山东省烟台市高一上学期数学期末考试试卷

合集下载

2021-2021学年高一(上)期末烟台市测试数学试题20211207

2021-2021学年高一(上)期末烟台市测试数学试题20211207

2021-2021学年高一(上)期末烟台市测试数学试题20211207 烟台市2021-2021学年度第一学期期末考试高一数学试题说明:本市题分第I卷和第II卷两部分,考试时间90分钟,满分120分。

第I卷一. 选择题:(本大题共12小题,每小题4分,共48分)1 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有( )A a?b?cB b?c?aC c?a?bD c?b?a 2 下列说法错误的是 ( )A 在统计里,把所需考察对象的全体叫作总体B 一组数据的平均数一定大于这组数据中的每个数据C 平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D 一组数据的方差越大,说明这组数据的波动越大3 某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( )A 3.5B ?3C 3D ?0.54 要从已编号(1?60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()A 5,10,15,20,25,30B 3,13,23,33,43,53C 1,2,3,4,5,6D 2,4,8,16,32,485 容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号频数 1 10 2 13 3 x 4 14 114185 156 13 137 12 11489 第三组的频数和频率分别是 ( ) A 14和0.14 B 0.14和14 C和0.14 D和6.同时抛掷两枚骰子,朝上的点数之和为奇数的概率是() A12 B14 C16 D7.设P、Q为两个非空实数几何,定义几何P+Q={a+b|a?P,b?Q},若P={0,2,5}Q={1,2,6},则P+Q中元素的个数是() A 9 B 8 C 7 D 6 8.设函数f(x)?loga0)|x|(a?0,且a?0)在(??,上单调递增,则(fa+2)与(f2)的大小关系是()感谢您的阅读,祝您生活愉快。

山东省烟台市高一上学期期末数学试题(解析版)

山东省烟台市高一上学期期末数学试题(解析版)
A. 1011 1024
【答案】B
B. 1024 1011
1011
C.
1024
1024 D.
1011
【解析】
【分析】由奇函数 f x 满足 f 2 x f (x) ,推导出 f 2 x f x 2 ,得到函数的周期为 4,由
log
2
2022
10
log2
2022 1024
(0,1)


f (x) 0 有 1 个实数根;
当 2 m„ 0 时,方程 ex 1 0(x… m) 有 1 个实数根 x 0 ;方程 x2 4x 4 0(x m) 有 1 个实数根
x 2 ,所以方程 f (x) 0 有 2 个不同的实数根; 当 m„ 2 时,方程 ex 1 0(x… m) 有 1 个实数根 x 0 ;方程 x2 4x 4 0(x m) 没有实数根,所
所以 sin cos 2 1 2sin cos 4 ,所以 sin cos 2 3 ,
3
3
故选:A. 【点睛】本题考查了切化弦思想以及同角三角函数平方关系的应用,利用
sin cos 2 1 2sin cos 计算是解答的关键,考查计算能力,属于中等题.
7.
已知函数
f
x
lg x
22a
tan
6
sin 0 , cos 0 ,再由 sin cos 2 1 2sin cos 可计算出 sin cos 的值.
【详解】因为 tan 1 sin cos sin2 cos2 6 ,所以 sin cos 1 ,
tan cos sin sin cos
6
Q 0, ,则 sin 0 , cos 0 ,sin cos 0 .

山东省烟台市2020-2021学年高一上学期期末数学试卷 (解析版)

山东省烟台市2020-2021学年高一上学期期末数学试卷 (解析版)

2020-2021学年山东省烟台市高一(上)期末数学试卷一、单项选择题(共8小题).1.sin17°cos13°+sin73°cos77°=()A.B.C.D.2.下列函数中,既是其定义域上的单调函数,又是奇函数的是()A.y=tan x B.y=3x C.D.y=x33.设a=log0.33,,c=log23,则()A.c>b>a B.c>a>b C.a>c>b D.b>c>a4.函数f(x)=x3+3x﹣2的零点所在区间为()A.B.C.D.5.已知函数y=a x+3+3(a>0,且a≠1)的图象恒过点P,若角α的终边经过点P,则cosα=()A.B.C.D.6.改善农村人居环境,建设美丽宜居乡村,是实施乡村振兴战略的一项重要任务.某地计划将一处废弃的水库改造成水上公园,并绕水库修建一条游览道路.平面示意图如图所示,道路OC长度为8(单位:百米),OA是函数y=log a(x+b)图象的一部分,ABC 是函数y=M sin(ωx+φ)(M>0,ω>0,|φ|<,x∈[4,8])的图象,最高点为B(5,),则道路OABC所对应函数的解析式为()A.B.C.D.7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到0.6mg/mL,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?()(参考数据:lg3≈0.477)A.6B.7C.8D.98.将函数的图象向左平移个单位长度得到函数g(x)的图象,若x1,x2使得f(x1)g(x2)=﹣1,且|x1﹣x2|的最小值为,则φ=()A.B.C.D.二、多项选择题(共4小题).9.下列说法正确的有()A.经过30分钟,钟表的分针转过﹣2π弧度B.若sinθ>0,cosθ<0,则θ为第二象限角C.若sinθ+cosθ>1,则θ为第一象限角D.函数y=sin|x|是周期为π的偶函数10.已知函数f(x)=sin x+cos x,则()A.f(x)在上单调递减B.f(x)图象关于点对称C.f(x)图象的两条相邻对称轴之间的距离为πD.当时,f(x)取得最小值11.已知函数f(x)=log a x+log a(a﹣x)(a>0,且a≠1),则()A.f(x)定义域为(0,a)B.f(x)的最大值为2﹣2log a2C.若f(x)在(0,2)上单调递增,则1<a≤4D.f(x)图象关于直线对称12.定义新运算“⊗”:x⊗y=log2(2x+2y),x,y∈R,则对任意实数a,b,c有()A.a⊗a=2a B.(a⊗b)⊗c=a⊗(b⊗c)C.D.(a⊗b)﹣c=(a﹣c)⊗(b﹣c)三、填空题(共4小题).13.已知函数f(x)=x2﹣2x﹣a有两个不同的零点,则实数a的取值范围是.14.若幂函数的图象不经过原点,则实数m的值为.15.函数y=的定义域为.16.如图,边长为1的正六边形木块自图中实线标记位置起在水平桌面上从左向右做无滑动翻滚,点P为正六边形的一个顶点,当点P第一次落在桌面上时,点P走过的路程为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.化简求值:(1);(2)已知tanα=﹣2,求的值.18.在①f(x)图象过点,②f(x)图象关于直线对称,③f(x)图象关于点对称,这三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知的最小正周期为2π,_____.(1)求函数f(x)的解析式;(2)将f(x)的图象上所有点向左平移个单位长度,再将得到的图象上每个点的横坐标缩短到原来的(纵坐标不变),得到函数y=g(x)的图象,求g(x)的单调递增区间.19.(1)求函数y=,的值域;(2)解关于x的不等式:(a>0,且a≠1).20.已知函数.(1)设,求f(x)的最值及相应x的值;(2)设,求的值.21.为提升居民生活质量,增加城市活力,某市决定充分利用城市空间修建口袋公园.如图所示,现有一处边长为40 m的正方形空地ABCD,若已规划出以A为圆心、半径为30 m 的扇形健身场地AEF,欲在剩余部修建一块矩形草坪PMCN,其中点P在圆弧EF上,点M,N分别落在BC和CD上,设∠PAB=θ,矩形草坪PMCN的面积为S.(1)求S关于θ的函数关系式;(2)求S的最大值以及相应θ的值.22.已知f(x)为R上的奇函数,g(x)为R上的偶函数,且f(x)+g(x)=2e x,其中e =2.71828….(1)求函数f(x)和g(x)的解析式;(2)若不等式f(x2+3)+f(1﹣ax)>0在(0,+∞)恒成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[m,+∞),使成立,求实数m的取值范围.参考答案一、单项选择题(共8小题).1.sin17°cos13°+sin73°cos77°=()A.B.C.D.解:sin17°cos13°+sin73°cos77°=sin17°cos13°+cos17°sin13°=sin(17°+13°)=,故选:B.2.下列函数中,既是其定义域上的单调函数,又是奇函数的是()A.y=tan x B.y=3x C.D.y=x3解:y=tan x在定义域上不具备单调性,不满足条件.y=3x是增函数,为非奇非偶函数,不满足条件.y=的定义域为[0,+∞),为非奇非偶函数,不满足条件.y=x3是增函数,是奇函数,满足条件.故选:D.3.设a=log0.33,,c=log23,则()A.c>b>a B.c>a>b C.a>c>b D.b>c>a 解:∵log0.33<log0.31=0,,log23>log22=1,∴c>b>a.故选:A.4.函数f(x)=x3+3x﹣2的零点所在区间为()A.B.C.D.解:函数f(x)=x3+3x﹣2是连续函数且单调递增,∵f()=+﹣2=﹣<0,f()=+﹣2=>0∴f()f()<0,由零点判定定理可知函数的零点在(,).故选:C.5.已知函数y=a x+3+3(a>0,且a≠1)的图象恒过点P,若角α的终边经过点P,则cosα=()A.B.C.D.解:令x+3=0,求得x=﹣3,y=4,函数y=a x+3+3(a>0,且a≠1)的图象恒过点P(﹣3,4),角α的终边经过点P,则cosα==﹣,故选:B.6.改善农村人居环境,建设美丽宜居乡村,是实施乡村振兴战略的一项重要任务.某地计划将一处废弃的水库改造成水上公园,并绕水库修建一条游览道路.平面示意图如图所示,道路OC长度为8(单位:百米),OA是函数y=log a(x+b)图象的一部分,ABC 是函数y=M sin(ωx+φ)(M>0,ω>0,|φ|<,x∈[4,8])的图象,最高点为B(5,),则道路OABC所对应函数的解析式为()A.B.C.D.解:由三角函数的图象知M=,=8﹣5=3,即T=12,则,得ω=,则y=sin(x+φ),由函数过B(5,),得sin(×5+φ)=,得sin(+φ)=1,即+φ=2kπ+,得φ=2kπ﹣,∵|φ|<,∴当k=0时,φ=﹣,则y=sin(x﹣),(4≤x≤8),排除B,D,当x=4时,y=sin(×4﹣)=sin=×=2,即A(4,2),y=log a(x+b)过(0,0),则log a b=0,则b=1,则y=log a(4+1)=log a5=2,得a=,则y=log(x+1),(0≤x<4),排除A,故选:C.7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到0.6mg/mL,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?()(参考数据:lg3≈0.477)A.6B.7C.8D.9解:设他至少经过t小时候才可以驾车,则0.6×100(1﹣10%)t<20,即3×,即t×,所以t,所以t≥11,即至少经过11个小时即次日最早7点才可以驾车,故选:B.8.将函数的图象向左平移个单位长度得到函数g(x)的图象,若x1,x2使得f(x1)g(x2)=﹣1,且|x1﹣x2|的最小值为,则φ=()A.B.C.D.解:将函数的图象向左平移个单位长度得到函数g(x)的图象,则g(x)=cos[2(x+φ)﹣]=cos(2x+2φ﹣),若x1,x2使得f(x1)g(x2)=﹣1,则f(x1)=1,g(x2)=﹣1或f(x1)=﹣1,g(x2)=1,不妨设f(x1)=1,g(x2)=﹣1,则2x1﹣=2k1π,2x2+2φ﹣=2k2π+π,k1∈Z,k2∈Z,即2x1=2k1π+,2x2+=2k2π+π﹣2φ+,两式作差得2(x1﹣x2)=2(k1﹣k2)π+2φ﹣π,即(x1﹣x2)=(k1﹣k2)π+φ﹣,∵|x1﹣x2|的最小值为,∴当k1﹣k2=0时,最小,此时|φ﹣|=,∵0<φ<,∴φ﹣=﹣,得φ=﹣=,故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分.9.下列说法正确的有()A.经过30分钟,钟表的分针转过﹣2π弧度B.若sinθ>0,cosθ<0,则θ为第二象限角C.若sinθ+cosθ>1,则θ为第一象限角D.函数y=sin|x|是周期为π的偶函数解:对于A,经过30分钟,钟表的分针转过﹣π弧度,不是﹣2π弧度,所以A错;对于B,由sinθ>0,cosθ<0,可知θ为第二象限角,所以B对;对于C,sinθ+cosθ>1⇒sin2θ+cos2θ+2sinθcosθ>1⇒2sinθcosθ>0,又sinθ+cosθ=1>0,所以sinθ>0,cosθ>0,即θ为第一象限角,所以C对;对于D,函数y=sin|x|是偶函数,但不以π周期,如f()=1,f(π+)=﹣1,二者不等,所以D错;故选:BC.10.已知函数f(x)=sin x+cos x,则()A.f(x)在上单调递减B.f(x)图象关于点对称C.f(x)图象的两条相邻对称轴之间的距离为πD.当时,f(x)取得最小值解:函数f(x)=sin x+cos x=sin(x+),当x∈(,π)上,x+∈(,),故f(x)在上单调递减,故A 正确;令x=,求得f(x)=0,可得f(x)图象关于点对称,故B正确;f(x)图象的两条相邻对称轴之间的距离为=π,故C正确;当x=+2kπ,k∈Z时,f(x)=,为最大值,故D错误.故选:ABC.11.已知函数f(x)=log a x+log a(a﹣x)(a>0,且a≠1),则()A.f(x)定义域为(0,a)B.f(x)的最大值为2﹣2log a2C.若f(x)在(0,2)上单调递增,则1<a≤4D.f(x)图象关于直线对称解:函数f(x)=log a x+log a(a﹣x)(a>0,且a≠1),对于选项A,令x>0且a﹣x>0,解得0<x<a,故函数f(x)的定义域为(0,a),故选项A正确;对于选项B,f(x)=log a x+log a(a﹣x)=log a[(a﹣x)x]=log a(﹣x2+ax),因为y=﹣x2+ax图象开口向下,故y有最大值,但若0<a<1时,函数y=log a x单调递减,此时f(x)无最大值,故选项B错误;对于选项C,若f(x)在(0,2)上单调递增,①当0<a<1时,则y=﹣x2+ax在(0,2)上单调递减,故,解得a≤0,故不符合题意;②当a>1时,则y=﹣x2+ax在(0,2)上单调递增,故,解得a≥4,故选项C错误;对于选项D,f(x)=log a x+log a(a﹣x),则f(a﹣x)=log a(a﹣x)+log a x=f(x),所以f(x)图象关于直线对称,故选项D正确.故选:AD.12.定义新运算“⊗”:x⊗y=log2(2x+2y),x,y∈R,则对任意实数a,b,c有()A.a⊗a=2a B.(a⊗b)⊗c=a⊗(b⊗c)C.D.(a⊗b)﹣c=(a﹣c)⊗(b﹣c)解:对于A,由题意a⊗a=log2(2a+2a)=a+1,故A错误;对于B,(a⊗b)⊗c=[log2(2a+2b)]⊗c=log2[2+2c]=log2(2a+2b+2c],a⊗(b⊗c)=a⊗[log2(2b+2c)]=log2[2a+2]=log2(2a+2b+2c]=(a⊗b)⊗c,故正确;对于C,a⊗b=log2(2a+2b),2a+2b≥2≥2=2+1,所以log2(2a+2b)≥log22+1,即,故正确;对于D,(a⊗b)﹣c=log2(2a+2b)﹣c(a﹣c)⊗(b﹣c)=log2(2a﹣c+2b﹣c)=log22=log22﹣c+log2(2a+2b)=﹣c+log2(2a+2b),故正确.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=x2﹣2x﹣a有两个不同的零点,则实数a的取值范围是(﹣1,+∞).解:函数f(x)=x2﹣2x﹣a有两个不同的零点,即方程x2﹣2x﹣a=0有两个不等实根,故△=(﹣2)2﹣4×(﹣a)>0⇒a>﹣1,故答案为:(﹣1,+∞).14.若幂函数的图象不经过原点,则实数m的值为﹣1.解:由函数是幂函数,所以m2﹣m﹣1=1,解得m=﹣1或m=2;当m=﹣1时,f(x)=x﹣1,图象不经过原点,满足题意;当m=2时,f(x)=x8,图象经过原点,不满足题意;所以m=﹣1.故答案为:﹣1.15.函数y=的定义域为[2kπ﹣,2kπ+],k∈Z.解:要使函数有意义,则sin x+≥0,及sin x≥﹣,及2kπ﹣≤x≤2kπ+,即函数的定义域为[2kπ﹣,2kπ+],k∈Z,故答案为:[2kπ﹣,2kπ+],k∈Z16.如图,边长为1的正六边形木块自图中实线标记位置起在水平桌面上从左向右做无滑动翻滚,点P为正六边形的一个顶点,当点P第一次落在桌面上时,点P走过的路程为.解:可以分为三步,每步走60°,每步以与桌面右侧接触点为圆心,到P的距离为半径,第一步:r=2,L1=,第二步:r=,L2=,第三步:r=1,L3=,所以当点P第一次落在桌面上时,点P走过的路程为L1+L3+L3==.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.化简求值:(1);(2)已知tanα=﹣2,求的值.解:(1)原式===.(2)由于tanα=﹣2,原式====﹣1.18.在①f(x)图象过点,②f(x)图象关于直线对称,③f(x)图象关于点对称,这三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知的最小正周期为2π,_____.(1)求函数f(x)的解析式;(2)将f(x)的图象上所有点向左平移个单位长度,再将得到的图象上每个点的横坐标缩短到原来的(纵坐标不变),得到函数y=g(x)的图象,求g(x)的单调递增区间.解:若选①:(1)由已知得,则ω=1,于是f(x)=2sin(x+φ)因为f(x)图象过点,所以,即,)又因为,所以,故.(2)由已知得,于是,解得,故g(x)的单调递增区间为.若选②:(1)由已知得,,则ω=1,于是f(x)=2sin(x+φ).因为f(x)图象关于直线对称,所以,即又因为,所以,故.(2)由已知得.由,)即.故g(x)的单调递增区间为.若选③:(1)由已知得,则ω=1,于是f(x)=2sin(x+φ).因为f(x)图象关于点对称,所以,即,又因为,所以,故.(2)由已知得,由,k∈Z,即故g(x)的单调递增区间为.19.(1)求函数y=,的值域;(2)解关于x的不等式:(a>0,且a≠1).解:(1)解:令t=log2x,由于,则t∈[﹣1,1].于是原函数变为,由于y(t)图象为开口向上的抛物线,对称轴,且,故当,y取最小值;当t=1时,y取最大值2.所以原函数的值域为.(2)解:当a>1时,原不等式可化为:,解得.故a>1时,原不等式的解集为.当0<a<1时,原不等式可化为:,即,解得﹣1<x<1.故0<a<1时,原不等式的解集为{x|﹣1<x<1}.综上可得,a>1时,原不等式的解集为.0<a<1时,原不等式的解集为{x|﹣1<x<1}.20.已知函数.(1)设,求f(x)的最值及相应x的值;(2)设,求的值.解:(1)===,∵,所以2x+∈[﹣,],故当,即时,函数f(x)取得最小值1;当,即时,函数f(x)取得最大值.(2)由,得.于是==.21.为提升居民生活质量,增加城市活力,某市决定充分利用城市空间修建口袋公园.如图所示,现有一处边长为40 m的正方形空地ABCD,若已规划出以A为圆心、半径为30 m 的扇形健身场地AEF,欲在剩余部修建一块矩形草坪PMCN,其中点P在圆弧EF上,点M,N分别落在BC和CD上,设∠PAB=θ,矩形草坪PMCN的面积为S.(1)求S关于θ的函数关系式;(2)求S的最大值以及相应θ的值.解:(1)如图,PM=40﹣30cosθ,PN=40﹣30sinθ,于是S=(40﹣30sinθ)(40﹣30cosθ)=﹣1200(sinθ+cosθ)+900sinθcosθ+1600,其中,,故S关于θ的函数关系式为S=﹣1200(sinθ+cosθ)+900sinθcosθ+1600,(0≤θ≤);(2)令t=sinθ+cosθ,则,又,当时,,所以,于是=450t2﹣1200t+1150,S(t)为开口向上的抛物线,对称轴,又,故当t=1时,S取得最大值为400 m2,此时,θ=0或.22.已知f(x)为R上的奇函数,g(x)为R上的偶函数,且f(x)+g(x)=2e x,其中e =2.71828….(1)求函数f(x)和g(x)的解析式;(2)若不等式f(x2+3)+f(1﹣ax)>0在(0,+∞)恒成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[m,+∞),使成立,求实数m的取值范围.解:(1)由题意知f(x)+g(x)=2e x,①可得f(﹣x)+g(﹣x)=2e﹣x,由f(x)为R上的奇函数,g(x)为R上的偶函数,可得f(﹣x)=﹣f(x),g(﹣x)=g(x),所以﹣f(x)+g(x)=2e﹣x,②于是①+②可得2g(x)=2 e x+2 e﹣x,即g(x)=e x+e﹣x,所以f(x)=e x﹣e﹣x;(2)由已知f(x2+3)+f(1﹣ax)>0在(0,+∞)上恒成立,又因为f(x)为R上的奇函数,所以f(x2+3)>f(ax﹣1)在(0,+∞)上恒成立,又因为f(x)=e x﹣e﹣x为R上的增函数,所以x2+3>ax﹣1在(0,+∞)上恒成立,即在(0,+∞)上恒成立,所以.因为,当且仅当,即x=2时取等号.所以a<4;(3)设h(x)=e﹣|x﹣m|,f(x)在[m,+∞)上的最小值为f(x)min,h(x)在[0,1]上的最小值为h(x)min,由题意,只需f(x)min≤h(x)min,因为f(x)=e x﹣e﹣x为R上的增函数,所以.当m≥0时,因为h(x)在(﹣∞,m)单调递增,在(m,+∞)单调递减,所以当x∈[0,1]时,h(x)min=min{h(0),h(1)}.于是,由h(0)=e﹣|m|≥e m﹣e﹣m得e m≤2 e﹣m,即e2m≤2,解得.考虑到,故h(1)=e﹣11﹣m|=e m﹣1≥e m﹣e﹣m,即,解得.因为,所以.当m<0时,h(x)在[0,1]单调递减,所以.又e m﹣1>0,e m﹣e ﹣m<0,所以对任意m<0,恒有h(1)=e m﹣1≥e m﹣e﹣m=f(x)min恒成立.综上,实数m的取值范围为.。

山东省烟台市高一上学期数学期末考试试卷

山东省烟台市高一上学期数学期末考试试卷

山东省烟台市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)集合U={1,2,3,4,5,6},S={1,4,5},T={2,3,4},则等于()A . {1,4,5,6}B . {1,5}C . {4}D . {1,2,3,4,5}2. (2分)已知直线l过点(2,1),且在两坐标轴上的截距互为相反数,则直线l的方程为()A . x﹣y﹣1=0B . x+y﹣3=0或x﹣2y=0C . x﹣y﹣1=0或x﹣2y=0D . x+y﹣3=0或x﹣y﹣1=03. (2分) (2019高三上·汉中月考) 函数的定义域是()A .B .C .D .4. (2分) (2019高一上·宁波期中) 已知则下列命题成立的是()A .B .C .D .5. (2分)设直线2x+3y+1=0和圆x2+y2﹣2x﹣3=0相交于点A、B,则弦AB的垂直平分线的方程是()A . 3x﹣2y﹣3=0B . 3x﹣2y+3=0C . 2x﹣3y﹣3=0D . 2x﹣3y+3=06. (2分)正方体ABCD﹣A1B1C1D1中,则正四面体D﹣A1BC1的表面积与正方体的表面积之比是()A .B .C .D .7. (2分)函数的零点所在区间为()A . (3,+∞)B . (2,3)C . (1,2)D . (0,1)8. (2分) (2020高一上·拉萨期末) 下列命题正确的是()A . 在空间中两条直线没有公共点,则这两条直线平行B . 一条直线与一个平面可能有无数个公共点C . 经过空间任意三点可以确定一个平面D . 若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行9. (2分) (2016高二上·赣州开学考) 已知点M(﹣1,2),N(3,3),若直线l:kx﹣y﹣2k﹣1=0与线段MN相交,则k的取值范围是()A . [4,+∞)B . (﹣∞,﹣1]C . (﹣∞,﹣1]∪[4,+∞)D . [﹣1,4]10. (2分) (2018高一下·中山期末) 过点作直线(,不同时为0)的垂线,垂足为,点,则的取值范围是()A .B .C .D .11. (2分)如图,平行六面体ABCD﹣A1B1C1D1中,侧棱B1B长为3,底面是边长为2的菱形,∠A1AB=120°,∠A1AD=60°,点E在棱B1B上,则AE+C1E的最小值为()A .B . 5C . 2D . 712. (2分) (2017高三上·会宁期末) 函数y=ax﹣(a>0,a≠1)的图象可能是()A .B .C .D .二、填空题 (共4题;共5分)13. (1分) (2016高一上·绵阳期中) 求值: =________.14. (2分) (2018高二上·台州期中) 某四面体的三视图如图所示,则该四面体的体积为________;该四面体四个面的面积中最大的是________.15. (1分)已知两条平行直线3x+4y+1=0与6x+ay+12=0间的距离为d,则的值为________16. (1分) (2017高一上·惠州期末) 若函数,则满足方程f(a+1)=f(a)的实数a的值为________.三、解答题 (共6题;共65分)17. (10分) (2016高一上·赣州期中) 已知集合A={x|2a≤x<a+3},B={x|x<﹣1或x>5}.(1)若a=﹣1,求A∪B,(∁RA)∩B.(2)若A∩B=∅,求a的取值范围.18. (15分)如图矩形ABCD两条对角线相交于M(2,0),AB边所在直线方程为x﹣3y﹣6=0,点T(﹣1,1)在AD边所在直线上,(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)过外接圆外一点N(1,6),向圆作两条切线,切点分别为E、F,求EF所在直线方程.19. (10分) (2017高二下·濮阳期末) 在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.(1)求证:平面AED⊥平面A1FD1;(2)在AE上求一点M,使得A1M⊥平面ADE.20. (10分) (2016高一上·上杭期中) 已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log ,当x∈[ , ]时,不等式 f(x)≥g(x)有解,求k的取值范围.21. (10分)(2012·全国卷理) 已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.22. (10分) (2019高一上·北京期中) 某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分) 17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。

山东省烟台市高一上学期数学期末考试试卷

山东省烟台市高一上学期数学期末考试试卷

山东省烟台市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知两直线l1:x+(1+m)y=2﹣m,l2:2mx+4y=﹣16,若l1∥l2则m的取值为()A . m=1B . m=﹣2C . m=1或m=﹣2D . m=﹣1或m=22. (2分)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y=2x2-1,值域为{1,17}的“孪生函数”共有()A . 10个B . 9个C . 8个D . 4个3. (2分) (2016高二上·杭州期末) 设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A . 若α∥β,m⊂α,n⊂β,则m∥nB . 若α∥β,m∥α,n∥β,则m∥nC . 若m⊥α,n⊥β,m⊥n,则α∥βD . 若m∥α,m⊂β,α∩β=n,则m∥n4. (2分)设x,y满足约束条件,若目标函数z=ax+by(a>0, b>0)的最大值为8,点P为曲线上动点,则点P到点(a,b)的最小距离为()A .B . 0C .D . 15. (2分)三个数的大小关系为()A .B .C .D .6. (2分) (2016高一上·阳东期中) 函数f(x)=x2﹣()x的零点有()个.A . 1B . 2C . 3D . 47. (2分) (2019高一上·哈尔滨期中) 函数的单调递增区间是()A .B .C .D .8. (2分) (2018高三上·长春期中) 已知,则的大小为()A .B .C .D .9. (2分)一个四面体ABCD的所有棱长都为,四个顶点在同一球面上,则此球的表面积为()A .B .C .D .10. (2分)已知一个几何体的三视图,如图所示,则该几何体的体积为()A . 4B . 8C .D .11. (2分) (2018高一上·四川月考) 定义域为R的偶函数满足对任意的,有且当时,,若函数在上恰有六个零点,则实数的取值范围是()A .B .C .D .12. (2分) (2015高三上·枣庄期末) 函数的零点的个数为()A . 3B . 4C . 5D . 6二、填空题 (共4题;共4分)13. (1分) (2019高一上·上海月考) 被3除余数等于1的自然数集合,用描述法可表示为________.14. (1分)已知幂函数f(x)=x (m∈Z)的图像与x轴,y轴都无交点,且关于原点对称,则函数f(x)的解析式是________.15. (1分) (2016高二下·长治期中) 过点P(3,2),且在坐标轴上截得的截距相等的直线方程是________.16. (1分)(2019·长沙模拟) 在各项均为正数的等比数列中,,当取最小值时,则数列的前项和为________.三、解答题 (共6题;共52分)17. (10分) (2018高一上·长春期中) 已知集合.(1)当时,求;(2)若,求实数a的取值范围.18. (2分)化简下列各式.(1) + + ﹣ =________;(2) =________.19. (10分)如图,已知四棱锥S﹣ABCD是底面边长为的菱形,且,若,SB=SD(1)求该四棱锥体积的取值范围;(2)当点S在底面ABCD上的射影为三角形ABD的重心G时,求直线SA与平面SCD夹角的余弦值.20. (10分) (2020高二上·厦门月考) 已知直线恒过定点.(1)若直线经过点且与直线垂直,求的方程;(2)若直线经过点且坐标原点到的距离等于2,求的方程.21. (10分) (2020高二下·嘉兴期末) 如图,四棱锥中,底面,,,且,,E是的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.22. (10分) (2019高一上·龙江期中) 已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.(1)已知函数,利用上述性质,求函数的单调区间和值域;(2)已知函数=和函数,若对任意,总存在,使得 (x2)=成立,求实数的值.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共52分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:。

山东省烟台市高一上学期数学期末联考试卷

山东省烟台市高一上学期数学期末联考试卷

山东省烟台市高一上学期数学期末联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2016高一上·沙湾期中) 已知U={1,2,3,4},A={1,3,4},B={2,3,4},那么∁U(A∩B)=()A . {1,2}B . {1,2,3,4}C . ∅D . {∅}2. (1分)设,则A . 3B . 2C . 1D .3. (1分)函数f(x)=x|x+a|+b是奇函数的充要条件是()A . ab=0B . a+b=0C . a=bD . =04. (1分)设则a,b,c的大小关系是()A .B .C .D .5. (1分) (2020高一上·长春期末) 函数的图象可能是A .B .C .D .6. (1分)已知函数只有一个零点,则实数m的取值范围是()A .B . ∪C .D . ∪7. (1分) (2019高一上·南海月考) 水池有两个相同的进水口和一个出水口,每个口进出水速度如图(甲)、(乙)所示,某天0点到6点该水池蓄水量如图(丙)所示(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到5点不进水也不出水.则一定正确的论断是()A . ①B . ①②C . ①③D . ①②③8. (1分) (2018高一上·长安期末) 设,且,则()A .B .C .D .9. (1分) (2020高二上·徐州期末) 关于的不等式对一切实数都成立,则的取值范围是()A .B .C .D .10. (1分) (2016高二上·南昌开学考) 函数y=sinx2的图象是()A .B .C .D .二、填空题 (共7题;共7分)11. (1分) (2018高一上·西宁月考) 已知集合A={1,3,m},B={3,4},A∪B={1,2,3,4},则m=________12. (1分)已知,且θ是第二象限角,则tanθ=________.13. (1分) y=log0.5[cos( + )]的单调递增区间为________.14. (1分)(2020·日照模拟) 已知函数,当时,把函数的所有零点依次记为,且,记数列的前项和为,则________.15. (1分) (2017高三上·太原月考) 函数的单调递减区间为________.16. (1分) (2019高一下·上海月考) 定义在上的连续函数满足,且在上是增函数,若成立,则实数的取值范围是________.17. (1分) (2019高一上·郑州期中) 已知函数,则关于的不等式的解集是________.三、解答题 (共5题;共12分)18. (2分)化简求值(1)化简:(2)求值:.19. (2分)函数的部分图象如图所示,求(Ⅰ)函数f(x)的解析式;(Ⅱ)函数y=Acos(ωx+ϕ)的单调递增区间.20. (2分) (2019高一上·宾县月考) 已知在中, .(1)求;(2)判断是锐角三角形还是钝角三角形;(3)求的值.21. (3分) (2019高一上·成都期中) 已知函数为偶函数,且 .(1)求的值,并确定的解析式;(2)若且),是否存在实数,使得在区间上为减函数.22. (3分) (2018高一上·佛山月考) 已知函数(Ⅰ)证明:对定义域内的所有都成立.(Ⅱ)设函数,求的最小值 .参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8、答案:略9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共12分) 18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、22-1、。

山东省烟台市高一数学上学期期末试题(含解析)

山东省烟台市高一数学上学期期末试题(含解析)

2015-2016学年山东省烟台市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.32.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值范围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<16.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可).12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值范围是.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的范围;(3)工厂生产多少台产品时,可使盈利最多?19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.2015-2016学年山东省烟台市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.3【分析】根据空间中的平行与垂直关系,得出命题A、B、C正确,命题D错误【解答】解:对于(1),空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,∴命题(1)错误;对于(2),若直线l与平面α平行,则直线l与平面α内的直线平行或异面,根据线面平行的性质得到命题(2)正确;对于(3),夹在两个平行平面间的平行线段相等;命题(3)正确;对于(4),垂直于同一条直线的两个直线平行、相交或异面,∴命题(4)错误.故正确的命题有2个;故选:C.【点评】本题考查了空间中的平行与垂直关系的应用问题,是基础题目.2.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.【分析】两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,利用两条直线相互平行的充要条件即可得出.【解答】解:∵两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,分别化为:y=﹣x﹣3,y=﹣,∴,﹣3≠﹣,解得a=﹣1.故选:A.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()【分析】将选项中各区间两端点值代入f(x),满足f(a)f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f()=<0,f(1)=e﹣1>0,所以零点在区间()上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.【分析】根据三视图知几何体为一直四棱锥,结合图中数据求出该四棱锥的体积.【解答】解:由三视图知几何体为一直四棱锥,其直观图如图所示;∵正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱垂直于底面且侧棱长也为1,∴该四棱锥的体积为×12×1=.故选:B.【点评】本题考查了由三视图求几何体体积的应用问题,解题的关键是判断几何体的形状,是基础题.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值范围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<1【分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围.【解答】解:函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1.故选:C.【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.6.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【分析】由题意设出球的半径,圆M的半径,二者与OM构成直角三角形,求出圆M的半径,然后可求球的表面积,截面面积,再求二者之比.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,∴R2=r2,∴S球=4πR2,截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选A.【点评】本题是基础题,考查球的体积、表面积的计算,仔细体会,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条【分析】先求出线段AB的长度为10,等于5的2倍,故满足条件的直线有3条,其中有2条和线段AB平行,另一条是线段AB的中垂线.【解答】解:线段AB的长度为=10,故在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有3条,其中有2条在线段AB的两侧,且都和线段AB平行,另一条是线段AB的中垂线,故选 C.【点评】本题考查两点间的距离公式的应用,线段的中垂线的性质,体现了分类讨论的数学思想.8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.【分析】根据扇形的弧长等于圆锥底面周长求出圆锥底面半径.【解答】解:圆锥的侧面积为,侧面展开图的弧长为=,设圆锥的底面半径为r′,则2πr′=,∴r′=.∴圆锥的全面积S=+=.故选:D.【点评】本题考查了圆锥的结构特征,面积计算,属于基础题.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③【分析】利用线面平行,面面平行的判定定理即可.【解答】解:点M,N分别为线段PB,BC的中点,o为AB的中点,∴MO∥PA,ON∥AC,OM∩ON=O,∴MO∥平面PAC;平面PAC∥平面MON,②③故正确;故选:C.【点评】考查了线面平行,面面平行的判断,属于基础题型,应熟练掌握.10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1【分析】函数F(x)=f(x)﹣a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a 的图象交点的横坐标.作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数f(x)在x ≥0时的解析式,作出函数的图象,结合图象及其对称性,求出答案.【解答】解:∵当x≥0时,f(x)=;即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);画出x≥0时f(x)的图象,再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,最左边两根之和为﹣6,最右边两根之和为6,∵x∈(﹣1,0)时,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log2(1﹣x),∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a,解得x=1﹣2a,∴所有根的和为1﹣2a.故选:A.【点评】本题考查分段函数的图象与性质的应用问题,也考查了利用函数零点与方程的应用问题,是综合性题目.二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可)②.【分析】随着时间x的增加,y的值先减后增,结合函数的单调性即可得出结论【解答】解:∵随着时间x的增加,y的值先减后增,而所给的三个函数中y=ax+k和y=alog m x 显然都是单调函数,不满足题意,∴y=ax2+bx+c.故答案为:②.【点评】本题考查函数模型的选择,考查学生利用数学知识解决实际问题的能力,确定函数模型是关键.12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件AC⊥BD或四边形ABCD为菱形时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).【分析】由假设A1C⊥B1D1,结合直四棱柱的性质及线面垂直的判定和性质定理,我们易得到A1C1⊥B1D1,即AC⊥BD,又由菱形的几何特征可判断出四边形ABCD为菱形,又由本题为开放型题目上,故答案可以不唯一.【解答】解:若A1C⊥B1D1,由四棱柱ABCD﹣A1B1C1D1为直四棱柱,AA1⊥B1D1,易得B1D1⊥平面AA1BB1,则A1C1⊥B1D1,即AC⊥BD,则四边形ABCD为菱形,故答案为:AC⊥BD或四边形ABCD为菱形.【点评】本题主要考查了空间中直线与直线之间的位置关系,属于知识的考查,属于中档题.13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于135°.【分析】由两平行线间的距离,得直线m和两平行线的夹角为90°.再根据两条平行线的倾斜角为45°,可得直线m的倾斜角的值.【解答】解:由两平行线间的距离为=,直线m被平行线截得线段的长为,可得直线m 和两平行线的夹角为90°.由于两条平行线的倾斜角为45°,故直线m的倾斜角为135°,故答案为:135°.【点评】本题考查两平行线间的距离公式,两条直线的夹角公式,本题属于基础题.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值范围是(4,+∞).【分析】根据条件可判断函数为偶函数,则要使(x)有4个零点,只需当x≥0时,f(x)=x2﹣x+1=0有两不等正根,根据二次方程的根的判定求解.【解答】解:对任意的x∈R满足f(﹣x)=f(x),∴函数为偶函数,若f(x)有4个零点,∴当x≥0时,f(x)=x2﹣x+1=0有两不等正根,∴△=a﹣4>0,∴a>4.【点评】考查了偶函数的应用和二次方程根的性质.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为②③.【分析】①根据线面垂直性质可判断;②根据公式cosθ=cosθ1cosθ2求解即可;③找出二面角的平面角,利用余弦定理求解.【解答】解:①取AB中点M,易证AB垂直平面SMC,可得AB垂直SC,故错误;②易知BC在平面上的射影为∠ABC的角平分线,∴cos60°=cosθcos30°,∴cosθ=,故正确;③取BC中点N,∴二面角为∠ANC,不妨设棱长为1,∴cos∠ANC==,故正确,故答案为:②③.【点评】考查了线面垂直,线面角,二面角的求法.属于基础题型.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.【分析】(1)证明BC⊥平面AA1C,即可证明平面AA1C⊥平面BA1C;(2)求出AC,直接利用体积公式求解即可.【解答】(1)证明:因为C是底面圆周上异于A,B的一点,AB是底面圆的直径,所以AC⊥BC.因为AA1⊥平面ABC,BC⊂平面ABC,所以AA1⊥BC,而AC∩AA1=A,所以BC⊥平面AA1C.又BC⊂平面BA1C,所以平面AA1C⊥平面BA1C.…(6分)(2)解:在Rt△ABC中,AB=2,则由AB2=AC2+BC2且AC=BC,得,所以.…(12分)【点评】本题考查线面垂直的判定,考查平面与平面垂直,考查几何体A1﹣ABC的体积,考查学生分析解决问题的能力,属于中档题.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.【分析】(1)连AC,设AC与BD交于点O,连EO,则A1C∥EO,由此能证明A1C∥平面BDE.(2)由BD⊥AC,BD⊥EO,得∠AOE是二面角E﹣BD﹣A的平面角,由此能求出二面角E﹣BD ﹣A的正切值.【解答】证明:(1)连AC,设AC与BD交于点O,连EO,∵E是AA1的中点,O是BD的中点,∴A1C∥EO,又EO⊂面BDE,AA1⊄面BDE,所以A1C∥平面BDE.…(6分)解:(2)由(1)知,BD⊥AC,BD⊥EO,∴∠AOE是二面角E﹣BD﹣A的平面角,在Rt△AOE中,tan∠AOE==.∴二面角E﹣BD﹣A的正切值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的范围;(3)工厂生产多少台产品时,可使盈利最多?【分析】(1)由题意得G(x)=2.8+x.由,f(x)=R (x)﹣G(x),能写出利润函数y=f(x)的解析式.(2)当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.由此能求出要使工厂有盈利,产量x的范围.(3)当x>5时,由函数f(x)递减,知f(x)<f(5)=3.2(万元).当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).由此能求出工厂生产多少台产品时,可使盈利最多.【解答】解:(1)由题意得G(x)=2.8+x.…(2分)∵,…(4分)∴f(x)=R(x)﹣G(x)=.…(6分)(2)∵f(x)=,∴当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;.…(7分)当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.∴要使工厂有盈利,求产量x的范围是(1,8.2)..…(8分)(3)∵f(x)=,∴当x>5时,函数f(x)递减,∴f(x)<f(5)=3.2(万元).…(10分)当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).…(14分)所以当工厂生产4百台时,可使赢利最大为3.6万元.…(15分)【点评】本题考查函数知识在生产实际中的具体应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.【分析】(1)设B(x0,y0),利用中点坐标公式可得:AB的中点M,代入直线CM.又点B在直线BT上,联立即可得出.(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,利用对称的性质即可得出.【解答】解:(1)设B(x0,y0),则AB的中点M在直线CM上,所以+1=0,即3x0+2y0+6=0 ①…(2分)又点B在直线BT上,所以x0﹣y0+2=0 ②…(4分)由①②得:x0=﹣2,y0=0,即顶点B(﹣2,0).…(6分)(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,由题意知,,解得a=﹣3,b=4,即A′(﹣3,4).…(9分)因为k BC===﹣4,…(11分)所以直线BC的方程为y=﹣4(x+2),即4x+y+8=0.…(12分)【点评】本题考查了角平分线的性质、相互垂直的直线斜率之间的关系、中点坐标公式,考查了推理能力与计算能力,属于中档题.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.【分析】(1)先证明OM∥AN,根据线面平行的判定定理即可证明OM∥面DAF;(2)由题意可先证明AF⊥CB,由AB为圆O的直径,可证明AF⊥BF,根据线面垂直的判定定理或面面垂直的性质定理即可证明AF⊥面CBF.【解答】解:(1)设DF的中点为N,连接MN,则MN∥CD,MN=CD,又∵AO∥CD,AO=CD,∴MN∥AO,MN=AO,∴MNAO为平行四边形,∴OM∥AN.又∵AN⊂面DAF,OM⊄面DAF,∴OM∥面DAF.(2)∵面ABCD⊥面ABEF,CB⊥AB,CB⊂面ABCD,面ABCD∩面ABEF=AB,∴CB⊥面ABEF.∵AF⊂面ABEF,∴AF⊥CB.又∵AB为圆O的直径,∴AF⊥BF,又∵CB∩BF=B,CB,BF⊂面CBF.∴AF⊥面CBF.【点评】本题主要考查了平面与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和转化思想,属于中档题.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.【分析】(1)对a分类讨论,利用截距式即可得出;(2)y=﹣(a+1)x+a﹣2,由于l不经过第二象限,可得,解出即可得出.(3)令x=0,解得y=a﹣2<0,解得a范围;令y=0,解得x=>0,解得a范围.求交集可得:a<﹣1.利用S△AOB= [﹣(a﹣2)]×,变形利用基本不等式的性质即可得出.【解答】解:(1)若2﹣a=0,解得a=2,化为3x+y=0.若a+1=0,解得a=﹣1,化为y+3=0,舍去.若a≠﹣1,2,化为: +=1,令=a﹣2,化为a+1=1,解得a=0,可得直线l的方程为:x+y+2=0.(2)y=﹣(a+1)x+a﹣2,∵l不经过第二象限,∴,解得:a≤﹣1.∴实数a的取值范围是(﹣∞,﹣1].(3)令x=0,解得y=a﹣2<0,解得a<2;令y=0,解得x=>0,解得a>2或a<﹣1.因此,解得a<﹣1.∴S△AOB=|a﹣2|||==3+≥3+=6,当且仅当a=﹣4时取等号.∴△AOB(O为坐标原点)面积的最小值是6.【点评】本题考查了直线的方程、不等式的性质、三角形的面积计算公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.。

2020-2021学年山东省烟台市高一上期末考试数学试卷及答案解析

2020-2021学年山东省烟台市高一上期末考试数学试卷及答案解析

2020-2021学年山东省烟台市高一上期末考试数学试卷一.选择题(共8小题,每小题5分,共40分)1.已知集合A={x|0≤x≤5},B={x||x|<3},则A∪B=()A.(﹣3,5]B.[3,5]C.(﹣∞,5]D.[0,3]2.设函数f(x)的定义域为R,已知p:f(x)为R上的减函数,q:∃x1<x2,f(x1)>f (x2),则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.为净化水质,向游泳池加入某种化学药品,加药后池水中该药品的浓度C(单位:mg/L)随时间t(单位:小时)的变化关系为C(t)=(a,b为常数,t≥0),经过1小时池水中药品的浓度为4mg/L,则池水中药品达到最大浓度需要()A.2小时B.3小时C.4小时D.5小时4.已知a=0.50.5,b=2﹣1.5,c=1.50.5,则a,b,c的大小关系是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c5.《九章算术》第九章“勾股”问题十二:今有门不知高、广,竿不知长、短.横之不出四尺,纵之不出二尺,邪之适出(邪:指门的对角线).问门的高、广分别为()A.10尺,8尺B.10尺,6尺C.8尺,6尺D.12尺,10尺6.今有一组实验数据如表:x 2.0 3.0 4.0 5.1 6.1y 1.5 4.17.51218.1现准备用下列函数中一个近似地表示这些数据满足的规律,比较恰当的一个是()A.y=log2x B.y=C.y=D.y=2x﹣17.要得到函数的图象只需将函数的图象()A.先向右平移个单位长度,再向下平移2个单位长度B..先向左平移个单位长度,再向上平移2个单位长度C..先向右平移个单位长度,再向下平移2个单位长度D..先向左平移个单位长度,再向上平移2个单位长度8.已知函数f(x)=cos2x•cosφ﹣sin(2x+π)•sinφ在处取得最小值,则函数f(x)的一个单减区间为()A.B.C.D.二.多选题(共4小题,每小题5分,共20分)9.若,则下列不等式中正确的是()A.a+b<ab B.C.ab>b2D.a2>b210.若函数f(x)同时满足:(1)对于定义域内的任意x,有f(x)+f(﹣x)=0;(2)对于定义域内的任意x1,x2,当x1≠x2时,有,则称函数f(x)为“理想函数”.给出下列四个函数是“理想函数”的是()A.f(x)=x2B.f(x)=﹣x3C.f(x)=x﹣D.f(x)=11.函数f(x)=A sin(ωx+φ),(A,ω,φ是常数,A>0)的部分图象如图所示,则()A.f(x)=cos()B.f(x)=sin(2x)C.f(x)的对称轴为x=kπ,k∈ZD.f(x)的递减区间为[],k∈Z12.下列条件能使log a3<log b3成立的有()A.b>a>0B.1>a>b>0C.b>>1D.1>>>0三.填空题(共4小题,每小题5分,共20分)13.已知x,y∈R,x2﹣xy+9y2=1,则x+3y的最大值为.14.设函数f(x)对x≠0的一切实数都有f(x)+2f()=3x,则f(x)=.15.函数y=a x+2﹣2(a>0,a≠1)的图象恒过定点P,若P∈{(x,y)|mx+ny+1=0,mn >0},则的最小值.16.将函数y=f(x)图象右移个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍得到y=sin(x﹣),则f()=.四.解答题(共6小题,第17题10分,18-22每小题12分,共70分)17.已知p:A={x|x2﹣5x+6≤0},q:B={x|x2﹣(a+a2)x+a3≤0,a>1},(1)若a=2,求集合B;(2)如果q是p的必要条件,求实数a的取值范围.18.已知函数f(x)=(a+1)x2+(a﹣1)x+(a2﹣1),其中a∈R.(1)当f(x)是奇函数时,求实数a的值;(2)当函数f(x)在[2,+∞)上单调递增时,求实数a的取值范围.19.研究表明:在一节40分钟的网课中,学生的注意力指数y与听课时间x(单位:分钟)之间的变化曲线如图所示,当x∈[0,16]时,曲线是二次函数图象的一部分;当x∈[16,40]时,曲线是函数y=80+log0.8(x+a)图象的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数y=f(x)的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)20.已知函数f(x)=2cos x sin(x﹣)+sin2x+sin x cos x.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若f(α)=且0<α<,求cos2α的值.21.已知函数.(Ⅰ)设α∈[0,2π],且f(α)=1,求α的值;(Ⅱ)将函数y=f(2x)的图象向左平移个单位长度,得到函数y=g(x)的图象.当时,求满足g(x)≤2的实数x的集合.22.某市为了刺激当地消费,决定发放一批消费券,已知每投放a(0<a≤4,a∈R)亿元的消费券,这批消费券对全市消费总额提高的百分比y随着时间x(天)的变化的函数关系式近似为y=,其中f(x)=,若多次投放消费券,则某一时刻全市消费总额提高的百分比为每次投放的消费券在相应时刻对消费总额提高的百分比之和.(1)若第一次投放2亿元消费券,则接下来多长时间内都能使消费总额至少提高40%;(2)政府第一次投放2亿元消费券,4天后准备再次投放m亿元的消费券,若希望第二次投放后的接下来两天内全市消费总额仍然至少提高40%,试求m的最小值.2020-2021学年山东省烟台市高一上期末考试数学试卷参考答案与试题解析一.选择题(共8小题,每小题5分,共40分)1.已知集合A={x|0≤x≤5},B={x||x|<3},则A∪B=()A.(﹣3,5]B.[3,5]C.(﹣∞,5]D.[0,3]【解答】解:∵A={x|0≤x≤5},B={x|﹣3<x<3},∴A∪B=(﹣3,5].故选:A.2.设函数f(x)的定义域为R,已知p:f(x)为R上的减函数,q:∃x1<x2,f(x1)>f (x2),则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:根据单调性的定义,如果f(x)为R上的减函数,那么∃x1<x2,f(x1)>f(x2);反之,∃x1<x2,f(x1)>f(x2),则f(x)未必为R上的减函数;故p⇒q,但q 推不出p,故p是q充分不必要条件.故选:A.3.为净化水质,向游泳池加入某种化学药品,加药后池水中该药品的浓度C(单位:mg/L)随时间t(单位:小时)的变化关系为C(t)=(a,b为常数,t≥0),经过1小时池水中药品的浓度为4mg/L,则池水中药品达到最大浓度需要()A.2小时B.3小时C.4小时D.5小时【解答】解:C(t)=(a,b为常数,t≥0),由C(1)=,可得a=4b﹣16,即a,b满足a=4b﹣16时符合,赋值计算,取a=0,b=4,则C(t)=,∴C(t)=,当且仅当t=,即t=2时上式等号成立.故池水中药品达到最大浓度需要2小时.故选:A.4.已知a=0.50.5,b=2﹣1.5,c=1.50.5,则a,b,c的大小关系是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c【解答】解:由于y=x0.5在(0,+∞)为增函数,故a<c,由于y=0.5x为减函数,则0.50.5>0.51.5=2﹣1.5,即a>b,∴b<a<c,故选:D.5.《九章算术》第九章“勾股”问题十二:今有门不知高、广,竿不知长、短.横之不出四尺,纵之不出二尺,邪之适出(邪:指门的对角线).问门的高、广分别为()A.10尺,8尺B.10尺,6尺C.8尺,6尺D.12尺,10尺【解答】解:设门的对角线为x尺2,则门高(x﹣2)尺,门宽为(x﹣4)尺,根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).故选:C.6.今有一组实验数据如表:x 2.0 3.0 4.0 5.1 6.1y 1.5 4.17.51218.1现准备用下列函数中一个近似地表示这些数据满足的规律,比较恰当的一个是()A.y=log2x B.y=C.y=D.y=2x﹣1【解答】解:由表格数据可知y随x的增大而增大,且增加速度越来越快,排除A,B,又由表格数据可知,每当x增加1,y的值不到原来的2倍,排除D,故选:C.7.要得到函数的图象只需将函数的图象()A.先向右平移个单位长度,再向下平移2个单位长度B..先向左平移个单位长度,再向上平移2个单位长度C..先向右平移个单位长度,再向下平移2个单位长度D..先向左平移个单位长度,再向上平移2个单位长度【解答】解:由函数=sin2(x+)+2,所以函数=sin2x的图象,先向左平移个单位长度,得y=sin2(x+)=sin(2x+)的图象,再向上平移2个单位长度,得y=sin(2x+)+2的图象.故选:B.8.已知函数f(x)=cos2x•cosφ﹣sin(2x+π)•sinφ在处取得最小值,则函数f(x)的一个单减区间为()A.B.C.D.【解答】解:函数f(x)=cos2x•cosφ﹣sin(2x+π)•sinφ=cos2x•cosφ﹣sin2x•sinφ=cos (2x+φ),由f(x)在处取得最小值,可得cos(+φ)=﹣1,即+φ=2kπ+π,k∈Z,可得φ=2kπ+,k∈Z,则f(x)=cos(2x+),由2kπ≤2x+≤2kπ+π,解得kπ﹣≤x≤kπ+,k∈Z,当k=0时,﹣≤x≤,可得函数f(x)的一个单减区间为[﹣,],故选:D.二.多选题(共4小题,每小题5分,共20分)9.若,则下列不等式中正确的是()A.a+b<ab B.C.ab>b2D.a2>b2【解答】解:∵,∴b<a<0,∴a+b<0,ab>0,∴a+b<ab,即选项A正确;∵b<a<0,∴ab<b2,a2<b2,即选项C和D错误;由于>0,>0,且a≠b,∴+>2=2,即选项B正确.故选:AB.10.若函数f(x)同时满足:(1)对于定义域内的任意x,有f(x)+f(﹣x)=0;(2)对于定义域内的任意x1,x2,当x1≠x2时,有,则称函数f(x)为“理想函数”.给出下列四个函数是“理想函数”的是()A.f(x)=x2B.f(x)=﹣x3C.f(x)=x﹣D.f(x)=【解答】解:根据题意,若f(x)满足对于定义域内的任意x,有f(x)+f(﹣x)=0,则f(x)为奇函数,若对于定义域内的任意x1,x2,当x1≠x2时,有,则f(x)在其定义域上为减函数,若函数f(x)为“理想函数”,则f(x)在其定义域上为奇函数,同时在其定义域上为减函数,依次分析选项:对于A,f(x)=x2,为偶函数,不是奇函数,不符合题意,对于B,f(x)=﹣x3,在其定义域上为奇函数,同时在其定义域上为减函数,符合题意,对于C,f(x)=x﹣,在其定义域上不是减函数,不符合题意,对于D,f(x)=,在其定义域上为奇函数,同时在其定义域上为减函数,符合题意,故选:BD.11.函数f(x)=A sin(ωx+φ),(A,ω,φ是常数,A>0)的部分图象如图所示,则()A.f(x)=cos()B.f(x)=sin(2x)C.f(x)的对称轴为x=kπ,k∈ZD.f(x)的递减区间为[],k∈Z【解答】解:由函数的图象可得A=,T=•=﹣,求得ω=2再根据五点法作图可得2×+φ=π,求得φ=,故函数f(x)=sin(2x+)=cos(﹣2x),故A、B正确,令2x+=k,k∈Z,解得x=kπ+,k∈Z,可得f(x)的对称轴为x=kπ,k∈Z,故C错误,令2kπ+≤2x+≤2kπ+,k∈Z,解得kπ+≤x≤kπ+,k∈Z,可得f(x)的递减区间为[kπ+,kπ+],k∈Z,故D错误.故选:AB.12.下列条件能使log a3<log b3成立的有()A.b>a>0B.1>a>b>0C.b>>1D.1>>>0【解答】解:要使log a3<log b3成立,只要<,∴<,∴0>lga>lgb,或lga<0,lgb>0.求得1>a>b>0,或b>1>a>0,故选:BC.三.填空题(共4小题,每小题5分,共20分)13.已知x,y∈R,x2﹣xy+9y2=1,则x+3y的最大值为.【解答】解:∵x2﹣xy+9y2=1,∴x2+9y2=1+xy≥=6xy,即xy≤,当且仅当x=3y,即,y=时,等号成立,∴(x+3y)2=x2+6xy+9y2=1+7xy≤1+7×=,∴≤x+3y≤,∴x+3y的最大值为.故答案为:.14.设函数f(x)对x≠0的一切实数都有f(x)+2f()=3x,则f(x)=.【解答】解:∵函数f(x)对x≠0的一切实数都有f(x)+2f()=3x,∴消去,可得.故答案为:.15.函数y=a x+2﹣2(a>0,a≠1)的图象恒过定点P,若P∈{(x,y)|mx+ny+1=0,mn >0},则的最小值8.【解答】解:由已知定点P坐标为(﹣2,﹣1),由点P在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,又mn>0,∴m>0,n>0,∴+=(2m+n)(+)=4++≥4+2=4+4=8当且仅当m=,n=取等号.故答案为:8.16.将函数y=f(x)图象右移个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍得到y=sin(x﹣),则f()=.【解答】解:将函数y=f(x)图象右移个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍,得到y=sin(x﹣),故把y=sin(x﹣)的图象,横坐标伸长到原来的倍,再把它的图象左移个单位,可得f(x)=sin2x的图象,则f()=sin=,故答案为:.四.解答题(共6小题,第17题10分,18-22每小题12分,共70分)17.已知p:A={x|x2﹣5x+6≤0},q:B={x|x2﹣(a+a2)x+a3≤0,a>1},(1)若a=2,求集合B;(2)如果q是p的必要条件,求实数a的取值范围.【解答】解:(1)当a=2时,x2﹣6x+8≤0,即(x﹣2)(x﹣4)≤0,解得2≤x≤4,故B=[2,4];(2)p:A={x|x2﹣5x+6≤0}=[2,3],q:B={x|x2﹣(a+a2)x+a3≤0}=[a,a2],如果q是p的必要条件,则A⊆B,∴,解得≤a≤2,故a的取值范围为[,2].18.已知函数f(x)=(a+1)x2+(a﹣1)x+(a2﹣1),其中a∈R.(1)当f(x)是奇函数时,求实数a的值;(2)当函数f(x)在[2,+∞)上单调递增时,求实数a的取值范围.【解答】解:(1)由函数f(x)为奇函数可得f(﹣x)=﹣f(x),则(a+1)(﹣x)2+(a﹣1)(﹣x)+(a2﹣1)=﹣(a+1)x2﹣(a﹣1)x﹣(a2﹣1),所以,解得a=﹣1.(2)当a=﹣1时,f(x)=﹣2x,为减函数,不符合题意;当a≠﹣1时,函数f(x)=(a+1)x2+(a﹣1)x+(a2﹣1)的对称轴为x=﹣,因为函数f(x)在[2,+∞)上单调递增,所以,解得a.综上,实数a的取值范围是.19.研究表明:在一节40分钟的网课中,学生的注意力指数y与听课时间x(单位:分钟)之间的变化曲线如图所示,当x∈[0,16]时,曲线是二次函数图象的一部分;当x∈[16,40]时,曲线是函数y=80+log0.8(x+a)图象的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数y=f(x)的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)【解答】解:(1)当x∈(0,16]时,设f(x)=b(x﹣12)2+84(b<0),∵f(16)=b(16﹣12)2+84=80,∴b=﹣,∴.当x∈(16,40]时,f(x)=log0.8(x+a)+80,由f(16)=log0.8(16+a)+80=80,解得a=﹣15,∴f(x)=log0.8(x﹣15)+80.综上,;(2)当x∈(0,16]时,令,得x∈[0,4],当x∈(16,40]时,令f(x)=log0.8(x﹣15)+80<68,得x≥15+0.8﹣12≈29.6,∴x∈[30,40],故学生处于“欠佳听课状态”的时间长为4﹣0+40﹣30=14分钟.20.已知函数f(x)=2cos x sin(x﹣)+sin2x+sin x cos x.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若f(α)=且0<α<,求cos2α的值.【解答】解:(Ⅰ)函数f(x)=2cos x sin(x﹣)+sin2x+sin x cos x=2cos x(sin x•﹣cos x•)+sin2x+sin x cos x=sin2x﹣cos2x=2sin(2x﹣),令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)∵f(α)=2sin(2α﹣)=,∴sin(2α﹣)=,∵0<α<,∴2α﹣为锐角,cos(2α﹣)==,∴cos2α=cos[(2α﹣)+]=cos(2α﹣)cos﹣sin(2α﹣)sin=﹣=.21.已知函数.(Ⅰ)设α∈[0,2π],且f(α)=1,求α的值;(Ⅱ)将函数y=f(2x)的图象向左平移个单位长度,得到函数y=g(x)的图象.当时,求满足g(x)≤2的实数x的集合.【解答】解:(Ⅰ)由=,由,得sin(α+)=0,又α∈[0,2π],得或.(Ⅱ)由题知,,由g(x)≤2,得,∴,∵,,∴,或,∴,或,即所求x的集合为,或.22.某市为了刺激当地消费,决定发放一批消费券,已知每投放a(0<a≤4,a∈R)亿元的消费券,这批消费券对全市消费总额提高的百分比y随着时间x(天)的变化的函数关系式近似为y=,其中f(x)=,若多次投放消费券,则某一时刻全市消费总额提高的百分比为每次投放的消费券在相应时刻对消费总额提高的百分比之和.(1)若第一次投放2亿元消费券,则接下来多长时间内都能使消费总额至少提高40%;(2)政府第一次投放2亿元消费券,4天后准备再次投放m亿元的消费券,若希望第二次投放后的接下来两天内全市消费总额仍然至少提高40%,试求m的最小值.【解答】解:(1)依题意,a=2,y=,要使y≥0.4,则f(x)≥2.当0≤x≤2时,,得1≤x≤2;当2<x≤7时,7﹣x≥2,得2<x≤5.∴1≤x≤5,即第一次投放2亿元消费券,则接下来5天内都能使消费总额至少提高40%;(2)设再次投放m亿元消费券x天,则,,0≤x≤2,由≥0.4,得m≥,令t=3+x,t∈[3,5],t∈N*,则m≥=,而=,当且仅当,即t=2,即x=时,上式等号成立,∴m的最小值为20﹣.。

2023-2024学年山东省烟台市高一(上)期末数学试卷【答案版】

2023-2024学年山东省烟台市高一(上)期末数学试卷【答案版】

2023-2024学年山东省烟台市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos960°=()A.12B.√32C.−12D.−√322.在同一平面直角坐标系中,函数y=e x与y=lnx的图象()A.关于x轴对称B.关于y轴对称C.关于直线y=x对称D.关于直线y=﹣x对称3.函数f(x)=lnx−6x+1的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.质点P在以坐标原点为圆心的单位圆上沿顺时针方向做匀速圆周运动,其角速度大小为π6rad/s,起点为射线y=√33x(x≤0)与单位圆的交点,20s后点P的纵坐标为()A.−12B.12C.−√32D.√325.设a=log30.2,b=30.2,c=0.23,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<c<a D.c<b<a6.已知f(x)={2−x−1,x≤0f(x−1),x>0,则f(log23)=()A.−43B.−14C.13D.27.函数f(x)=cos(sin x)的单调递减区间为()A.[2kπ,2kπ+π2](k∈Z)B.[kπ,kπ+π2](k∈Z)C.[2kπ−π2,2kπ+π2](k∈Z)D.[kπ−π2,kπ+π2](k∈Z)8.对于函数f(x),若存在实数a,b(a<b),使{f(x)|x∈[a,b]}=[a,b],则称函数f(x)为“M函数”,下列函数中为“M函数”的是()A.y=sin x B.y=tan xC.y=−14x2−1D.y=e x﹣1﹣1二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.若实数m >n >0,则( ) A .m ﹣1<n ﹣1B .lgm >lgnC .2﹣m>2﹣nD .sin m >n10.若角α是第二象限角,则下列说法正确的有( ) A .sin α2>0B .tan α2>0C .sin2α<0D .cos2α<011.已知函数f(x)=Asin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则( )A .φ=π4B .f (x )在区间[8,10]上单调递减C .f (x )的图象关于点(﹣5,0)对称D .f 2(1)+f 2(2)+f 2(3)+⋯+f 2(2024)=202412.切比雪夫多项式是以递归方式定义的一元多项式序列,在计算数学中应用广泛.已知某类切比雪夫多项式f n (x )满足f n (cos x )=cos nx ,n ∈N ,则( ) A .f n (0)=1B .f n+1(x)=2xf n (x)−f n−1(x),x ∈[−1,1],n ∈N ∗C .当n 为奇数时,f n (x )(x ∈[﹣1,1])为奇函数D .若方程4x 3−3x =12在(﹣1,1)上有三个相异实根x 1,x 2,x 3,则x 1+x 2+x 3=0三、填空题:本题共4小题,每小蒝5分,共20分.13.已知某扇形的面积为25,圆心角的弧度数为2,则该扇形的周长为 . 14.已知tan α=2,则sin(3π−α)+sin(−π2+α)cos(π+α)+sin(−α)的值为 .15.若函数f(x)=log 2(4x +m)−x −1为偶函数,则实数m 的值为 .16.已知f(x)={|log 2x −1|,0<x <4−14x 2+x +1,x ≥4,若x 1,x 2,x 3是方程f (x )=t 的三个相异实根,则实数t 的取值范围为 ,x 1x 2x 3的取值范围为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(1)求值:413×213+log 45×log 252−e ln2;(2)化简√1+sinα1−sinα−√1−sinα1+sinα,其中α为第三象限角.18.(12分)已知函数f(x)=2sin(2x−π3).(1)用五点法画出函数f(x)在长度为一个周期的闭区间上的简图;(2)求不等式f(x)≥1的解集.19.(12分)已知函数f(x)=√3sinωxcosωx+cos2ωx−12(ω>0),且其图象相邻两条对称轴间的距离为π2.(1)求函数f(x)图象的对称轴方程;(2)将函数f(x)图象向右平移π6个单位长度,再将图象上各点的横坐标变为原来的2倍(纵坐标不变),得到函数g(x)的图像,求g(x)的单调递增区间.20.(12分)某企业现有A,B两条生产线,根据市场调查,A生产线的利润f(x)(单位:万元)与投入金额x(单位:万元)的关系式为f(x)=log2√x+1+mx+n,x≥0,B生产线找的利润g(x)(单位:万元)与投入金额x(单位:万元)的关系式为g(x)=x﹣log2(32﹣x)+p,0≤x<32.假定f(0)=g(0)=0且f(3)=4.(1)求实数m,n,p的值;(2)该企业现有22万元资金全部投入A,B两条生产线中,问:怎样分配资金,才能使企业获得最大利润?并求出最大利润.21.(12分)如图,在矩形ABCD中,AB=3,BC=√3,P,Q分别是线段AD,AB上的动点,且∠PCQ=π4,设∠PCD=α.(1)用α表示△PCQ的面积;(2)当α为何值时,△PCQ面积取得最小值?并求出最小值.22.(12分)已知函数f(x)满足:对∀x、y∈R,f(x+y)﹣f(y)=x(x+2y+1),且f(1)=0.(1)求f(0)的值;(2)若∀x∈R,y∈(﹣∞,﹣1),恒有f(sinx)+14>log a(1−y)(a>0且a≠1),求实数a的取值范围.2023-2024学年山东省烟台市高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos960°=()A.12B.√32C.−12D.−√32解:cos960°=cos(720°+240°)=cos240°=cos(180°+60°)=﹣cos60°=−1 2.故选:C.2.在同一平面直角坐标系中,函数y=e x与y=lnx的图象()A.关于x轴对称B.关于y轴对称C.关于直线y=x对称D.关于直线y=﹣x对称解:因为函数y=e x与y=lnx互为反函数,所以两者的图象关于直线y=x对称.故选:C.3.函数f(x)=lnx−6x+1的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)解:由题设,y=lnx,y=−6x在(0,+∞)为递增函数,f(x)是定义域在(0,+∞)上连续不断的递增函数,又f(2)=ln2﹣3+1=ln2﹣2<0,f(3)=ln3﹣2+1=ln3﹣1>0,f(2)f(3)<0,由零点存在定理可知,零点所在区间为(2,3).故选:C.4.质点P在以坐标原点为圆心的单位圆上沿顺时针方向做匀速圆周运动,其角速度大小为π6rad/s,起点为射线y=√33x(x≤0)与单位圆的交点,20s后点P的纵坐标为()A.−12B.12C.−√32D.√32解:射线y=√33x(x≤0)为角7π6的终边,20s后,点P在角7π6−π6×20=−13π6的终边上,则20s后点P的纵坐标为sin(−13π6)=−sin13π6=−sin(2π+π6)=−sinπ6=−12.故选:A.5.设a=log30.2,b=30.2,c=0.23,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<c<a D.c<b<a 解:∵a=log30.2<0,b=30.2>1,0<c=0.23<1,∴a<c<b.故选:B.6.已知f(x)={2−x−1,x≤0f(x−1),x>0,则f(log23)=()A.−43B.−14C.13D.2解:由题意得log23>1>0,故f(log23)=f(log23−1)=f(log232)=f(log232−1)=f(log234)=2−log234−1=43−1=13.故选:C.7.函数f(x)=cos(sin x)的单调递减区间为()A.[2kπ,2kπ+π2](k∈Z)B.[kπ,kπ+π2](k∈Z)C.[2kπ−π2,2kπ+π2](k∈Z)D.[kπ−π2,kπ+π2](k∈Z)解:设μ=sin x,则μ∈[﹣1,1];函数y=cosμ,μ∈[﹣1,1],在[﹣1,0]上单调递增,在[0,1]上单调递减.又μ=sin x在[2kπ,2kπ+π2],k∈Z上单调递增且μ∈[0,1];在[2kπ+π2,2kπ+π],k∈Z上单调递减且μ∈[0,1];在[2kπ+π,2kπ+3π2],k∈Z上单调递减且μ∈[﹣1,0];在[2kπ+3π2,2kπ+2π],k∈Z上单调递增且μ∈[﹣1,0].根据复合函数的单调性可得y=cos(sin x)的单调减区间为[2kπ,2kπ+π2]或[2kπ+π,2kπ+3π2],k∈Z.即减区间为[kπ,kπ+π2],k∈Z.故选:B.8.对于函数f(x),若存在实数a,b(a<b),使{f(x)|x∈[a,b]}=[a,b],则称函数f(x)为“M函数”,下列函数中为“M函数”的是()A.y=sin x B.y=tan xC.y=−14x2−1D.y=e x﹣1﹣1解:对于A,由于y=sin x为周期函数,考查其在一个周期内的情况即可;先考虑在递增区间[−π2,π2]内的情况,此时若函数为“M 函数”,则满足存在实数a ,b (a <b ),使{f (x )|x ∈[a ,b ]}=[a ,b ], 即sin a =a ,sin b =b ,即在[−π2,π2]内,sin x =x 需有两不同实数解;当x =0时,y =sin0=0,当0<x ≤π2时,0<sin x ≤1,且sin x <x ,当−π2≤x <0时,﹣1≤sin x <0,结合y =sin x 以及y =x 的对称性知sin x >x , 即不能满足sin x =x 有两不同实数解;故此时不存在实数a ,b (a <b ),使{f (x )|x ∈[a ,b ]}=[a ,b ]; 结合y =sin x 的对称性知在单调递减区间[π2,3π2]内,不存在实数a ,b (a <b ),使{f (x )|x ∈[a ,b ]}=[a ,b ],A 错误;对于B ,考查y =tan x 在一个周期内的情况,即在单调递增区间(−π2,π2)内的情况,此时若函数为“M 函数”,则满足存在实数a ,b (a <b ),使{f (x )|x ∈[a ,b ]}=[a ,b ], 即tan a =a ,tan b =b ,即在(−π2,π2)内,tan x =x 需有两不同实数解;当x =0时,y =tan0=0,当0<x <π2时,0<tan x <x ,当−π2<x <0时,x <tan x <0,即不能满足tan x =x 有两不同实数解;即不存在实数a ,b (a <b ),使{f (x )|x ∈[a ,b ]}=[a ,b ],B 错误;对于C ,函数y =−14x 2−1在(﹣∞,0]上单调递增,在0,+∞)上单调递减,由于y =−14x 2−1的图象关于x =0对称,且y =−14x 2−1≤−1,x =0时取等号,故只需考虑函数在(﹣∞,﹣l ]上的情况;假设y =−14x 2−1为“M 函数”,则在(﹣∞,﹣1]上−14x 2−1=x 需有两个不同实数根,而−14x 2−1=x ,即x 2+4x +4=0,∴x =﹣2,不符合要求,即此时不存在实数a ,b (a <b ),使{f (x )|x ∈[a ,b ]}=[a ,b ],C 错误; 对于D ,假设y =e x ﹣1﹣1为“M 函数”,由于y =e x ﹣1﹣1在R 上单调递增,则存在实数a ,b (a <b ),使{f (x )|x ∈[a ,b ]}=[a ,b ], 则e x ﹣1﹣1=x ,即e x ﹣1=x +1需有两不同实数解,作出函数y =e x﹣1的图象和直线y =x +1,结合二者图象可知,函数y=e x﹣1的图象和直线y=x+1有两个不同交点,即e x﹣1﹣1=x,也即e x﹣1=x+1有两不同实数解,假设成立,即y=e x﹣1﹣1为“M函数”,D正确,故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.若实数m>n>0,则()A.m﹣1<n﹣1B.lgm>lgn C.2﹣m>2﹣n D.sin m>n解:对于A,因为m>n>0,所以m﹣1<n﹣1,故A正确;对于B,因为y=lgx是增函数,且m>n>0,所以lgm>lgn,故B正确;对于C,因为y=(12)x是减函数,且m>n>0,所以(12)m<(12)n,即2﹣m<2﹣n,故C不正确;对于D,因为π2>π3,sinπ2=1<π3,所以D不正确.故选:AB.10.若角α是第二象限角,则下列说法正确的有()A.sinα2>0B.tanα2>0C.sin2α<0D.cos2α<0解:由题意2kπ+π2<α<π+2kπ,k∈Z,所以kπ+π4<α2<π2+kπ,k∈Z,4kπ+π<2α<2π+4kπ,k∈Z,所以α2为第一或第三象限角,2α为第三或第四象限角或终边在y轴的非正半轴,故BC正确,AD错误.故选:BC.11.已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<π2)的部分图象如图所示,则()A .φ=π4B .f (x )在区间[8,10]上单调递减C .f (x )的图象关于点(﹣5,0)对称D .f 2(1)+f 2(2)+f 2(3)+⋯+f 2(2024)=2024解:对于A ,由图可知A =√2,T 2=1−(−3)=4=2π2ω,解得T =8,ω=π4,且1×π4+φ=π2+2kπ,k ∈Z ,解得φ=π4+2kπ,k ∈Z ,又|φ|<π2,所以只能k =0,φ=π4,故A 正确;对于B ,f(x)=√2sin(π4x +π4),当x ∈[8,10]时,π4x +π4∈[94π,114π],所以f (x )在区间[8,10]上不单调,故B 错误;对于C ,f(−5)=√2sin(−π)=0,即f (x )的图象关于点(﹣5,0)对称,故C 正确; 对于D ,f 2(1)+f 2(2)+f 2(3)+…+f 2(8)=2+1+0+1+2+1+0+1=8, 又周期T =8,所以f 2(1)+f 2(2)+f 2(3)+…+f 2(2024)=8×20248=2024,故D 正确. 故选:ACD .12.切比雪夫多项式是以递归方式定义的一元多项式序列,在计算数学中应用广泛.已知某类切比雪夫多项式f n (x )满足f n (cos x )=cos nx ,n ∈N ,则( ) A .f n (0)=1B .f n+1(x)=2xf n (x)−f n−1(x),x ∈[−1,1],n ∈N ∗C .当n 为奇数时,f n (x )(x ∈[﹣1,1])为奇函数D .若方程4x 3−3x =12在(﹣1,1)上有三个相异实根x 1,x 2,x 3,则x 1+x 2+x 3=0解:对于A ,取n =1,x =π2,则f 1(cos π2)=f 1(0)=cos π2=0,故A 错误;对于B ,∀x ∈[﹣1,1],存在t ∈[0,2π)使得x =cos t ,所以当n ∈N *时,f n +1(x )=cos (nt +t )=cos (nt )cos t ﹣sin (nt )sin t=cos(nt)cost −12[cos(n −1)t −cos(n +1)t]=xf n (x)−12[f n−1(x)−f n+1(x)],解得f n+1(x)=2xf n (x)−f n−1(x),x ∈[−1,1],n ∈N ∗,故B 正确;对于C ,由f 0(cos x )=cos0=1是偶函数, 由f 1(cos x )=cos x ,得f 1(x )=x 是奇函数,所以由f n+1(x)=2xf n (x)−f n−1(x),x ∈[−1,1],n ∈N ∗得, f 2(x)=2xf 1(x)−f 0(x)=2x 2−1是偶函数,f 3(x)=2xf 2(x)−f 1(x)=2x(2x 2−1)−x =4x 3−3x 是奇函数,f 4(x)=2xf 3(x)−f 2(x)=2x(4x 3−3x)−(2x 2−1)=8x 4−8x 2+1是偶函数, f 5(x )=2xf 4(x )﹣f 3(x )是奇函数,……,所以归纳可得当n 为奇数时,f n (x )(x ∈[﹣1,1])为奇函数,故C 正确; 对于D ,若方程4x 3−3x =12在(﹣1,1)上有三个相异实根x 1,x 2,x 3,则4x 3−3x −12=4(x −x 1)(x −x 2)(x −x 3), 左边的二次项系数为0,展开后右边的二次项系数为﹣4(x 1+x 2+x 3), 所以﹣4(x 1+x 2+x 3)=0,即x 1+x 2+x 3=0,故D 正确. 故选:BCD .三、填空题:本题共4小题,每小蒝5分,共20分.13.已知某扇形的面积为25,圆心角的弧度数为2,则该扇形的周长为 20 . 解:设扇形的半径为r ,弧长为l ,面积为S , 因为扇形的面积为25,圆心角的弧度数为2,则{S =12lr =25l =2r,解得{r =5l =10,所以该扇形的周长为l +2r =10+10=20. 故答案为:20.14.已知tan α=2,则sin(3π−α)+sin(−π2+α)cos(π+α)+sin(−α)的值为 −13 .解:由题意知tan α=2,则sin(3π−α)+sin(−π2+α)cos(π+α)+sin(−α)=sinα−cosα−cosα−sinα=tanα−1−1−tanα=2−1−1−2=−13. 故答案为:−13.15.若函数f(x)=log 2(4x +m)−x −1为偶函数,则实数m 的值为 1 . 解:函数f(x)=log 2(4x +m)−x −1为偶函数,则有f (﹣x )=f (x ), 即log 2(4x +m)−x −1=log 2(4−x +m)+x −1, 得log 2(4x +m)−log 2(4−x +m)=2x ,则有log 24x +m 4−x +m =2x =log 222x =log 24x,得4x +m 4−x +m=4x ,即(m ﹣1)(1﹣4x )=0,解得m =1,f(x)=log 2(4x +1)−x −1,函数定义域为R ,符合题意.所以实数m 的值为1. 故答案为:1.16.已知f(x)={|log 2x −1|,0<x <4−14x 2+x +1,x ≥4,若x 1,x 2,x 3是方程f (x )=t 的三个相异实根,则实数t 的取值范围为 (0,1) ,x 1x 2x 3的取值范围为 (16,8+8√2) . 解:∵f(x)={|log 2x −1|,0<x <4−14x 2+x +1,x ≥4,∴作出其图象如下:∵x 1,x 2,x 3是方程f (x )=t 的三个相异实根, ∴y =f (x )与y =t 有三个交点, ∴数形结合可得t ∈(0,1);不妨设x 1<x 2<x 3,令−14x 2+x +1=0,x >4,可得x =2+2√2,∴x 1∈(1,2),x 2∈(2,4),x 3∈(4,2+2√2), 又f (x 1)=f (x 2),∴|log 2x 1﹣1|=|log 2x 2﹣1|, ∴1﹣log 2x 1=log 2x 2﹣1,∴log 2(x 1x 2)=2, ∴x 1x 2=4,∴x 1x 2x 3的=4x 3∈(16,8+8√2). 故答案为:(0,1);(16,8+8√2).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(1)求值:413×213+log 45×log 252−e ln2;(2)化简√1+sinα1−sinα−√1−sinα1+sinα,其中α为第三象限角.解:(1)原式=223⋅213+lg5lg4⋅lg2lg25−e ln2=2+lg52lg2⋅lg22lg5−2 =14. (2)原式=√(1+sinα)21−sin 2α−√(1−sinα)21−sin 2α=√(1+sinα)2cos 2α−√(1−sinα)2cos 2α.因为α为第三象限角,所以1+sin α>0,1﹣sin α>0,cos α<0, 即上式=1+sinα−cosα−1−sinα−cosα=2sinα−cosα=−2tan α.18.(12分)已知函数f(x)=2sin(2x −π3).(1)用五点法画出函数f (x )在长度为一个周期的闭区间上的简图; (2)求不等式f (x )≥1的解集. 解:(1)由题意函数f(x)=2sin(2x −π3),列表如下:描点,连线,可得f(x)=2sin(2x −π3)的图象如下:(2)由题意f (x )≥1,可得sin(2x −π3)≥12,令π6+2kπ≤2x −π3≤5π6+2kπ,k ∈Z ,解得π4+kπ≤x ≤7π12+kπ,k ∈Z , 所以不等式f (x )≥1的解集为{x|π4+kπ≤x ≤7π12+kπ,k ∈Z}.19.(12分)已知函数f(x)=√3sinωxcosωx+cos2ωx−12(ω>0),且其图象相邻两条对称轴间的距离为π2.(1)求函数f(x)图象的对称轴方程;(2)将函数f(x)图象向右平移π6个单位长度,再将图象上各点的横坐标变为原来的2倍(纵坐标不变),得到函数g(x)的图像,求g(x)的单调递增区间.解:(1)由题知,f(x)=√3sinωxcosωx+cos2ωx,所以,f(x)=√32sin2ωx+12cos2ωx=sin(2ωx+π6).因为相邻两条对称轴间的距离为π2,所以函数f(x)的周期T=π=2π2ω,所以ω=1,f(x)=sin(2x+π6 ).令2x+π6=π2+kπ,解得x=π6+kπ2,k∈Z,函数f(x)图象的对称轴所在直线的方程为x=π6+kπ2,k∈Z.(2)由题知,将函数f(x)图象向右平移π6个单位长度,得到y=sin(2(x−π6)+π6)=sin(2x−π6),再将横坐标伸长为原来的2倍,得到g(x)=sin(x−π6 ).所以,当x−π6∈[−π2+2kπ,π2+2kπ],即x∈[−π3+2kπ,2π3+2kπ],k∈Z时,g(x)单调递增,所以函数g(x)的单调递增区间为[−π3+2kπ,2π3+2kπ],k∈Z.20.(12分)某企业现有A,B两条生产线,根据市场调查,A生产线的利润f(x)(单位:万元)与投入金额x(单位:万元)的关系式为f(x)=log2√x+1+mx+n,x≥0,B生产线找的利润g(x)(单位:万元)与投入金额x(单位:万元)的关系式为g(x)=x﹣log2(32﹣x)+p,0≤x<32.假定f(0)=g(0)=0且f(3)=4.(1)求实数m,n,p的值;(2)该企业现有22万元资金全部投入A,B两条生产线中,问:怎样分配资金,才能使企业获得最大利润?并求出最大利润.解:(1)因为f(0)=0,所以n=0.又因为f(3)=4,即f(3)=log2√3+1+3m=4,所以m=1.又因为g(0)=0,即0﹣log232+p=0,解得p=5.(2)由(1)知,f(x)=log2√x+1+x,x≥0,g(x)=x﹣log2(32﹣x)+5,0≤x<32.设企业所获利润为h(x),投入A生产线x万元,则投入B生产线(22﹣x)万元,所以h(x)=f(x)+g(22﹣x),0≤x≤22,即ℎ(x)=log2√x+1+x+22−x−log2(10+x)+5,0≤x≤22,整理得ℎ(x)=log2√x+110+x+27,0≤x≤22,令√x+1=t,t∈[1,√23],则x=t2﹣1,所以u(t)=log2t9+t2+27=log219t+t+27,t∈[1,√23],因为t+9t≥6,当且仅当t=9t,即t=3时等号成立,此时x=8.最大利润为27+log216=26−log23.所以投入A生产线8万元、B生产线14万元时,该企业获得最大利润为(26﹣log23)万元.21.(12分)如图,在矩形ABCD中,AB=3,BC=√3,P,Q分别是线段AD,AB上的动点,且∠PCQ=π4,设∠PCD=α.(1)用α表示△PCQ的面积;(2)当α为何值时,△PCQ面积取得最小值?并求出最小值.解:(1)因为AB=3,BC=√3,∠PCQ=π4,所以在直角△PCD中,PD=3tanα,则AP=√3−3tanα,在△QBC中,QB=√3tan(π4−α),所以AQ=3−√3tan(π4−α),所以S△CPQ=S矩形ABCD﹣S△APQ﹣S△CPD﹣S△BCQ=3√3−12(√3−3tanα)(3−√3tan(π4−α))−92tanα−32tan(π4−α),0≤α≤π6,整理得S△CPQ=3√32−3√32tanαtan(π4−α),0≤α≤π6;(2)由(1)知,S△CPQ=3√32−3√32tanαtan(π4−α),0≤α≤π6,所以S△CPQ=3√32(1−sinαsin(π4−α)cosαcos(π4−α))=3√32×[1sinα(√22cosα−√22sinα)cosα(22cosα+22sinα)]=3√32×1cos2α+sinαcosα=3√32×112cos2α+12sin2α+12=3√32sin(2α+π4)+1,因为0≤α≤π6,所以2α+π4∈[π4,7π12],所以当2α+π4=π2,即α=π8时,√2sin(2α+π4)取得最大值√2,所以△CPQ面积的最小值为3√6−3√3.22.(12分)已知函数f(x)满足:对∀x、y∈R,f(x+y)﹣f(y)=x(x+2y+1),且f(1)=0.(1)求f(0)的值;(2)若∀x∈R,y∈(﹣∞,﹣1),恒有f(sinx)+14>log a(1−y)(a>0且a≠1),求实数a的取值范围.解:(1)因为f(x+y)﹣f(y)=x(x+2y+1),令x=1,y=0,所以f(1)﹣f(0)=2,因为f(1)=0,所以f(0)=﹣2.(2)由(1)知,f(0)=﹣2,令y=0,得f(x)﹣f(0)=x2+x,所以f(x)=x2+x﹣2.所以f(sinx)+14=sin2x+sinx−74,令sin x=t,其中﹣1≤t≤1,则y=t2+t−7 4,所以当t=−12时,y=t2+t−74取得最小值y min=14−12−74=−2.又因为∀x∈R,∀y∈(﹣∞,﹣1),恒有f(sinx)+14>log a(1−y),所以,∀y∈(﹣∞,﹣1),log a(1﹣y)<﹣2恒成立.当a>1时,u=log a(1﹣y)在(﹣∞,﹣1)上单调递减,因为1﹣y>2,则u=log a(1﹣y)>log a2,则log a(1﹣y)<﹣2不可能恒成立,舍去;当0<a<1时,u=log a(1﹣y)在(﹣∞,﹣1)上单调递增,所以要使log a(1﹣y)<﹣2在(﹣∞,﹣1)上恒成立,只需log a2≤−2=log a 1a2,可得1a2≤2,解得√22≤a<1.综上,a的取值范围为[√22,1).。

2019-2020学年山东省烟台市高一上学期期末数学试题及答案解析版

2019-2020学年山东省烟台市高一上学期期末数学试题及答案解析版

2019-2020学年山东省烟台市高一上学期期末数学试题及答案解析版一、单选题 1.tan15︒=( ) A.2B.2 C1 D1【答案】B【解析】将所求式子中的角15︒变形为4530︒-︒然后利用两角和与差的正切函数公式及特殊角的三角函数值化简,即可求出值. 【详解】()1tan 45tan 3012tan15tan 453021tan 45tan 306︒-︒-︒=︒-︒=====-+︒︒. 故选:B. 【点睛】此题考查了两角和与差的正切函数公式,以及特殊角的三角函数值熟练掌握公式是解本题的关键,是基础题. 2.方程3log 5x x =-的根所在的区间为( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4【答案】D【解析】构造函数()3log 5f x x x =+-,分析函数在定义域上的单调性,然后利用零点存在定理可判断出该函数零点所在的区间. 【详解】构造函数()3log 5f x x x =+-,则该函数在()0,∞+上为增函数, 所以,函数()3log 5f x x x =+-至多只有一个零点,()140f =-<,()32log 230f =-<,()310f =-<,()34log 410f =->,由零点存在定理可知,方程3log 5x x =-的根所在的区间为()3,4.故选:D. 【点睛】本题是一道判断方程的根所在区间的题目,一般利用零点存在定理来进行判断,考查推理能力,属于基础题. 3.已知a 是第一象限角,那么2a是() A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一或第三象限角【答案】D【解析】根据象限角写出2a 的取值范围,讨论即可知2a 在第一或第三象限角 【详解】依题意得22()2k a k k Z πππ<<+∈,则()24a k k k Z πππ<<+∈, 当2k n n Z =∈,时,2a是第一象限角当2+1k n n Z =∈, 时,2a是第三象限角【点睛】本题主要考查象限角,属于基础题.4.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是( ) A .1 B .2 C .3 D .4【答案】C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案. 【详解】设扇形所在圆的半径为r ,由扇形的弧长为6,面积为6,可得26162l r S r αα==⎧⎪⎨==⎪⎩,解得3α=,即扇形的圆心角为3rad .故选C. 【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.某商家准备在2020年春节来临前连续2次对某一商品销售价格进行提价且每次提价10%,然后在春节活动期间连续2次对该商品进行降价且每次降价10%,则该商品的最终售价与原来价格相比( ) A .略有降低 B .略有提高 C .相等 D .无法确定【答案】A【解析】先阅读题意,再列出现价,然后再比较大小即可. 【详解】设现价为b ,原价为a ,则()()()222110%110%10.01b a a a =+-=-<, 故选:A . 【点睛】本题主要考查的是函数的实际应用问题,重点考查的是阅读能力,考查学生的分析问题,解决问题的能力,是基础题.6.若02x π<<=( )A .B .-C .0D .2【答案】A【解析】根据半角公式化简原式,再根据x 的范围即可求得. 【详解】由半角公式可得:221cos 22cos ,1cos 22sin x x x x +=-=, 又02x π<<知,sin 0,cos 0x x >>,原式+==故选:A . 【点睛】本题主要考查的是二倍角余弦公式的应用,以及三角函数在给定的范围内的正负问题,要求学生熟练掌握半角公式,考查学生的计算能力,是基础题.7.如图,某港口一天中6时到18时的水深变化曲线近似满足函数3sin 6y x k πϕ⎛⎫=++ ⎪⎝⎭,据此可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C【解析】由图象可知当sin 16x πϕ⎛⎫+=- ⎪⎝⎭时,min 32y k =-=,进而即可求出k 的值;接下来根据正弦函数的性质可得当sin 16x πϕ⎛⎫+= ⎪⎝⎭时,y 有最大值,据此进行解答即可 【详解】由图像可知:当sin 16x πϕ⎛⎫+=- ⎪⎝⎭时,min 32y k =-=,5k ∴=, 当sin 16x πϕ⎛⎫+= ⎪⎝⎭时,max 538y =+=. 故选:C. 【点睛】本题是一道关于三角函数图象应用的题目,解答本题的关键是熟练掌握正弦函数的图象与性质,是基础题. 8.已知函数()3f x x x =+,()2log g x x x =+,()2x h x x =+的零点分别为a ,b ,c ,则( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >>【答案】B【解析】把函数零点转化为函数图象交点的横坐标,画出图形,数形结合得答案. 【详解】函数3()f x x x =+的零点为函数3y x =与y x =-的图象交点的横坐标,函数2()log g x x x =+的零点为函数2log y x =与y x =-的图象交点的横坐标,函数()2x h x x =+的零点为函数2x y =与y x =-的图象交点的横坐标,在同一直角坐标系内作出函数3y x =,2log y x =,2x y =与y x =-的图象如图所示:由图可知:0,0,0a b c =><,c a b ∴<<, 故选:B. 【点睛】本题主要考查的是函数零点存在性定理,考查指数函数,对数函数,幂函数的图象的应用,数形结合思想的应用,是基础题.二、多选题 9.已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则()A .2π为()f x 的一个周期B .()y f x =的图象关于直线43x π=对称C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减D .()f x π+的一个零点为3π【答案】AD【解析】利用余弦函数的周期性,对称性,单调性和诱导公式直接求解即可. 【详解】 根据函数()6f x cos x π⎛⎫=+ ⎪⎝⎭知最小正周期为2π,A 正确.当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误;函数()6f x cos x π⎛⎫=+ ⎪⎝⎭在5,26ππ⎛⎫ ⎪⎝⎭上单调递减,在5,6ππ⎛⎫⎪⎝⎭上单调递增,故C 错误;()76f x cos x ππ⎛⎫+=+ ⎪⎝⎭,73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确. 故选:AD .【点睛】本题主要考查的是三角函数的周期,三角函数的对称性,函数零点的概念,三角函数的单调性,熟练掌握余弦函数的图象和性质是解决本题的关键. 10.若0a b >>,01c <<,则( ) A .log log c c a b < B .a b c c > C .c ca b >D .()log 0c a b +>【答案】AC【解析】利用指数与指数函数,对数和对数函数的图象和性质即可判断. 【详解】A 项,因为01c <<,所以log c y x =为单调递减函数,由0a b >>得log log c c a b <,故A 正确;B 项,因为01c <<,所以xy c=为单调递减函数,由0a b >>,得a b c c <,故B 错误;C 项,因为0a b >> ,01c <<,所以1ca b ⎛⎫> ⎪⎝⎭,所以c ca b >,故C 正确; D 项,取1,22c a b =+=,则()12log log 210c a b +==-<,故D 错误. 故选:AC . 【点睛】本题主要考查对数与对数函数的图象和性质、指数与指数函数的图象和性质以及不等关系与不等式,考查学生的分析能力,是基础题.11.如图,摩天轮的半径为40m ,其中心O 点距离地面的高度为50m,摩天轮按逆时针方向做匀速转动,且20min 转一圈,若摩天轮上点P的起始位置在最高点处,则摩天轮转动过程中()A.经过10min点P距离地面10mB.若摩天轮转速减半,则其周期变为原来的1倍2C.第17min和第43min时P点距离地面的高度相同D.摩天轮转动一圈,P点距离地面的高度不低于70m的min时间为203【答案】ACD【解析】求出摩天轮的周期,设出时间,求出点P上升的高度,求出点P离地面的高度,再一一判断即可.【详解】由图形知,可以以点O为原点,OP所在直线为y轴,与OP 垂直的向右的方向为x轴建立坐标系,设出时间为t,由题意:(),50P t h -,40A =,20T =可得20210ππω==,故点P 离地面的高度40sin 50102h t ππ⎛⎫=++⎪⎝⎭, 即t 时刻点P 离地面的高度40sin 50102h t ππ⎛⎫=++ ⎪⎝⎭,化简得40cos5010h t π=+;当10min t =时,10h =,故A 正确;若摩天轮转速减半,40T =,则其周期变为原来的2倍,故B 错误;第17min P 点距离地面的高度为()1731740cos5040501010h cos ππ=+=+, 第20min P 点距离地面的高度为()4334340cos5040cos 501010h ππ=+=+, 第17min 和第43min 时P 点距离地面的高度相同,故C 正确;摩天轮转动一圈,P 点距离地面的高度不低于70m ,即1040cos5070t π+≥, 即1cos 102t π≥,020t ≤≤,得0210t ππ≤≤,0103t ππ∴≤≤或52310tπππ≤≤,解得1003t ≤≤或50203t ≤≤,共20min 3,故D 正确. 故选:ACD . 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是建立符合条件的坐标系,得出相应的函数模型,作出正确的示意图,然后由三角函数中的相关知识进行求解,是中档题.12.已知函数()f x 的定义域为D ,若对x D ∀∈,y D ∃∈,使得()()f y f x =-成立,则称函数()f x 为“M 函数”.下列所给出的函数中是“M 函数”的有( ) A .2yxB .1y x =C .12x y -=D .()ln 1y x =+【答案】BD【解析】根据M 函数”的定义,逐一判断各函数是否为“M 函数”即可. 【详解】由已知,在函数定义域内,对任意的x 都存在着y ,使x 所对应的函数值()f x 与y 所对应的函数值()f y 互为相反数,即()()f y f x =-,故只有当函数的值域关于原点对称时才会满足“M 函数”的条件.对于A 中函数的值域为[)0,+∞,值域不关于原点对称,故A 不符合题意;对于B 中函数的值域为()(),00,-∞⋃+∞,值域关于原点对称,故B 符合题意;对于C 中函数的值域为()0,∞+,值域不关于原点对称,故C 不符合题意;对于D 中函数的值域为R ,值域关于原点对称,故D 符合题意. 故选:BD . 【点睛】本题主要考查的是函数的性质,考查学生对新定义的理解,以及会求给定的函数的值域,考查学生的分析问题解决问题的能力,是中档题.三、填空题13.函数()f x =________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.14.已知tan 3α=,则2sin sin 2αα-=______. 【答案】310【解析】利用二倍角公式将sin 2α化简,再把分母看做22sin cos αα+,分子分母同时除以2cos α,即可求得.【详解】tan 3α=,22sin sin 2sin 2cos sin ααααα-=-222sin 2cos sin cos sin ααααα-=+22tan 2tan tan 1ααα-=+9691-=+310=. 故答案为:310.【点睛】本题主要考查的是二倍角正弦公式的应用,以及同角三角函数基本关系式的应用,熟练掌握和应用这些公式是解决本题的关键,是基础题.15.已知函数()()3x af x a +=∈R 满足()()2f x f x =-,则实数a 的值为______;若()f x 在[),m +∞上单调递增,则实数m 的最小值等于______.(本题第一空2分,第二空3分) 【答案】1- 1【解析】根据题意取0x =,再利用指数函数性质即可求得实数a 的值;将函数()f x 用分段函数表示,根据()f x 的单调性即可得出实数m 的最小值. 【详解】 (1)()()2f x f x =-,取0x =得,()()02f f =,233aa+∴=,即2a a =+,解得:1a =-; (2)由(1)知()1113,133,1x x x x f x x ---⎧≥==⎨<⎩, ()f x 在(),1-∞上单调递减,在[)1,+∞上单调递增.()f x 在[),m +∞上单调递增,1m ∴≥,m 的最小值为:1.故答案为:1-;1. 【点睛】本题主要考查的是函数的概念和性质,考查学生对分段函数的理解和应用以及对函数性质的应用,考查学生的理解能力,是中档题.16.在角1θ、2θ、3θ、…、30θ的终边上分别有一点1P 、2P 、3P 、…、30P ,如果点k P 的坐标为()()()sin 15,sin 75k k ︒-︒︒+︒,130k ≤≤,k ∈N ,则12330cos cos cos cos θθθθ+++⋅⋅⋅+=______.【解析】利用诱导公式将点k P 的坐标变为()()()sin 15,cos 15k P k k ︒-︒-,然后根据三角函数定义可得()cos sin 15k k θ=︒-,再利用诱导公式及两角差的正弦即可得到结果. 【详解】k P ()()()15,75sin k sin k ︒-︒︒+︒,即()()()sin 15,cos 15k P k k ︒-︒︒-︒由三角函数定义知()cos sin 15k k θ=︒-︒12330cos cos cos cos θθθθ+++⋅⋅⋅+=()()sin14sin13sin 14sin 15︒+︒++-︒+-︒sin14sin13sin14sin15=︒+︒+-︒-︒sin15=-︒ ()sin 4530=-︒-︒cos45sin30sin 45cos30=︒︒-︒︒4=【点睛】本题主要考查的是诱导公式,三角函数定义的理解和应用,两角和的正弦公式,考查学生的分析问题和解决问题的能力,是中档题.四、解答题17.求下列各式的值: (1)31log 493232log 2log 9+- (2)()1433101227--⎛⎫-+++ ⎪⎝⎭ 【答案】(1)94;(2)2【解析】(1)利用对数的运算性质即可求得; (2)利用分数指数幂的运算性质即可求得. 【详解】 (1)原式331219224944log log ⎛⎫=+-=+= ⎪⎝⎭; (2)原式=14333324311212344--⎡⎤⎛⎫⎛⎫++=++=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦. 【点睛】本题主要考查的是分数指数幂的运算性质以及对数运算的性质,考查学生的计算能力,熟练掌握并应用公式是解决本题的关键,是基础题.18.已知角α的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边过点⎝⎭. (1)求()()23cos 22sin cos 222cos sin 22ππαπααπααπ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭⎛⎫+++ ⎪⎝⎭的值; (2)已知02πβ-<<,且sin β=,求()cos αβ-的值.【答案】(1)3;(2)10【解析】(1)利用任意角三角函数的定义求得tan α,再利用诱导公式及同角三角函数基本关系式即可求得要求的式子的值;(2)利用任意角三角函数的定义求得sin ,cos αα,再利用同角三角函数基本关系式求得cos β,再利用两角差的余弦公式即可求得()cos αβ-的值. 【详解】(1)依题意2tan α=, 原式()2222222sin sin sin sin cos sin sin sin sin sin cos ααααααααααα--+==--1123121cos sin tan sin cos tan αααααα+++====---;(2)因为α是第一象限角,且终边过点⎝⎭,所以sin cos αα==,因为02πβ-<<,且sin β=所以cos β==所以()cos cos cos sin sin αβαβαβ-=+51051010⎛⎫=⨯+⨯-= ⎪ ⎪⎝⎭.【点睛】本题主要考查的是三角函数的定义、同角三角函数的基本关系式、正余弦的诱导公式以及两角差的余弦公式的应用,熟练掌握这些公式是解决本题的关键,是基础题. 19.科技创新在经济发展中的作用日益凸显.某科技公司为实现9000万元的投资收益目标,准备制定一个激励研发人员的奖励方案:当投资收益达到3000万元时,按投资收益进行奖励,要求奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金总数不低于100万元,且奖金总数不超过投资收益的20%. (1)现有三个奖励函数模型:①()0.038f x x =+,②()0.8200x f x =+,③()20100log 50f x x =+,[]3000,9000x ∈.试分析这三个函数模型是否符合公司要求?(2)根据(1)中符合公司要求的函数模型,要使奖金额达到350万元,公司的投资收益至少要达到多少万元? 【答案】(1)见解析;(2)投资收益至少要达到8000万元 【解析】(1)根据公司要求知函数()f x 为增函数,同时应满足()100f x ≥且()5xf x ≤,一一验证所给的函数模型即可; (2)由2010050350log x +≥,解不等式即可. 【详解】(1)由题意符合公司要求的函数()f x 在[]3000,9000为增函数,在且对[]3000,9000x ∀∈,恒有()100f x ≥且()5x f x ≤. ①对于函数()0.038f x x =+,当3000x =时,()300098100f =<,不符合要求;②对于函数()0.8200x f x =+为减函数,不符合要求; ③对于函数()2010050f x log x =+在[]3000,10000, 显然()f x 为增函数,且当3000x =时,()2030001002050100f log >+≥;又因为()()2020900010090005010016000050450f x f log log ≤=+<+=;而300060055x ≥=,所以当[]3000,9000x ∈时,()5max minx f x ⎛⎫≤⎪⎝⎭. 所以()5xf x ≥恒成立;因此,()2010050f x log x =+为满足条件的函数模型. (2)由2010050350log x +≥得:203log x ≥,所以8000x ≥, 所以公司的投资收益至少要达到8000万元. 【点睛】本题主要考查的是函数模型的选择与运用,考查函数的单调性和最值以及恒成立问题,对数不等式的解法,考查学生的分析问题解决问题的能力. 20.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>≤ ⎪⎝⎭的部分图象如图所示.(1)求函数()y f x =的表达式;(2)将函数()y f x =的图象向左平移6π个单位长度得到函数()g x 的图象,若关于x 的方程()()0f x g x a +-=在0,2π⎡⎤⎢⎥⎣⎦上有实数解,求实数a 的取值范围. 【答案】(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)3,23⎡⎣ 【解析】(1)利用函数的图象得到,A T ,求出ω,利用函数图象经过的特殊点,求出ϕ,即可求出函数()f x 的解析式; (2)根据函数平移关系求出函数()g x 的表达式,利用函数和方程之间的关系转化为两个函数的交点问题即可. 【详解】(1)由题图可知2A =,11521212T ππ=-,所以T π=,所以222T ππωπ===, 将点5,212π⎛⎫⎪⎝⎭的坐标代入函数()()22f x sin x ϕ=+, 得()5262k k Z ππϕπ+=+∈,即()23k k Z πϕπ=-∈, 因为2πϕ≤,所以3πϕ=-,所以函数()f x 的表达式为()223f x sin x π⎛⎫=-⎪⎝⎭. (2)依题意()222263g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,方程()()0f x g x a +-=在0,2π⎡⎤⎢⎥⎣⎦上有实数解,即方程()()f x g x a +=在0,2π⎡⎤⎢⎥⎣⎦上有实数解.令()22223223h x sin x sin x sin x x π⎛⎫=-+=⎪⎝⎭12222sin x cos x ⎫=-⎪⎪⎭26x π⎛⎫=- ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,∴()h x 的值域为⎡⎣,所以实数a 的取值范围为⎡⎣.【点睛】本题主要考查的是三角函数的解析式的求法、三角函数图象变换以及正弦三角函数图象和性质的应用,方程根的存在性,体现了转化的数学思想,考查学生的计算能力,是中档题.21.某学习小组在一次研究性学习中发现,以下三个式子的值都等于同一个常数.22cos 15cos 15sin15︒︒︒+︒;()()22cos 80cos 50sin 50︒+-︒︒-︒; ()()22cos 170cos 140sin 140︒+-︒︒-︒.(1)求出这个常数;(2)结合(1)的结果,将该小组的发现推广为一个三角恒等式,并证明你的结论.【答案】(1)74;(2)见解析【解析】(1)由倍角公式及特殊角的三角函数值即可求解. (2)根据30αβ+=︒将β用α表示,再利用两角差的余弦、正弦展开化简即可证明.【详解】(1)2215151515cos cos sin ︒+︒︒︒2221515cos =︒-︒)130130cos cos =+︒-︒7112224=+--=⎝⎭;(2)推广:当30αβ+=︒时,2274cos cos sin αβαβ+-=. 证明:∵30αβ+=︒,∴30βα=︒-,22cos cos sin αβαβ+()()223030cos cos sin αααα=+︒-︒-22112222cos sin cos sin αααααα⎛⎫⎛⎫=++-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2222313442cos cos sin sin sin sin αααααααα=+++22777444cos sin αα=+=. 【点睛】本题主要考查的是二倍角公式,两角差的正弦、余弦公式,以及特殊角的三角函数值,归纳推理,考查的是学生的计算能力,要求学生熟练应用三角恒等变换,是中档题. 22.已知函数()1ln 1kx f x x -=+为奇函数. (1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围. 【答案】(1)1;(2)增函数,证明见解析;(3)209m <<【解析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明; (3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m 的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性.【详解】(1)因为函数()1ln 1kx f x x -=+为奇函数,所以()()0f x f x +-=, 即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln 1x f x x -=+的定义域关于原点对称. 所以1k =为满足题意的值.(2)结论:()f x 在(),1-∞,()1,+∞上均为增函数. 证明:由(1)知()1ln 1x f x x -=+,其定义域为()(),11,-∞-+∞,任取12,(1,)x x ∈+∞,不妨设12x x <,则()()()()()()11212222111111ln 111ln 1ln x x x x f x f x x x x x --+=+--=++--,因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->, 所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-, 即()()12f x f x <,所以()f x 在()1,+∞上为增函数.同理,()f x 在(),1-∞上为增函数.(3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩, 即,αβ是方程112x m mx x -=-+的两实根, 问题等价于方程211022m m mxx ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根, 令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =- 则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩, 即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<.【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。

2017-2018学年山东省烟台市高一上学期期末考试数学试题(解析版)

2017-2018学年山东省烟台市高一上学期期末考试数学试题(解析版)

2017-2018学年山东省烟台市高一上学期期末考试数学试题(解析版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. )A. 2B. 1C.D.【答案】A,且倾斜角为故答案为:A。

2. 的一个根所在的区间为()【答案】C故答案为:C。

3.)【答案】B故选4. )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B.考点:直线方程.5. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直,其中真命题是()A. ①②B. ②③C. ③④D. ②④【答案】D【解析】试题分析:①错误,应改为:一个平面的两条相交直线与另一个平面都平行,那么这两个平面相互平行;②正确,两平面垂直的判定定理;③错误,改为,垂直于同一条直线的两条直线有可能相交,平行或异面;④正确,故选D.考点:平行与垂直关系6.范围是()A. C. D.【答案】A【解析】集合A表示线段上的点,集合B,或故答案为:A。

7. 关于直线)A. 1B. 2C. 3D. 4【答案】D由中点坐标公式得AB代入y=kx+b①直线AB k=2.代入①.∴直线y=kx+b,解得:y=4.∴直线y=kx+b在y轴上的截距是4.故选:D.8. )A. -2B. -1C. 0D. 1【答案】An=﹣4,即直线l2:x﹣2y﹣3=0,所以两直线之间的距离为,解得m=2,所以m+n=﹣2,故答案为:A。

9.成角的正弦值是()【答案】C【解析】取BD中点G,连结EG、FG∵△ABD中,E、G分别为AB、BD的中点∴EG∥AD且,同理可得:FG∥BC且,∴∠FEG(或其补角)就是异面直线AD与EF所成的角∵△FGE中,EF=5,EG=4,FG=3,∴EF2=25=EG2+FG2故答案为:C。

山东省烟台市2021-2022学年高一上学期期末考试数学试题

山东省烟台市2021-2022学年高一上学期期末考试数学试题

8

= 2 +1 = 3 ·····························································································10 分
18.解:(1)由题意得: cosα = a = − 4 , ·········································· 2 分 a2 + 9 5
求实数 m 的取值范围.
高一数学试题 (第 6 页,共 6 页)
2021~2022 学年度第一学期期末学业水平诊断
高一数学参考答案
一、选择题 ACBC DABB
二、选择题 9.BD 10.ACD
三、填空题
11.AC 12.ABD
13. 2
3
14.

15. 1 ≤ a < 1 16.1, 2 < c < 2 2 6
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或 演算步骤。
17.(10 分)化简求值:
(1) (
2
8) 3
1
3 4 23
(3)0 ;
5
(2) log2 3 log3 4 lg 2 lg 5 .
18.(12 分)在平面直角坐标系 xOy 中,角 的顶点在坐标原点 O ,始边 与 x 轴的非负
一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四 个选项中,只有一项是符合题目要求的。
1. sin 210 =
A. 1
1
B.
2
2
C. 3 2
3
D.
2
2.函数 y ln(4 x) x 的定义域为

2022-2023学年山东省烟台市高一上数学期末检测模拟试题含解析

2022-2023学年山东省烟台市高一上数学期末检测模拟试题含解析
试题解析:
(1)设动圆圆心为 ,则 ,化简得 ( ),这就是动圆圆心的轨迹 的方程.
(2)直线 的方程为 ,代入曲线 的方程得
显然 .
设 , ,则 , ,

若以 为直径的圆过点 ,则 ,
∴ 由此得
∴ ,即 .
解得 (舍去)
故存在以 为直径的圆过点
点睛:本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,训练了利用数量积判断两个向量的垂直关系,考查了学生的计算能力.
(2)间接法,有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即ห้องสมุดไป่ตู้得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.
10、B
【解析】直接利用函数的性质奇偶性求出结果
三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)
16、(1)2;(2) .
【解析】(1)根据指数幂的运算法则和对数的运算性质计算即可;
(2)不等式化为 ,根据不等式对应方程的两根写出不等式的解集
【详解】(1)
(2)不等式 可化为 ,
不等式对应方程的两根为 , ,且 (其中 );
所以原不等式的解集为
17、(1)见解析;(2)见解析
【解析】(Ⅰ)由已知得 , ,从而 平面 ,由此能证明 ;(Ⅱ)连接 与 相交于 ,连接 ,由已知得 ,由此能证明 平面
试题解析:(Ⅰ)由 平面 可得 AC,
又 , 故AC 平面PAB,所以 .
(Ⅱ)连BD交AC于点O,连EO,
则EO是△PDB的中位线,所以EO PB
【解析】分类讨论, 时根据二次函数的性质求解

山东省烟台市重点名校2023届高一上数学期末检测试题含解析

山东省烟台市重点名校2023届高一上数学期末检测试题含解析
18.已知
求 的值;
求 的值.
19.已知 .
(1)化简 ;
(2)若 ,求 .
20.设全集 , , .求 , , ,
21.2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图
11、
【解析】根据题意,设满足题意得格点为 ,这6个回收点沿街道到回收站之间路程的和为 ,故 ,再分别求 和 的最小值时的 即可得答案.
【详解】解:设满足题意得格点为 ,这6个回收点沿街道到回收站之间路程 和为 ,
则 ,
令 ,由于其去掉绝对值为一次函数,故其最小值在区间端点值,
所以代入 得 ,
所以当 时, 取得最小值,
【详解】 , , ,
则 或 ,则
,则 或
21、(1) ;20;
(2) 分,76.67分
(3)
【解析】(1)根据频率之和为1,可求得a的值,根据频数的计算可求得测试成绩在[80,85)的人数;
(2)根据频率分布直方图可计算中位数,即可求得第50%分数位;
(3)列举出所有可能的抽法,再列出第四组至少有1名老师被抽到可能情况,根据古典概型的概率公式求得答案.
所以
17、(1)
(2)
【解析】(1)当 时, ,当 时,函数 的值最小,求解即可;
(2)由于 ,分 , , 三种情况讨论,再结合题意,可得实数 的值
【小问1详解】
解:依题意得

山东省烟台市高一上学期数学期末考试试卷

山东省烟台市高一上学期数学期末考试试卷

山东省烟台市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)在等比数列中,其前n项和为若数列也是等比数列,则等于()A .B . 3nC .D .2. (2分)(2018·益阳模拟) 已知向量,,且,则()A .B .C .D .3. (2分)曲线在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A .B .C .D .4. (2分) (2020高二下·双流月考) 已知直线和平面内的两条直线,则“ ”是“且”的()A . 充要条件B . 必要不充分条件C . 充分不必要条件D . 既不充分也不必要条件5. (2分)(2020·大庆模拟) 若是两条不同的直线,是两个不同的平面,则下列命题正确的是()A . 若,则;B . 若,则;C . 若,则;D . 若,则6. (2分) (2019高二下·宝山期末) 设表示直线,是平面内的任意一条直线,则“ ”是“ ”成立的()条件A . 充要B . 充分不必要C . 必要不充分D . 既不充分也不必要7. (2分) (2017高二上·右玉期末) “经过两条相交直线有且只有一个平面”是()A . 全称命题B . 特称命题C . p∨q的形式D . p∧q的形式8. (2分)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为()A . 3B . 2C . 1D . 09. (2分)有下列四个命题:①函数的值域是;②平面内的动点P到点和到直线的距离相等,则P的轨迹是抛物线;③直线与平面相交于点B,且与内相交于点C的三条互不重合的直线所成的角相等,则;④若,则其中正确的命题的编号是()A . ①③B . ②④C . ②③D . ③④10. (2分) (2018高一上·吉林期末) 与直线和圆都相切的半径最小的圆的方程是()A .B .C .D .11. (2分) (2018高一上·吉林期末) 若动点到点和直线的距离相等,则点的轨迹方程为()A .B .C .D .12. (2分) (2018高一上·吉林期末) 若直线与圆有两个不同的交点,则点圆C的位置关系是()A . 点在圆上B . 点在圆内C . 点在圆外D . 不能确定二、填空题 (共4题;共4分)13. (1分) (2017高二下·金华期末) 已知椭圆 + =1与x轴交于A、B两点,过椭圆上一点P(x0 ,y0)(P不与A、B重合)的切线l的方程为 + =1,过点A、B且垂直于x轴的垂线分别与l交于C、D两点,设CB、AD交于点Q,则点Q的轨迹方程为________.14. (1分) (2019高二上·兴庆期中) 已知点分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于A、B两点,则的面积为________.15. (1分) (2019高二下·上海期末) 已知实数x,y满足条件,复数(为虚数单位),则的最小值是________.16. (1分)(2018高一上·吉林期末) 已知圆和两点,,若圆上存在点使得,则的最大值为________.三、解答题 (共6题;共60分)17. (10分) (2019高一上·山东月考) 节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为 ,首次改良后所排放的废气中含有的污染物数量为 .设改良工艺前所排放的废气中含有的污染物数量为 ,首次改良工艺后所排放的废气中含有的污染物数量为 ,则第n次改良后所排放的废气中的污染物数量 ,可由函数模型给出,其中n是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过 ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)18. (10分) (2019高二上·惠州期末) 已知函数.(1)当时,求函数在点处的切线方程;(2)若存在与直线平行的切线,求的取值范围。

2021-2022学年山东省烟台市高一上学期期末数学试题(解析版)

2021-2022学年山东省烟台市高一上学期期末数学试题(解析版)

2021-2022学年山东省烟台市高一上学期期末数学试题一、单选题 1.sin 210=( ) A .12-B .12C .32-D .32【答案】A【解析】【详解】试题分析:由诱导公式()1sin 210sin 18030sin 302︒︒︒︒=+=-=-,故选A .【解析】诱导公式.2.函数()ln 4y x x =-+的定义域为( ) A .()0,4 B .(]0,4C .[)0,4D .[]0,4【答案】C【分析】根据函数表达式,只需400x x ->⎧⎨≥⎩,解不等式组即可.【详解】函数()ln 4y x x =-+,要使函数有意义可得400x x ->⎧⎨≥⎩,解得04x ≤<,所以函数的定义域为[)0,4. 故选:C3.下列选项中不能用二分法求图中函数零点近似值的是( )A .B .C .D .【答案】B【分析】根据变号零点能用二分法求近似值,不变号零点不能用二分法求零点近似值求解.【详解】由图象可知B 中零点是不变号零点,其他图象中零点都是变号零点,故B 不能用二分法求零点近似值. 故选:B4.下列函数中,既是奇函数又在区间()0,∞+上单调递增的是( ) A .2x y = B .sin y x = C .3y x = D .ln y x =【答案】C【分析】由基本函数的性质进行判断【详解】对于A ,2x y =是非奇非偶函数,所以A 错误,对于B ,sin y x =是奇函数,而在()0,∞+上不是单调递增函数,所以B 错误, 对于C ,3y x =是奇函数又在区间()0,∞+上单调递增,所以C 正确, 对于D ,ln y x =是非奇非偶函数,所以D 错误, 故选:C5.已知 1.13a =,0.23b =,2log 0.3c =,则,,a b c 的大小关系为( ) A .b a c << B .b c a << C .c a b << D .c b a <<【答案】D【分析】由3x y =在定义域内为增函数,比较,a b ,运用中间量0比较,b c . 【详解】3x y =在定义域内为增函数,1.10.203331∴>>=.2log y x =在定义域内为增函数, 22log 0.3log 10<=.c b a ∴<<故选:D6.已知函数(1),1()1,1e x f x x f x x +<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,则(1ln 5)f -+的值为( )A .15B .5C .e 5D .5e【答案】A【分析】先判断1ln5-+的范围,然后根据解析式求解即可 【详解】因为2e 5e <<,所以1ln52<<, 所以01ln51<-+<,所以()()()1ln5ln5111ln 51ln 51ln 5e e 5f f f -⎛⎫-+=-++====⎪⎝⎭, 故选:A7.水车是一种利用水流的动力进行灌溉的工具,其工作示意图如图所示.设水车的直径为8m ,其中心O 到水面的距离为2m ,水车逆时针匀速旋转,旋转一周的时间是120s .当水车上的一个水筒A 从水中(0A 处)浮现时开始计时,经过t (单位:s )后水筒A 距离水面的高度为()f t (在水面下高度为负数),则(140)f =( )A .3mB .4mC .5mD .6m【答案】B【分析】由题设可得三角函数模型()24cos()360tf t ππ=-+,将140t =代入求值即可.【详解】由题设,水车的角速度为2/s 12060ππ=,又水车的直径8m ,中心O 到水面的距离2m ,∴03HOA π∠=,故t (单位:s )后水筒A 距离水面的高度为()24cos()360tf t ππ=-+m ,∴140(140)24cos()4m 360f ππ=-+=. 故选:B.8.设,a b ∈R ,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为( )A .1-B .2C .12-D .0【答案】B【分析】由定义先得出sin sin cos ()cos cos sin x x x f x x x x ≥⎧=⎨>⎩,然后分sin cos x x ≥,cos sin x x >两种情况分别求出()f x 的最小值,从而得出答案.【详解】由题意可得sin sin cos ()sin cos cos cos sin x x xf x x x x x x≥⎧=⊗=⎨>⎩当sin cos x x ≥时,即sin cos 04x x x π⎛⎫--≥ ⎪⎝⎭则22,4k x k k Z ππππ≤-≤+∈,即522,44k x k k Z ππππ+≤≤+∈此时当52,4x k k Z ππ=+∈时,sin x 有最小值为2-当cos sin x x >时,即sin cos 04x x x π⎛⎫--< ⎪⎝⎭则222,4k x k k Z πππππ+<-<+∈,即5922,44k x k k Z ππππ+<<+∈此时,cos x >所以()f x 的最小值为故选:B 二、多选题9.已知α是第三象限角,则2α可能是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】BD【解析】因为α是第三象限角,所以3222k k πππαπ+<<+,k Z ∈,所以3224k k παπππ+<<+,k Z ∈,再讨论k 的奇偶可得. 【详解】因为α是第三象限角,所以3222k k πππαπ+<<+,k Z ∈, 3224k k παπππ∴+<<+,k Z ∈, 当k 为偶数时,2α是第二象限角;当k 为奇数时,2α是第四象限角, 故选:BD .【点睛】本题考查象限角的应用,属于基础题. 10.下列说法正确的有( ) A .函数1y x -=的图象不经过第四象限 B .函数tan y x =在其定义域上为增函数C .函数2x y =与2x y -=的图象关于y 轴对称D .函数2x y =与2log y x =的图象关于直线y x =对称 【答案】ACD【分析】选项A ,函数1y x -= 的图像经过第一、三象限; 选项B ,计算正切函数的定义域和单调区间; 选项C , ()x y ,与()x y -,关于y 轴对称; 选项D ,反函数关于y x = 对称. 【详解】对于A :函数1y x -= 的图像经过第一、三象限,故A 正确; 对于B :函数tan y x = 的定义域为2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, ,单调递增区间为()22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭,,,故B 错误; 对于C :若()x y , 在2x y = 的图象上,则()x y -, 在2x y -= 的图象上,所以图象关于y 轴对称,故C 正确; 对于D :由于2x y = 与2log y x =互为反函数,所以图象关于y x = 对称,故D 正确. 故选:ACD11.已知函数()cos cos()f x x x π=+,则下列结论正确的有( ) A .()f x 是偶函数 B .2π是()f x 的一个周期 C .()f x 的最大值为2 D .()f x 的最小值为2-【答案】AC【分析】A 由奇偶性定义判断;B 判断(2),()f x f x π+是否相等;C 、D 由余弦函数的性质研究cos x 、cos x π的最值对应的自变量取值,进而判断最值的正误.【详解】A :()cos()cos()cos cos()()f x x x x x f x ππ-=-+-=+=且定义域为R ,故()f x 是偶函数,正确;B :2(2)cos(2)cos[(2)]cos cos(2)()f x x x x x f x ππππππ+=+++=++≠,故2π不是()f x 的周期,错误;C :由()cos cos()112f x x x π=+≤+=,且当12x k π=,1k Z ∈时cos 1x =,当22x k =,2k Z ∈时cos 1x π=,故1222k k π=,即120k k ==时等号成立,则当0x =有max ()2f x =.D :同C 分析,()cos cos()112f x x x π=+≥--=-,且当1(21)x k π=+,1k Z ∈时cos 1x =-,当221x k =+,2k Z ∈时cos 1x π=-,故12(21)21k k π+=+,即212121k k π+=+时等号成立,显然π为无理数,212121k k ++为有理数,不可能相等,则()f x 的最小值不为2-. 故选:AC.12.设函数()f x 的定义域为D ,如果对任意的1x D ∈,存在2x D ∈,使得12()()2f x f x c+=(c 为常数),则称函数()y f x =在D 上的均值为c ,下列函数中在其定义域上的均值为1的有( )A .3y x =B .tan y x =C .2sin y x =D.y 【答案】ABD【分析】根据题意将问题转化为关于2x 的方程是否存在有解问题,然后逐个分析判断即可【详解】由题意可得1c =,则12()()12f x f x +=,即12()()2f x f x +=,将问题转化为关于2x 的方程是否存在有解问题,对于A ,3y x =的定义域为R ,则对于任意1x R ∈,关于2x 的方程为33122x x +=,则33212x x =-,2x =,方程一定有解,所以A 正确,对于B ,tan y x =的定义域为,2D x x k k Z ππ⎧⎫=≠+∈⎨⎬⎩⎭,值域为R ,则对于任意1x D ∈,总存在2x D ∈,使得12tan tan 2x x +=,所以B 正确, 对于C ,2sin y x =的定义域为R ,值域为[2,2]-,当12x π=-时,1()2f x =-,此时不存在2x R ∈,使12()()2f x f x +=,所以C 错误,对于D,y ={}22D x x =-≤≤,值域为[0,2],则对于任意1x D ∈,关于2x2,整理得(22242x =-,则总存在2x D∈满足上式,所以D 正确, 故选:ABD三、填空题13.若23a b ==11a b+的值为___________. 【答案】2【分析】两边取对数,根据对数的运算及换底公式求解. 【详解】因为23a b =所以2log log a b ==所以1162162lg lg lg lg a b +=+=+==, 故答案为:214.已知扇形的圆心角为3π,弧长为1,则其面积为___________. 【答案】32π【分析】根据扇形的弧长公式求出半径,再计算扇形的面积. 【详解】扇形的圆心角为3π,弧长为1, 则扇形的半径为r 133l===παπ,面积为11331222S lr ==⨯⨯=ππ.故答案为:32π. 15.已知函数()()112,03,0x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围为___________.【答案】116a ≤<【分析】由题意可得10123a a ->⎧⎪⎨≥⎪⎩,计算不等式组即可求得结果.【详解】∵函数()()112,03,0x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,又当0x ≥时,1133x -≥,∴10123a a ->⎧⎪⎨≥⎪⎩,解得116a ≤<.故答案为:116a ≤<.四、双空题16.已知函数22log ,02()81,2x x f x x x -⎧<≤=⎨->⎩,若存在实数,,a b c ()a b c <<满足()()()f a f b f c ==,则ab 的值为___________,c 的取值范围为___________.【答案】 1 ()2,22【分析】画出()f x 的图象,由图可知22log log a b -=,化简可求出ab 的值,然后求出函数281y x -=-与x 轴的交点坐标,从而可求出c 的取值范围 【详解】函数()f x 的图象如图所示,因为存在实数,,a b c ()a b c <<满足()()()f a f b f c ==, 所以22log log a b -=,22log log 0a b +=,()2log 0ab =,所以1ab =,当2x >时,281y x -=-,由2810x --=,得2x = 所以222c << 故答案为:1,(2,22 五、解答题 17.化简求值: (1)2130333(8)42()5-+;(2)23log 3log 4lg 2lg5⨯++. 【答案】(1)12-;(2)3.【分析】(1)根据指数运算法则即可求得答案; (2)根据对数运算法则结合换底公式即可解得答案.(1) 原式322123331122212122⎛⎫⨯- ⎪⎝⎭=-⨯+=-+=-. (2) 原式()lg32lg 2lg 25213lg 2lg3=⨯+⨯=+=. 18.在平面直角坐标系xOy 中,角α的顶点在坐标原点O ,始边与x 轴的非负半轴重合,角α的终边经过点(,3)A a ,4cos 5α=-.(1)求a 和tan α的值;(2)求sin()2sin()233sin()sin()2πααπαπα-++++-的值.【答案】(1)4a =-,3tan 4α=-;(2)1115-. 【分析】(1)根据三角函数的定义求出a ,进而求出tan α;(2)先通过诱导公式对原式化简,进而进行弦化切,然后结合(1)求出答案. (1)由题意得:4cos 5α==-,解得4a =-,所以3tan 4α=-.(2)原式32sin 2cos tan 211433cos sin 3tan 1534αααααα+-+-+====--+-+--. 19.已知函数()sin(2)3f x x π=-.(1)求函数()f x 的单调递增区间;(2)当[,]22x ππ∈-时,求不等式1()2f x ≥的解集.【答案】(1)()π5ππ,π1212k k k Z ⎡⎤-++∈⎢⎥⎣⎦(2)π5π212x x ⎧-≤≤-⎨⎩或ππ42x ⎫≤≤⎬⎭【分析】(1)由πππ2π22π232k x k -+≤-≤+可得答案.(2)先解出不等式π1sin 232x ⎛⎫-≥ ⎪⎝⎭,再与[,]22x ππ∈-求交集,从而得到答案.(1)令πππ2π22π232k x k -+≤-≤+,k Z ∈,解得π5πππ1212k x k -+≤≤+,k Z ∈. 所以,函数()f x 单调递增区间为()π5ππ,π1212k k k Z ⎡⎤-++∈⎢⎥⎣⎦.(2)不等式()12f x ≥,即π1sin 232x ⎛⎫-≥ ⎪⎝⎭.则π5222,636k x k k Z ππππ+≤-≤+∈,即7,412k x k k Z ππππ+≤≤+∈ 当0k =时,7412x ππ≤≤,又[,]22x ππ∈-,所以42ππx ≤≤当1k =-时,35412x ππ-≤≤-,又[,]22x ππ∈-,所以5212x ππ-≤≤-所以不等式()12f x ≥的解集为π5π212x x ⎧-≤≤-⎨⎩或ππ42x ⎫≤≤⎬⎭20.已知函数2()2sin cos 2f x x x =+-. (1)求函数()f x 的零点; (2)当2[,]3x πα∈时,函数()f x 的最小值为1-,求α的取值范围. 【答案】(1)零点为2k ππ+,23k ππ±,k Z ∈(2)2π2π,33⎡⎫-⎪⎢⎣⎭【分析】(1)由0f x 解出方程即可得到答案.(2)令cos x t =,结合g t 的最小值可得所求的取值范围. (1)由22sin cos 1x x +=得:()22cos cos f x x x =-+,令0f x ,解得cos 0x =或1cos 2x =, 当cos 0x =时,2x k π=+π,k Z ∈; 当1cos 2x =时,23x k ππ=±,k Z ∈. 所以函数()f x 的零点为2k ππ+,23k ππ±,k Z ∈.(2)因为()22cos cos f x x x =-+,令cos x t =,则()()22f x g t t t ==-+,因为()f x 的最小值为1-,所以221t t -+≥-(等号可取),解得112t -≤≤(等号可取),即1cos 12x -≤≤(等号可取), 因为2π,3x α⎡⎤∈⎢⎥⎣⎦,且2π1cos 32=-, 由1cos 12x -≤≤(等号可取)2π,3x α⎡⎤∈⎢⎥⎣⎦可得2π2π33α-≤< 所以α的取值范围为2π2π,33⎡⎫-⎪⎢⎣⎭. 21.直播带货是通过互联网直播平台进行商品线上展示、咨询答疑、导购销售的新型营销模式.据统计,某职业主播的粉丝量不低于2万人时,其货物销售利润y (单位:万元)随粉丝量x (单位:万人)的变化情况如右表所示:(1)根据表中数据,分别用模型log ()a y x m b =++和yd =建立y 关于x 的函数解析式;(2)已知该主播的粉丝量为9万人时,货物销售利润为3.3万元,你认为(1)中哪个函数模型更合理?说明理由.7.55≈)【答案】(1)()()21log 124y x x =-+≥,()124y x =≥; (2)选用()()21log 124y x x =-+≥模型更合理,理由见解析. 【分析】(1)根据将表格中的数据代入两个函数模型,进而求得答案;(2)由(1)解出两个函数在x =9时的函数值,进而分别算出它们与3.3之差的绝对值,绝对值小的函数模型满足题意.(1)若选用()log a y x m b =++,则依题意得:()()()1log 245log 349log 54a a a m bm b m b ⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩, 解得2a =,1m =-,14b =,所以()()21log 124y x x =-+≥. 若选用函数y d =模型,则依题意得:145494d d d ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得c =158n =-,14d =-,所以()124y x =≥. (2)对于函数()21log 14y x =-+,当9x =时,13 3.254y ==万元.对于函数14y =,当9x =时,14y =万元.1 3.30.225 3.25 3.30.054-≈>-=, 所以选用()()21log 124y x x =-+≥模型更合理. 22.已知函数221()4log log f x x x =+,1()42x x g x m m +=⋅+-,0m <. (1)求函数()f x 在区间(1,)+∞上的最小值;(2)求函数()g x 在区间[1,2]上的最大值;(3)若对1(1,)x ∀∈+∞,2[1,2]x ∃∈,使得12()()7f x g x +>成立,求实数m 的取值范围.【答案】(1)最小值为4;(2)答案见解析;0m <<. 【分析】(1)通过基本不等式即可求得答案;(2)设2x t =,将函数转化为()[]()222,4y t mt t m t =+-∈,然后讨论函数对称轴与区间端点的大小关系,进而求出函数的最大值;(3)将问题转化为()()max max 7g x f x ⎡⎤>-⎣⎦,然后结合(2)求得答案.(1)当()1,x ∈+∞时,2log 0x >,所以2214log 4log x x +≥=, 当且仅当2214log log x x=,即x ()f x 在区间()1,+∞上的最小值为4.(2)()()2142222x x x x g x m m m m +=⋅+-=+⋅-,[]1,2x ∈,令2x t =,则上述函数化为()22y t mt t m =+-,[]2,4t ∈.因为0m <,所以对称轴10t m =->,当12m -≤,即12m ≤-时,函数()y t 在[]2,4上单调递减,所以当2t =时,max 34y m =+;当124m <-<,即1124m -<<-时,函数()g t 在12,m ⎡⎤-⎢⎥⎣⎦上单调递增,在1,4m ⎡⎤-⎢⎥⎣⎦上单调递减,所以max 11y y m m m ⎛⎫=-=-- ⎪⎝⎭; 当14m -≥,即104m -≤<时,函数()g t 在[]2,4上单调递增,所以()max 4158y y m ==+. 综上,当104m -≤<时,()g x 的最大值为158m +;当1124m -<<-时,()g x 的最大值为1m m --;当12m ≤-时,()g x 的最大值为34m +. (3) 对()11,x ∀∈+∞,[]21,2x ∃∈,使得()()127f x g x +>成立,等价于()()217g x f x >-成立,即()()max max 7g x f x ⎡⎤>-⎣⎦,由(1)可知,当()1,x ∈+∞时,()()min max 77f x f x ⎡⎤-=-⎣⎦,因此,只需要()max 3g x >. 所以当104m -≤<时,1583m +>,解得13m >-,所以104m -≤<;当1124m -<<-时,13m m -->,解得m <0m <<,所以,14m <<-;当12m ≤-时,343m +>,解得13m >-,此时解集为空集;综上,实数m 0m <<.。

山东省烟台市2020-2021学年高一上学期期末考试数学试题

山东省烟台市2020-2021学年高一上学期期末考试数学试题

2020-2021学年度第一学期期末学业水平诊断高一数学注意事项:1.本试题满分150分,考试时间为120分钟。

2.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出 答题区书写的答案无效;在草稿纸、试题卷上答题无效。

3.答卷前将密封线内的项目填写清楚。

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.sin17cos13sin 73cos77+= A .32B .12C .32D .122.下列函数中,既是其定义域上的单调函数,又是奇函数的是 A .tan y x =B .3x y =C .y x =D .3y x =3.设0.3log 3a =,132b -=,2log 3c =,则 A .c b a >>B .c a b >>C .a c b >>D .b c a >>4.函数3()32f x x x =+-的零点所在区间为 A .1(0,)4B .11(,)42C .13(,)24D .3(,1)45.已知函数33(0,x y aa +=+>且1)a ≠的图象恒过点P ,若角α的终边经过点P ,则cos α= A .35B .35-C .45D .45-6.改善农村人居环境,建设美丽宜居乡村,是实施乡村振兴战略的一项重要任务.某地计划将一处废弃的水库改造成水上公园,并绕水库修建一条游览道路.平面示意图如右图所示,道路OC 长度为8(单位:百米),OA 是函数log ()a y x b =+图象的一部分,ABC 是函数sin()(0,0,||,[4,8])2y M x M x πωϕωϕ=+>><∈的图象,最高点为B ,则道路OABC 所对应函数的解析式为 A.sin(1),04,48)63x x y x x π+≤<⎧=≤≤π- B.sin(1),04,48)63x x y x x π+≤<⎧=≤≤π+ C.sin(1),04,48)363x x y x x π+≤<⎧⎪=⎨≤≤π-⎪⎩ D.sin(1),04,48)363x x y x x π+≤<⎧⎪=⎨≤≤π+⎪⎩ 7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100 mL 血液中酒精含量达到20~79 mg 的驾驶员即为酒后驾车,80 mg 及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到0.6mg/mL ,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?(参考数据:lg30.477≈) A .6B .7C .8D .98.将函数()cos(2)3f x x π=-的图象向左平移(0)2πϕϕ<<个单位长度得到函数()g x 的图象,若12,x x 使得12()()1f x g x =-,且12x x -的最小值为6π,则ϕ= A .12πB .6πC .4π D .3π二、多项选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省烟台市高一上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2017高一上·咸阳期末) 已知集合A={x|log2x>0},B={x|x<2},则()
A . A∩B=∅
B . A∪B=R
C . B⊆A
D . A⊆B
2. (2分)对于函数f(x)=asinx+bx3+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f (﹣1),所得出的正确结果一定不可能是()
A . 4和6
B . 3和2
C . 2和4
D . 3和5
3. (2分)若sin(θ+ )>0,cos(﹣θ)>0,则角θ的终边位于()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
4. (2分)(2017·汉中模拟) 已知函数f(x)= sinωx﹣cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣)的图象重合,记ω的最大值为ω0 ,函数g(x)=cos(ω0x﹣)的单调递增区间为()
A . [﹣π+ ,﹣ + ](k∈Z)
B . [﹣ + , + ](k∈Z)
C . [﹣π+2kπ,﹣+2kπ](k∈Z)
D . [﹣+2kπ,﹣+2kπ](k∈Z)
5. (2分)若,则
A . a>b>c
B . a>c>b
C . b>a>c
D . c>b>a
6. (2分)函数y=sin(﹣ + )的最小正周期为()
A . π
B . 2π
C . 4π
D .
7. (2分) (2019高一上·天津期中) 设函数为奇函数,则实数().
A .
B .
C .
D .
8. (2分)下列关系式中正确的是()
A .
B .
C .
D .
9. (2分) (2016高二下·市北期中) 若函数有唯一零点x0 ,且m<x0<n(m,n为相邻整数),则m+n的值为()
A . 1
B . 3
C . 5
D . 7
10. (2分)若和都是定义在上的函数,则“与同是奇函数或偶函数”是“
是偶函数”的()
A . 充分非必要条件.
B . 必要非充分条件.
C . 充要条件.
D . 既非充分又非必要条件
11. (2分)已知θ∈(0,),则y═ 的最小值为()
A . 6
B . 10
C . 12
D . 16
12. (2分) (2019高一上·屯溪月考) 已知满足,若函数与
图象的交点为,则()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分) (2016高三上·南通期中) 函数y= 的定义域为________
14. (1分) (2016高一上·南京期中) 已知logab+logba= (a>b>1),则 =________
15. (1分)cos20°﹣cos40°+cos60°+cos100°的值等于________.
16. (1分) (2016高二下·南城期末) 若函数f(x)= 是奇函数,则使f(x)>4成立的x的取值范围为________.
三、解答题 (共6题;共55分)
17. (10分) (2016高一上·抚州期中) 解答
(1)已知幂函数f(x)=(﹣2m2+m+2)x﹣2m+1为偶函数,求函数f(x)的解析式;
(2)已知x+x﹣1=3(x>1),求x2﹣x﹣2的值.
18. (10分) (2018高二上·兰州月考) 中,角所对的边分别为 .已知,
, .
(1)求的值;
(2)求的面积.
19. (10分)已知函数f(x)=22x﹣2x+1+1.
(1)求f(log218+2log 6);
(2)若x∈[﹣1,2],求函数f(x)的值域.
20. (10分) (2017高一上·安庆期末) 已知函数f(x)=sin(ωx+φ)的最小正周期为π,
(1)求当f(x)为偶函数时φ的值;
(2)若f(x)的图象过点(,),求f(x)的单调递增区间.
21. (10分)(2017·南阳模拟) 某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图3所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.若蛋糕店一天制作17个生日蛋糕.
(1)求当天的利润y(单位:元)关于当天需求量n(单位:个,n∈N)的函数解析式;
(2)求当天的利润不低于750元的概率.
22. (5分)(2017·沈阳模拟) 已知f(x)=ex与g(x)=ax+b的图象交于P(x1 , y1),Q(x2 , y2)两点.
(Ⅰ)求函数h(x)=f(x)﹣g(x)的最小值;
(Ⅱ)且PQ的中点为M(x0 , y0),求证:f(x0)<a<y0 .
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共6题;共55分) 17-1、
17-2、
18-1、18-2、19-1、19-2、
20-1、
20-2、
21-1、21-2、。

相关文档
最新文档