[中考数学]03分式方程及其应用教案

合集下载

分式方程应用教案

分式方程应用教案

分式方程应用教案一、教学内容本节课的教学内容选自人教版初中数学九年级下册第五章第三节“分式方程的应用”。

主要包括分式方程的解法及其在实际问题中的应用。

具体内容包括:1. 分式方程的解法:通过交叉相乘法、等价变换法等方法解分式方程。

2. 分式方程在实际问题中的应用:利用分式方程解决生活中的实际问题,如利润问题、面积问题等。

二、教学目标1. 理解分式方程的解法,并能灵活运用解法解简单分式方程。

2. 学会将实际问题转化为分式方程,并能运用所学知识解决实际问题。

3. 培养学生的逻辑思维能力和解决实际问题的能力。

三、教学难点与重点重点:分式方程的解法及其在实际问题中的应用。

难点:如何将实际问题转化为分式方程,以及分式方程的解法。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材、练习册、铅笔、橡皮。

五、教学过程1. 情景引入:讲解一个关于分式方程的实际问题,引导学生思考如何解决此类问题。

2. 知识讲解:讲解分式方程的解法,包括交叉相乘法、等价变换法等,并通过例题演示解题过程。

3. 课堂练习:布置几道有关分式方程的练习题,让学生独立完成,并及时给予讲解和指导。

4. 实际问题解决:让学生分组讨论,将所学的分式方程知识应用于解决实际问题,如利润问题、面积问题等。

六、板书设计板书内容:分式方程的解法及其在实际问题中的应用。

七、作业设计(1)甲、乙两地相距120公里,甲地有一批货物要运往乙地,如果每辆汽车每次能运10吨货物,问需要多少辆汽车才能在3天内将所有货物运完?(2)一个长方形的长是宽的2倍,如果长方形的周长是30厘米,求长方形的面积。

2. 教材P103页,习题5。

八、课后反思及拓展延伸课后反思:本节课通过讲解分式方程的解法和实际问题解决的方法,让学生掌握了分式方程的应用。

在课堂练习和实际问题解决环节,学生能够积极思考,分组讨论,提高了课堂效果。

但在教学过程中,对于部分学生的解答过程和思路还需进一步指导和纠正。

教案《分式方程的应用》

教案《分式方程的应用》

教案《分式方程的应用》教学目标知识目标:经历将实际问题中的等量关系用分式方程表示的过程,体验分式方程模型的思想,会用分式方程解决简单的实际问题。

能力目标:1、经历“实际问题情境——提出问题——解决问题”,进一步提高学生分析问题和解决问题的能力,增强学生学数学、用数学的意识。

2、通过分式方程的实际应用,提高学生的思维水平和应用意识。

情感目标:1、通过创设贴近学生生活实际的现实情境,增强学生的应用意识,培养学生对生活的热爱,进行节约用水、用电、环保和森林防火等方面的教育。

并对学生进行“心系灾区,大爱无疆”的情感教育。

2、在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的方法的能力,体会数学的应用价值.教学重点:1、列分式方程解决实际问题2、列分式方程解应用题的步骤,教学难点:根据实际问题找相等关系正确列分式方程,教法和学法:启发引导,提出问题,自主探索与解决问题,合作交流课前准备:投影仪、多媒体课件.教学过程一、创设情境,领悟规律观看火灾视频,创设情景,让学生在实际问题中提出问题及解决问题的能力。

(以及火灾导出的森林保护法)二、实际应用,建立模型1、实际问题与应用今年,我国云南普林因为一支香烟头引发了特大森林火灾,火势平均达到5.0亩/分钟,立即报119,消防队接到消息立即出发到12千米的普林灭火,消防车装载着所需材料先出发10分钟后,组织人员乘吉普车从同一地点出发,结果他们同时到达普林,已知吉普车速度是消防车速度的1.5倍,最终经过6小时扑灭大火。

2、老师提出问题:(1)因为一支香烟头引发了特大森林火灾,你们会想到什么后果吗?(2)同学们!根据我们所学的数学知识,结合上述情景,你能解决哪些问题?3、学习森林保护法(出示)4、学生提出问题(未知)5、根据学习提出的问题来解决(板书)方法总结:方程应用题的解决关键是确定等量关系,两个等量关系中牵扯的未知量可以作为提问的问题,解决分式方程应用题的步骤:审、找、设、列、解、验、答)三、拓展知识,灵活应用(结合“节能环保”的主题引出今天的问题情景)(2009中考题)我县为了治理污水,需要铺设一条全长550米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的功效比原计划增加10℅,结果提前5天完成这一任务,原计划每天铺设多少米管道?(学生先独立思考,后小组交流分析寻找解决应用题的关键:找出等量关系,再独立设出未知数列方程解决)四、课堂练习,巩固新知【练习】根据我国的绿化要求,某甲、乙两村参加退耕还林植树活动,已知甲村每天比乙村多植树100棵,甲村植1000棵树所用的天数与乙村植800棵所用的天数相等,试求甲、乙两村每天各植树多少颗?五、学习小结,提高认识列分式方程解应用题的一般步骤;1.审:分析题意,找出问题中的数量及数量关系;2.设:选择恰当的未知量设未知数(注意单位);3.列:根据数量和相等关系,正确列出分式方程;4.解:解分式方程;5.验:检验(是否是分式方程的根,是否符合题意);6.答:注意单位和语言完整。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用
3
③若分式方程的解为正数,则 a 的取值范围为 aa>>--4 且4且a a≠≠11;
yy--33≠≠00,,
【 分 层 分 析 】 若 分 式 方 程 的 解 为 正 数 , 则 yy>>00 , 即
3533aaa+5++5513112a22-+->3130≠2≠00,,
, >0
解得 aa>>--4 且4且a a≠≠1.1
A.1 B.2 C.3 D.4
3.(2022·普宁月考)若分式方程2xx--1a-4=-x2+x+1 a的解为整数,则整
数 a 的值为
(D )
A.±2
B.±1 或±2
C.1 或 2
D.±1
4.(2022·富川县模拟)关于 x 的分式方程2m-+xx+x-3 2=1 有解,则实数
m 应满足的条件是 A.m=-1
1.(2022·鼓楼区期末)关于 x 的分式方程x+m 3=1,下列说法中正确的

( B)
A.方程的解是 x=m-3
B.当 m>3 时,方程的解是正数
C.当 m<3 时,方程的解为负数
D.当 m=3 时,方程无解
2.(2022·荷塘区模拟)分式方程2x+x-a 1=2 的解为 x=2,则 a 的值为 ( A)
④若分式方程有负分数解,则 a 的值可以为 --5(5答(答案不案唯不一唯) ;
【分层分析】若分式方程有负分数解,则 3a+一12)=--1,1,-2-,-2,3,--34,,
4-,6 -…,解得 6…
a=3-133,-134,-153,-136或-6…-,∴a
的值可以为
-55.
⑤若分式方程有非负整数解,则 a 的值可以为 --44(答(答案不案唯不唯一) . 【解分得层a=分3-析4】,若-分73式,方-程23,1有383非,负133整或数…解,则,3a∴+5a一1的2=)值00或可,,1以…,1为2,,--42,,454.4或,…5,

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。

下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。

一定要让学生充分活动起来。

在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。

可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。

今后要防止类似事情的发生。

2、问题(1) 分式的运算错的较多。

分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。

所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。

其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。

一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。

2025年中考数学总复习第一部分考点精讲第二章方程(组)与不等式(组)第三节分式方程及其应用

2025年中考数学总复习第一部分考点精讲第二章方程(组)与不等式(组)第三节分式方程及其应用
(1)两人要去距离学校10 km的图书批发市场购买图书,出发时,张老师因有事
耽搁,故李老师骑自行车先行出发,20 min后,张老师乘坐汽车出发,结果
两人同时到达①.已知汽车的平均速度是自行车平均速度的2倍,求李老师骑自
行车的平均速度;
2025版
数学
甘肃专版
解:设自行车的平均速度为x km/h,则汽车的平均速度为2x km/h,根据题意,
2025版
第三节
数学
甘肃专版
分式方程及其应用
2025版
数学
甘肃专版
2025版












数学
甘肃专版
2025版








数学
甘肃专版
2025版

















数学
甘肃专版
2025版

















数学
甘肃专版
2025版
数学
甘肃专版
2025版


- = ,解得x=15,


经检验,x=15是原分式方程的解,且符合题意.
答:李老师骑自行车的平均速度为15 km/h.
2025版
数学
甘肃专版
【分层分析】
第一步:设自行车的平均速度为x km/h;

中考数学复习课《分式方程》说课稿

中考数学复习课《分式方程》说课稿

中考数学复习课《分式方程》说课稿尊敬的各位评委、各位老师:大家好!我今天说课的内容是《分式方程》,下面我将从说教材、说学情分析、说教学策略、说教学过程这四个方面对本节课的教学设计进行说明.一、说教材1.教材的地位和作用本节课复习的主要内容是分式方程的概念、解法及应用,是对分式方程单元学习的梳理、归纳、深化和巩固.解分式方程的基本思想是通过“转化”,将分式方程转化为整式方程. 通过复习强化数学与生活的密切关系,因此本节复习可起到巩固基础,提升认识的作用.2.教学目标(1)知识目标:①理解分式方程的概念、会解分式方程,能列分式方程解决实际问题.②掌握解分式方程的验根方法.(2)能力目标:会用去分母法解分式方程,体会化归思想.(3)情感目标:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心.3.教学重点:分式方程的解法和列分式方程解决实际问题.4.教学难点:列分式方程解决实际问题以及解分式方程过程中产生增根的原因及如何验根.二、学情分析学生是在前面复习分式的意义、分式的混合运算和熟练解一元一次方程的基础上复习本节内容的.但对于解分式方程过程中会出现增根,部分同学理解起来较为困难,因此在教学过程中应重点强调如何把分式方程转化为整式方程和解分式方程过程中产生增根的原因及如何验根.三、教学策略1、说教法教法:本节课采用启发式、引导式教学方法.特别注重“精讲多练”,真正体现以学生为主体.针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生板演以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决.教学手段:为了更有效地突出重点,突破难点,提高课堂效率,本节课采用多媒体辅助教学.2.说学法本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,使学生积极主动地参与到教学过程,通过合作交流,激发学生的学习兴趣,体现探索的快乐,使学生的主体地位得到充分的发挥.四、说教学过程。

中考数学复习第8课时《分式方程及其应用》教学设计

中考数学复习第8课时《分式方程及其应用》教学设计

中考数学复习第8课时《分式方程及其应用》教学设计一. 教材分析《分式方程及其应用》是中考数学复习的第8课时,主要内容是分式方程的定义、解法及其应用。

本节课时的教材内容在整个初中数学体系中起到承前启后的作用,为后续的高中数学学习打下基础。

通过本节课时的学习,学生应该能够掌握分式方程的基本概念,熟练运用解法求解分式方程,并能够将分式方程应用到实际问题中。

二. 学情分析在学习本节课时之前,学生已经学习了分式的相关知识,对分式的概念、性质和运算法则有一定的了解。

但是,部分学生对分式方程的理解和应用还不够熟练,解题过程中容易出错。

因此,在教学过程中,需要针对学生的实际情况进行针对性的引导和讲解。

三. 教学目标1.了解分式方程的定义和基本性质。

2.掌握分式方程的解法,并能够熟练运用。

3.能够将分式方程应用到实际问题中,提高解决问题的能力。

4.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.分式方程的定义和性质。

2.分式方程的解法及其运用。

3.将分式方程应用到实际问题中。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究分式方程的定义、解法和应用。

2.运用案例分析和实际问题解决,让学生体验分式方程在实际生活中的应用。

3.采用小组讨论和合作交流的方式,培养学生的团队协作能力和沟通能力。

4.利用多媒体教学手段,辅助学生直观地理解分式方程的概念和性质。

六. 教学准备1.教学PPT课件。

2.相关案例分析和实际问题。

3.分式方程的练习题。

4.小组讨论的安排。

七. 教学过程1.导入(5分钟)利用PPT课件展示分式方程的实例,引导学生回顾分式的相关知识,激发学生对分式方程的兴趣。

2.呈现(15分钟)介绍分式方程的定义和基本性质,通过PPT课件和实物模型辅助学生直观地理解分式方程的概念。

3.操练(20分钟)讲解分式方程的解法,并通过例题演示解题过程。

然后,让学生独立完成练习题,教师巡回指导。

4.巩固(10分钟)学生分组讨论,分享解题心得和经验,互相纠正错误。

《中考大一轮数学复习》课件 分式方程及其应用

《中考大一轮数学复习》课件  分式方程及其应用

课前预测 你很棒
5. (2014·浙江嘉兴)解方程:
1 3 - 2 =0. x-1 x -1
解: x=2
6. (2012·湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作 8800 件投 入市场, 服装厂有 A, B 两个制衣车间, A 车间每天加工的数量是 B 车间的 1.2 倍, A, B 两车间共同完成一半后, A 车间出现故障停产, 剩下全部由 B 车间单独完成, 结果前后共用 20 天完成,求 A,B 两车间每天分别能加工多少件?
中考大一轮复习讲义◆ 数学
中考大一轮复习讲义◆ 数学
2
夯实基本
中考大一轮复习讲义◆ 数学
知已知彼
知识结构梳理
1 2
3
3
夯实基本
中考大一轮复习讲义◆ 数学
知已知彼
基础知识回顾 1. 分式方程:分母中含有________的方程叫分式方程. 2. 解分式方程 (1)解分式方程的一般步骤: ①去分母,在方程的两边都乘________,约去分母,化成整式方程. ②解这个整式方程. ③验根,把整式方程的根代入 ________ ,看结果是不是零,使最简公分母为 零的根是原方程的增根,必须舍去. (2)用换元法解分式方程的一般步骤: ①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式. ②解所得到的关于辅助未知数的新方程,求出辅助未知数的值. ③把辅助未知数的值代入原设中,求出原未知数的值. ④检验作答. 温馨提示 ①去分母时,不要漏乘没有分母的项. ②解分式方程的重要步骤是检验,必须书面检验.检验的方法可以代入最简 公分母检验,也可直接代入原方程验根.
1 2 3
7
热点看台
中考大一轮复习讲义◆ 数学
快速提升
热点一 列分式方程 热点搜索 列分式方程解应用题的6个步骤中关键是“列”,难点是“审”, 所以如何做好审题,列方程是解决问题重中之重.列分式方程解应用题的一般思 路是:(1)弄清题中涉及哪些量,已知量是什么,求什么.(2)抓住题目中的重要 语句,根据这些重要语句列出代数式.(3)找出等量关系,将等量关系由文字语 言转化为数学符号语言,列出方程.根据题目的需要一般直接设未知数,但有时 可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这 种设未知数的方法叫做设间接未知数.在列分式方程解应用题时,设间接未知数, 有时可使解答变得简捷.习讲义◆ 数学

分式方程教案范文

分式方程教案范文

分式方程教案范文教案:分式方程一、教学目标1.熟练掌握分式方程的概念和基本性质。

2.能够解决已知分式方程的问题。

3.培养学生的分析和解决问题的能力。

4.培养学生的合作学习和自主学习的能力。

二、教学重点和难点1.教学重点:掌握解决分式方程的基本方法。

2.教学难点:培养学生的分析和解决问题的能力。

三、教学方法1.提问法:通过问题引导学生思考,激发他们的学习兴趣。

2.实验法:通过课堂实验,帮助学生巩固所学知识。

3.合作学习法:鼓励学生互相合作、讨论,共同解决问题。

四、教学过程第一课时1.导入新知通过复习分式的定义和基本运算,引出分式方程的概念。

2.提出问题通过几个实际问题引导学生思考,如:已知一根绳子长为2/3米,再截去其中的1/4米,问剩下的绳子长是多少?3.引入解决分式方程的基本方法通过具体例子分析,引导学生发现解决分式方程的基本方法。

4.小结总结分式方程的基本性质和基本解法。

第二课时1.导入新知复习前一课的内容,引出“分式方程的解”的概念。

2.提出问题通过几个实际问题引导学生思考,如:已知5/12个苹果在运输过程中烂掉了1/3,问还剩下多少个苹果?3.分组讨论将学生分成小组,让他们自主合作讨论解决问题的方法,然后每个小组派一名代表汇报讨论结果。

4.整理概念引导学生整理分组讨论的结果,总结分式方程的解的一般性质和解决方法。

5.小结总结分式方程的解的特点和解决步骤。

第三课时1.导入新知通过讨论前面的问题,引出分式方程的实际应用。

2.课堂实验设计课堂实验,让学生自主观察和记录实验数据,然后用分式方程表示实验结果,并求出实际应用的解。

3.分析解决问题的步骤通过实验结果和解析解法的对比,分析解决问题的基本步骤。

4.小结总结分析解决问题的思路和方法。

第四课时1.导入新知通过前面的实验,引出分式方程的建立方法。

2.分组讨论将学生分成小组,每组分配一个实际问题,要求他们分析问题,建立分式方程,并解决问题。

3.汇报讨论结果每个小组派一名代表汇报讨论结果,让其他小组提出问题和建议。

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

确的是
( A)
800 600 A.x+50= x
800 600 800 600 B.x-50= x C. x =x+50
800 600 D. x =x-50
6.(2013·天水第 15 题 4 分)有两块面积相同的小麦试验田,分别收获
小麦 9 000 kg 和 15 000 kg,已知第一块试验田每公顷的产量比第二块
3.(RJ 八上 P155 习题 T4 改编)甲、乙两个机器人检测零件,甲比乙每小 时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%.若设甲 每小时检测 x 个,则根据题意,可列出方程为__3x00=x2-=0200××((11--1100%%))__.
4.(RJ 八上 P151 例 2 改编)解方程:
第三节 分式方程及其应 用
1.已知关于 x 的分式方程mx--31=1. (1)若此分式方程的解为 x=2,则 m 的值为 4 4; (2)若此分式方程有增根,则 m 的值是 3 3 ; (3)若此分式方程的解是正数,则 m 的取值范围是 m>m2>且2且m ≠3.
m≠3
2.(RJ 八上 P153 例 4 改编)甲、乙两地相距 1 000 km,如果乘高铁列车 从甲地到乙地比乘特快列车少用 3 h,已知高铁列车的平均速度是特快列 车的 1.6 倍.若设特快列车的平均速度为 x km/h,则根据题意,可列方 程为 -1 3x0=00-3=11.060x0 .
命题点 2:由分式方程解的情况求字母的取值范围(省卷近 5 年未考查,
兰州近 5 年考查 1 次)
2x+a 3.(2018·兰州第 10 题 4 分)关于 x 的分式方程 x+1 =1 的解为负数,
则 a 的取值范围为

人教版八年级数学上册(教案).3.2分式方程的应用

人教版八年级数学上册(教案).3.2分式方程的应用
在学生小组讨论环节,我努力扮演好引导者的角色,尝试引导学生发现问题、分析问题并解决问题。但我也意识到,在讨论过程中,部分学生的思维仍然受到限制,不能充分发挥自己的创新能力。为了提高学生的创新意识,我将在今后的教学中,设计更多开放性的问题,鼓励学生从多角度、多维度思考问题。
最后,我认为本次教学活动的总结回顾环节较为成功,学生对分式方程的知识点有了更加深刻的理解。但同时,我也发现部分学生在提问环节仍然存在疑虑,这说明他们在课堂学习中可能并未完全消化吸收。因此,在今后的教学中,我要更加关注学生的课堂反馈,及时调整教学节奏,确保每位学生都能跟上教学进度。
4.激发学生的创新意识,鼓励他们在解决分式方程问题时,探索多种解题思路和策略;
5.培养学生的团队合作意识,通过小组讨论和交流,共同解决复杂问题,提高沟通与协作能力。
三、教学难点与重点
1.教学重点
(1)理解和掌握分式方程在实际问题中的应用,能将实际问题抽象为分式方程模型;
(2)熟练掌握求解分式方程的方法,包括去分母、求解整式方程、检验解等步骤;
4.通过实际问题的求解,加深对分式方程的理解和运用。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生运用数学知识解决实际问题的能力,增强数学与现实生活的联系;
2.提高学生分析问题和解决问题的能力,学会将实际问题抽象为分式方程模型;
3.培养学生的逻辑思维能力和推理能力,通过对分式方程的求解,掌握数学论证方法;
其次,在实践活动和小组讨论环节,学生们的参与度较高,他们能够积极思考、主动探究,展示出良好的学习氛围。但同时,我也注意到个别学生在小组讨论中较为沉默,可能是因为他们对问题不够了解或者缺乏自信。因此,在今后的教学中,我要更加关注这些学生,鼓励他们积极参与,提高他们的自信心。

分式方程教案(5篇)

分式方程教案(5篇)

分式方程教案(5篇)分式方程教案(5篇)分式方程教案范文第1篇一、预习导学,呈现问题导入新课思索:你能正确识别分式方程吗?下列关于x的方程,其中是分式方程的有______.(填序号)问题1 什么是分式方程?问题2 为什么方程(4)不是分式方程?它是什么方程?如何看待其分母中的字母?引导同学思索并归纳总结,分式方程的特点是:①含分母;②分母中含有未知数,分母中是否含有未知数是区分分式方程与整式方程的标志.本例中的(4)是关于x的方程,其他字母皆为字母系数,通过本例辨析分式方程与含有字母已知数方程的区分.设计意图在设疑解惑中引导同学关注分式方程形式上的定义,不是简洁让同学重复概念,而是展现一组方程让同学识别,在答疑辨析中调动同学对分式方程概念的理解,加深理解分式方程概念的关键点——分母中含有未知数,设计的方程(3)(4)(6)用意深刻,是对同学思索提出的进展性目标.二、合作探究,问在学问发生处,点拨释疑·你会解分式方程吗?老师出示问题,同学动手解题,探究体验:比较方程(1)(2)的结果有差异吗?为什么?·为什么x=2不是原方程(2)的根?·产生x=2不是原方程(2)的根的缘由是什么?你能用数学语言说明吗? 解(2):方程两边同乘以3(x-2),得3(5x-4)=4x+10-3(x-2),x=2.检验:把x=2代入最简公分母3(x-2)中,3(x-2)=0,x=2称为原方程的增根.·引导同学进一步思索:(1)解分式方程的一般步骤?要求同学自己归纳总结,然后争论沟通.①去分母,方程两边同乘以最简公分母,把分式方程转化为整式方程;②解这个整式方程;③验根.使得最简公分母为0的根为原方程的增根,必需舍去.同学提出问题,小组合作探究争论:验根有几种方法?如何检验?适当的练习加强同学对解分式方程的理解,关心同学深刻理解化分式方程为整式方程的数学思想.(2)呈现错例,分析错误缘由.(组织同学开展纠错争论)①确定最简公分母失误;②去分母时漏乘整式项;③去分母时忽视符号的变化;④遗忘验根.设计意图分解因式是要求同学把握的基本技能,引导同学独立思索,总结归纳解题步骤,对错例进行剖析,加深对学问的理解.纠错是数学解题教学的一种重要学习形式.(3)增根从哪里来?为什么要舍去?(4)下面分式方程的解法是否正确?谈谈你的想法?引导同学议一议,深化思索:你对上述解法有什么看法?还有其他解法吗?通过解题表象再深化思索解分式方程的本质.分式方程的增根是它变形后整式方程的根,但不是原方程的根,产生增根的缘由是在分式方程的左右两边乘以为0的最简公分母造成的,所以使最简公分母为0的未知数的值均有可能为增根.着名教学者李镇西说过:“能让同学自己完成的,老师绝不帮忙.”老师引路设问,创设质疑争论的空间,深化对解分式方程本质的理解,拓宽同学的视野.三、敏捷应用,拓展思维思索“无解”与该分式方程有“增根”的意义一样吗?分析方程两边乘以(x+2)(x-2),可得2(x+2)+ax=3(x-2),(a-1)x=-10.明显a=1时原方程无解.当(x+2)(x-2)=0,即x=2或x=-2时,原方程亦无解,当x=2时,a=-4>:请记住我站域名/设计意图分式方程的增根问题是同学理解的难点,部分同学解题过程中存有怀疑,还会与无解相混淆.本课例设计直击难点,关心同学梳理如何争论增根问题,并能利用其解决方程无解的相关问题.老师运用问题串形式组织同学解分式方程不是表面上培育细心,明确算理,而是像几何推理那样步步有据,启发同学经过自己的独立思索去寻求解决问题方案.本课设计尝试从数学的角度提出问题,理解问题.引导同学理解解分式方程的途径是通过转化为整式方程来求解.在解分式方程的过程中体验增根的由来.总结出解分式方程的一般步骤和验根的方法,通过敏捷应用实例分析把方程的相关学问融会贯穿,在富有挑战性问题的引导下,同学在探究、答疑、辨别中体会到,提出一个有价值的问题有时比解决一个问题更重要,本课例的设计让同学学会质疑,学会思索,真正在思维的层面上学会数学解题.分式方程教案范文第2篇关键词:案例―任务驱动;计算机程序语言;教学模式在高校计算机教育中,老师讲授程序语言类课程时,一般是在课堂上进行学问点的介绍、举例、讲解、分析、总结等,同学被动地听讲并记忆,在上机实践环节中,同学提前不做什么预备,上机就是在集成环境中输入并运行笔记或教材上的例题,或是自己参按例题完成课后练习,有错误也不求甚解。

分式方程教案范文

分式方程教案范文

分式方程教案范文教案标题:探索分式方程教学目标:1.理解分式方程的定义及其解的概念。

2.掌握解分式方程的基本方法和技巧。

3.能够运用所学知识解决实际问题。

教学准备:1.教师准备黑板、彩色粉笔、教学PPT等。

2.学生准备笔记本、作业本、直尺、计算器等。

教学流程:一、导入(5分钟)1.引入:教师简要介绍分式方程的概念,如何解决分式方程问题对解题方法和技巧的要求。

2.激发兴趣:教师提出一个简单的分式方程问题,让学生思考如何解决。

二、知识讲解(20分钟)1.分式方程的定义:教师通过情境故事或具体例子,解释分式方程的定义,引导学生理解等式两边含有分数的方程。

2.分式方程的解法:教师将分式方程的解法分为两种情况,即分子为0或分母为0的情况,分别进行讲解。

三、例题演练(30分钟)1.教师先讲解一个简单的例题,解题过程中详细解释思路和步骤。

2.学生个人或小组完成一道例题,并互相检查答案和解法。

3.教师选几组学生上台展示解题过程,并讲解可能遇到的错误和纠正方式。

4.学生在教师的指导下进行讨论和思考,解决其他例题。

四、拓展应用(20分钟)1.学生尝试运用所学知识解决实际问题,如物体下落时间、液体混合比例等。

2.学生个人或小组展示解题过程,教师给予评价和指导。

五、归纳总结(10分钟)1.教师总结本节课的主要知识点和解题方法,强调学生的收获和掌握程度。

2.学生进行知识点的归纳总结,教师进行补充和解答疑惑。

六、作业布置(5分钟)1.教师布置课后作业,要求学生运用所学知识解决几道分式方程的问题。

2.学生查看课后作业内容,并确认自己的学习计划。

教学反思:本节课采用了导入激发兴趣的方法,使学生对分式方程产生了兴趣和好奇心。

通过讲解和演示例题,让学生掌握了解决分式方程的基本方法和技巧。

拓展应用环节帮助学生将所学知识应用到实际问题中,并提高了他们的问题解决能力。

课程重视知识的归纳总结和学生的参与,能够促进学生对所学知识的掌握和理解。

分式方程应用教案

分式方程应用教案

分式方程应用教案一、教学内容本节课选自人教版《数学》八年级下册第十二章《分式方程》,具体内容包括:分数方程的应用、实际问题与分式方程的建立、分式方程的求解方法及其在实际问题中的应用。

二、教学目标1. 理解并掌握分式方程在实际问题中的应用,能正确列出分式方程。

2. 学会运用分式方程解决实际问题,提高数学应用能力。

3. 培养学生的逻辑思维能力和团队合作意识。

三、教学难点与重点1. 教学难点:分式方程在实际问题中的建立与求解。

2. 教学重点:分数方程的应用及求解方法。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入(1)展示小明骑自行车去公园的情景,提出问题:“小明骑自行车的速度是每小时x千米,去公园的路程是y千米,他用了多少时间?”(2)引导学生利用分式方程表示出时间。

2. 例题讲解(1)讲解分式方程在实际问题中的应用。

(2)以小明骑自行车去公园的问题为例,展示分式方程的建立和求解过程。

3. 随堂练习(1)让学生根据实际情景,列出分式方程。

(2)引导学生互相讨论,共同求解分式方程。

(1)分式方程的建立方法。

(2)分式方程的求解方法。

5. 课堂小结六、板书设计1. 分式方程的应用2. 实际问题与分式方程的建立3. 分式方程的求解方法七、作业设计1. 作业题目:(1)小华家距离学校3千米,他骑自行车的速度是每小时5千米,求他到学校所需的时间。

(2)已知甲、乙两地的距离是x千米,一辆汽车从甲地出发,以每小时y千米的速度行驶,行驶了z千米后到达乙地,求汽车从甲地到乙地所需的时间。

2. 答案:(1)0.6小时(2)z/ y 小时八、课后反思及拓展延伸1. 反思:本节课通过实际情景引入,让学生学会运用分式方程解决实际问题,提高了学生的数学应用能力。

2. 拓展延伸:(1)让学生思考:分式方程在实际生活中的其他应用。

(2)引导学生研究:如何求解更复杂的分式方程。

2024年上海市初三中考数学冲刺复习专题3 分式与二次根式核心知识点精讲含答案

2024年上海市初三中考数学冲刺复习专题3  分式与二次根式核心知识点精讲含答案

专题03分式与二次根式核心知识点精讲1.了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2.利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.考点1:分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A=0时,分式的值为零.考点2:分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.考点3:分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.考点4:二次根式的主要性质0(0)a≥≥;2.2(0)a a=≥;(0)||(0)a aaa a≥⎧==⎨-<⎩;4.00)a b=≥≥,;5.00)a b=≥>,.>.1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.【题型1:分式的有关概念及性质】【题型2:分式的运算】【题型3:分式方程及其应用】【题型4:二次根式的主要性质】因数或因式;被开方数的因数是整数,因式是整式.【题型5:二次根式的运算】1.下列各式:3a ,7a b +,2212x y +,5,11x -,8x m 中,分式有().A .1个B .2个C .3个D .4个【答案】C【分析】根据分式的定义,逐一判断即可解答.本题主要考查了分式的定义,熟练掌握分式的定义是解题的关键.【详解】解:下列各式:3a ,7a b +,2212x y +,5,11x -,8x m 中,分式有:3a,11x -,8x m 故选:C .2.若分式2321x x x --+的值为正数,则x 的取值范围是()A .3x >B .3x <且1x ≠C .3x <D .13x <<【答案】B【分析】根据题意可得3010x x ->⎧⎨-≠⎩,然后解这两个不等式组即可求出结论.【详解】解∶()2233211x x x x x --=-+-,∵分式2321x x x --+的值为正数,∴3010x x ->⎧⎨-≠⎩,解得3x <且1x ≠.故选∶B .【点睛】此题考查的是根据分式的值的取值范围,求字母的取值范围,掌握两数相除,同号得正,异号得负,并把绝对值相除是解题的关键.3.若把分式3x y xy+中的x 与y 都扩大3倍,则所得分式的值()A .缩小为原来的13B .缩小为原来的19C .扩大为原来的3倍D .不变【答案】A 【分析】本题考查分式的基本性质.根据分式的基本性质即可求出答案.【详解】解:33333133333x y x y xy xyx y x y x y xy ++=⋅⨯⨯+⋅+==,故选:A .则()2820401000x x +-≤,解得25x ≤,故答案为围棋最多可买25副.。

分式方程教案 分式方程数学教案(精选6篇)

分式方程教案 分式方程数学教案(精选6篇)

分式方程教案分式方程数学教案(精选6篇)解分式方程练习题篇一分式方程的教学设计分式方程的教学设计教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。

教学重点和难点重点:列分式方程解应用题。

难点:根据题意,找出等量关系,正确列出方程。

教学过程设计一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x。

解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。

若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系。

答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0。

5小时。

请同学依据上述等量关系列出方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 分式方程及其应用专讲
【学习目标】
1.掌握分式的概念,会解可化为一元一次方程的分式方程;
2.体验和学习应用分式方程.
3.熟练运用分式方程解题,能准确找出题中的等量关系。

【知识要点】
1.分式方程的概念:
字母里面有未知数的方程.
2.分式方程的解法:
(1)去分母:将分式方程两边都乘以最简公分母,化分式方程为整式方程;
(2)解整式方程;
(3)验根
3.增根:使分式方程中分母为0的根,叫做方程的增根,应舍去.
【经典例题】
例1 解方程
(1)2235211787x x x x x x x ----=----+ (2)x
x x x -=-+-3231
例2 解方程
(1)22416222-+=--+-x x x x x (2)()()
365212222-=+----x x x x x x x
(3)9
6999624822222+--=-++++x x x x x x x x (4)61514171-+-=-+-x x x x
例3 (1)a 为何值时,方程
3
23-+=-x a x x 会产生增根?
例4 .甲、乙两地相距50千米,A 骑自行车,B 乘汽车同时从甲城出发去乙城,已知汽车的速度是自行车速度的2.5倍,B 中途休息了半个小时,还比A 早到2小时,求A 和B 两人的速度?
例5.轮船顺水航行100千米所需的时间和逆水航行80千米所需的时间相同,已知水流速度 为2千米/小时,求船在静水中的速度。

例6.某工程甲、乙两队合做2天完成全工程的3
1,甲队独做所需天数是乙队独做所需天数的2倍,现由甲队先做4天后,甲、乙合做2天,余下的由乙队独做,共需几天完工?
【经典练习】
1.下列方程:①153=-x ;②23=x ;③2151=++x x ;④522=+x
x 是分式方程的有( ) A 、①② B 、②③ C 、③④ D 、②③④
2.已知
x x --424与5
4--x x 的值互为倒数,x 的值为( ) A 、-1 B 、0 C 、2
1 D 、1 3.方程x x x +-=+333的解的情况为( ) A 、3=x B 、3-=x C 、解为除-3以外的任意数 D 、无解
4.方程5
1222-=x x 的解是 . 5.分式方程03
32=--x x x 的增根是 . 6.若分式方程
424-+=-x a x x 有增根,则=a . 7.解方程
(1)
91232312-=--+x x x (2)6273232+=-+x x
(3)
4
1441441222-=++-+-x x x x x (4) 81614121---=---x x x x
8 .当a 取何值时,方程
3
59342+=-+-x x ax x 会产生增根.
9.一个十位数字是6的两位数,若把个位数字与十位数字对调,所得数与原数之比为7:4 求原数。

10.A 、B 两地相距80千米,一辆公共汽车从A 地出发,开往B 地,2小时后,又从A 地同方向开出一辆小汽车,小汽车的速度是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B 地,求两车的速度。

11.沿河两城市相距180千米,某船顺水航行4小时可抵达,如果水流速度每小时8千米,船在静水中每小时能行多少千米?逆水返回需要几个小时?
分式方程及其应用作业
1.方程
01
4=--x x 的根是 . 2.方程22
1123=+--x x 的根是=x . 3.当x 时,分式873++x x 的值等于1. 4.若023=-y x ,则()()=-+y x y x : .
5.方程()01112=--+x x 有增根,则增根是 .
6.解方程
(1)
91232312-=--+x x x (2)6
272332+=++x x
(3)
()()13112312=---+---x x x x x x (4)51314121---=---x x x x
7.轮船顺水航行80千米所需的时间和逆水航行60千米所需时间相同,已和船在静水中的速度是21千米/小时,求水流的速度。

8.甲、乙两队合做一件工作,4天后,甲因另有任务,余下的工作由乙单独完成还需16天,甲、乙两人单独完成这项工作所用的时间的比为5:4,问甲、乙单独完成这项工作各需要几天?。

相关文档
最新文档