函数》课件(1)
余弦和正切函数的值。
设 ∠ = (是锐角),角的邻边=,对边
= ,斜边长 = => 0。根据锐角三角函
数定义用, , 表示锐角的正弦、余弦、正切三个
比值:
对边 | PM | y
邻边 |OM | x
对边 |PM | y
sin


cos

;tan

此时tan =

无意义。因此,正弦函数、余弦函数及正切函数

的定义域如下表所示:
三角函数
sin
cos
tan
定义域



≠ + , ∈
2
巩固知识 典型例题
例1 已知角的终边经过点P 2, −3 ,求角的正弦、余弦、
正切值。
分析:已知角的终边一点的坐标,求角的三个函数值时,
这些比值发生变化吗?






动脑思考 探索新知
正弦函数:sin =

;余弦函数:cos

=

;正切函数:tan

=



关于定义两点说明:
1.在比值存在的情况下,对角的每一个确定的值,按照相
应的对应关系,角的正弦、余弦、正切、都分别有唯一的比
值与之对应,它们都是以角为自变量的函数,分别叫做正
弦函数、余弦函数、正切函数,统称为三角函数。
2.当角采用弧度制时,角的取值集合与实数集R之间具有
一一对应的关系,所以三角函数是以实数为自变量的函数。
三角函数定义域
由任意角三角函数的定义可以看出,当角 的终边在 轴上时,

= + , ∈ ,终边上任意一点的横坐标的值都等于0,

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版目录•三角函数基本概念与性质•三角函数诱导公式与恒等式•三角函数的加减乘除运算•三角函数在解三角形中的应用•三角函数在数列和概率统计中的应用•总结回顾与拓展延伸PART01三角函数基本概念与性质三角函数的定义及性质三角函数的定义正弦、余弦、正切等函数在直角三角形中的定义及在各象限的性质。

特殊角的三角函数值0°、30°、45°、60°、90°等特殊角度下各三角函数的值。

诱导公式利用周期性、奇偶性等性质推导出的三角函数诱导公式。

正弦、余弦函数的图像及其特点,如振幅、周期、相位等。

三角函数图像周期性图像变换正弦、余弦函数的周期性及其性质,如最小正周期等。

通过平移、伸缩等变换得到其他三角函数的图像。

030201三角函数图像与周期性正弦、余弦函数的值域为[-1,1],正切函数的值域为R 。

值域在各象限内,正弦、余弦函数的单调性及其变化规律。

单调性利用三角函数的性质求最值,如振幅、周期等参数对最值的影响。

最值问题三角函数值域和单调性PART02三角函数诱导公式与恒等式诱导公式及其应用诱导公式的基本形式01通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基本角度(如0°、30°、45°、60°、90°)的三角函数值。

诱导公式的推导02利用三角函数的周期性、对称性、奇偶性等性质,通过逻辑推理和数学归纳法等方法推导出诱导公式。

诱导公式的应用03在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛应用。

例如,利用诱导公式可以简化计算过程,提高解题效率。

恒等式及其证明方法恒等式的基本形式两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量取何值,等式都成立。

恒等式的证明方法通常采用代数法、几何法或三角法等方法进行证明。

其中,代数法是通过代数运算和变换来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函数的性质和关系来证明恒等式。

5.3三角函数的诱导公式课件(人教版)

5.3三角函数的诱导公式课件(人教版)

2
(2)原式=cos13+60c°o+s1108°0°+-810-°ssiinn29108°+0°-801°0° = 1+-cos80°cos80°= 1-cos280°
cos10°+ 1-sin210° 2cos10° =2scions8100°°=2ccooss1100°°=12.
题型二 三角恒等式的证明 例 2:求证:
sin2(α-π)=sin2[-(π-α)]=1
6
6
-cos2(π-α)=1-( 6
3)2=2, 33
-c∴osc2o(π6s(-56πα+)=α1)--s(in332()α2=-23π6,)=-
3-2=-2+
33
3
3.
5.3.2 三角函数的诱导公式
(第二课时)
探究点一 诱导公式五
思考1 如图,在直角三角形中,根据正弦、余弦的定义有
8
【牛刀小试】
例1、求下列各三角函数值:
(1) sin( );
6
(2) cos( );
4
解:
(1) sin( )
6
sin
6
1 2
(2) cos( ) cos
4
4
2 2
(3) tan 210 0.
(3) tan 210 0 tan(180 0 300 ) tan 300 3
3
cos( ) cos, 公式二: sin( ) sin,
tan( ) tan.
7
探究2、角α与角-α的三角函数间的关系. 角α与角-α的三角函数间的关系是:
cos( ) cos , 公式三: sin( ) sin ,
tan( ) tan.
利用公式,我们可以用正角的三角函数表示负角的三角函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
sinα>0 cosα<0 tanα<0
sinα<0 o
cosα<0 tanα>0
sinα>0 cosα>0 tanα>0
x
sinα<0 cosα>0 tanα<0
PPT课件
10
动脑思考 探索新知

任意角三角函数的符号:
y
角++
y
-+
y
-+

- o - x - o + x +o - x
sinα
cosα>0
观察计算器上的按键并阅读相关的使用说明书, 小组完成计算器计算三角函数值.
sin
cos
tan
0

3 2
2
2
计算器
PPT课件
15
三 角 函 数
巩固知识 典型例题
例 4 求下列各式的值:
(1) 5cos180 3sin 90 2 tan 0 6sin 270 ;
(2) cos sin tan 3 sin sin cos
y
P(x , y)
ry

o x Bx
sin y
r
cos x
r
tan y
x
PPT课件
4
三 角 函 数
动脑思考 探索新知
sin y cos x tan y
r
r
x
在比值存在的情况下,对角α的每一个确定的值,按照 相应的对应关系,角α的正弦、余弦、正切、都分别 有唯一的比值与之对应,他们都是以角α为自变量的 函数,分别叫做正弦函数、余弦函数、正切函数,统 称为三角函数.
PPT课件
5

动脑思考 探索新知
正弦函数、余弦函数和正切函数的定义域如下表所示:

三角函数
定义域

sin
R

cos
tan
R
{ k , k Z}
2
PPT课件
6
三 角 函 数
动脑思考 探索新知
当角α采用弧度制时,角α的取值集合与实数集R之 间具有一一对应的关系,所以三角函数是以实数α 为自变量的函数.
tanα>0

y
正弦正 全正
正切正o 余弦正 x
PPT课件
11
三 角 函 数
巩固知识 典型例题
例 2 判定下列角的各三角函数符号. (1)4327º; (2) 27 .
5
判断任意角三角函数值的符号时,首先要判断出角所在的象限, 然后再根据在各象限角三角函数值的符号来进行判断 .
解解 ((12))因因为为 2475327角º角为为第第 象限象角限,角,
tanα
PPT课件
13
三 角 函 数
应用知识 强化练习 练习5.3.2
1.判断下列角的各三角函数符号
(1)525º;(2)-235
º;(3)
19 6
;(4)

3 4

2.根据条件 sin 0 且 tan 0 ,
确定 是第几象限的角.
PPT课件
14
三 角 函 数
自我探索 使用工具

sin y
, cos x

r
r
tan y

x
PPT课件
8
运用知识 强化练习
练习5.3.1
已知角 的终边经过点 P, 求:角 的正弦、余弦、正切值:
⑴ P(3,−4); ⑵ P(−1,2); ⑶ P( 1 , 3 ).
22
PPT课件
9
创设情景 兴趣导入
当角α的终边在第一二三四象限时,点P在第一象限,x 0, y 0, 所以, sinα 0,cosα 0,tanα 0;
故故ssiinn2475327 cos 4327
0, c00o,,s 275
0,
ttaann2475327 0. 0.
PPT课件
12
三 角 函 数
巩固知识 典型例题
例3 根据条件 sin 0 且 tan 0 , 确定 是第几象限的角.
y
++
-o - x sinα
y
-+ +o - x
2
43 3
2
计算器
PPT课件
17
三 角 函 数
归纳小结 自我反思
本次课学习 哪些内容?
你会解决 哪些新问题?
体会到哪些 学习方法?
PPT课件
18
三 角 函 数
布置作业 继续探究
阅读
书面
实践
教材章节5.3

再见
PPT课件
20
y
C(x , y)
sin ay
cr
r

ox
y
cos bx cr
tan ay
Bx
bx
PPT课件
3
三 角 函 数
动脑思考 探索新知
设 是任意大小的角,点 P(x, y) 为角 的终边上 不与原点重合的任意一点,点 P 到原点的距离为
r x2 y2 ,角 的正弦、余弦、正切分别定义为
PPT课件
7
三 角 函 数
巩固知识 典型例题 例 1 已知角 的终边经过点 P(2, 3) ,求角 的
正弦、余弦、正切值.
首先要根据关系式 r x2 y2 ,求出点 P 到坐标原点的距离 r ,
然后根据三角函数定义进行计算.
解 因为 x
,y

所以 r 22 (3)2
第5章 三角函数
5.3任意角的正弦函数、 余弦函数、正切函数
PPT课件
1
创设情景 兴趣导入
锐角三角函数的定义是什么?
C
在 RtABC 中,
sin
cos
ba
tan


A
cB
PPT课件
2
创设情景 兴趣导入
将 Rt⊿ABC 放在直角坐标系中,使得点 A 与坐标原点重合,
AC 边在 x 轴的正半轴上.三角函数的定义可以写作:
36 4
34 4
这类问题需要首先计算出界限角的三角函数值, 然后再进行代数运算.
计算器
PPT课件
16
三 角 函 数
应用知识 强化练习 练习5.3.3
1.计算:
5sin 90 2cos0 3 tan180 cos180 ;
2.计算:
cos tan 1 tan2 sin 3 cos
相关文档
最新文档