北师大版八年级数学下《平行四边形的判定(1)》教案1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 平行四边形的判定

第1课时利用四边形边的关系判定平行四边形

1.掌握平行四边形的判定定理;(重点)

2.综合运用平行四边形的性质与判定定理1、2解决问题.(难点)

一、情境导入

我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:

1.两组对边分别平行且相等;

2.两组对角分别相等;

3.两条对角线互相平分.

那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?

二、合作探究

探究点一:两组对边分别相等的四边形是平行四边形

如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.试探究四边形DAEF是平行四边形.

解析:根据题中的等式关系可推出两组对边分别相等,从而可判断四边形DAEF为平行

四边形.

解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF,∴AC=DF=AE,同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).

方法总结:利用两组对边分别相等的四边形是平行四边形时,证明边相等,可通过三角形全等解决.

变式训练:见本课时练习“课堂达标训练”第1题

探究点二:一组对边平行且相等的四边形是平行四边形

如图,E、F是四边形ABCD的对角线

AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.

解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF =CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.

方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.

变式训练:见本课时练习“课堂达标训练”第8题

三、板书设计

1.平行四边形的判定定理(1)

两组对边分别相等的四边形是平行四边形.

2.平行四边形的判定定理(2)

一组对边平行且相等的四边形是平行四边形.

在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.

相关文档
最新文档