《自动控制原理》第5章 控制系统的频域分析 (3)
精品文档-自动控制原理(第二版)(千博)-第5章
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图
长安大学:自动控制原理第五章 线性系统的频域分析
A () 1 0 T
() 0
() 90
V() A() sin ()
长安大学信息工程学院
自动控制理论
第五章
二、研究频率特性的意义 1、频率特性是控制系统在频域中的一种数学模型,是研究自 动控制系统的另一种工程方法。 2、根据系统的频率性能间接地揭示系统的动态特性和稳态特 性,可以简单迅速地判断某些环节或参数对系统性能的影响, 指出系统改进的方向。 3、频率特性可以由实验确定,这对于难以建立动态模型的系 统来说,很有用处。 三、频率特性的求取方法 1、已知系统的系统方程,输入正弦函数求其稳态解,取输 出稳态分量和输入正弦的复数比; 2、根椐传递函数来求取; 3、通过实验测得。
设
x c (t) ae jt ae jt b1es1t b2es2t ... b1esn t
A AG( j) ( s j ) | s j s 2 2 2j
( t 0)
对于稳定的系统, -s1,s2,…,sn 其有负实部
x c (t) ae jt ae jt
a G(s)
a G (s)
CHANG’AN UNIVERSITY
A AG( j) ( s j ) | s j s 2 2 2j
长安大学信息工程学院
自动控制理论
第五章
a
AG( j) 2j
AG( j) a 2j
G( j) | G( j) | e jG( j) | G( j) | e jG( j)
幅频特性 相频特性 实频特性 虚频特性
CHANG’AN UNIVERSITY
A() | G ( j) | U 2 () V 2 () 1 V() () G( j) tg U () U() A() cos()
自动控制原理第5章频域分析法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
自动控制原理第五章频域分析法
谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐
自动控制原理第5章-频域分析
第5章 控制系统的频域分析
§5.1 频 率 特 性
一、频率特性概述
1、 RC网络的频率特性
T
du0 (t) dt
u0 (t)
ui (t)
其传递函数为:
G(s) U0(s) 1 Ui (s) Ts 1
在复数域内讨论RC网络,并求输出电压
(T)2 1
——RC网络的频率特性
G( j)
1
(T)2 1 —幅频特性
() arctan T —相频特性
第5章 控制系统的频域分析
比较
G( j)
1
jT 1
和
G(s) 1 Ts 1
可见,只要用jω代替该网络的传递函数G(s)中的复变 量S,便可得其频率特性G(jω)。结论具有一般性。
2、线性定常系统的频率特性
设 ui (t) Um sin t
U U e •
j00 复阻抗 Z R 1 jRC 1
i
m
第5章 控制系统的频域分析
jC
jC
•
•
•
U0
1
•
I
jC
1 Ui
jC Z
1
jC
jCUi jCR 1
1
jT
•
U 1
i
于是有:
•
U0
•
Ui
1
jT 1
•
(T RC)
G( j)
U0
•
Ui
1
e j () G( j) e j ()
第5章 控制系统的频域分析
5.2.2 典型环节的频率特性
1、积分环节
传递函数: G(s) 1
自动控制原理第五章
•表5-1 RC网络的幅频特性和相频特性数据
A( )
( )
0 1 0
1 0.707
45
2 0.45
5 0.196
0
63.4 78.69 90
图5-2 RC网络的幅频和相频特性
图5-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包 括对数幅频特性和对数相频特性两条曲线, 其中,幅频特性曲线可以表示一个线性系 统或环节对不同频率正弦输入信号的稳态 增益;而相频特性曲线则可以表示一个线 性系统或环节对不同频率正弦输入信号的 相位差。对数频率特性图通常绘制在半对 数坐标纸上,也称单对数坐标纸。
图5-20控制系统结构图
将系统的开环频率特性函数按典型环节划分, 可以分解为: ( j 1) ( ( j ) 2 ( j ) 1) k
m1 m2
G ( j ) H ( j )
k
2 l
2
l l
( j )
0
k 1 n1
( i s 1) ( 2 ( j ) 2 2 j j ( j ) 1) j
图5-19 Ⅱ型三阶系统幅相频率特性图
讨论更一般的情况,对于如图5-20所示的闭 环控制系统结构图,其开环传递函数为 G( s) H ( s) ,可以把系统的开环频率特性写作如 下的极坐标形式或直角坐标形式:
G( j)H ( j) G( j)H ( j) e j () P() jQ()
•图5-6积分环节频率特性的极坐标图
在伯德图上,积分环节的对数频率特性为
L( ) lg A( ) lg G( j ) lg ( ) 2
图5-7积分环节的伯德图
自动控制原理--第5章 频域分析法
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j
即
G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数
自动控制原理第5章_线性控制系统的频率特性分析法
5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处
自动控制原理 第五章第一节频率特性的基本概念
《自动控制原理》第五章线性系统的频域分析与校正西北工业大学自动化学院1.频率特性的基本概念2. 幅相频率特性(Nyquist图)3. 对数频率特性(Bode图)4.频域稳定判据5. 稳定裕度6. 利用开环频率特性分析系统的性能7.利用闭环频率特性分析系统的性能8.频率法串联校正频域分析法特点(1)研究稳态正弦响应的幅值和相角随输入信号频率的变化规律(2)由开环频率特性研究闭环系统的性能(3)图解分析法(4)有一定的近似性5.1 频率特性的基本概念RC 电路如图所示,u r (t )=A sin ωt , 求u c (t )=?建模[]r c=+CR 1U s U ()1()()CR 1c r U s G s ==U s s +例1 r c=+R u i u c=C i u r c c=+CR u u u 频率响应()()()c r s s =====+++T CR 111T CR 1T 11TU G s U s s s 0122222()c +=⋅=+++++1T 1T 1T C A ωC s C U s s s s s ωω02222lim →−==++1T T T 1T s A A C s ωωωω222=+1T A C ωω122-=+T 1T A C ωω222222222222()c ⎡⎤=⋅+⋅−⋅⎢⎥+++++++⎣⎦T 11T 1T 1T 1T 1T 1T A A s U s s s s ωωωωωωωωωRC 电路如图所示,u r (t )=A sin ωt , 求u c (t )=?例1 []T 2222T ()sin cos cos sin 1T 1Tt c A A u t e t t ωωαωαωω−=+⋅−⋅++22−=++T T 1Tt A e ωω频率响应:线性系统稳态正弦响应的幅值、相角随输入频率的变化规律。
22()sin(-arctan T)1T s A c t t ωωω=+()sin r t A tω=RC 电路频率特性G (j ω)的定义:()()()=∠j j j G G G ωωω()sin r t A t ω=22()sin(-arctan T)1T s A c t t ωωω=+22()()()==+s 1j 1T c t G r t ωωs ()()()arctan ∠=∠−∠=−j T G c t r t ωω幅频特性相频特性频率特性的获取方法:()()==j j s G G s ωω=−221arctan T 1T ωω∠+=∠++111j T 1j T ωω1=1+j T ωj 1T 1s ωs =+()sin r t A t ω=22()sin(-arctan T)1T s A c t t ωωω=+系统模型间的关系总结()()()=∠j j j G G G ωωωs 22()()()==+1j 1T c t G r t ωωs ()()()∠=∠−∠=−j arctan T G c t r t ωωG(j ω)的定义:G(j ω)的获取方法:()()==j j s G G s ωω感谢聆听,下节再见。
自动控制原理第五章频域分析法
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89
自动控制原理第五章
第五章§5-1 引言§5-2频率特性§5-3 开环系统的典型环节分解和开环频率特性曲线的绘制§5-4开环和闭环系统Bode图的绘制方法§5-5 系统稳定性分析§5-6控制系统的相对稳定性分析第五章 控制系统的频率响应分析[教学目的]:掌握利用频域法进行系统分析的一般方法 ,为后面的校正及信号与系统分析打下基础。
掌握系统频率特性分析与系统幅角之间的关系,掌握Nyquist 图和Bode 图的绘制方法,根据系统的Nyquist 图和Bode 图分析系统的性质。
本章的难点是Nyquist 稳定性分析。
[主要容]:一、引言 二、 频率特性 三、 开环系统的典型环节分解和开环频率特性曲线的绘制 四、 频率域稳定判据 五、 稳定裕度 六、 闭环系统的频域性能指标[重点]: 频率特性的基本概念,各种频域特性曲线的绘制,Nyquist 稳定判据的应用,及相对稳定裕度的分析,理解三频段的概念与作用。
[难点]:时域性能指标与频域性能指标之间的相互转换。
闭环频域性能指标的理解与应用[讲授方法及技巧]:联系传递函数,微分方程等数学模型,将频率法和时域分析法、根轨迹法相比较,理解和掌握古典控制系统的完整体系。
准确理解概念,把握各种图形表示法的相互联系。
与时域法进行对比,以加深理解。
§5-1 引言1.时域分析法(特点)1)以传递函数和单位阶跃响应为分析基础构成的一整套解析法为主响应曲线图形分析法为辅的分析方法。
它具有直观、明确的物理意义,但就是运算工作量较大,参数的全局特征不明显。
2) 原始依据--数学模型,得来不易,也同实际系统得真实情况有差异,存在较多的近似、假设和忽略,有时对于未知对象,还可能要用经验法估计。
3) 对工程中普遍存在的高频噪声干扰的研究无能为力。
4) 在定性分析上存在明显的不足。
5) 属于以“点”为工作方式的分析方法。
2.根轨迹法(特点)1)根轨迹法弥补了时域分析法中参数全局变化时特征不明显的不足,在研究单一指定参数对整个系统的影响时很有用;2)增加零极点(增加补偿器)时,是一种很好的辅助设计工具; 3)以“线”和“面”为工作方式;4)为定性分析提供了一种非常好的想象空间和辅助思维界面。
自动控制原理第5章
jY (ω )
ω =∞
X (ω )
ω
积分环节的Nyquist图 积分环节的Bode图
幅频特性与角频率ω成反比,相频特性恒为-90° 成反比, 90° 对数幅频特性为一条斜率为 - 20dB/dec的直线,此 线通过L(ω)=0,ω=1的点
三、微分环节 微分环节的频率特性为
G ( jω ) = jω = ωe
奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 了反馈系统稳定性。 极坐标图(Polar 极坐标图(Polar plot) =幅相频率特性曲线=幅相曲线 幅相频率特性曲线=
G ( jω )
可用幅值 G( jω ) 和相角ϕ (ω ) 的向量表示。
当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化,其端点在复平面 上移动的轨迹称为极坐标图。
jY (ω )
ω →∞
ϕ (ω ) A(ω )
ω = 0 X (ω )
ω
RC网络对数频率特性 RC网络频率特性
5.2 典型环节的频率特性
用频域分析法研究控制系统的稳定性和动态 响应时,是根据系统的开环频率特性进行的, 响应时,是根据系统的开环频率特性进行的, 而控制系统的开环频率特性通常是由若干典 型环节的频率特性组成的。 型环节的频率特性组成的。 本节介绍八种常用的典型环节。 本节介绍八种常用的典型环节。
频率响应: 正弦输入信号作用下, 系统输出的稳态分量。 频率响应 : 正弦输入信号作用下,系统输出的稳态分量。 (控制系统中的信号可以表示为不同频率正弦信号的合成) 控制系统中的信号可以表示为不同频率正弦信号的合成) 频率特性: 系统频率响应和正弦输入信号之间的关系, 频率特性 : 系统频率响应和正弦输入信号之间的关系,它 和传递函数一样表示了系统或环节的动态特性。 和传递函数一样表示了系统或环节的动态特性。 数学基础:控制系统的频率特性反映正弦输入下系统响应 数学基础:控制系统的频率特性反映正弦输入下系统响应 的性能。研究其的数学基础是Fourier变换。 的性能。研究其的数学基础是Fourier变换。 频域分析法:应用频率特性研究线性系统的经典方法。 频域分析法:应用频率特性研究线性系统的经典方法。
自动控制原理的MATLAB仿真与实践第5章 线性系统的频域分析
7
【例5-1】 试绘制惯性环节G(jω)=1/(2s+1)的Nyquist曲线 和Bode图。
解:程序如下:
>>clear
G=tf(1,[2,1]); %建立模型
nyquist (G); %绘制Nyquist图
figure(2); bode (G); %绘制Bode图
4
ngrid;ngrid(‘new’):绘制尼科尔斯坐标网格即等 20lgM圆和等角曲线组成的网格。‘new’代表清除以前 的图形,与后一个nichols()一起绘制网格。
semilogx(w,20*log10(mag)):绘制半对数坐标下的幅 频特性曲线。
semilogx(w,phase*180/pi):绘制半对数坐标下的相频 特性曲线。
MATLAB提供了许多用于线性系统频率分析 的函数命令,可用于系统频域的响应曲线、参数分析 和系统设计等。常用的频率特性函数命令格式及其功 能见表5-1。 bode (G):绘制传递函数的伯德图。其中:G为传递
函数模型,如:tf(), zpk(), ss()。 bode(num,den):num,den分别为传递函数的分子与
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
6
5.2.1 Nyquist曲线和Bode图
MATLAB频率特性包括幅频特性和相频特性。 当用极坐标图描述系统的幅相频特性时,通常称为 奈奎斯特(Nyquist)曲线;用半对数坐标描述系 统的幅频特性和相频特性时,称为伯德(Bode) 图;在对数幅值-相角坐标系上绘制等闭环参数( M和N)轨迹图,称为尼克尔斯(Nichols)图。
运行结果如图5-2所示。
自动控制原理第五章
第五章 频域分析法目的:①直观,对高频干扰的抑制能力。
对快(高频)、慢(低频)信号的跟踪能力。
②便于系统的分析与设计。
③易于用实验法定传函。
§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。
其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。
自动控制原理第五章课后答案
五 频域分析法2-5-1 系统单位阶跃输入下的输出)0(8.08.11)(94≥+-=--t e e t c tt ,求系统的频率特性表达式。
【解】: 98.048.11)]([L )(1+++-==-s s s t c s C 闭环传递函数)9)(4(36198.048.11)()()(++=+++-==s s ss s s s R s C s G )9tg 4(tg 2211811636)9)(4(36)(ωωωωωωω--+-+⨯+=++=j ej j j G2-5-2系统时,系统的稳态输出(1))30sin()(0+=t t r ; (2))452cos(2)(0+=t t r ;(3))452cos(2)30sin()(00--+=t t t r 。
【解】:求系统闭环传递函数5tg 21254)5(4)(54)(1)()()()(14)(ωωωω--+=+=+=+==+=j B K K B K ej j G s s G s G s R s C s G s s G根据频率特性的定义,以及线性系统的迭加性求解如下:(1)︒===30,1,11θωr A︒--====-3.1151tg )1(178.0264)1()(1j j j B e eeA j G θωω[])7.18sin(78.0)1(sin )1()sin()(12︒+=++=+=t t A A t A t c r c s θθθ(2)︒===45,2,21θωr A︒--==+=-8.2152tg 274.02544)(1j j B e ej G ωω)2.232cos(48.1)(︒+=t t c s(3))8.662cos(48.1)7.18sin(78.0)(︒--︒+=t t t c s2-5-3 试求图2-5-3所示网络的频率特性,并绘制其幅相频率特性曲线。
【解】:(1)网络的频率特性1)(111)(212212+++=+++=ωωωωωC R R j C jR C j R R C j R j G(2)绘制频率特性曲线)tg (tg 22212121111)(1)(11)(ωωωωωωωT T j eT T jT jT j G ---++=++= 其中1221221,)(,T T C R R T C R T >+==。
自动控制原理 第五章 控制系统的频域分析法
则
uos (t) = A ⋅ A(ω)sin[ω t + ϕ(ω)]
(5.2)
结论:
(1) 稳态解与输入信号为同一频率的正弦量;
(2) 当ω 从 0 向∞变化时,其幅值之比 A(ω) 和相位差ϕ(ω) 也将随之变化,其变化规
律由系统的固有参数 RC 决定; (3) 系统稳态解的幅值之比 A(ω) 是ω 的函数,其比值为
三角函数形式: G( jω) = A(ω)[cosϕ(ω) + jsinϕ(ω)] 。
式中 A(ω) = G( jω) 是幅值比,为ω 的函数,称为幅频特性;
ϕ(ω) = ∠G( jω) 是相位差,为ω 的函数,称为相频特性; U (ω) 是 G( jω) 的实部,为ω 的函数,称为实频特性; V (ω) 是 G( jω) 的虚部,为ω 的函数,称为虚频特性。
s + p1 s + p2
s + pn s + jω s − jω
∑n
=
Ci
+
B
+
D
i=1 s + pi s + jω s − jω
(5.4)
式中 Ci , B , D 均为待定系数。
将(5.4)式进行拉氏反变换,得系统的输出响应为
n
∑ c(t) = Cie− pi t + (Be− jω t + Dejω t ) = ct (t) + cs (t) i =1
C( jω) = G( jω)R( jω)
因而,得
G( jω) = C( jω) R( jω)
(5.11)
事实上,当ω 从 0 向∞变化时, G( jω) 将对不同的ω 作出反映,这种反映是由系统自
第五章1 控制系统的频域分析(频率特性与BODE图)
自动控制原理
幅相频率特性画法举例
画出二阶系统 G ( s ) = 112
的幅相频率特性
s (1 + 0 .02 s )
自动控制原理
2. 伯德图(Bode图)
如将系统频率特性G(jω ) 的幅值和相角分别绘在半对数坐
标图上,分别得到对数幅频特性曲线(纵轴:对幅值取分贝数
自动控制原理
极坐标图(Polar plot),幅相频率特性曲线,幅相曲线 当ω在0~∞变化时,相量G(jω) 的幅值和相角随ω而变化,与 此对应的相量G(jω) 的端点在复平面 G(jω) 上的运动轨迹 就称为幅相频率特性曲线或 Nyqusit曲线。画有 Nyqusit曲 线的坐标图称为极坐标图或Nyqusit图。( ω在0~-∞变化 对称于实轴) 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述了反馈系统 稳定性
这些幅频特性曲线将通过点
自动控制原理
0dB,ω = 1
L(ω ) = 20 lg 1 = −20 lg ω (dB ) jω
ϕ (ω ) = −90°
Magnitude (dB)
Phas e (deg)
20 10
0 -10 -20 -30 -40 -89
-89.5
-90
-90.5
-91
-1
10
Bode Diagram of G(jw )=1/(jw )
(a) 幅频特性
自动控制原理
ϕ(ω) = −arctgTω
自动控制原理
输出与输入的相位之差
(b)相频特性
Uo (s) = G(s) = 1
Uo ( jω) = G( jω) = 1 = 1
自动控制原理 第5章
⇒
X 2 − X +Y 2 = 0
(下半圆) 下半圆)
Y = −ω T X
§5.2 典型环节与开环系统的频率特性
1 G( s) = 不稳定惯性环节 Ts − 1 1 G ( jω ) = − 1 + jω T 1 G = 1 + ω 2T 2 ωT ∠ G = − arctan = − ( 180° − arctan ω T ) = −180° + arctan ω T -1
ω ω ⑹ G ( jω ) = 1 1 − 2 + j 2ξ ωn 2 ωn ω ω ⑺ G ( jω ) = 1 − 2 + j 2ξ ωn ωn ω2 ω 1 − 2 − j 2ξ ωn ωn ⑻ G ( jω ) = e − jτ ω
2
jω
ω ω2 1 − 2 + j 2ξ ωn ωn
建 模
§5.1
频率特性
cs (t ) = A
2
r ( t ) = A sin ω t
1+ω T
2
§5.1.2 频率特性 G(jω) 的定义 ω 定义一: 定义一: G ( jω ) = G ( jω ) ∠G ( jω )
G ( jω ) = cs (t ) 1 = r (t ) 1 + ω 2T 2
∠ c s (t ) = − 63.4° + 30° = − 33.4°
ω =2
cs (t ) =
3 sin( 2t − 33.4° ) 5
s Φ e ( s) = s+1
ω =2 2 es (t ) ω jω Φ e ( jω ) = = = = 2 1 + jω 3 5 1+ω
自动控制原理 5频域分析法3
i 1 j 1 n m
算出各典型环节的交接频率W1,W2,W3,… 并记下相应的斜率变化; K 2.绘制低频段的特性 s :
K G( s) s
K G( jw) ( jw)v
K A( w) v w
例:已知单位反馈系统的开环传递函数
100( s 4) G(s) s ( s 1)( s 10)( s 2 s 4)
试绘制系
统的开环渐近对数频率特性(Bode图)
s 10( 1) 4 G( s) , K 10, 20 lg K 20 2 s s s s ( s 1)( 1)( 2 1) 10 2 4
L(wr ) 20lg( M r ) 20lg 2 1 2 6.3dB
相频特性为:
w/ 2 w w ( w) 90 arctan w arctan arctan arctan 2 w 4 10 1 4
0
(0) 90
0 0 0
(1) 160
n
j1 ( w )
An ( w)e jn ( w )
L( w) 20 lg A( w) 20 lg Ai ( w)
i 1
n
对数相频特性: ( w) i ( w)
i 1
把组成系统各典型环节的Bode曲线迭加后 即为开环系统的Bode曲线。从左到右,从低 频到高频依次迭加。
呈现凹凸形状
w
0
k(w=0)
例3设Ⅰ型单位反馈控制系统的开环传递为
20 G( s) s( s 2)( s 3)
试概略绘制开环幅相曲线,并确定幅相曲线与 j 负实轴的交点
自动控制原理(胡寿松) 第五章
27
(2)相频特性
()arct1a 2T n T2 2
可知,当ω=0时,()=0;ω=1/T时,()=-90°;ω→∞时,()→ -
180°。与惯性环节相似,振荡环节的对数相频特性曲线将对应于ω=1/T及
() =-90°这一点斜对称。
振荡环节具有 相位滞后的作用, 输出滞后于输入的 范围为0º→-180º;
10
5.1 频率特性的基本概念
G(jω)C R • • A Acr 1 2 A(ω) (ω)
R 表示输入正弦量的相量 C 表示输出正弦量的相量
G(jω)称为系统的频率特性,它表示了系统在正弦作用下, 稳态输出的振幅,相位随频率变化的关系。
A()AcG(j) 称为系统的幅频特性
Ar
φ(ω)= ∠G(jω) 称为系统的相频特性
=0+3=3dB。
24
6.二阶振荡环节
1
T2s2 2Ts 1
(1)对数幅频特性
L
20lg
T2
j2
1
j2T
1
20lg 12T2 2 2T2
1.低频段
T<<1(或<<1/T)时,L() 20lg1=0dB,低频渐近线与0dB线
重合。 0≤≤1
25
L 2 0 l g1 2 T 22 2T 2
13
Bode图
5.1 频率特性的基本概念
也称对数频率特性,就是将A(ω)和φ(ω)分别表示在两 个图上,横坐标采用对数刻度。
L(ω)
对数频率特性定义为:
L(ω)=20lgA(ω) dB L(ω)的图形就是Bode图
G(s) 1 Ts1
Bode图
对数相频特 性:纵轴均 匀刻度,标 以φ(ω)值 (单位为度); 横轴刻度及 标值方法与 幅频特性相 同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mm
KK((jTi sTi++1)1)
G( jG()s=) =
i =i =11 n −nv− v
(K( K 0)0)
( jsv)v (T( jjs +T1j )+ 1)
j =j1=1
G(
j )
=
(
K
j )n−m
| G( j ) |= 0
( ) = − 90 (n − m)
52
②绘制终点ω→+∞ 非最小相位系统
否则为非最小相位环节。
45
2、非最小相位环节
思考:非最小相位环节与最小相位环节极坐标图、Bode图的
对称关系?
比例环节 G(s) = K(K 0)
惯性环节 G(s) = 1 (T 0) − Ts + 1
一阶微分环节 G(s) = −Ts + 1(T 0)
二阶振荡环节
1
G(s) = T2s2 − 2Ts + 1 (T 0)
( )
90
0 −90
微分环节 积分环节
21
三、微分环节 G(s) = s G( j) = j
G( j) = 0 + j
幅值 | G( j) |= 幅角() = 90
1.幅相曲线: 2.Bode图:
每10倍频程增加 20dB
L() = 20lg | G( j) |= 20lg () = 90
22
( ) = − arctan T
1.幅相曲线:
2.Bode图:
Im
ω=∞
ω=0 -45o
ω=1/T
24
L(dB) 60 40 20 0
−20 −40 −60 ( ) 90
0
−90
一阶比例微分环节 20dB / dec
惯性环节 − 20dB / dec
一阶比例微分环节
惯性环节
25
| G( j ) |=
1.幅相曲线: → 0, → +
19
幅值 | G( j ) |= 1
2.Bode图:
幅角( ) = −90
每10倍频程衰减 20dB
L() = 20lg | G( j) |= −20lg () = −90
20
L(dB) 40
积分环节
20dB / dec
0
微分环节
− 20dB / dec
−40
m
K (Ti s +1)
G(s) =
i =1 n−v
(K 0)
sv (Tj s +1)
j =1
A()
( )
[G] P()
11
例5.1中的RC网络:G(s) = 1 Ts + 1
G(
j )
=
1+
1
jT
=
1
1 + T 2 2
−
j
T 1 + T 2 2
=
1
e − j arctan T
1 + 2T 2
A( )
() = − arctanT
12
G(
j )
=
1
1 + T 2 2
−
j
T 1 + T 2 2
1
( ) = − arctan T
1 + 2T 2
•对数幅频特性曲线 L( ) = −20 lg 1 + 2T 2
用高频段和低频段的渐近线表示对数幅频曲线; 交接频率(转折频率)
T 1, L( ) 0; T 1, L( ) −20lgT
•对数幅频渐近特性特性:
La
(
)
=
0,
1;
T
− 20 lgT ,
实部 1
0
0
虚部 0
−
1
2
0
( ) 0 − 90 − 180
32
u = T
另外:
A(0) = 1, A() = 0.
求A( )的极值。
dA( )
=
−
−
2
2 n
(1 −
2
2 n
)
+
4
2
2 n
=
0
d
(1
−
2
2 n
)2
+
4
2
2
2 n
2 n2
= 1 − 2
2
所以谐振频率和相应谐振峰值:
r = n
对数相频特性:单位是度 ( )
16
2. Bode图的优点
(1)扩大频带;
(2)化幅值乘除为叠加做图;
(3)
G2 (
j
)
=
1
G1( j
)
Bode图关于0dB线和0。线对称
17
5.3 开环系统典型环节频率特性图
一、比例环节 G(s) = K(K 0) G( j) = K
G( j) = K + j0 = Ke j0
2
一、频率特性
1、频率特性定义:
例: R
输入:x(t ) = Asint
输出:y(t) = B sin(t + )
x(t)
C
y(t)
微分方程: Ty(t) + y(t) = x(t) T = RC 传递函数: Y(s) = 1
X (s) Ts + 1
3
输入:x(t ) = Asint
稳态输出:y(t ) = B sin(t + )
第五章 控制系统的频域分析
(Frequency-Response analysis)
1
5.1 概述
x(t)
系统 y(t)
sin(t + )或
n
x(t) = Aisin(it + i ) i=1
或i从0 → 变化时, y(t)如何变化?
6
2、说明
7
传递函数、微分方程、频率特性的关系:
s= p
微分方程
传递函数
系统
s = j
频率特性
j = p
8
二、频域分析法
1. 频域分析法: 应用频率特性研究线性系统的方法。
2. 频域分析法特点: (1)可用于无法获得系统微分方程的场合; (2)用图形分析系统,易于工程应用; (3)物理意义明确,对系统理解更直观; (4)易于研究高频系统; (5)频域指标和时域指标有对应的关系。
当
=
n时, (n )
=
−90o,A(n )
=
1
2
,
表明振荡环节与虚轴的交点为− j 1 .
2
1.幅相曲线: G(
j )
=
1
1 − T2 2 +
j2T
G(
j )
=
1 − T2 2 (1 − T2 2 )2 + (2T )2
+
j (1 −
− 2T T2 2 )2 + (2T )2
分析:T = 0 T = 1 T →
幅值 | G( j) |= K 幅角() = 0
1.幅相曲线: 2.Bode图: L() = 20lg | G( j) |= 20lg K
() = 0
18
二、积分环节 G(s) = 1
s
G( j ) = 1 j
G( j ) = 0 − j 1
幅值 | G( j ) |= 1
幅角( ) = −90
二阶微分环节 G(s) = T2s2 − 2Ts + 1(T 0)
46
非最小相位环节与最小相位环节极坐标图、 Bode图的对称关系。
(1)幅频特性相同,相频特性符号相反;
(关于实轴对称)
(2)对数幅频曲线相同,对数相频曲线关于 0度线对称。
5.4 复杂系统频率特性图绘制
一、串联系统频率特性 G(s) = G1(s)G2 (s)
9
5.2 频率特性几何表示 一、极坐标图(幅相曲线、Nyquist图)
G( j ) = A( )ej ( ) = G(j ) ejG(j)
= Re[G( j)] + j Im[G( j)]
= P() + jQ()
当从0 → +时, P( )和Q( )变化的曲线。如图:
10
G( j) = P() + jQ() Q()
B=
A
1 + T 2 2
( ) = − arctan T
幅值比A( ) = B ,
A
相位差 ( ) =
4
频率特性定义一
对于稳定的线性定常系统,
若输入为Asint,稳态输出为B sin(t + ), 则称幅值比A( ) = B 为幅频特性,
A
相位差( )为相频特性.
5
频率特性定义二
G(s) = G( j ) s= j = A( )ej ( ) = G(j ) ejG(j )
(2)极坐标图用于稳定性分析
14
二、对数频率特性曲线(Bode图)
1.坐标的选取: 横坐标: 对数坐标
= lg
单位是rad/s (弧度/秒)
线性刻度
0.01 0.1 1
10 100 1000 10000
十倍频程
15
1.坐标的选取: 纵坐标: 对数幅频特性:单位是分贝(dB)
L() = 20lg A() = 20lg | G( j) |
L(dB) 40
积分环节
20dB / dec
0
微分环节
− 20dB / dec
−40
( )
90
0 −90
微分环节 积分环节