线 性 规 划 算 法 详 解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器学习--支持向量机(四)SMO算法详解

上篇我们讲到,线性和非线性都转化为求解的问题即:

求解的方法就是SMO算法,下面详细介绍SMO算法:

在讲解SMO算法之前先说明一下讲解思路,首先先帮助大家理解这个式子,说明推倒的过程细节,然后和原论文对照,本文不打算刚开始就深入数学公式,先带大家感性认识一下SMO的算法实现过程,通过语言描述继续讲解,让大家对该算法有一个整体的认识?,然后在循序渐进深入数学公式,吃透原理,这样符合知识的接受过程。

从倒数第二行,大家可以看到第一项我们可以看做一个含有未知数的常数项,第二项大家感觉是不是很眼熟即,向量的转置乘以本向量这就是求內积啊,只是说这里的A不简单而已,两个i不是同时变化的,因此为了方便把其合在一起,而合在一起的前提是需要表现两个i不一样,因此引入了j以示区别,至于为什么不一样,举一个简单的例子,因为里面是求和,大家各自展开求和在相乘,举个例子,含有三项的:

(a1 + a2 + a3)* (a1 + a2 + a3)=?+ a1*a2 + a1+a3 + a2*a1 +?+ a2*a3 + a3*a1 + a3*a2 +?

=+++ 2a1*a2 + 2a1*a3 + 2a2*a3

求和后各自展开,结果是上式,如果直接把两个i合并为一个i,那么化简会是什么样呢?

其实就只有平方项了即:++

之所以讲解这个,原因是希望大家能拿笔自己推一下上面的式子,同

时按照下面的要求展开试试,虽然没必要推这些,但是如果去做一下,你会发现数学的推倒很有助于理解,同时这种“复杂”的式子其实还好,强化学习中的数学推倒比这里复杂多了,所以建议大家以后遇到数学公式尽量自己推一遍,比你看几遍有用的多,好了,废话不多说,把上面的结果按如下要求展开,

把和看做未知数,其他的看做已知数进行展开,我先给出自己推倒的(讲真编辑这个式子很耗费时间,我查了一下网上其他人的推到感觉有点问题,所以打算自己推倒一下,为了确认自己正确把原论文读了一下,是正确的):

先令? ------------为內积,为了大家能看懂就做这一个假设:

首先他假设的分离平面就和我们不一样,但是道理都是一样的:

与我们之前的?是一样的意思

他的优化目标相同即:

经过引入拉格朗日因子和对偶后再求对w、b求导为:

其实到这里就和我们的形式是一样的,只是正负号位置不一样的,所以极值就是求极小值了,这也是差异的原因继续往下:

加入松弛变量以后:

到这里就是我们最后的求解式子了,有点不同,但是原理都是一样的把和看做未知数,其他的看做已知数进行展开为:

我和他展开的是差不多的,只是正负号问题,原因上面讲了,在查看相关的推倒博客,发现好多人目标是我们定义的目标,分解后就是这个结果,真不知道如何来的,所以自己动手推了一遍,形式和原著一样,结果

只是正负号位置不同,因此在这里特此说明一下,下面就开始smo算法,这些都是理解基础,只有知其所以然才能往下进行。?

好,我们再回到这个式子

一般含有2n个未知数的解不好求,常用解法一般都不可行,如果是你我可能都没办法了,但是微软的算法工程师John C. Platt在1998年提出了这个解决方法,是目前解决该问题最有效的方法,他的解决方法是什么呢?其实理解很简单,就是那么多变量,我先任意定两个变量为未知的,其他任意赋值给定为已知,例如我们先假设和是未知的,他的均为已知,那么通过等式()用表示,带回上式,此时未知数只有,因此化简后是一个含的二次函数(因为其他都已知量,而且这时候被表示了),为了更明显我把前面化简的式子拿过来大家看看就知道了:

大家使用?表示,会发现只剩下了而最高为两次,这时候对L求极值就是简单的二次函数求极值问题,当然我们需要在约束条件下进行求解,求出后也就可以顺利的求出,这个时候根据启发式选择方法(后面会讲)在任意选择两个进行求解(在约束条件下),就这样不停的迭代,直到每个参数基本上不在变化了,最优解就求出来,然后再求w,b,当然大概流程是这样,但是实际要比这复杂的多,如果不打算深入理解的到这里就可以了,下面就通过数学公式进行全面讲解。

在深入讲解之前还需要看一下我们需要优化的函数约束条件所代表的物理意义:

在前面我们曾说过,如果没有引入松弛变量,是可以取到无穷大,即在分类错误的情况下即:?

如果正确分类,则=0不影响我们的求极值,此时的约束条件为:

如果在边界线以内呢?那就是等于1的情况,此时? ,约束条件为:那么假如松弛因子呢?形式差不多,只是?有了上界,其中?:

上面的条件也就是kkt条件(KKT条件大家没忘吧?忘记的回到前面再看看),下面还是把和看做未知数,其他为已知进行讲解,套公式前还需把、的范围求出(约束条件),这里大家都知道那个图,但是没有细讲为什么就得出那个图了,可能其他博主认为大家的数学水平很高吧,在这里我将详细讲解这个图,然后推出、的取值范围:

其实限制、取值的就是上面的最后两行的约束,同时为什么每次只取两个,原因也在这里,因为如果只取一个未知数,那么这个未知数根据上面最后两行的约束可以直接求出来了,所以需要取两个未知数,那么上面可以化简成如下的式子(不想编辑公式了,大家体谅一下,意思都是一样的,只是下表不同):

这个式子很简单,就是把最后那个约束条件展开,只有?、是未知的,其他均为已知的,因此为了方面,可将等式右边标记成实数值,则:当为异号时,也就是一个为1,一个为-1时,他们可以表示成一条直线,斜率为1。如下图:?

首先为异号,即1和-1,因此上式可以写为,而约束条件就是,此时把看做自变量,看做因变量,此时可以写为:,同时两个都满足,因此约束条件就为上图中的正方形区域内了。

此时的的取值就有一个范围了,最大值和最小值。我们先看最小值的情况:

其中上面的两条线代表的是一个函数只是不同情况而已,也因此最大值和最小值是一个不确定数,需要分情况讨论,首先我们看看最小值的情况,大家看看上图我画圈的L1和L2,这就是最小值的取值可能了,我们先看看L1。此时L1取值为0,这时候蓝线左右移,只要不超过正方形的对角线是不会影的取值的,即此时恒取0,一旦超过对角线左移后就到达红线的可能,此时的取值就是就是L2,计算出L2即可(就是L2的坐标(0,-),此时使用、表示)为:?-?

这时候就取二者的较大值即:,同理最大值H也是如此计算的,下面给出总体的取值范围:

同理当为异号时:

到这里我们就把的约束条件找到了,下面就是利用表示,并代入前面展开的式子里:

在带入上面推倒的式子里,如果大家前面自己推倒了这里就很简单了,带进去,我就不带进去了,直接截图了:

可以表示成。其中a,b,c是固定值。这样,通过对W进行求导可以得到,然而要保证满足,我们使用表示求导求出来的,然而最后的,要根据下面情况得到:

此时就可以更新好了?,通过计算的到

这样两个即计算出来了,此时除了b都计算出来了,而b的计算不容易,这里我先简述一下,然后给出公式,大家尝试理解一下:b每一步都要更新,因为前面的KKT条件指出了和的关系,而和b有关,在每一步计算出后,根据KKT条件来调整b。

相关文档
最新文档