高中物理金属杆在导轨上运动的三类问题
电磁感应中的“杆+导轨”类问题(3大模型)(解析版)
电磁感应中的“杆+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] 如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12m v m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。
[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析开始时a =g sin α,B L[变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
高三物理总复习:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧归类例析
电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】: 【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv回路中的感应电流I =E R +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R =ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。
【内化模型】题型一(v 0≠0) 题型二(v 0=0) 题型三(v 0=0) 题型四(v 0=0) 说明 杆cd 以一定初速度v 0在光滑水平轨道上滑动,质量为m ,电阻不计,两导轨间距为L 轨道水平光滑,杆cd质量为m ,电阻不计,两导轨间距为L ,拉力F 恒定倾斜轨道光滑,倾角为α,杆cd 质量为m ,两导轨间距为L 竖直轨道光滑,杆cd质量为m ,两导轨间距为L示意图力学观点 杆以速度v 切割磁感线产生感应电动势E =BLv ,电流I =BLvR ,安培力F =BIL =B 2L 2v R 。
电磁感应重点难点易错点——“导轨+杆”模型问题
人教版必修三电磁感应中的“导轨+杆”模型问题类型 “电—动—电”型“动—电—动”型示意图已知量棒ab 长L ,质量m ,电阻R ;导轨光滑水平,电阻不计 棒ab 长L ,质量m ,电阻R ;导轨光滑,电阻不计过程分析S 闭合,棒ab 受安培力F =BLER,此时加速度a =BLEmR,棒ab 速度v↑→感应电动势E ′=BLv ↑→电流I ↓→安培力F =BIL ↓→加速度a ↓,当安培力F =0时,a =0,v 最大,最后匀速运动棒ab 释放后下滑,此时加速度a =gsin α,棒ab 速度v ↑→感应电动势E =BLv ↑→电流I =ER ↑→安培力F =BIL ↑→加速度a ↓,当安培力F =mgsin α时,a =0,v 最大,最后匀速运动能 量 转 化 通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动 形式 变加速运动 变加速运动 最终 状态匀速运动,vm =E ′BL匀速运动vm =mgRsin αB2L2一、单棒问题1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv (2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动 (5)最终状态:匀速直线运动 (6)两个极值①v=0时,有最大加速度: ②a=0时,有最大速度:(7)能量关系 (8)动量关系Fm F mg a mμ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.(一)导轨竖直1、如图所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:甲乙(1)磁感应强度B的大小;(2)金属棒ab在开始运动的1.5 s内,通过电阻R的电荷量;(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量.2、如图所示,竖直放置的两根足够长平行金属导轨相距L,导轨间接有一定值电阻R,质量为m,电阻为r的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h时开始做匀速运动,在此过程中()A.导体棒的最大速度为2ghB.通过电阻R的电荷量为BLhR+rN MF3、如图2所示,电阻为R,其他电阻均可忽略,ef是一电阻可不计的水平放置的导体棒,质量为m,棒的两端分别与ab、cd保持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当导体棒ef从静止下滑一段时间后闭合开关S,则S闭合后()A.导体棒ef的加速度可能大于gB.导体棒ef的加速度一定小于gC.导体棒ef最终速度随S闭合时刻的不同而不同D.导体棒ef的机械能与回路内产生的电能之和一定守恒4、MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计.导轨所在平面与磁感应强度B为0.50T 的匀强磁场垂直.质量m为6.0×10-3kg、电阻为1.0Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R1.当杆ab达到稳定状态时以速率υ匀速下滑,整个电路消耗的电功率P为0.27W,重力加速度取10m/s2,试求速率υ和滑动变阻器接入电路部分的阻值R2.5、如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L1电阻不计。
高中 高考物理 金属杆在导轨上运动的三类问题
v0 沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为 q。下列
说法正确的是( )
A.金属棒在导轨上做匀减速运动
B.整个过程中电阻
R
上产生的焦耳热为mv20 2
C.整个过程中金属棒在导轨上发生的位移为BqRL D.整个过程中金属棒克服安培力做功为m2v02
[解析] 设某时刻金属棒的速度为 v,则此时的电动势 E =BLv,安培力 F 安=B2RL2v,由牛顿第二定律有 F 安=ma,则 金属棒做加速度减小的减速运动,选项 A 错误;由能量守恒 定律知,整个过程中,金属棒克服安培力做功等于电阻 R 和 金属棒上产生的焦耳热之和,即 W 安=Q=12mv02,选项 B 错误, D 正确;整个过程中通过金属棒的电荷量 q=Δ2RΦ=B2RS=B2LRx, 得金属棒在导轨上发生的位移 x=2BqLR,选项 C 错误。
|单杆在安培力与其他力共同作用下的运动
题型 单杆置于导轨上,导轨可以水平、倾斜、竖直放置,单杆在安培力与 简述 其他力共同作用下运动。
方 法 类型
水平导轨
倾斜导轨
竖直导轨
突破 结构
图
甲图中接电阻 R, 甲图中接电阻 R,
甲图中接电阻 R,乙图中
乙图中接电容器 乙图中接电容器
接电容器 C,竖直导轨光
高考研究(三)
金属杆在导轨上运动的三类问题
“杆+导轨”模型是电磁感应部分的重要题 型,也是高考的热点,这类题目物理过程比较复 杂,考查的知识点多,综合性较强,是复习中的 难点。“杆+导轨”模型又分为“单杆”型和“双 杆”型;导轨放置方式可分为水平、竖直和倾斜 三种情况。
|单杆仅在安培力作用下的运动
竖直导轨
法
甲图中:开始时 a 甲图中:开始时 a=
2021高考一轮复习热考题型专攻(四)金属杆在导轨上运动的问题
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
热考题型专攻(四)金属杆在导轨上运动的问题(45分钟100分)一、选择题(本题共8小题,每小题7分,共56分)1.如图所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直于纸面向里的匀强磁场中,磁感应强度为B。
电容器的电容为C,除电阻R外,导轨和导线的电阻均不计。
现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BLvC.电容器所带电荷量为CBLvD.为保持MN匀速运动,需对其施加的拉力大小为【解析】选C。
当导线MN匀速向右运动时,导线MN产生的感应电动势恒定,稳定后,电容器不充电也不放电,无电流产生,故电阻两端无电压,电容器两极板间电压U=E=BLv,所带电荷量Q=CU=CBLv,故A、B错误,C正确;MN匀速运动时,因无电流而不受安培力,故需对其施加的拉力为零,D错误。
2.(2017·宿州模拟)如图所示,水平光滑的平行金属导轨左端接有电阻R,匀强磁场B竖直向下分布在导轨所在空间内,质量一定的金属棒PQ垂直于导轨放置。
今使棒以一定的初速度v0向右运动,当其通过位置a、b时,速率分别为v a、v b,到位置c时棒刚好静止。
设导轨与棒的电阻均不计,a、b与b、c的间距相等,则金属棒在a→b与b→c的两个过程中下列说法中正确的是( )A.金属棒运动的加速度相等B.通过金属棒横截面的电量相等C.回路中产生的电能W ab<W bcD.金属棒通过a、b两位置时的加速度大小关系为a a<a b【解析】选B。
由F=BIL,I=,F=ma可得a=,由于速度在减小,故加速度在减小,A、D错误;由q=It,I=,E=n,可得q=,由于两个过程磁通量的变化量相同,故通过金属棒横截面的电量相等,B正确;由于克服安培力做的功等于产生的电能,由于安培力越来越小,故第二个过程克服安培力做的功小于第一个过程,C错误。
高三物理复习课件:“二维分析法”解决“金属棒在导轨上的运动”问题
高三物理复习课件:“二 维分析法”解决“金属棒 在导轨上的运动”问题
g=10m/s2,导轨电阻不计。求: (1)ab在磁场中运动的速度大小v; (2)在t1=0.1s时刻和t2=0.25s时刻电阻R1的电功率之比;
变式2.如图甲所示,两根完全相同的光滑平行导轨固定,每根导轨均由两
段与水平成θ=30°的长直导轨和一段圆弧导轨平滑连接而成,导轨两端均 连接电阻,阻值R1=R2=2Ω,导轨间距L=0.6m。在右侧导轨所在斜面的矩形 区域M1M2P2P1内分布有垂直斜面向上的磁场,磁场上下边界M1P1、M2P2的 距离d=0.2m,磁感应强度大小随时间的变化规律如图乙所示。t=0时刻,在 右侧导轨斜面上与M1P1距离s=0.1m处,有一根阻值r=2Ω的从属棒ab垂直于 导轨由静止释放,恰好独立匀速通过整个磁场区域,取重力加速度
道的间距,并与轨道形成闭合回路。整个装置处在垂直斜面向上、
磁感应强度为B的匀强磁场中,若锁定金属棒ab不动,使金属棒 cd在与其垂直且沿斜面向上的恒力F=2mg作用下,沿轨道向上做 匀速运动。重力加速度为g;设金属棒cd做匀速运动中的某时刻 t0=0,恒力大小变为F′=1.5mg,方向不变,同时解锁、静止释 放金属棒ab,直到t时刻金属棒ab开始做匀速运动;求: (1)t时刻以后金属棒ab的热功率Pab (2) 0~t时刻内通过金属棒ab的电量q
g=10m/s2,导轨电阻不计。求: (1)ab在磁场中运动的速度大小v; (2)在t1=0.1s时刻和t2=0.25s时刻电阻R1的电功率之比;
电磁感应中的“三类模型问题”
第2讲|电磁感应中的“三类模型问题”┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄考法学法电磁感应的动力学和能量问题是历年高考的热点和难点,考查的题型一般包括“单杆”模型、“双杆”模型或“导体框”模型,考查的内容有:①匀变速直线运动规律;②牛顿运动定律;③功能关系;④能量守恒定律;⑤动量守恒定律。
解答这类问题时要注意从动力学和能量角度去分析,根据运动情况和能量变化情况分别列式求解。
用到的思想方法有:①整体法和隔离法;②全程法和分阶段法;③条件判断法;④临界问题的分析方法;⑤守恒思想;⑥分解思想。
模型(一)电磁感应中的“单杆”模型类型1“单杆”——水平式物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒ab的质量为m,初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电阻不计动态分析设运动过程中某时刻测得导体棒ab的速度为v,由牛顿第二定律知导体棒ab的加速度为a=Fm-B2L2vmR,a、v同向,随速度的增加,导体棒ab的加速度a减小,当a=0时,v最大,I=BL v mR不再变化收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化[例1](2018·安徽联考)如图所示,光滑平行金属导轨P Q、MN固定在光滑绝缘水平面上,导轨左端连接有阻值为R的定值电阻,导轨间距为L,有界匀强磁场的磁感应强度大小为B、方向竖直向上,边界ab、cd均垂直于导轨,且间距为s,e、f分别为ac、bd的中点,将一长度为L、质量为m、阻值也为R的金属棒垂直导轨放置在ab左侧12s处。
现给金属棒施加一个大小为F、方向水平向右的恒力,使金属棒从静止开始向右运动,金属棒向右运动过程中始终垂直于导轨并与导轨接触良好。
当金属棒运动到ef位置时,加速度刚好为零,不计其他电阻。
求:(1)金属棒运动到ef 位置时的速度大小;(2)金属棒从初位置运动到ef 位置,通过金属棒的电荷量; (3)金属棒从初位置运动到ef 位置,定值电阻R 上产生的焦耳热。
导体棒在滑轨上运动问题的归类
导体棒在滑轨上运动问题的归类题型一单杆模型(只受安培力作用)例题1如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨所在平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.t=0时,将开关S由1掷到2.若分别用U、F、q和v表示电容器两端的电压、导体棒所受的安培力、通过导体棒的电荷量和导体棒的速度.则下列图象表示这些物理量随时间变化的关系中可能正确的是()A.B.C.D.例题2如图所示,在磁感应强度B=1.0 T的匀强磁场中,金属杆PQ在外力F作用下在粗糙U型导轨上以速度向右匀速滑动,两导轨间距离L=1.0 m,电阻R=3.0,金属杆的电阻r=1.0,导轨电阻忽略不计,则下列说法正确的是A、通过R的感应电流的方向为由d到aB.金属杆PQ切割磁感线产生的感应电动势的大小为2.0 VC. 金属杆PQ受到的安培力大小为0.5 ND.外力F做功大小等予电路产生的焦耳热题型2单杆模型(在外力和安培力作用下运动)例题1如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0. 5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω.一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0. 8T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,(重力加速度g取10m/s2,sin37°= 0.6)求:(1)此后导体棒MN的运动速度;(2)小灯泡消耗的电功率是多少?例题2如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。
导轨上端接有一平行板电容器,电容为C。
导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。
在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。
单杆金属棒在导轨上滑动问题归类例析
单杆金属棒在导轨上滑动问题归类例析单金属杆在匀强磁场中沿导轨滑动问题,存在着由浅入深、由简单到复杂的多种情形,对这一类问题的分析,要坚持层层深入的原则,深刻认识物理问题的本质,使问题变成程序化,可达到触类旁通之效。
“滑轨启动过程”的循环制约循环制约最终状态趋于稳定1.一根棒,无其他力例1.图3所示,单杆ab外面接一电阻...V o在..,单杆ab以一定的初速度轨道上运动,分析杆的运动状态.2、一根棒,受其他力例2.如图,电阻为R,杆长为L,让L紧贴两金属导轨从静止沿光滑金属杆竖直滑下,讨论杆下滑的运动状态(杆无限长)。
三综合练习1.杆与电阻(或等效电阻)串联:1.如图所示,光滑水平滑轨处在竖直方向的匀强磁场中,磁感应强度为B,质量为m的导体棒以初速度v0向右运动,除了滑轨左端接的电阻R外其余电阻不计,从导体棒开始运动到最终稳定,回路中产生的焦耳热为Q,则()A、Q与B有关而与R无关B、Q与B无关而与R有关C、Q与B和R均无关D、Q与B和R均有关2.如图所示,单杆外接一电阻,单杆在恒定外力作用下由静止开始运动,整个装置处于水平面内,且导轨光滑,则导轨的运动状态为()A.一直向右匀速运动;B.一直向右匀加速运动;C.先加速运动后匀速运动;D.先加速后减速运动.2.如图所示,竖直平面内的光滑导轨上端接有电阻R,其余电阻均不计,导轨间距为L,磁感应强度为B的匀强磁场垂直于导轨平面,质量为m的导体棒与导轨保持良好接触并由静止释放,则其最大速度为多少?3.如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂于轨道平面的匀强磁场,磁感应强度为B。
一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则……()A.如果B增大,v m将变大B.如果α增大,v m将变大C.如果R增大,v m将变大D.如果m增大,v m将变大3如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r= 0.10Ω/m,导轨的端点P、Q用电阻可忽略的导线相连,两导轨间的距离l = 0.20m 。
高中物理单金属棒在导轨上的运动专题辅导
高中物理单金属棒在导轨上的运动金属棒在导轨上的运动是历年高考的热点,出题频率很高,其中心问题是“收尾速度”——稳定状态的速度问题. 在这类问题中,导体一般不做匀变速运动,而是经历一个动态变化的过程后趋于一个稳定状态(个别情况可能没有稳定状态). 解决这类问题的思路是:导体受力运动→感应电动势→感应电流→导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化……如此相互制约,导体最后达到稳定运动状态.一、单金属棒在水平导轨上稳定运动状态问题例1、如图1所示,两光滑平行导轨水平放置在匀强磁场中,磁场与导轨所在平面垂直,金属棒AB 可沿导轨自由移动,导轨一端跨接一个定值电阻R ,金属棒和导轨电阻不计。
现将金属棒沿导轨由静止向右拉,若保持拉力恒定,经时间t 1后速度为v ,加速度为a 1,最终速度为2v ;若保持拉力的功率恒定,经过时间t 2后,速度为v ,加速度为a 2,最终也以2v 速度做匀速运动,则( )A. t 2<t 1B. t 2=t 1C. a 2=2a 1D. a 2=3a 1解析:拉力恒定时,当金属棒速度为v 时,AB 切割磁感线产生的感应电动势为:E 1=BL v通过AB 的感应电流为:RBLv R E I ==AB 棒所受到的安培力为:R v L B BLv F 221== AB 棒受拉力F 和安培力F 1的作用,金属棒的加速度为:mF F a 11-=金属棒最终速度为2v ,此时拉力F 与安培力平衡,有:Rv 2BL BL F ⋅= 所以解得:mRv L B a 221= 拉力的功率恒定,则AB 棒所受到的拉力和安培力均为变力,当最终速度为2v 时,拉力和安培力相等,AB 棒做匀速运动,则有:Rv 2L B v 2P F 22⋅== 当AB 棒速度为v 时,AB 棒运动的加速度为:mR v L B v P m F F a 222-='-= 所以解得:mRv L B 3a 222= 比较mR v L B a 221=和mR v L B 3a 222=可得:12a 3a =,所以选项D 正确.因a 2=3a 1,所以在功率一定时,AB 棒速度由零变为v 所用时间t 2较短,而在拉力F 恒定时,因a 1较小,AB 棒速度由零增为v ,所用时间t 1较长,则t 2<t 1,所以选项A 正确.点评:解答本题的难点是分析金属棒达到稳定速度的条件. 当拉力恒定时,拉力等于安培力,金属棒速度为最大,并达到稳定状态;当拉力功率恒定时,达到稳定状态时有.v2P F =二、单金属棒在竖直导轨上稳定运动状态问题例2、图2中MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计.导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直. 质量m 为kg 100.63-⨯、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触. 导轨两端分别接有滑动变阻器R 和阻值为3.0Ω的电阻R 1. 当杆ab 达到稳定状态时以速率v 匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率v 和滑动变阻器接入电路部分的阻值R 2.解析:由能量守恒定律有,mgv=P ,代入数据解得:v=4.5m/s ,又E=BLv ,设电阻R 1与R 2的并联电阻为R ,ab 棒的电阻为r ,有21R 1R 1R 1+= 根据闭合电路欧姆定律有:rR E I +=,而IE P =,代入数据解得:.0.6R 2Ω=三、单金属棒在斜面导轨上稳定运动状态问题例3、如图3所示,在一对平行光滑的金属导轨的上端连接一阻值为R 的固定电阻,两导轨所决定的平面与水平面成30°角. 今将一质量为m ,长为L 的导体棒AB 垂直放于导轨上,并使其由静止开始下滑,已知导体棒电阻为r ,整个装置处于垂直于导轨平面的匀强磁场中,磁感应强度为B ,求导体棒最终下滑的速度及电阻R 最终发热功率分别为多少?解析:导体棒由静止释放后,加速下滑,受力如图4所示,导体棒中产生的电流逐渐增大,所受安培力(沿导轨向上)逐渐增大,根据牛顿第二定律有ma F 30sin mg =-︒ 所以其加速度mBIL 30sin g m BIL 30sin mg a -︒=-︒=逐渐减小,当a=0时,导体棒开始做匀速运动,其速度也达到最大.由平衡条件得mgsin30°-BIL=0,其中m BLv E ,rR E I =+= 所以可解得:22m L B 2)r R (mg v += R 发热功率为:222222L B 4R g m R )BL 2mg (R I P ===。
高考物理必考的十大热点问题破解之道电磁感应问题破解之道滑棒导轨巧归类讲解
电磁感应问题破解之道——滑棒导轨巧归类金属棒在导轨上运动的问题既可以考查电磁感应知识,又可以考查电路知识,还可以考查力学规律。
因此是历年高考的热点,特别是在近几年高考中频繁出现。
这类问题的关键点就是确定金属棒在导轨上运动时回路中电源的电动势,再确定金属棒所的安培力,运用相应的规律列方程求解。
这类问题看似各不相同,但总结来只有四类。
下面分别举例说明。
1、单棒在等宽导轨上运动这类问题因为是单棒切割,所以只有一个电源,就是这个导体棒。
电源的电动势Blv E =,导体棒受到安掊力F = BI l ,达到稳定状态后电动势E 和安培力F 都是一定值。
例1、(2015年海南卷)如图,两平行金属导轨位于同一水平面上,相距l ,左端与一电阻R 相连;整个系统置于匀强磁场中,磁感应强度大小为B ,方向竖直向下。
一质量为m 的导体棒置于导轨上,在水平外力作用下沿导轨以速度v 匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。
已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g ,导轨和导体棒的电阻均可忽略。
求(1)电阻R 消耗的功率; (2)水平外力的大小。
解析(1)导体切割磁感线运动产生的电动势为E BLv =, 根据欧姆定律,闭合回路中的感应电流为EI R=电阻R 消耗的功率为2P I R =,联立可得222B L v P R=(2)对导体棒受力分析,受到向左的安培力和向左的摩擦力,向右的外力,三力平衡,故有F mg F μ+=安,BlvF BIl B l R==⋅⋅安,故22B l v F mg R μ=+2、 单棒在不等宽导轨上运动这类问题因为也是单棒切割,所以也是只有一个电源,就是这个导体棒。
电源的电动势Blv E ,导体棒受到安掊力F = BI l ,因为导轨的宽度在发生变化,所以达到稳定状态后电动势E 和安培力F 都是随l 的变化而变化的。
例2、[2014·安徽卷] (16分)如图1所示,匀强磁场的磁感应强度B 为0.5 T ,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“A”形状的光滑金属导轨的MPN (电阻忽略不计),MP 和NP 长度均为2.5 m ,MN 连线水平,长为3 m .以MN 中点O 为原点、OP 为x 轴建立一维坐标系Ox .一根粗细均匀的金属杆CD ,长度d 为3 m ,质量m 为1 kg 、电阻R 为0.3 Ω,在拉力F 的作用下,从MN 处以恒定速度v =1 m/s 在导轨上沿x 轴正向运动(金属杆与导轨接触良好).g 取10 m/s 2.图1图2(1)求金属杆CD 运动过程中产生的感应电动势E 及运动到x =0.8 m 处电势差U CD ; (2)推导金属杆CD 从MN 处运动到P 点过程中拉力F 与位置坐标x 的关系式,并在图2中画出Fx 关系图像;(3)求金属杆CD 从MN 处运动到P 点的全过程产生的焦耳热. 23.[答案] (1)-0.6 V (2)略 (3)7.5 J[解析] (1)金属杆C D 在匀速运动中产生的感应电动势E =Blv (l =d ),E =1.5 V(D 点电势高)当x =0.8 m 时,金属杆在导轨间的电势差为零.设此时杆在导轨外的长度为l 外,则l 外=d -OP -xOPdOP =MP 2-⎝ ⎛⎭⎪⎫MN 22得l 外=1.2 m由楞次定律判断D 点电势高,故CD 两端电势差U CB =-Bl 外v, U CD =-0.6 V(2)杆在导轨间的长度l 与位置x 关系是l =OP -x OP d =3-32x对应的电阻R 1为R 1=ld R ,电流I =Blv R 1杆受的安培力F 安=BIl =7.5-3.75x 根据平衡条件得F =F 安+mg sin θF =12.5-3.75x (0≤x ≤2)画出的Fx 图像如图所示.(3)外力F 所做的功W F 等于Fx 图线下所围的面积,即W F =5+12.52×2 J =17.5 J 而杆的重力势能增加量ΔE p =mg sin θ 故全过程产生的焦耳热Q =W F -ΔE p =7.5 J3、 双棒在等宽导轨上运动这类问题因为双棒都切割,所以有两个电源。
高中物理电磁感应中的导轨上的导体棒问题
高中物理电磁感应中的导轨上的导体棒问题电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。
解决电磁感应中的导轨上的导体棒问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。
想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。
一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
(一)含电源闭合电路的导体棒问题例1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒ab,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。
当闭合电键后,求金属棒可达到的最大速度。
图1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。
解析:闭合电键后,金属棒在安培力的作用下向右运动。
当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。
但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。
金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例2、如图2,光滑导体棒bc固定在竖直放置的足够长的平行金属导轨上,构成框架abcd,其中bc棒电阻为R,其余电阻不计。
一质量为m且不计电阻的导体棒ef水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。
(物理)高中物理法拉第电磁感应-导轨问题全面总结
1 由动能定理: smg sin 0 - W -sJtmg cos 0=-mv 2 - 0
2
1
-mv
2
+W
s= 2
=2.Sm
mg(sin 0-µcos 0)
(3) 通过 ab 的电荷噩
q
=l.11t
=— BL—s , R
代入数据得 q=2
C
【例2】如图所示,质朵m10= l . kg, 电阻R1 =0.30 , 长 度l0= .m 4 的导体棒b a 横放在U型金属框架上。框架
当b a 运动到某处时,框架开始运动。设框架 与水平面间最大静陎擦力等于滑动摩擦力,g取Ol m/s2.
8
"
.\/'
.v
N'
(1)求框架开始运动时 b a 速度v的大小;
(2)从ab开始运动到框架开始运动的过程中,MN上产生的热垃Q=O. lJ, 求该过程ab位移x的大小。
【解析】: (1)ab对框架的压力F; = m 1g
p
b
【解析】(1)ab运动切割磁感线产生感应电动势E, 所以ab相当千电源,与外电阻R构成回路。
:• Uab= R BLV =-2 BLV
R+1/2
3
(2) 若无外力作用则ab在安培力作用下做减速运动,最终静止。动能全部转化为电热。Q =-mv2 . 2
由动址定理得:Ft =mv即BILt =mv,
架的其他部分电阻不计, 框架足够长垂直于框平面的方向存在向上的匀强磁场, 磁感应强度B=2Ta. b为金 属杆,其长度为L=04. m, 质址m=08. kg, 电阻r=0.50, 棒与框架的动脖擦因数µ = DS. . 由静止开始下滑, 直到速度达到最大的过程中,上端电阻R。产生的热品Oo=03. 75J(已知sin37° =06. , cos37 ° =08. ; g取10m / s2)求: (1) 杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离; (3) 在该过程
16 导体棒在导轨上运动问题 -高考物理三轮冲刺(解析版)
预测16 导体棒在导轨上运动问题概率预测☆☆☆☆☆题型预测选择题☆☆☆☆计算题☆考向预测考查集中在楞次定律,法拉第电磁感定律的应用,电磁感应中的图象问题、电路问题、动力学和能量问题,题型以选择题为主;计算题常以“导体棒”切割磁感线为背景,还可能会涉及动量的问题。
1.常见单杆情景及解题思路常见情景(导轨和杆电阻不计,以水平光滑导轨为例)过程分析三大观点的应用单杆阻尼式设运动过程中某时刻的速度为v,加速度为a,a=B2L2vRm,a、v反向,导体棒做减速运动,v↓⇒a↓,当a=0时,v=0,导体棒做加速度减小的减速运动,最终静止动力学观点:分析加速度能量观点:动能转化为焦耳热动量观点:分析导体棒的位移、通过导体棒的电荷量和时间单杆发电式(v0=0)设运动过程中某时刻棒的速度为v,加速度为a=Fm-B2L2vmR,F恒定时,a、v同向,随v的增加,a减小,当a=0时,v最大,v m=FRB2L2;a恒定时,F=B2L2atR+ma,F与t为一次函数关系动力学观点:分析最大加速度、最大速度能量观点:力F做的功等于导体棒的动能与回路中焦耳热之和动量观点:分析导体棒的位移、通过导体棒的电荷量含“源”电动式(v0=0)开关S闭合,ab棒受到的安培力F=BLEr,此时a=BLEmr,速度v↑⇒E感=BLv↑⇒I↓⇒F=BIL↓⇒加速度a↓,当E感=E时,动力学观点:分析最大加速度、最大速度能量观点:消耗的电能转化为动能与回路中的焦耳热v最大,且v m=EBL动量观点:分析导体棒的位移、通过导体棒的电荷量含“容”无外力充电式充电电流减小,安培力减小,a 减小,当a=0时,导体棒匀速直线运动能量观点:动能转化为电场能(忽略电阻)含“容”有外力充电式(v0=0) 电容器持续充电F-BIL=ma,I=ΔQΔt,ΔQ=CΔU=CBLΔv,a=ΔvΔt,得I恒定,a恒定,导体棒做匀加速直线运动动力学观点:求导体棒的加速度a=Fm+B2L2C1.常见双杆情景及解题思路常见情景(以水平光滑导轨为例)过程分析三大观点的应用双杆切割式杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相同的速度匀速运动.对系统动量守恒,对其中某杆适用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量不等距导轨杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动,所围的面积不变.v1L1=v2L2动力学观点:求加速度能量观点:求焦耳热动量观点:动量不守恒,可分别用动量定理联立末速度关系求末速度双杆切割式a PQ减小,a MN增大,当a PQ=a MN时二者一起匀加速运动,存在稳定的速度差动力学观点:分别隔离两导体棒,F-B2l2ΔvR总=m PQ aB2l2ΔvR总=m MN a,求加速度1、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.①求电荷量或速度:B I LΔt=mv2-mv1,q=IΔt.②求位移:-B 2L 2v Δt R 总=0-mv 0,即-B 2L 2xR 总=0-mv 0.③求时间:(i)-B I L Δt +F 其他Δt =mv 2-mv 1 即-BLq +F 其他·Δt =mv 2-mv 1已知电荷量q ,F 其他为恒力,可求出变加速运动的时间. (ii)-B 2L 2v ΔtR 总+F 其他·Δt =mv 2-mv 1,v Δt =x .若已知位移x ,F 其他为恒力,也可求出变加速运动的时间.2.对于不在同一平面上运动的双杆问题,动量守恒定律不适用,可以用对应的牛顿运动定律、能量观点、动量定理进行解决.1.(2019·全国高考真题)(多选)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是A .B .C.D.【答案】AD【解析】根据图像可知,设PQ进入磁场匀速运动的速度为v,匀强磁场的磁感应强度为B,导轨宽度为L,两根导体棒的总电阻为R;根据法拉第电磁感应定律和闭合电路的欧姆定律可得PQ进入磁场时电流0BLvIR保持不变,根据右手定则可知电流方向Q→P;如果PQ离开磁场时MN还没有进入磁场,此时电流为零;当MN进入磁场时也是匀速运动,通过PQ的感应电流大小不变,方向相反;如果PQ没有离开磁场时MN已经进入磁场,此时电流为零,当PQ离开磁场时MN的速度大于v,安培力大于重力沿斜面向下的分力,电流逐渐减小,通过PQ的感应电流方向相反;故选AD。
10.5金属杆在导轨上运动的三类问题
高考研究(三)金属杆在导轨上运动的三类问题|单杆仅在安培力作用下的运动题型单杆置于光滑水平导轨上,可以与电源、电阻、电容器等组成回路。
杆运动时仅受安培力(合外力)作用。
方法突破类型 接电源接电阻接电容器结构图初始 条件水平导轨光滑且足够长,导轨间距为l 、金属杆ab 质量为m 、电阻为R ,处于静止状态水平导轨光滑且足够长,金属杆ab (m 、R ′)初速度为v 0水平导轨光滑且足够长,电容器C 原来不带电,金属杆ab (m 、R )初速度为v 0过程 分析S 闭合,ab 受安培力F =BlER +r ,此时a=BlE m (R +r ),ab 速度v ↑→Bl v ↑→与电源电动势反向使电流I ↓→安培力F =BIl ↓→加速度a ↓,当安培力F =0(a =0)时,v 最大,最后做匀速运动ab 受到安培力F =BIL =B 2L 2vR ′+R,ab 做减速运动:v ↓→F ↓→a ↓,当v =0时,F =0,a =0,ab 保持静止一开始,感应电动势为Bl v 0,ab 作为电源向电容器充电,电容器两板间的电压增加,充电电流受到的安培力阻碍ab 运动,ab 的速度减小,当ab 中感应电动势Bl v 与电容器两板间的电压相等时,回路中没有电流,ab 最终做匀速运动图像电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。
整个装置处于竖直向上、磁感应强度为B 的匀强磁场中。
现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。
下列说法正确的是( )A .金属棒在导轨上做匀减速运动B .整个过程中电阻R 上产生的焦耳热为m v 202C .整个过程中金属棒在导轨上发生的位移为qRBLD .整个过程中金属棒克服安培力做功为m v 202[答案] D[跟进训练]1.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。
匀强磁场与导轨平面垂直。
电磁感应中“滑轨”问题(含双杆)归类
双导轨问题1、两根充足长的平行金属导轨,固定在同一水平面上,导轨的电阻很小,可忽略不计。
导轨间的距离L=0.2m 。
磁感强度B=0.50T 的匀强磁场与导轨所在平面垂直。
两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
在t=0时刻,两根金属杆并排靠在一起,且都处于静止状态。
现有一与导轨平行,大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。
经过t=5.0s ,金属杆甲的加速度为1.37m/s 2,问此时甲、乙两金属杆速度v 1、v 2及它们之间的距离是多少?Rv v l B F 2)(2122-=安 ① ma F F =-安 ② 21mv mv Ft += ③由①②③三式解得:s m v s m v /85.1,/15.821== 对乙:2mv t HB =⋅ ④ 得C Q mv QIB 85.12==又RBlS R Q 22相对=∆=φ ⑤ 得m S 5.18=相对2、如图,水平平面内固定两平行的光滑导轨,左边两导轨间的距离为2L ,右边两导轨间的距离为L ,左右部分用导轨材料连接,两导轨间都存有磁感强度为B 、方向竖直向下的匀强磁场。
ab 、cd 两均匀的导体棒分别垂直放在左边和右边导轨间,ab 棒的质量为2m ,电阻为2r ,cd 棒的质量为m ,电阻为r ,其它部分电阻不计。
原来两棒均处于静止状态,cd 棒在沿导轨向右的水平恒力F 作用下开始运动,设两导轨充足长,两棒都不会滑出各自的轨道。
⑴试分析两棒最终达到何种稳定状态?此状态下两棒的加速度各多大? ⑵在达到稳定状态时ab 棒产生的热功率多大?解:⑴cd 棒由静止开始向右运动,产生如图所示的感应电流,设感应电流大小为I ,cd 和ab 棒分别受到的安培力为F 1、F 2,速度分别为v 1、v 2,加速度分别为a 1、a 2,则rv v BL r BLv BLv r E I 3)2(3232121-=-==①F 1=BIL F 2=2BIL② m BIL F a -=1 mBILm BIL a ==222③开始阶段安培力小,有a 1>>a 2,cd 棒比ab 棒加速快得多,随着(v 1-2v 2)的增大,F 1、F 2增大,a 1减小、a 2增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属杆在导轨上运动的三类问题[基本训练]1.(2017·平顶山模拟)如图所示,甲、乙、丙中除导体棒ab 可动外,其余部分均固定不动。
图甲中的电容器C 原来不带电,设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计。
图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长,若给导体棒ab 一个向右的初速度v 0,ab 的最终运动状态是()A .三种情况下,ab 最终都是做匀速运动B .图甲、丙中ab 最终将以某速度做匀速运动;图乙中ab 最终静止C .图甲、丙中ab 最终将以相同的速度做匀速运动D .三种情况下,ab 最终均静止解析:选B 图甲中,当电容器C 两端电压等于ab 切割磁感线产生的感应电动势时,回路电流为零,ab 做匀速运动;图乙中,ab 在F 安作用下做减速运动直至静止;图丙中,ab 先做加速运动至BLv =E 时,回路中电流为零,ab 再做匀速运动,故B 对,A 、C 、D 均错。
2. (多选)(2017·日照第一中学检测)如图所示,足够长的金属导轨竖直放置,金属棒ab 、cd 均通过棒两端的环套在金属导轨上。
虚线上方有垂直纸面向里的匀强磁场,虚线下方有竖直向下的匀强磁场,两匀强磁场的磁感应强度大小均为B 。
ab 、cd 棒与导轨间动摩擦因数均为μ,两棒总电阻为R ,导轨电阻不计。
开始两棒静止在图示位置,当cd 棒无初速度释放时,对ab 棒施加竖直向上的力F ,使其沿导轨向上做匀加速运动。
则()A .ab 棒中的电流方向由b 到aB .cd 棒先做加速运动后做匀速运动C .cd 棒所受摩擦力的最大值大于其重力D .力F 做的功等于两棒产生的电热与增加的机械能之和解析:选AC ab 棒向上运动的过程中,穿过闭合回路abcd 的磁通量增大,根据楞次定律可得,ab 棒中的感应电流方向为b →a ,故A 正确;cd 棒中感应电流由c 到d ,其所在的区域磁场向下,所受的安培力向里,cd 棒所受的滑动摩擦力向上。
ab 棒做匀加速运动,速度增大,产生的感应电流增加,cd 棒所受的安培力增大,对导轨的压力增大,则滑动摩擦力增大,摩擦力先小于重力,后大于重力,所以cd 棒先做加速运动后做减速运动,最后停止运动,故B 错误;因安培力增加,cd 棒受摩擦力的作用一直增加,会大于重力,故C 正确;根据动能定理可得W F -W f -W 安培-W G =12mv 2-0,力F 所做的功应等于两棒产生的电热、摩擦生热与增加的机械能之和,故D 错误。
3. (多选)(2017·哈尔滨检测)CD 、EF 是两条水平放置的阻值可忽略的平行金属导轨,导轨间距为L ,水平导轨的左侧存在方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B ,磁场区域的长度为d ,如图所示。
导轨的右端接有一电阻R ,左端与一弧形光滑轨道平滑连接。
将一阻值也为R 的导体棒从弧形轨道上h 高处由静止释放,导体棒最终恰好停在磁场的右边界处。
已知导体棒与水平导轨接触良好,且动摩擦因数为μ,下列说法中正确的是()A .电阻R 的最大电流为Bd 2ghRB .通过导体棒的电荷量为BdL2RC .整个电路中产生的焦耳热为mghD .电阻R 中产生的焦耳热为12mg (h -μd )解析:选BD 导体棒下滑过程中,机械能守恒,由机械能守恒定律得:mgh =12mv 2,导体棒到达水平面时的速度v =2gh ,导体棒到达水平导轨后进入磁场,受到水平向左的安培力做减速运动,则刚到达水平导轨时的速度最大,所以最大感应电动势为E =BLv ,最大的感应电流为I =BLv 2R =BL 2gh2R ,故A 错误;通过导体棒的电荷量q =ΔΦ2R =BLd2R ,故B 正确;导体棒在整个运动过程中,由动能定理得:mgh -W B -μmgd =0-0,则克服安培力做功:W B =mgh -μmgd ,克服安培力做功转化为电路中的焦耳热,故C 错误;电阻与导体棒电阻相等,通过它们的电流相等,则导体棒产生的焦耳热:Q R =12Q =12W B =12(mgh -μmgd ),故D 正确。
4.(2017·大连模拟)如图所示,上下不等宽的平行导轨,EF 和GH 部分导轨间的距离为L ,PQ 和MN 部分的导轨间距为3L ,导轨平面与水平面的夹角为30°,整个装置处在垂直于导轨平面的匀强磁场中。
金属杆ab 和cd 的质量均为m ,都可在导轨上无摩擦地滑动,且与导轨接触良好,现对金属杆ab 施加一个沿导轨平面向上的作用力F ,使其沿斜面匀速向上运动,同时cd 处于静止状态,则F 的大小为( )A.23mg B .mg C.43mg D.32mg 解析:选A 设ab 杆向上做切割磁感线运动时,产生感应电流大小为I ,受到安培力大小为:F 安=BIL ,对于cd ,由平衡条件有:BI ·3L =mg sin 30°,对于ab 杆,由平衡条件有:F =mg sin 30°+BIL ,综上可得:F =23mg ,故A 正确。
5.(2017·天津第一中学模拟)如图甲所示,光滑倾斜导体轨道(足够长)与光滑水平导体轨道平滑连接。
轨道宽度均为L =1 m ,电阻忽略不计。
水平向右的匀强磁场仅分布在水平轨道平面所在区域;垂直于倾斜轨道平面向下,大小相同的匀强磁场仅分布在倾斜轨道平面所在区域。
现将两质量均为m=0.2 kg,电阻均为R=0.5 Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道的顶端,并同时由静止释放,导体棒cd下滑过程中的加速度a与速度v 的关系如图乙所示。
(g=10 m/s2)求:(1)倾斜轨道平面与水平面间的夹角θ;(2)磁场的磁感应强度B;(3)导体棒ab对水平轨道的最大压力F N的大小;(4)若已知从开始运动到导体棒cd达到最大速度的过程中,导体棒ab上产生的焦耳热Q=0.45 J,求该过程中通过导体棒cd横截面的电荷量q。
解析:(1)由a-v图像可知,导体棒cd刚释放时,加速度a=5 m/s2对导体棒cd受力分析,由牛顿第二定律得:mg sin θ=ma得a=g sin θ=5 m/s2 故:θ=30°。
(2)当导体棒cd匀速下滑时,由图像知a=0,v=1 m/smg sin θ=F安F安=BILI=BLv2R联立解得:B=1 T,I=1 A。
(3)当电路中的电流I最大时,导体棒ab所受竖直向下的安培力最大,则压力最大F N=mg+F安由牛顿第三定律:F N′=F N解得:F N′=3 N。
(4)导体棒ab产生的焦耳热Q ab=Q=I2Rt=0.45 J,导体棒cd产生的热量与导体棒ab相同。
对导体棒cd,由能量守恒定律:mgx sin θ=12mv2+2Q解得:x=1 m q=I·tI=E2R E=ΔΦt则:q=ΔΦ2R=BLx2R=1 C。
答案:(1)30°(2)1 T(3)3 N(4)1 C[能力提高]6. (多选)(2017·雅安诊断考试)如图所示,电阻不计、相距为L的两条足够长的平行金属轨道倾斜放置,与水平面的夹角为θ,整个空间存在垂直于轨道平面的匀强磁场,磁感应强度为B,轨道上固定有质量为m,电阻为R的两根相同的导体棒,导体棒MN上方轨道粗糙下方轨道光滑,将两根导体棒同时释放后,观察到MN下滑而EF始终保持静止,当MN下滑的距离为s时,速度恰好达到最大值v m,则下列叙述正确的是()A .MN 的最大速度v m =2mgR sin θB 2L 2B .此时EF 与轨道之间的静摩擦力为mg sin θC .当MN 从静止开始下滑s 的过程中,通过其横截面的电荷量为BLs2RD .当MN 从静止开始下滑s 的过程中,MN 中产生的热量为mgs sin θ-12mv 2m解析:选AC 当MN 下滑达到最大速度时满足:mg sin θ=B 2L 2v m2R ,解得v m =2mgR sin θB 2L 2,选项A 正确;此时EF 满足mg sin θ+F 安=f 静,故此时EF 与轨道之间的静摩擦力大于 mg sin θ,选项B 错误;当MN 从静止开始下滑s 的过程中,通过其横截面的电荷量为q =ΔΦR 总=BLs2R ,选项C 正确;当MN 从静止开始下滑s 的过程中,两个导体棒中产生的总热量为 mgs sin θ- 12mv 2m ,则MN 中产生的热量是12mgs sin θ-12mv 2m,选项D 错误。
7.(2017·济宁模拟)如图甲所示,MN 、PQ 是相距d =1 m 的足够长平行光滑金属导轨,导轨平面倾角为α,导轨电阻不计;长也为1 m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,ab 的质量m =0.1 kg 、电阻R =1 Ω; MN 、PQ 的上端连接右侧电路,电路中R 2为一电阻箱;已知灯泡电阻R L =3 Ω,定值电阻R 1=7 Ω,调节电阻箱使R 2=6 Ω,重力加速度g =10 m/s 2。
现断开开关S ,在t =0时刻由静止释放ab ,在t =0.5 s 时刻闭合S ,同时加上分布于整个导轨所在区域的匀强磁场,磁场方向垂直于导轨平面斜向上;图乙所示为ab 的速度随时间变化的图像。
(1)求斜面倾角α及磁感应强度B 的大小;(2)ab 由静止下滑x =50 m(此前已达到最大速度)的过程中,求整个电路产生的电热;(3)若只改变电阻箱R 2的值,当R 2为何值时,ab 匀速下滑过程中R 2消耗的功率最大?消耗的最大功率为多少?解析:(1)S 断开时,ab 做匀加速直线运动,从题图乙得 a =ΔvΔt=6 m/s 2由牛顿第二定律有mg sin α=ma 解得α=37°t =0.5 s 时,S 闭合且加了磁场,分析可知,此后ab 将先做加速度减小的加速运动,当速度达到最大(v m =6 m/s) 后接着做匀速运动。
做匀速运动时,由平衡条件知 mg sin α=F 安又F 安=BId I =Bdv mR 总R 总=R ab +R 1+R L R 2R L +R 2=10 Ω联立以上四式,代入数据解得B =1 T 。
(2)由能量转化关系有mg sin α·x =12mv 2m +Q代入数据解得Q =mg sin α·x -12mv 2m =28.2 J 。
(3)改变电阻箱R 2的值后,ab 匀速下滑时有 mg sin α=BdI ′ 所以I ′=mg sin αBd=0.6 A 通过R 2的电流为I 2=R LR L +R 2I ′R 2的功率为P =I 22R 2 联立以上三式可得 P =I ′2R 2L R L +R 22R 2=I ′2R 2L⎝⎛⎭⎫R L R 2+R 22当R LR 2=R 2时,即R 2=R L =3 Ω,功率最大,解得 P m =0.27 W 。