离散数学左孝凌 ppt课件

合集下载

左孝凌离散数学3.7-复合关系和逆关系PPT课件

左孝凌离散数学3.7-复合关系和逆关系PPT课件

算应改为布尔加和布尔乘。
例6

M
1和
M
是两个关系矩阵
2
1 0 0
M
1
0
0
0 1
1
0
1 0 0
M 2 0
1
0
1
0
0
1 0 1
1 0 0

M
1
M
2
1 0
0 1
1
0
2021/1/17
1
-ห้องสมุดไป่ตู้
0
0
19
• 复合关系的关系矩阵
定理3.5.5 设A、B、C均是有限集, R 1 是一由A 到B的关系, R 2 是一由B到C的关系,它们的关系
R 1 R 2 { 1 , 1 , 2 , 1 , 2 , 3 , 3 ,2 , 4 , 1 }
234
123
12 3
1 1 0 0
2 1 0 0
1 1 0 0
M
R1
2 3
0
0
0 1
1
0
M R 2 3 0 4 1
1 0
0 1
M R1 R2
2 1 3 0
0 1
1
0
4
1
0
0
矩阵分别为 M R1 和 M R2 ,则复合关系 R1 R2 的
关系矩阵
MR1R2 MR1MR2
2021/1/17
-
20
例7 设有集合A{1,2,3,4,} B{2,,3,4} C{1,2,3}
A到B的关系 B到C的关系 则
R 1 { 1 ,2 ,2 ,4 ,3 ,3 ,4 ,2 }
R 2 { 2 ,1 ,3 ,2 ,4 ,1 ,4 ,3 }

左孝凌离散数学课件1.8推理理论

左孝凌离散数学课件1.8推理理论

例题1 证明 (P∨Q) ∧(P→R)∧(Q→S) S∨R 证法2 (1) P→R P (2) P∨Q →R∨Q T(1) I3 (3) Q→S P (4) Q∨R →S∨R T(3) I (5) P∨Q →S∨R T(2),(4) I13 (6) P∨Q P (7) S∨R T(5),(6) I11P,P→Q Q假言 推理
E1 E2 ┐┐P P P∧Q Q∧P E12 E13 R ∨(P∧┐P) R R∧ (P ∨ ┐P) R
E3
E4 E5 E6 E7 E8 E9
P∨QQ∨P
(P∧Q) ∧R P∧ (Q∧R) (P ∨ Q) ∨ R P ∨(Q ∨ R)
E14
E15 E16
R ∨(P ∨ ┐P) T
T T T T T F F
从真值表看到,P→R,Q→R,P∨Q的真值都为T的 情况为第1行、第3行和第5行,而在这三行中R的真值均为 T。故 (P→R)∧(Q→R)∧(P∨Q) R
二、直接证法
• 直接证法:由一组前提,利用一些公认的推理规则, 根据已知的等价或蕴含公式推演得到有效结论。 • 常用的推理规则 P规则:(前提引入规则)前提在推导过程中的任何时候 都可以引用。 T规则(结论引用规则)在推导过程中,如果有一个或多 个公式重言蕴含着公式S,则公式S可以引入推导之。 如 P→Q, Q→R P→R,这时 P→R可引入推导之中
d)P→Q,(┐Q∨R)∧┐R,┐(┐P∧S) ┐S (1) (┐Q∨R) ∧┐R P (2) ┐Q∨R T(1),I1 (3) ┐R T(1),I2 (4) ┐Q T(2)(3),I10析取三段论 (5) P→Q P (6) ┐P T(4)(5),I12 (7) ┐(┐P∧┐S) P (8) P∨┐S T(7),E (9) ┐S T(6)(8),I10析取三段论

左孝凌离散数学课件1.7对偶与范式

左孝凌离散数学课件1.7对偶与范式

19
第一章 命题逻辑(Propositional Logic) 1.7对偶与
范式(Dual & Normal Form)
1.7.3命题公式的主析(合)取范式
为了使任意一个命题公式化成唯一的等价命题的 标准形式,下面给出主范式的有关概念。
1.命题公式的主析取范式
定义1-7.4: n个命题变元的合取式,称作布尔合取或小项, 其中每个变元与它的否定不能同时存在,但两者必须 出现且仅出现一次。
20

1.命题公式的主析取范式-小项
1. 两个命题变元P和Q的小项为: P∧Q,P∧┐Q,┐P∧Q,┐P∧┐Q。 2. 三个命题变元P、Q、R的小项为: P∧Q∧R,P∧Q ∧┐R , P∧┐Q ∧R , P∧┐Q ∧┐R ┐P∧Q ∧R ,┐ P∧Q ∧┐R , ┐P∧┐Q ∧R ,┐P∧┐Q ∧┐R 。
同一命题公式可以有各种相互等价的表达形式,为了把命题公 式规范化,下面讨论命题公式的范式问题。
第一章 命题逻辑1.7对偶与范式
定义 (1) 一个命题公式称为合取范式,当且仅当它具有形式: A1 ∧ A2 ∧ … ∧ An, (n≥1) 其中A1,A2,…An都是由命题变元或其否定所组成的析取 式。 如:P ∧ ┐Q , (P ∨ Q) ∧(P ∨┐Q ∨R), Q∧┐P (2) 一个命题公式称为析取范式,当且仅当它具有形式: A1 ∨ A2 ∨ … ∨ An, (n≥1) 其中A1,A2,…An都是由命题变元或其否定所组成的合取 式。 如:P∨┐Q , (P ∧ Q) ∨(P ∧┐Q∧R), Q∨┐P. (3)范式:析取范式与合取范式统称为范式。 显然, 任何合(析)取范式的对偶式是析(合)取范式.
3
对合律 幂等律 结合律 交换律

最新左孝凌离散数学课件1.3命题公式与翻译1.4真值表与等价公式PPT课件

最新左孝凌离散数学课件1.3命题公式与翻译1.4真值表与等价公式PPT课件

• 例2. 证明: PQ (P→Q)(Q→P)
P Q PQ Q→P P→Q (P→Q)(Q→P)
00 1 1 1
1
01 0 0 1
0
10 0 1 0
0
11 1 1 1
1
30
第一章 命题逻辑(Propositional Logic) 1.4真值 表与等价公式
➢ 2. 等值演算法(Equivalent Caculation)(利用P15表1-4.8)
• 定义1.4.4 子公式:如果X是wff A的一部分,且X本身也是wff, 则称X是A的子公式。 例如, P(PQ)为Q (P(PQ))的子公式。
• 定理1.4.1 置换定理:设X是wff A的子公式,若XY,则若将A 中的X用Y来置换,所得公式B与A等价,即AB。
• 定义1.4.5 等值演算:根据已知的等价公式,推演出另外一些等 价公式的过程称为等值演算.
(P∧Q)∨(┐P∧┐Q) T F F T
第一章 命题逻辑(Propositional Logic) 1.4真值 表与等价公式
1.4.2 等价公式
• 定义1.4.3: 给定两个命题公式A和B,设P1 , P2 ,…,Pn为出现
于真A值和指B派中, 的A和所B有的原真子值变都元相,若同给,则P称1 ,AP和2 ,B…是,P等n任价一. 组 记作A B。
第一章 命题逻辑(Propositional Logic) 1.4真值 表与等价公式
1.4.2 等价公式
从真值表中可以看到,有些命题公式在分量的不同指派 下,其对应的真值与另一命题公式完全相同,如┐P∨Q与 P→Q的对应真值相同,如表1-4.5所示。
表1-4.5
我们说┐P∨Q和P→Q 是等价的,这在以 后的推理中特别有 用。

左孝凌离散数学课件3.1集合的概念和表示法3.2集合的运算.ppt

左孝凌离散数学课件3.1集合的概念和表示法3.2集合的运算.ppt

3. 幂集:给定集合A,由集合A的所有子集为元素组成的集合,
称为集合A的幂集,记为P (A)
• P (A)={x|xA}
判断:任何集合的 幂集一定不是空集。
• 注意: xP (A) xA
(空集呢?)
例如: A={a,b}的0元子集: ,1元子集: {a},{b}, 2元子集:为{a,b}
所以: P (A)={,{a},{b},{a,b}},共22=4个子集。
c) A E = A (同一律)
d) A B = B A (交换律)
e) (A B) C = A (B C) (结合律)
f) A B A A B B
2021/1/25
17
二、并运算
3. 2集合的运算
定义2 设有集合A、B,属于A或属于B的所有元素组成的集合称
为A与B的并集,记作 A 。B即
2021/1/25
2
第三章 集合与关系
1 集合的概念和表示 法 2 集合的运算 3 4序偶与笛卡尔集 5关系及其表示 6 关系的性质
7 复合关系和逆关系 8 关系的闭包运算 9 10等价关系与划分 11 相容关系与覆盖 12 偏序关系
2021/1/25
3
3.1 集合概念及其表示法
一、基本概念 二、集合的表示方式 三、集合间的关系 四、几类特殊的集合
2) A B,则A C B C
3)分配律
A (B C) (A B) (A C) A (B C) (A B) (A C)
4)吸收律
A (A B) A A (A B) A
5)当且仅当A B = B A B = A AB
2021/1/25
20
3. 2集合的运算
三、相对补运算(差)

左孝凌离散数学1.5重言式与蕴含式PPT课件

左孝凌离散数学1.5重言式与蕴含式PPT课件

从而┐Q(P→Q)为假.
②若Q为假,则┐Q为真,P→Q为假,
从而┐Q(P→Q)为假.
根据① ②,所以 ┐Q(P→Q)┐P
4)法4: (┐Q(P→Q)) → ┐P
┐ (┐Q( ┐ P ∨ Q)) ∨ ┐P
(Q ∨(P ┐ Q)) ∨ ┐P
((Q ∨P) (Q ∨ ┐ Q )) ∨ ┐P
(Q ∨P) ∨ ┐P
4
第一章 命题逻辑(Propositional Logic) 1.5重
言式与蕴含式(Tautology and Implication)
判别命题公式的类型有两种方法: 真值表法和等值
演算法.
等值演算法是将所给命题公式通过等值演算化为最
简单的形式, 然后再进行判别.
例1.判别下列命题公式的类型.
(1). Q∨┓((┓P∨Q)∧P) (重言式)
重言式与蕴含式(Tautology and Implication)
• 小结:本节介绍了命题公式的分类,重言式、矛盾式与蕴 含式的概念及其性质,等价式与蕴涵式的关系。
• 重点掌握: (1)用等值演算法判别命题公式的类型。 (2)重言式、矛盾式与蕴涵式的性质。 (3)等价式与蕴涵式的关系。
• 作业: P23 (1)c,d ,(2) a ,(8). • 预习:1.6 • 思考题:1) 为什么要引入联结词?
2) 什么是最小联结词组? ,,, c
21
1. 真值表指派 2. 真值表及其构成方法 3. 等价公式及等价置换 4. 命题公式的分类 5. 蕴含式判定及其性质
小结
(1)若A在其各种赋值下的取值均为真,则称A是重言式或永真式, 记 为T或1。 (2)若A在其各种赋值下的取值均为假,则称A是矛盾式或永假式, 记 为F或0。

《离散数学概述》PPT课件

《离散数学概述》PPT课件

同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律

交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。

左孝凌离散数学ppt课件

左孝凌离散数学ppt课件

第七章 图论 7.1 图的基本概念
完全图:任意两个不同的结点都是邻接的简单图称为
完全图。n个结点的无向完全图记为Kn。
图7.1.5给出了K3和K4。从图中可以看出K3有3条边,
K4有6条边。容易证明Kn有条边。
n(n 1) 2
图7.1.5K3与K4示意图
图7.1.6
第七章 图论 7.1 图的基本概念
一个图G可用一个图形来表示且表示是不唯一的。
第七章 图论 7.1 图的基本概念
【例7.1.2】设G=〈V(G),E(G)〉,其中
V(G)={a,b,c,d},E(G)={e1,e2,e3,e4,e5,e6,e7},e1=(a,b), e2=(a,c),e3=(b,d),e4=(b,c),e5=(d,c),e6=(a,d),e7=(b,b) 。
1)若e1,e2,…,ek都不相同, 则称路μ为迹;
2)若v0,v1,…,vk都不相同, 则称路μ为通路;
3)长度大于2的闭的通路(即 除v0=vk外,其余结点均不相同的 路)μ称作圈。
图7.1.1
第七章 图论
7.2 路与回路
例如在图7.2.1中,有连接v5 到v3的路v5e8v4e5v2e6v5e7v3,这 也是一条迹;路v1e1v2e3v3是一 条通路;路v1e1v2e3v3e4v2e1v1是 一条回路,但不是圈;路 v1e1v2e3v3e2v1是一条回路,也是 圈。
定 义 7.2.1 给 定 图 G = 〈V,E〉, 设 v0,v1,…,vk∈V , e1 , e2,…,ek∈E,其中ei是关联于结点vi-1和vi的边,称 交替序列v0e1v1e2…ekvk为连接v0到vk的路,v0和vk分别 称为路的起点与终点。路中边的数目k称作路的长度。 当v0=vk时,这条路称为回路。

左孝凌离散数学课件

左孝凌离散数学课件

01
集合论
集合的基本概念
总结词
集合是离散数学中的基本概念,它是由一组确定的、不同的、互不相同的元素所组成的 。
详细描述
集合是离散数学中一个最基本的概念,它是由一组确定的、不同的、互不相同的元素所 组成的。这些元素可以是数字、字母、图形等,它们在集合中表示不同的个体或对象。
集合的运算和性质
总结词
详细描述
邻接矩阵是一种常用的图表示方法,通过二维矩阵表示节点之间的关系,矩阵中的元素表示边的权重 或连接状态;邻接表是一种更有效的图表示方法,通过链表或数组等数据结构表示节点和其相邻节点 之间的关系。
图的连通性
总结词
图的连通性是指图中任意两个节点之间是否 存在路径。
详细描述
图的连通性分为强连通和弱连通两种情况。 强连通是指图中任意两个节点之间都存在有 向路径;弱连通是指图中任意两个节点之间 都存在无向路径。判断图的连通性是图论中 的重要问题之一。
左孝凌离散数学课件
THE FIRST LESSON OF THE SCHOOL YEAR
• 离散数学简介 • 集合论 • 图论 • 逻辑学 • 离散概率论 • 离散统计学
目录CONTENTS
01
离散数学简介
离散数学的起源和定义
总结词
离散数学的起源可以追溯到古代数学,它与连续数学相对应,研究的是非连续的、分离的对象。
置信区间
置信区间是指根据样本数据估计 总体参数的可能范围,用于衡量 估计的准确性。
单侧检验和双侧检

单侧检验是指只检验一个方向的 假设,而双侧检验则是同时检验 两个方向的假设。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR

左孝凌离散数学课件序偶与笛卡尔积关系及其表示

左孝凌离散数学课件序偶与笛卡尔积关系及其表示

d)(A - B) C =(AC) - (BC)成立. 证明 因为(A - B) C ={<x,y>|(xA-B)∧yC} 所以
<x,y>(A - B) C x(A-B)∧yC xA∧x B∧yC ( xA∧yC∧x B) ∪(xA∧yC∧y C)) (xA∧yC )∧(x B∪yC) (xA∧yC )∧ ┐(x B ∧ y C) <x,y>A C∧ <x,y> B C <x,y> [(AC) - (BC) ]
故|P (AB)|=2mn,即A到B不同的二元关系共
有2mn个
一、二元关系
3.二元关系定义3
A上的二元关系: AA的任意子集R称为A上的二元关系 RAA RP (AA)。
若|A|=m, 则|AA|=m2, 故|P (AA)|= 2 m2 ,即A上不同
的二元关系共有2 m2个。
一、二元关系
A到B的二元关系举例1:
练习 105页(2)-(5)
105页(2)
设A={a,b},构成集合 P(A)A。 解
P(A)={,{a},{b},{a,b}} P(A)A={<,a>,<,b>,<{a},a>,<{a},b>, <{b},a>,<{b},b>,<{a,b},a>,<{a,b},b>,}
105页(3)
下列各式中哪些成立?哪些不成立?为什么? a)(A∪B) (C∪D)=(AC)∪(BD) b)(A- B) (C -D)=(AC) - (BD) c)(AB) (CD)=(AC)(BD) d)(A -B) C =(AC) -(BC) e)(AB) C =(AC) (BC)

左孝凌离散数学 ppt课件

左孝凌离散数学 ppt课件
2020/4/11
1.1.1 命题
数理逻辑研究的中心问题是推理(inference),而 推理的前提和结论都是表达判断的陈述句,因而表达
判断的陈述句构成了推理的基本单位。 基本概念
✓ 命题:能够判断真假的陈述句。 ✓ 命题的真值:命题的判断结果。命题的真值只取两个 值:真(用T(true)或1表示)、假(用F(false)或0表示) 。 ✓ 真命题:判断为正确的命题,即真值为真的命题。 ✓ 假命题:判断为错误的命题,即真值为假的命题。
❖ 上个世纪30年代以后,数理逻辑进入一个崭新的发展 阶段,逻辑学不仅与数学结合,还与计算机科学等密 切关联。
第一章 命题逻辑(Propositional Logic)
1.1 命题及其表示方法
• 1.1.1 命题(Proposition) • 1.1.2 命题的表示方法 • 1.1.3 命题的分类
逻辑可分为:1. 形式逻辑(通过数学方法) 数理逻辑 2. 辩证逻辑 指引进一套符号体系的方法。
辩证逻辑是研究反映客观世界辩证发展过程的人类思 维的形态的。
❖ 形式逻辑是研究思维的形式结构和规律的科学,它撇 开具体的、个别的思维内容,从形式结构方面研究概 念、判断和推理及其正确联系的规律。
❖ 数理逻辑是用数学方法研究推理的形式结构和推理的 规律的数学学科。它的创始人Leibniz,为了实现把推 理变为演算的想法,把数学引入了形式逻辑。其后, 又经多人努力,逐渐使得数理逻辑成为一门专门的学 科。
结果才为真,否则为假。 自然语言中的表示“并且”意思的联结词,如“既… 又…”、“不但…而且…”、“虽然…但是…”、“一面…一 面…”、 “…和…”、 “…与…”等都可以符号化为∧ 。
18
例3. 将下列命题符号化.

离散数学左孝凌 ppt课件

离散数学左孝凌 ppt课件
计算机学院
2-2.1 命题函数
定义2-2.1:简单命题函数(simple propositional function):
由一个谓词,一些客体变元组成的表达式称为 简单命题函数。
比如:A(x),B(x,y),L(x,y,z) 简单命题函数不是命题,只有当变元x,y,z等 取特定的客体才确定了一个命题。 对于n元谓词,当n=0时,称为0元谓词,它 本身就是一个命题,故命题是n元谓词的一个特 殊情况。
计算机学院
2-2.2 量词
例4: “不存在最大的自然数”。 解: 设: F(x): x是自然数; G(x,y): x>y; 原命题符号化成: (x)(F(x)(y)(F(y)G(x,y))) 或: (x)(F(x)(y)(F(y)G(x,y)))
计算机学院
2-2.2 量词
例5: “火车比汽车快”。 解: 设: F(x): x是火车; G(x): x是汽车; H(x,y): x比y快 原命题符号化成:
2-1.1 客体和谓词 在谓词逻辑中,可将原子命题划分为客体
和谓词两部分。 客体:可以独立存在的具体事物的或抽象的概 念。例如,电子计算机、李明、玫瑰花、黑 板、实数、中国、思想、唯物主义等,客体也 可称之为主语。
计算机学院
第二章 谓词逻辑(Predicate Logic)
2-1 谓词的概念与表示(Predicate and Its Expression)
(1) F(a) a:张明 (2) F(b) b:李华
(3) G(c) c:王红 (4) H(s,t) s:小李 t:小赵
(5) R(a,b,c)
(6) S(a,b) a:阿杜。b:阿寺。
其中(1)、(2)、 (3)为一元谓词, (4) 、 (6)为二元谓词,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如,下列推理: 所有的人都是要死的。 苏格拉底是人。 苏格拉底是要死的。
众所周知,这是真命题。但在命题逻辑中,如 果用P,Q,R表示以上三个命题,则上述推理过 程为:(P∧Q)R。借助命题演算的推理理 论不能证明其为重言式。
计算机学院
第二章 谓词逻辑(Predicate Logic)
2-1 谓词的概念与表示(Predicate and Its Expression)
原因:命题逻辑不能将命题之间的内在联系 和数量关系反映出来。 解决办法:将命题进行分解。
计算机学院
第二章 谓词逻辑(Predicate Logic)
2.1 谓词的概念与表示(Predicate and Its Expression)
2-1 谓 词 的 概 念 与 表 示 (Predicate and its expression)
计算机学院
2-2 命题函数与量词
2-2.1 命题函数 一般来说,当谓词P给定, x1,x2,…,xn是客体变元 , P(x1,x2,…,xn) 不是一个命题,因为他的真值无法确定, 要想使它成为命题,要用n个客体常项代替n个客体变 元。 P(x1,x2,…,xn) 就是命题函数。 比如L(x,y)表示“x小于y”,那么L(2,3)表示了一 个真命题“2小于3”。而 L(5,1)表示了一个假命题“5 小于1”
命题逻辑的局限性: 在命题逻辑中,命题是命题演算的基本
单位,不再对原子命题进行分解,因而无法 研究命题的内部结构、成分及命题之间的内 在联系,甚至无法处理一些简单而又常见的 推理过程。
计算机学院
第二章 谓词逻辑(Predicate Logic)
2-1 谓词的概念与表示(Predicate and Its Expression)
第二章 谓词逻辑(Predicate Logic)
2-1谓词的概念与表示 2-2 命题函数与量词 2-3谓词公式与翻译 2-4变元的约束 2-5谓词演算的等价式与蕴含式 2-7前束范式 2-7谓词演算的推理理论
计算机学院
第二章 谓词逻辑(Predicate Logic)
2-1 谓词的概念与表示(Predicate and Its Expression)
2-1 谓词的概念与表示(Predicate and Its Expression)
注: (1)单独一个谓词并不是命题,在谓词字母
后填上客体所得到的式子称之为谓词填式。 (2)在谓词填式中,若客体确定,则A(a1,
a2...an)就变成了命题 (3)在多元谓词表达式中,客体字母出现的
先后次序与事先约定有关,一般不可以随意交 换位置(如,上例中H(s,t) 与H(t, s)代表两个不 同的命题) 。
计算机学院
2-2.1 命题函数
比如:L(x,y)表示“x小于y”是二元谓词, L(x,3)表示“x小于3”是一元谓词,L(2,3)表示 “2小于3”是0元谓词。
计算机学院
第二章 谓词逻辑(Predicate Logic)
2-1 谓词的概念与表示(Predicate and Its Expression)
设谓词H表示“是劳动模范”, a表示客体名称张 明, b表示客体名称李华,c表示客体名称这只老虎, 那么H(a)、H(b)、H(c)表示三个不同的命题,但 它们有一个共同的形式,即H(x).一般地,H(x)表 示客体x具有性质H。这里x表示抽象的或泛指的 客体,称为客体变元,常用小写英文字母x, y, z, …表示。相应地,表示具体或特定的客体的词 称为客体常项,常用小写英文字母a,b,c, …表示。
2-1.1 客体和谓词 在谓词逻辑中,可将原子命题划分为客体
和谓词两部分。 客体:可以独立存在的具体事物的或抽象的概 念。例如,电子计算机、李明、玫瑰花、黑 板、实数、中国、思想、唯物主义等,客体也 可称之为主语。
计算机学院
第二章 谓词逻辑(Predicate Logic)
2-1 谓词的概念与表示(Predicate and Its Expression)
计算机学院
2-1 谓词的概念与表示(Predicate and Its Expression)
同理,客体变元x,y具有关系L,记作L(x,y); 客体变元x, y, z具有关系A,记作A(x,y,z). H(x)、L(x,y) 、A(x,y,z)本身并不是一个命题.只 有用特定的客体取代客体变元x,y,z后,它们才成为 命题。
计算机学院
2-2.1 命题函数
定义2-2.1:简单命题函数(simple opositional function):
由一个谓词,一些客体变元组成的表达式称为 简单命题函数。
比如:A(x),B(x,y),L(x,y,z) 简单命题函数不是命题,只有当变元x,y,z等 取特定的客体才确定了一个命题。 对于n元谓词,当n=0时,称为0元谓词,它 本身就是一个命题,故命题是n元谓词的一个特 殊情况。
谓词:用来刻划客体的性质或客体之间的相互关系的词。 例如在下面命题中:
(1)张明是个劳动模范。 (2)李华是个劳动模范。 刻划客体的性质 (3)王红是个大学生。 (4)小李比小赵高2cm。 (5)点a在b与c之间。 刻划客体之间的相互关系 (6)阿杜与阿寺同岁。 “是个劳动模范”、“是个大学生”、“…比…高2cm”、 “…在…与…之间”都是谓词。
计算机学院
第二章 谓词逻辑(Predicate Logic)
2-1 谓词的概念与表示(Predicate and Its Expression)
刻划一个客体性质的词称之为一元谓词,刻划n个客体 之间关系的词称之为n元谓词.
一般我们用大写英文字母表示谓词,用小写英文字母
表示客体名称,例如,将上述谓词分别记作大写字母F、 G、H、R,S则上述命题可表示为:
(1) F(a) a:张明 (2) F(b) b:李华
(3) G(c) c:王红 (4) H(s,t) s:小李 t:小赵
(5) R(a,b,c)
(6) S(a,b) a:阿杜。b:阿寺。
其中(1)、(2)、 (3)为一元谓词, (4) 、 (6)为二元谓词,
(5)为三元谓词。
计算机学院
第二章 谓词逻辑(Predicate Logic)
相关文档
最新文档