二次函数典型应用题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数典型应用题Revised on November 25, 2020

新启点教育学科辅导讲义

年级:姓名:辅导科目:

授课内容

教学内容

二次函数应用题分类

二次函数是初中学段的难点,学生学起来觉的比较的吃力,可以把应用问题进行分类:

第一类、利用待定系数法

对于题目明确给出两个变量间是二次函数关系,并且给出几对变量值,要求求出函数关系式,并进行简单的应用。解答的关键是熟练运用待定系数法,准确求出函数关系式。

例1.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:

x(十万

0 1 2 …

元)

y 1 …

(1)求y与x的函数关系式;

(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x (十万元)的函数关系式;

(3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大

二、分析数量关系型

题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。解答的关键是认真分析题意,正确写出数量关系式。

例2.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。

物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千

克。在销售过程中,每天还要支出其它费用500元(天数不足一天

时,按整天计算)。设销售单价为x元,日均获利为y元。

(1)求y关于x的二次函数关系式,并注明x的取值范围;

(2)将(1)中所求出的二次函数配方成

的形式,写出顶点坐标;在图2所示的坐标系中画出草图;观察图

象,指出单价定为多少元时日均获得最多,是多少

(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,

哪一种获总利较多,多多少

三、建模型

即要求自主构造二次函数,利用二次函数的图象、性质等解决实际问题。这类问题建模

要求高,有一定难度。

例3.如图4,有一块铁皮,拱形边缘呈抛物线状,MN=4dm ,抛物线顶点处到边MN 的距离

是4dm ,要在铁皮上截下一矩形ABCD ,使矩形顶点B 、C 落在边MN 上,A 、D 落在抛物线

上,问这样截下去的矩形铁皮的周长能否等于8dm

例4..某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y (万件)与销售单价x (元)存在如图所示的一次函数关系,每年销售该种产品的总开支z (万元)(不含进价)与年销量y (万件)存在函数关系z =10y +.

(1)求y 关于x 的函数关系式;

(2)度写出该公司销售该种产品年获利w (万元)关于销售单价x (元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x 为何值时,年获利最大最大值是多少

(3)若公司希望该产品一年的销售获利不低于万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围

在此条件下要使产品的销售量最大,你认为销售单价应定为多少元

四:利润最大(小)值问题

知识要点:

二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式

a

b a

c a b x a y 44)2(2

2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).

即当0>a 时,函数有最小值,并且当a

b x 2-=,a b a

c y 442-=最小值; 当0

b x 2-=,a b a

c y 442-=最大值. 如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当

a

b x 2-=,a b a

c y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,

c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;

如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,

c bx ax y ++=222最小.

商品定价一类利润计算公式:

经常出现的数据:商品进价;商品售价1;商品销售量;商品售价2;商品定价;(商品调

价);商品销售量1;销售量变化率;其他成本。

a 4

b a

c 4)a 2b x (a y 2

2-++=

件,那么他把售价定为多少时,才能使每天获利最大每天最大利润是多少

6.在黄州服装批发市场,某种品牌的时装当季节即将来临时,价格呈上升趋势;设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售;(1)试建立销售价y 与周次x 之间的关系式;(2)若这种时装每件进价Z 与周次x 之间的关系为Z=(x8)2+12(1≤x ≤16,且x 为整数),试问该服装第几周出售时,每件销售利润最大最大利润是多少

二次函数经典应用题练习题

1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.

(1)求商家降价前每星期的销售利润为多少元

(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元最大销售利润是多少

2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)

(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元

(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高最高利润是多少

3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.

(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).

(2)当x 为何值时,S 有最大值并求出最大值.

(参考公式:二次函数(),当时,) 4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:

月份 1月 5月

销售量 万台 万台

(1)求该品牌电视机在去年哪个月销往农村的销售金额最大最大是多少

(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数).

(参考数据:34 5.831≈,35 5.916≈,37 6.083≈,38 6.164≈)

5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.

(1)求一次函数y kx b =+的表达式;

2y ax bx c =++0a ≠2b x a

=-2

44ac b y a

-=最大(小)值

相关文档
最新文档