二次函数典型应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数典型应用题Revised on November 25, 2020
新启点教育学科辅导讲义
年级:姓名:辅导科目:
授课内容
教学内容
二次函数应用题分类
二次函数是初中学段的难点,学生学起来觉的比较的吃力,可以把应用问题进行分类:
第一类、利用待定系数法
对于题目明确给出两个变量间是二次函数关系,并且给出几对变量值,要求求出函数关系式,并进行简单的应用。解答的关键是熟练运用待定系数法,准确求出函数关系式。
例1.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
x(十万
0 1 2 …
元)
y 1 …
(1)求y与x的函数关系式;
(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x (十万元)的函数关系式;
(3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大
二、分析数量关系型
题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。解答的关键是认真分析题意,正确写出数量关系式。
例2.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。
物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千
克。在销售过程中,每天还要支出其它费用500元(天数不足一天
时,按整天计算)。设销售单价为x元,日均获利为y元。
(1)求y关于x的二次函数关系式,并注明x的取值范围;
(2)将(1)中所求出的二次函数配方成
的形式,写出顶点坐标;在图2所示的坐标系中画出草图;观察图
象,指出单价定为多少元时日均获得最多,是多少
(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,
哪一种获总利较多,多多少
三、建模型
即要求自主构造二次函数,利用二次函数的图象、性质等解决实际问题。这类问题建模
要求高,有一定难度。
例3.如图4,有一块铁皮,拱形边缘呈抛物线状,MN=4dm ,抛物线顶点处到边MN 的距离
是4dm ,要在铁皮上截下一矩形ABCD ,使矩形顶点B 、C 落在边MN 上,A 、D 落在抛物线
上,问这样截下去的矩形铁皮的周长能否等于8dm
例4..某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y (万件)与销售单价x (元)存在如图所示的一次函数关系,每年销售该种产品的总开支z (万元)(不含进价)与年销量y (万件)存在函数关系z =10y +.
(1)求y 关于x 的函数关系式;
(2)度写出该公司销售该种产品年获利w (万元)关于销售单价x (元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x 为何值时,年获利最大最大值是多少
(3)若公司希望该产品一年的销售获利不低于万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围
在此条件下要使产品的销售量最大,你认为销售单价应定为多少元
四:利润最大(小)值问题
知识要点:
二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式
a
b a
c a b x a y 44)2(2
2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).
即当0>a 时,函数有最小值,并且当a
b x 2-=,a b a