八年级数学第一周测试卷B
人教版八年级数学上册单元测试题及答案B卷
C. OA 与 CD 的中垂线的交点
D. CD 与∠AOB 的平分线的交点
6.已知,如图 5,△ABC 中,AB=AC,AD 是角平分线,BE=CF,则下列说法正确的有几个
(
)(1)AD 平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.
(A)1 个
(B)2 个
(C)3 个
14.任何一个凸多边形的内角中,能否有 3 个以上的锐角?______(填“能”或“不能”).
二、选择题(共 4 小题,每题 3 分,共 12 分)
15.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交 BC,AB,BC 于点 C,D,E,则下列说法中不正
确的是( )
A.AC 是△ABC 和△ABE 的高
(n − 2)180°
120°,
;(2)正三角形、正方形、正六边形;(3)答案不唯一,如正方形和正
n
八边形,正三角形和正十二边形.
第十二章 全等三角形 单元测试(B) 答题时间:120 满分:150 分
一、选择题 (每题 3 分,共 30 分。每题只有一个正确答案,请将正确答案的代号填在下面
的表格中)
B.DE,DC 都是 △BCD 的高
C.DE 是△DBE 和△ABE 的高
D.AD,CD 都是 △ACD 的高
16.如图所示,x 的值为( )
A.45° B.50° C.55°
D.70°
17.边长相等的下列两种正多边形的 组合,不能作平面镶嵌的是( )
第 15 题
第 16 题
A.正方形与正三角形
B.正五边形与正三角形
D. 带①和②去
O
B
A
E
D
C
八年级数学上册真题测试卷
一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 3D. -52. 已知a、b、c是等差数列,且a=2,b=5,那么c的值是()A. 8B. 7C. 6D. 93. 若方程x² - 2x - 3 = 0的解是x₁和x₂,则x₁ + x₂的值是()A. 2B. 3C. 1D. 04. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)5. 下列函数中,图象是双曲线的是()A. y = x²B. y = 1/xC. y = x³D. y = √x6. 若一个正方形的对角线长为5cm,那么这个正方形的面积是()A. 25cm²B. 10cm²C. 20cm²D. 15cm²7. 已知等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 26cmB. 28cmC. 30cmD. 32cm8. 若a、b、c是等比数列,且a=2,b=4,那么c的值是()A. 8B. 6C. 4D. 29. 在△ABC中,∠A=60°,∠B=45°,那么∠C的度数是()A. 75°B. 90°C. 105°D. 120°10. 下列不等式中,正确的是()A. 2x + 3 > 5B. 3x - 2 < 4C. 5x + 1 ≥ 3D. 4x - 5 ≤ 2二、填空题(每题5分,共25分)11. 若x² - 4x + 3 = 0,则x的值为______。
12. 在直角坐标系中,点P(2,-3)到原点的距离是______。
13. 若一个等差数列的公差为2,首项为3,那么第10项的值是______。
14. 已知函数y = -2x + 5,当x=3时,y的值为______。
八年级上第一周训练
21DECBA2013学年第一学期八年级数学期末模拟测试卷(二)班级姓名 分数一、选择题(每题3分,共30分)2.一个三角形任意一边上的高都是这边上的中线,则对这个三角形的形状最准确的判断是( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形 3.如右图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( ) A .3 B . 4 C .5 D .64、如右图:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=90°, 则∠B 的度数为( ) A.30° B.20° C.40° D.25° 4. 已知m6x =,3nx =,则2m nx-的值为( )A 、9B 、43 C 、12 D 、345. 下列各式由左边到右边的变形中,是分解因式的为( )。
A 、a (x + y) =a x + a yB 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 6.下列各式中计算正确的是 ( )A 、(2p+3q )(-2p+3q)=4p 2-9q 2B 、( 12a 2b -b)2=14a 4b 2-12a 2b 2+b 2 C 、(2p -3q )(-2p -3q)=-4p 2+9q 2 D 、 ( -12a 2b -b)2=-14a 4b 2-a 2b 2-b 2二、填空题(每题3分,共18分) 11、计算())43(82b a ab ⋅-=________12、已知(a+b)2=16,ab=6,则a 2+b 2的值是13、如右图,在△ABC 中,∠C=900,AD 平分∠CAB ,BC =8cm ,BD =5cm ,那么D 点到直线AB 的距离是 cm .16、如右图,已知∠1=∠2,AC=AD ,增加一个条件能使△ABC ≌△AED 三、解答题(共52分)17、因式分解(每题4分,共8分)(1)3x x - (2)3269a a a -+19、(10分) 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=2A BECFD EAD20、(12分)已知:如图,∠1=∠2,,3=∠4,求证:△ABE ≌△ADE4321AEDC第Ⅱ卷(共50分)22、(12分)下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步) = y 2+8y +16 (第二步) =(y +4)2 (第三步) =(x 2-4x +4)2 (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.25、(14分)在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.。
重庆市鲁能巴蜀中学2024-2025学年八年级上学期开学数学测试试题
重庆市鲁能巴蜀中学2024-2025学年八年级上学期开学数学测试试题一、单选题1.在下面右侧的四个图形中,能由图经过平移得到的图形是( )A .B .C .D . 2.下列实数中属于无理数的是( )A.13- B .3.14 C D 3.下列调查最适合于全面调查的是( )A .华为公司要检测一款手机的待机时长B .市图书馆了解全市学生暑假期间最喜爱的图书种类C .班主任统计全班同学的身高、体重以便确定校服尺寸D .调查全市人民对政府服务的满意程度4.已知a b <,0c <,则下列一定正确的是( )A .a b c <+B .0ac <C .ac bc <D .a c b +< 5.如图摆放的是一副直角三角板,30F ∠=︒,45C ∠=︒,AB 与DE 相交于点G ,当A G E ∠的度数是( )时,两三角板的边EF BC ∥A .85︒B .75︒C .65︒D .60︒6.已知点(),A a b 在第二象限,则点()1,2-B a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.如图,数轴上,下列各数是无理数且表示的点在线段AB 上的是( )A .0 B1 CD .π8.如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,AB =10,∠CAB 和∠ABC 的平分线交于点O ,OM ⊥BC 于点M ,则OM 的长为( )A .1B .2C .3D .49.若数a 既使得关于x 、y 的二元一次方程组6323x y x y a +=⎧⎨-=+⎩有正整数解,又使得关于x 的不等式组3523239x x a x -⎧>+⎪⎪⎨-⎪≤-⎪⎩的解集为x ≥15,那么所有满足条件的a 的值之和为( ) A .﹣15 B .﹣30 C .﹣10 D .010.将1,2,3 … n 这n 个数据顺时针排成一圈,从1开始,顺时针方向采取保留一个划去一个的规则,直至只留下一个数,将这个数记为n a .当n 取不同值时,可得到对应情况下的n a ,并将所有n a 形成一组新数据.下列说法中,正确的个数为( )①无论n 为多少,n a 一定为奇数;②248161a a a a ====;③记n a 的前n 项和为n S ,则161721S S +<; ④当n 从1取到18时,将形成的新数据n a 依次顺时针排成一圈,从1a 开始,再进行同一种操作,最后留下来的数为3.A .1个B .2个C .3个D .4个二、填空题1112.一个等腰三角形的两边长分别是2cm 、5cm ,则它的周长为cm .13.如图,纸片的边缘AB CD ,互相平行,将纸片沿EF 折叠,使得点B ,D 分别落在点B D '',处.若180∠=︒,则2∠的度数是.14.若关于x ,y 的方程组32143-1x y p x y p +=+⎧⎨+=⎩的解满足x >y ,则p 的取值范围是. 15.如图,有一块长为44m 、宽为24m 的长方形草坪,其中有三条直道将草坪分为六块,则六块草坪的面积和为2m .16.如图,已知,,,AB AC AD AE BAC DAE AB ==∠=∠和CD 交于点F ,若点C E 、、F D 、共线,9,4ACF BDF S S ==△△时,则ADE S =V .17.如图,在ABC V 中,D 为边AC 上一点,且BD 平分ABC ∠,过A 作AE BD ⊥于点E .,若4180ABC C ∠+∠=︒,5AB =,12BC =,则AE =.18.对于一个四位自然数M ,如果M 满足各个数位上的数字不全相同且均不为0,它的千位数字减去百位数字之差等于十位数字减去个位数字之差,那么称这个数M 为“均衡数”.对于一个“均衡数”M ,将它的前两位数减去后两位数所得记为s ,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t ,定:()11s t F M +=,例如:9764M =,因为9764-=-,故:9764是一个“均衡数”,所以:976433s =-=,967422t =-=,则:()33229764511F +==.若自然数,P Q 都是“均衡数”,其中100010515,1002041P x y Q m n =+-=++(29,29,19,08x y m n ≤≤≤≤≤≤≤≤,,,,x y m n 都是整数),规定:()()F P k F Q =,当()()28F P F Q -=时,k 的最大值是.三、解答题19.计算:(1)23()()a a -⋅-;(2)()()222(2)a b a b a b +-+-. 20.把下列各式因式分解.(1) 3222x x y xy -+;(2)()()2211x a y a -+-.21.人教版八年级上册教材第80页利用将两个含有30°角的全等三角尺摆在一起的方法,借助图形发现了结论:“在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.”我们还能用其他的方法证明这个结论吗?下面是小明的探究过程,请根据他的思路完成以下作图和填空:如图,在ABC V 中,90,30ACB ABC ∠=︒∠=︒,求证:12AC AB =.(1)尺规作图:作CAB ∠的角平分线交BC 于点D ,在AB 上取一点E ,使得AE AC =,连接DE (保留作图痕迹,不写作法); (2)证明:90,30ACB ABC ∠=︒∠=︒Q ,60CAB ∴∠=︒,AD Q 平分CAB ∠,CAD ∴∠=①______30=︒,在ADC △与ADE V 中,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()SAS ADC ADE ∴V V ≌,ACB ∴∠=②______90=︒,DE AB ⊥∴,又:30ABC EAD ∠=∠=︒,DA ∴=③______,∴点E 是AB 的中点.∴④______1,2AB = AC AE =Q ,12AC AB ∴=. 22.推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A 组(0.5小时),B 组(1小时),C 组(1.5小时),D 组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A 组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数. 23.如图,点B 、C 、D 在同一条直线上,AB BD ⊥,DE BD ⊥,AC CE ⊥,AB CD =.(1)求证:ABC CDE △≌△.(2)若37ACB ∠=︒,求AED ∠的度数.24.某水果店销售A 、B 两种规格的水果礼盒,A 进货价为每盒60元,B 进货价为每盒45元.表格中是该水果店近两周这两种水果礼盒的销售情况.(进价保持不变,不考虑水果变质等损耗)(1)若这两周售价保持不变,求这两种规格水果礼盒的售价分别为每盒多少元?(2)第三周,该店决定恰好9000元购进A 、B 两种水果礼盒,A 水果礼盒按售价打九折进行促销,而B 水果礼盒则按利润率为40%定价,使得第三周总利润至少为3000元,且A 、B两种水果礼盒全部售完,求第三周最多进货A 水果礼盒多少盒?25.在平面直角坐标系xOy 中,对于任意三点,,A B C 的“矩面积”,给出如下定义:“水平底”d 是任意两点横坐标差的最大值;“铅垂高”h 是任意两点纵坐标差的最大值,则“矩面积”S dh =.例如:,,A B C 三点的坐标分别为(1,2),(3,1),(2,2)--,则“水平底”5d =,“铅垂高”4h =,“矩面积”20S dh ==.根据所给定义解决下面的问题:(1)若点,,D E F 的坐标分别为(1,2),(2,1),(0,6)--,求这三点的“矩面积”S ;(2)若点(2,3),(2,1),(,2)(2)D E F t t --≠,含有t 的式子表示这三点的“矩面积”S (结果需化简);(3)已知点(1,2),(2,2)D E --,在x 轴上是否存在点F ,使这三点的“矩面积”S 为20?若存在,求出点F 的坐标;若不存在,请说明理由.26.如图,△CAB 与△CDE 为等腰直角三角形,∠ACB =∠DCE =90°,CA =CB ,CD =CE ,∠CAB =∠CBA =45°,∠CDE =∠CED =45°,连接AD 、BE .(1)如图1,若∠CAD =28°,∠DCB =10°,则∠DEB 的度数为________度;(2)如图2,若A 、D 、E 三点共线,AE 与BC 交于点F ,且CF =BF ,AD =3,求△CEF 的面积;(3)如图3,BE 与AC 的延长线交于点G ,若CD ⊥AD ,延长CD 与AB 交于点N ,在BC上有一点M 且BM =CG ,连接NM ,请猜想CN 、NM 、BG 之间的数量关系并证明你的猜想.。
八年级数学上册单元自测AB卷(全学期含答案)
第1章全等三角形单元测试卷(A卷基础篇)【苏科版】考试时间:45分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018秋•无为县期末)下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形2.(3分)(2019春•临安区期中)如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°3.(3分)(2018秋•吴江区期末)如果△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则AC的长为()A.2B.3C.4D.54.(3分)(2018秋•莆田期末)下列条件中,不能作出唯一三角形的是()A.已知三角形两边的长度和夹角的度数B.已知三角形两个角的度数以及两角夹边的长度C.已知三角形两边的长度和其中一边的对角的度数D.已知三角形的三边的长度5.(3分)(2019春•沙县期末)如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判断△ABE ≌△ACD的是()A.∠B=∠C B.BE=CD C.AD=AE D.BD=CE6.(3分)(2019春•金水区校级月考)下列条件中,不能判定两个直角三角形全等的是()A.一个锐角和斜边对应相等B.两条直角边对应相等C.两个锐角对应相等D.斜边和一条直角边对应相等7.(3分)(2019春•市中区期末)如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA8.(3分)(2019春•桂林期末)如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD =2,则DE的长是()A.7B.5C.3D.29.(3分)(2019•合浦县二模)如图,在△P AB中,P A=PB,D、E、F分别是边P A,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°10.(3分)如图,点D、E分别为△ABC的边AB、AC上的点,BE与CD相交于点O,现有四个条件:①AB =AC;②OB=OC;③∠ABE=∠ACD;④BE=CD,选择其中2个条件作为题设,余下2个条件作为结论,所有命题中,真命题的个数为()A.3B.4C.5D.6第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•凉州区期末)如图所示的方格中,∠1+∠2+∠3=度.12.(3分)(2019•五华区模拟)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的块带去,就能配一块大小和形状与原来都一样的三角形.13.(3分)(2018秋•龙凤区校级月考)一个三角形的三边长为5,y,13,若另一个和它全等的三角形的三边长为5,12,x,则x+y=.14.(3分)如图,在△ABC中,射线AD交BC于点D,BE⊥AD于E,CF⊥AD于F,请补充一个条件,使△BED≌△CFD,你补充的条件是(填出一个即可).15.(3分)(2019春•沙坪坝区校级月考)如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,则∠DEF的度数.16.(3分)(2018秋•岳池县期末)如图,在△ABC中,F是高AD和BE的交点,且AD=BD,AC=8cm,则BF的长是.17.(3分)(2019春•滨湖区期中)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为18.(3分)(2019•中原区校级模拟)如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:(1)∠1=∠2;(2)BE=CF;(3)△ACN≌△ABM;(4)△MCD≌△NBD中,正确的是.评卷人得分三.解答题(共5小题,满分46分)19.(8分)沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形20.(8分)(2019春•醴陵市期末)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.21.(10分)(2018秋•东城区期末)如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.22.(10分)(2019•九龙坡区校级模拟)如图,在等腰△ABC中,AB=AC,CE、BD分别为∠ACB、∠ABC 的角平分线,CE、BD相交于P.(1)求证:CD=BE;(2)若∠A=98°,求∠BPC的度数.23.(10分)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.第1章全等三角形单元测试卷(B卷提升篇)【苏科版】考试时间:45分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018春•岱岳区期末)如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45°B.60°C.90°D.100°2.(3分)(2018秋•滨海新区期末)如图,已知AD∥BC,那么添加下列一个条件后,仍无法确定△ABC≌△CDA的是()A.∠B=∠D B.AB∥DC C.AB=CD D.BC=AD3.(3分)(2018秋•永定区校级月考)如图,某同学把三角形玻璃打碎成三片,现在他要去配一块完全一样的,他想了一想,结果带第3片去.理由是根据三角形全等的判定方法中()A.SSS B.SAS C.ASA D.AAS4.(3分)(2019•金牛区校级模拟)如图,在△ABC中,点P,Q分别在BC,AC上,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则下面结论错误的是()A.∠BAP=∠CAP B.AS=AR C.QP∥AB D.△BPR≌△QPS5.(3分)(2018秋•厦门期末)如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF交于点M,则∠AMF等于()A.2∠B B.2∠ACB C.∠A+∠D D.∠B+∠ACB6.(3分)(2018秋•沂水县期中)如图,△ABC中,∠B=∠C=65°,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°7.(3分)如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+β=180°8.(3分)(2018秋•沭阳县期末)已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2B.2或C.或D.2或或9.(3分)(2018秋•和平区期末)已知AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC及中线AD的取值范围分别是()A.4<BC<20,2<AD<10B.4<BC<20,4<AD<20C.2<BC<10,2<AD<10D.2<BC<10,4<AD<2010.(3分)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的个数为()A.4B.3C.2D.1第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•营口期末)如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC≌△DEC.12.(3分)如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,只要量出CD的长,就能求出工件内槽的宽,依据是.13.(3分)(2018秋•下陆区期末)如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.14.(3分)(2018秋•杭州期中)平面上有△ACD与△BCE,其中AD与BE相交于P点,如图,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为.15.(3分)(2019春•漳州期末)如图,△ABC中,∠C=90°,AC=8,BC=4,AX⊥AC,点P、Q分别在边AC和射线AX上运动,若△ABC与△PQA全等,则AP的长是.16.(3分)(2018秋•桑植县期末)如图,在△ABC中,AB=3,AC=2,BC边上的中线AD的长是整数,则AD=.17.(3分)如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计).18.(3分)(2019春•马山县期末)将2019个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2…,A2019分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为cm2.评卷人得分三.解答题(共5小题,满分46分)19.(6分)(2018秋•越秀区期末)如图,AC与BD相交于点E,AC=BD,AC⊥BC,BD⊥AD.垂足分别是C、D.(1)若AD=6,求BC的长;(2)求证:△ADE≌△BCE.20.(8分)如图,已知△ABE≌△ACD.(1)如果BE=6,DE=2,求BC的长;(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.21.(10分)(2019•北碚区校级模拟)如图,A、D、B、E四点在同一条直线上,AD=BE,BC∥EF,BC =EF.(1)求证:AC=DF;(2)若CD为∠ACB的平分线,∠A=25°,∠E=71°,求∠CDF的度数.22.(10分)(2018春•灵石县期末)如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.23.(12分)(2018秋•十堰期末)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.第2章轴对称图形单元测试卷(A卷基础篇)【苏科版】考试时间:45分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•相城区期中)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)(2018秋•谢家集区期中)如图,若△ABC与△DEF关于直线l对称,BE交l于点O,则下列说法不一定正确的是()A.AB∥EF B.AC=DF C.AD⊥l D.BO=EO3.(3分)(2018秋•永定区期中)下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有()A.①②③B.①②④C.①③④D.①②③④4.(3分)(2018秋•西城区校级期中)等腰三角形的两边长分别为6cm和3cm,则它的周长是()A.15cm B.12cmC.15cm或12cm D.以上都不正确5.(3分)(2019春•港南区期中)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm6.(3分)(2019春•南海区期中)如图,在△ABD中,AB的垂直平分线DE交BC于点D,∠B=30°,AD=AC,∠BAC的度数为()A.80°B.85°C.90°D.105°7.(3分)(2018秋•南昌期中)如图,直线l1∥l2,将等边三角形如图放置,若∠α=35°,则∠β等于()A.35°B.30°C.25°D.15°8.(3分)(2018秋•镇江期中)如图,在等腰△ABC中,AB=AC,∠ABC与∠ACB的平分线交于点O,过点O做DE∥BC,分别交AB、AC于点D、E,若△ADE的周长为18,则AB的长是()A.8B.9C.10D.129.(3分)(2018秋•慈溪市期中)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条10.(3分)(2019春•南京期中)如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB 重合于线段EO,若∠CDO+∠CFO=106°,则∠C的度数()A.40°B.37°C.36D.32°第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•谢家集区期中)室内墙壁上挂一平面镜,小明在平面镜内看到他背后的时钟如图,则这时的实际时间是.12.(3分)(2018秋•西城区校级期中)已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为.13.(3分)(2019春•相城区期中)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于.14.(3分)(2018秋•九龙坡区校级期中)如图,在△ABC中,AC=22cm,D是AB的中点,DE⊥AB交AC于点E,连BE,若△BCE的周长是36cm,则BC=cm.15.(3分)(2018秋•滨湖区期中)如图,已知AD∥BC,DE、CE分别平分∠ADC、∠DCB,AB过点E,且AB⊥AD,若AB=8,则点E到CD的距离为.16.(3分)(2018秋•镇江期中)如图,∠AOB=45°,点P在∠AOB内,且OP=8,点P关于直线OA的对称点P1,点P关于直线OB的对称点P2,连接OP1、OP2、P1P2,则△OP1P2的面积等于.17.(3分)(2018秋•绵阳期中)如图所示是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设较长直角边的中点为M,绕中点M转动三角板ABC,使其直角顶点C 恰好落在三角板A1B1C1的斜边A1B1上,当∠A=30°,AC=10时,两直角顶点C,C1的距离是.18.(3分)(2018秋•温岭市期中)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,第2018个三角形的底角度数是.评卷人得分三.解答题(共5小题,满分46分)19.(6分)(2018秋•赣榆区期中)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.20.(8分)(2019春•盐湖区期中)如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm.(1)求△ABC中BC边的长度;(2)若∠BAC=116°,求∠DAE的度数.21.(10分)(2018秋•常熟市期中)如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.22.(10分)(2019秋•垦利区期中)如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.23.(12分)(2019春•盐湖区期中)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.试猜想EF、BE、CF之间有怎样的关系,并说明理由.(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,则刚才的结论还成立吗?请说明理由.第2章轴对称图形单元测试卷(B卷提升篇)【苏科版】考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018秋•思明区校级期中)如图,四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)(2018秋•新罗区校级期中)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(A、P、A′不共线),下列结论中,错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′、CC′C.△ABC与△A′B′C′面积相等D.直线AB,A′B′的交点不一定在直线MN上3.(3分)(2018秋•九龙坡区校级期中)如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6B.8C.4D.104.(3分)(2018秋•慈利县期中)小明用一根长20cm的铁丝做一个周长是20cm的等腰三角形,则腰长x 的取值范围是()A.0<x<10B.0<x<5C.5≤x≤10D.5<x<105.(3分)(2019春•牡丹区期中)如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处6.(3分)(2018秋•邗江区期中)如图,若AB=AC,下列三角形能被一条直线分成两个小等腰三角形的是()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)7.(3分)(2019秋•安徽期中)如图所示,在△ABC中,∠A=60°,AB=AC,BD是△ABC的角平分线,延长BC至E,使CE=CD,若△ABC的周长为20,BD=a,则△DBE的周长是()A.20+a B.15+2a C.10+2a D.10+a8.(3分)(2018秋•南京期中)如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD 上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°9.(3分)(2019春•巴南区期中)如图,点E在线段CD上,点F在AB的延长线上,AB∥CD,CB平分∠ACD,BD平分∠EBF,若BC⊥BD,则下列结论中不正确的是()A.∠CBE+∠D=90°B.AC∥BEC.∠DEB=3∠ABC D.BC平分∠ABE10.(3分)(2018秋•鄂尔多斯期中)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②∠ADF =2∠ECD;③S△AEC:S△AEG=AC:AG;④S△CED=S△DFB;⑤CE=DF.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•上杭县期中)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.12.(3分)(2018秋•阜宁县期中)如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有个.13.(3分)(2018秋•西城区校级期中)已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为.14.(3分)(2018秋•海淀区校级期中)如图,把△ABC纸片折叠,点B落在B′处,折痕为DE,则∠B、∠1、∠2满足的等量关系为.15.(3分)(2019春•青原区期中)已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是.16.(3分)(2018秋•滨海县期中)如图,在△ABC中,∠A=90°,BD平分∠ABC,DE⊥BC于E,AD=4cm,BC=15cm,△BDC的面积为cm217.(3分)(2018秋•西城区校级期中)如图,△ABC中,AD是∠BAC的平分线,DE∥AB交AC于点E,若DE=7,CE=6,则AC的长为.18.(3分)(2018秋•江夏区期中)如图,四边形ABCD中,CD=BC=4,AB=1,E为BC中点,∠AED =120°,则AD的最大值是.评卷人得分三.解答题(共5小题,满分46分)19.(6分)(2018秋•云安区期中)如图在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.20.(8分)(2018秋•海淀区校级期中)如图,已知线段AB=CD,求作线段a,使线段a与线段AB成轴对称,与线段CD也成轴对称.(保留作图痕迹)21.(8分)(2018秋•合阳县期中)已知等腰三角形一腰上的中线将三角形的周长分为12cm和21cm两部分,求这个等腰三角形的底边和腰的长度.22.(12分)(2019春•盐湖区期中)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.试猜想EF、BE、CF之间有怎样的关系,并说明理由.(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,则刚才的结论还成立吗?请说明理由.23.(12分)(2018秋•鄂尔多斯期中)如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?第3章勾股定理单元测试卷(A卷基础篇)【苏科版】考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018秋•宜兴市期中)下列各组数中,是勾股数的( ) A .35,45,1B .1,2,3C .1.5,2,2.5D .9,40,412.(3分)(2018秋•江都区期中)在Rt ABC ∆中,90ACB ∠=︒,CD 是高,4AC m =,3BC m =,则线段CD 的长为( ) A .5mB .125m C .512m D .43m3.(3分)(2019春•丰润区期中)满足下列条件的ABC ∆,不是直角三角形的是( ) A .::3:4:5a b c = B .::9:12:15A B C ∠∠∠= C .C A B ∠=∠-∠D .222b a c -=4.(3分)(2019春•寿光市期中)如图:在一个边长为1的小正方形组成的方格稿纸上,有A 、B 、C 、D 、E 、F 、七个点,则在下列任选三个点的方案中可以构成直角三角形的是( )A .点A 、点B 、点CB .点A 、点D 、点GC .点B 、点E 、点FD .点B 、点G 、点E5.(3分)(2019春•洛阳期中)如图,在ABC ∆中,AB AC ⊥,5AB cm =,13BC cm =,BD 是AC 边上的中线,则BCD ∆的面积是( )A .215cmB .230cm6.(3分)(2019春•西工区校级月考)有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A .1B .2018C .2019D .20207.(3分)(2019春•郯城县期中)如图,一根长5米的竹竿AB 斜靠在一竖直的墙AO 上,这时AO 为4米,如果竹竿的顶端A 沿墙下滑1米,竹竿底端B 外移的距离(BD )A .等于1米B .大于1米C .小于1米D .以上都不对8.(3分)(2019春•岑溪市期末)如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A .16cmB .18cmC .20cmD .24cm9.(3分)(2019春•番禺区期中)如图是“赵爽弦图”, ABH ∆、BCG ∆、CDF ∆和DAE ∆是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果10AB =,2EF =,那么AH 等于( )A .8B .6C .4D .510.(3分)(2018秋•余杭区期中)ABC ∆中,90C ∠=︒,8AC cm =,6BC cm =. 动点P 从点C 开始, 按C A B C →→→的路径运动, 速度为每秒2cm ,运动的时间为t 秒 . 以下结论中正确的有( )①t 为 6 秒时,CP 把ABC ∆的周长分成相等的两部分②t 为 6.5 秒时,CP 把ABC ∆的面积分成相等的两部分, 且此时CP 长为5:cm③t 为 3 秒或 5.4 秒或 6 秒或 6.5 秒时,BCP ∆为等腰三角形,A .①②③B .①②C .②③D .①③第Ⅱ卷(非选择题)评卷人得 分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2017秋•响水县期中)分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有 .(填序号)12.(3分)(2018秋•余杭区期中)如图, 在ABC ∆中,13AB AC ==,10BC =,点D 为BC 的中点,垂足为点E ,则DE 等于 .13.(3分)(2019春•常德期中)如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.14.(3分)(2018秋•盐都区期中)如图, 已知AD 是Rt ABC ∆的角平分线,90ACB ∠=︒,6AC =,8BC =,则BD = .15.(3分)(2019春•南岗区校级月考)如图所示,四边形ABCD 中,BA DA ⊥,2AB =,23AD =3CD =,5BC =,则四边形ABCD 的面积为 .16.(3分)(2019•北京)如图所示的网格是正方形网格,则PAB PBA ∠+∠= ︒(点A ,B ,P 是网格线交点).17.(3分)(2018春•旌阳区校级期中)在Rt ABC ∆中,90ACB ∠=︒,13AB cm =,5AC cm =,动点P 从点B 出发沿射线BC 以/lcm s 的速度移动,设运动的时间为t 秒,当ABP ∆为等腰三角形时,t 的值为 .18.(3分)(2019春•商河县期中)如图,在ABC ∆中,5AB AC ==,底边6BC =,点P 是底边BC 上任意一点,PD AB ⊥于点D ,PE AC ⊥于点E ,则PD PE += .评卷人得 分三.解答题(共5小题,满分46分)19.(8分)(2018春•淮上区期中)如图,在ABC ∆中,15AB =,14BC =,13AC =,AD 为BC 边上的高,点D 为垂足,求ABC ∆的面积.20.(8分)(2019春•长汀县期中)在甲村至乙村间有一条公路,在C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA CB⊥,如图所示,为了安全起见,爆破点C周围半径250米范围内不得进入,问:在进行爆破时,公路AB段是否有危险?是否需要暂时封锁?请用你学过的知识加以解答.21.(10分)(2017秋•太仓市校级期中)(1)如图,在66⨯的网格中,请你画出一个格点正方形ABCD,使它的面积是10.(2)如图,A、B是45⨯的网格中的格点,网格中每个小正方形的边长都是单位1,请在图中清晰地标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.22.(10分)(2018秋•大田县期中)观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,90∠=︒;ACEB D∠=∠=︒,且B,C,D在同一直线上.试说明:90(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.23.(10分)(2018秋•宝安区期中)如图1,Rt ABCAC CB∆⊥,15AB=,点D为斜边上动点.AC=,25(1)如图2,过点D作DE AB⊥交CB于点E,连接AE,当AE平分CAB∠时,求CE;(2)如图3,在点D的运动过程中,连接CD,若ACD∆为等腰三角形,求AD.第3章勾股定理单元测试卷(B卷提升篇)【苏科版】考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•洛龙区期中)由线段a ,b ,c 组成的三角形不是直角三角形的是( )A .222a b c -=B .53,1,44a b c ===C .2a =,3b =,7c =D .::3:4:5A B C ∠∠∠=2.(3分)(2018秋•九龙坡区校级期中)如图,AC BD ⊥,12∠=∠,40D ∠=︒,则BAD ∠的度数是( )A .85︒B .90︒C .95︒D .100︒3.(3分)(2019春•城关区校级期中)在ABC ∆中,90C ∠=︒,1AC =,2BC =,CD AB ⊥于D ,则CD 长为( )A .1B .2C .25D .5 4.(3分)(2018春•忻城县期中)如图,在Rt ABC ∆中,90C ∠=︒,10AC =,8BC =,将ABC ∆折叠,使点A 与BC 边的中点D 重合,折痕为EF ,则线段CF 的长是( )A .4B .4.2C .5D .5.85.(3分)(2019春•番禺区期中)如图是“赵爽弦图”, ABH ∆、BCG ∆、CDF ∆和DAE ∆是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果10AB =,2EF =,那么AH 等于( )A .8B .6C .4D .56.(3分)(2018秋•丹阳市期中)如果正整数a 、b 、c 满足等式222a b c +=,那么正整数a 、b 、c 叫做勾股数某同学将自探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .987.(3分)(2018秋•南明区校级期中)一根长18cm 的牙刷置于底面半径为5cm ,高为12cm 的圆柱形水杯中,牙刷露在杯子外面的长度为h ,则h 的值不可能是( )A .3cmB .cm πC .6cmD .8cm8.(3分)(2019春•海阳市期中)如图,在Rt ABC ∆中,90ACB ∠=︒,3AC =,4BC =,点D 在AB 上,AD AC =,AF CD ⊥交CD 于点E ,交CB 于点F ,则CF 的长是( )A .1.5B .1.8C .2D .2.59.(3分)(2018秋•安国市期中)把两个同样大小的含45︒角的三角尺按如图所示的方式放置,其中一个锐角顶点与另一个的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一条直线上,若2AB =,则CD 的长为( )A 21B 21C 31-D 310.(3分)(2019春•乐陵市期中)正方形ABCD 的边长为1,其面积记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为2S ,⋯按此规律继续下去,则2019S 的值为( )1 () 2B.20181()2C.20192()D.20182()A.2019第Ⅱ卷(非选择题)评卷人得 分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•兴化市期中)已知一组勾股数中有一个数是2(mn m 、n 都是正整数,且2)m n >,尝试写出其它两个数(均用含m 、n 的代数式表示,只要写出一组): , .12.(3分)(2019春•天宁区校级期中)如图,在Rt ABC ∆中,90B ∠=︒,59ACB ∠=︒,//EF GH ,若158∠=︒,则2∠= ︒.13.(3分)(2018秋•临淄区校级期中)如图是“俄罗斯方块”游戏中的一个图案,由四个完全相同的小正方形拼成,则ABC ∠的度数为 .14.(3分)(2019春•颍州区校级期中)在ABC ∆中,AB 是41的算术平方根,5AC =,若BC 边上的高等于4,则BC 的长为 .15.(3分)(2019春•仓山区期中)《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:原处还有多高的竹子?(1丈10=尺)设竹子折断处离地面x 尺.可列方程 .16.(3分)(2018秋•余杭区期中)如图, 在ABC ∆中,13AB AC ==,10BC =,点D 为BC的中点, 垂足为点E ,则DE 等于 .17.(3分)(2018秋•巴南区期中)如图,在Rt ABC ∆中,AC BC =,点D 是ABC ∆内一点,若AC AD =,30CAD ∠=︒,则ADB ∠= .18.(3分)(2018秋•新吴区校级期中)如图,Rt ABC ∆中,90C ∠=︒,点P 为AC 边上的一点,延长BP 至点D ,使得AD AP =,当AD AB ⊥时,过D 作DE AC ⊥于E ,4AB BC -=,8AC =,则ABP ∆面积为 .评卷人得 分三.解答题(共5小题,满分46分)19.(8分)(2019春•越秀区校级期中)如图,正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且14CE BC =,你能说明AFE ∠是直角吗?。
2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)
八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
八年级上册第一单元数学测试卷
八年级数学上第一单元测试题1一.选择题(10小题每题4分,共40分)1.如图AE∥DF和AE=DF.要使△EAC≌△FDB,可添加的条件是()A.∠E=∠F B.EC=BF C.∠A=∠D D.BC=CD 2.如图△ABC≌△DCB若AC=6且DE=2,则BE的长为()A.3B.6C.2D.43.如图所示AB=AC和AD=AE和∠BAC=∠DAE和∠1=20°和∠2=25°,则∠3的度数为()A.30°B.45°C.50°D.60°4.如图△ABC≌△ADE中∠B=30°且∠E=115°,则∠BAC的度数是()A.35°B.30°C.45°D.25°5.如图在△ABC中AD⊥BC于点D和BE⊥AC于点E且AD和BE 交于点F,已知DF=DC=4且AF=3则BC的长为()A.7B.192C.11D.2526.如图△ABC≌△DBC和∠A=34°和∠ACD=72°,则∠DBC的度数是()A.110°B.105°C.64°D.100°7.如图△ABC≌△DEC且AF⊥CD.若∠BCE=65°那么∠CAF的度数为()8.如图△ABC≌△ADE和∠CAE=90°和AB=2,则图中阴影部分的面积为()A.2B.3C.4D.无法确定9.如图△ABC≌△DEC zh点E在AB上且AC与DE相交于点F和∠BCE=30°.则∠CED的度数为()A.30°B.40°C.60°D.75°10.如图在△ABD中AB=AD和点C是BD上一点和过点C作∠ACE =∠B交AD于点F,连接AE和CE且AE=AC,则下列结论正确的个数是()①BC=DE;②∠ACB=∠CFD;③∠CED=∠CAD;④CD=DE.A.1个B.2个C.3个D.4个二.填空题(10小题每题4分,共40分)11.如图线段AE和DB交于点C和∠A=∠D,请你添加一个条件.(只填一个即可),使△ABC≌△DEC.12.如图已知∠A=∠D要使△ABO≌△DCO,可添加的条件是.13.已知△ABC≌△ADE且AB=5cm和BC=8cm则DE的长为cm.14.如图OB为∠ABC的角平分线且AO⊥BO于点O,连接OC和△OBC的面积为12,则△ABC的面积为.15.如图已知△ABC≌△ADE中∠DAC=60°且∠BAE=100°,BC 和DE相交于点F则∠DFB的度数是度.16.如图在△ADB和△CBD中已知∠ADB=∠DBC和AD=BC那么由所给条件判定△ADB和△CBD全等的依据可以简写为.17.如图∠B=∠C,若用“SAS”说明△ABE≌△ACD则还需要加上条件:.18.如图点C在线段AB上(不与点A,B重合)且在AB的上方分别作△ADC和△BCE且AC=DC和BC=EC和∠ACD=∠BCE=α连接AE和BD交于点P,下列结论正确的是(填序号).①AE=BD;②PC平分∠APB;③PC平分∠DCE;④∠APB=180°﹣α.19.如图△ABC≌△DEF且点B和E在CF上.若CF=8和BE=4,则CE的长为.20.如图∠ACB=90°和AC=BC和AD⊥CE和BE⊥CE,垂足分别是点D和E,AD=3且BE=1,则DE的长是.一.解答题(6小题,每题10分共60分)1.如图已知AB∥CF且点E是AC的中点,直线FE交AB于点D.(1)求证:△ADE≌△CFE;(2)若AB=9和CF=5求BD的长.4.已知:如图点A和B和C和D在一条直线上,且CE=DF与AE=BF 与AB =CD .求证:△EAC ≌△FBD .7.把下列证明过程补充完整.已知:如图AC =AD 和∠C =∠D 和∠1=∠2.求证:AB =AE .证明:∵∠1=∠2,∴∠1+∠ =∠2+∠ ,∴∠ =∠EAD .在△ABC 和△AED 中,{∠C =∠DAC =AD∠()=∠EAD∴△ABC ≌△AED ( ),∴AB =AE .( )10.如图AB =AC .(1)请补充一个条件,使△ABE≌△ACD.(2)在(1)的条件下,OB=OC吗?为什么?13.如图∠A=∠B和AE=BE且点D在AC边上yu∠1=∠2=42°且AE和BD相交于点O.求∠BDE的度数.16.如图∠A=∠D=90°和AC=BD且AC和BD交于点O.求证:AO =DO.。
滴水穿石八年级数学《三角形》单元测试卷
滴水穿石教育第一周测试卷命题人:高海龙 满分100分 答题时间:50分钟一、选择题(共10小题,每小题4分,满分36分)1、三角形的三边分别为3,1+2a ,8,则a 的取值范围是( )A 、﹣6<a <﹣3B 、﹣5<a <﹣2C 、2<a <5D 、a <﹣5或a >﹣22、在△ABC 中,若∠A=54°,∠B=36°,则△ABC 是( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、等腰三角形3、下面各组中的三条线段能组成三角形的是( )A 、2cm 、3cm ,5cmB 、1cm 、6cm 、6cmC 、2cm 、6cm 、9cmD 、5cm 、3cm 、10cm4、在等腰三角形ABC 中,它的两边长分别为8cm 和3cm ,则它的周长为( )A 、19cmB 、19cm 或14cmC 、11cmD 、10cm5、一个三角形的两边长分别为3和7,且第三边的边长为整数,这样的三角形的周长的最小值是( )A 、14B 、15C 、16D 、1711、如果等腰三角形的一边长是5cm ,另一边长是7cm ,则这个等腰三角形的周长为 .12、△ABC 中,∠A+∠B=2∠C,则∠C= .13、如图所示,∠AOP=∠BOP=15°,PC∥OA 交OB 于C ,PD⊥OA 于D ,若PC=4,则PD 等于 .14、如图,AB∥CD,∠B=68°,∠E=20°,则∠D 的度数为 度.15、如图,在△ABC 中,∠B=70°,DE 是AC 的垂直平分线,且∠BAD:∠BAC=1:3,则∠C 的度数是 度.第13题图 第14题图 第15题图A E C A ′ E ′D三、解答题(共4小题,满分40分)17、(10分)如图,在△ABC 中.(1)如果AB=7cm ,AC=5cm ,BC 是能被3整除的的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠ABC 和∠ACB 的角平分线.a 、当∠A=50°时,求∠BPC 的度数.b 、当∠A=n°时,求∠BPC 的度数.18.(10分)已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .19.(10分)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .20.(10分)已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .B C E F A A C B D E F答案:一、选择题(共10小题,每小题2分,满分20分)1、三角形的三边分别为3,1+2a,8,则a的取值范围是()A、﹣6<a<﹣3B、﹣5<a<﹣2C、2<a<5D、a<﹣5或a>﹣2考点:三角形三边关系;解一元一次不等式组。
八年级上册数学 全册全套试卷测试卷(含答案解析)
八年级上册数学 全册全套试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点 (2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ=2 HI.【答案】(1)证明见解析;(2)22(0,)7F ;(3)证明见解析. 【解析】 试题分析:(1)过E 点作EG ⊥x 轴于G ,根据B 、E 点的坐标,可证明△AEG ≌△ABO ,从而根据全等三角形的性质得证;(2)过A 作AD⊥AE 交EF 延长线于D ,过D 作DK ⊥x 轴于K ,然后根据全等三角形的判定得到△AEG ≌△DAK ,进而求出D 点的坐标,然后设F 坐标为(0,y ),根据S 梯形EGKD =S 梯形EGOF +S 梯形FOKD 可求出F 的坐标;(3)连接MI 、NI ,根据全等三角形的判定SAS 证得△MIN ≌△MIA ,从而得到∠MIN=∠MIA 和∠MIN=∠NIB ,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI ,作IS⊥OM 于S, 再次证明△HIP ≌△SIC 和△QIP ≌△QIC ,得到C △POQ 周长.试题解析:(1)过E 点作EG⊥x 轴于G ,∵B (0,-4),E (-6,4),∴OB=EG=4,在△AEG 和△ABO 中,∵90EGA BOAEAG BAOEG BO∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEG≌△ABO(AAS),∴AE=AB∴A为BE中点(2)过A作AD⊥A E交EF延长线于D,过D作DK⊥x轴于K,∵∠FEA=45°,∴AE=AD,∴可证△AEG≌△DAK,∴D(1,3),设F(0,y),∵S梯形EGKD=S梯形EGOF+S梯形FOKD,∴()()() 111347463222y y +⨯=+⨯++∴227y=∴220,7F⎛⎫⎪⎝⎭(3)连接MI、NI∵I 为△MON 内角平分线交点,∴NI 平分∠MNO,MI 平分∠OMN,在△MIN 和△MIA 中,∵MN MA NMI AMI MI MI =⎧⎪∠=∠⎨⎪=⎩∴△MIN ≌△MIA (SAS ),∴∠MIN=∠MIA ,同理可得∠MIN=∠NIB,∵NI 平分∠MNO,MI 平分∠OMN,∠MON=90°,∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,∴∠AIB=135°×3-360°=45°,连接OI ,作IS⊥OM 于S, ∵IH⊥ON,OI 平分∠MON,∴IH=IS=OH=OS ,∠HIS=90°,∠HIP+∠QIS=45°,在SM 上截取SC=HP ,可证△HIP≌△SIC,∴IP=IC,∠HIP=∠SIC ,∴∠QIC=45°,可证△QIP≌△QIC,∴PQ=QC=QS+HP ,∴C △POQ =OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.2.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。
红对勾八年级上数学测试卷
一、选择题(每题5分,共25分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. -1D. 02. 已知a<b,则下列不等式中正确的是()A. a²<b²B. a³<b³C. a<b²D. a²<b3. 在等腰三角形ABC中,AB=AC,如果∠BAC=50°,则∠ABC的度数是()A. 50°B. 60°C. 70°D. 80°4. 下列函数中,自变量x的取值范围是全体实数的是()A. y=2x+1B. y=x²-3x+2C. y=√xD. y=1/x5. 下列各组数中,互为相反数的是()A. -1和1B. 2和-2C. -3和3D. -2和2二、填空题(每题5分,共25分)6. 下列各数的倒数分别是:()-3的倒数是______,-1/2的倒数是______,1/3的倒数是______。
7. 若|a|=5,则a的值为______。
8. 在等腰三角形ABC中,AB=AC,如果∠BAC=40°,则∠ABC的度数是______。
9. 下列函数中,自变量x的取值范围是全体实数的是______。
10. 若两个数的和是0,则这两个数互为______。
三、解答题(每题15分,共45分)11. (10分)已知:a+b=5,ab=6,求a²+b²的值。
12. (10分)已知:在△ABC中,∠A=40°,∠B=60°,求∠C的度数。
13. (15分)已知:函数y=2x-3,求以下问题:(1)当x=2时,y的值是多少?(2)当y=5时,x的值是多少?(3)函数的增减性。
四、附加题(20分)14. (10分)已知:在△ABC中,∠A=45°,∠B=45°,∠C=90°,求△ABC的周长。
15. (10分)已知:函数y=x²-4x+3,求以下问题:(1)函数的对称轴。
人教版八年级数学上册全册单元测试卷(含答案)
人教版八年级数学上册全册单元测试卷(含答案)第十一章三角形是初中数学中的重要概念之一,本章主要介绍三角形的定义、分类、性质以及相关定理。
首先,三角形是由三条线段组成的图形,其中每条线段都是三角形的一条边,而三条边的交点称为三角形的顶点。
根据三角形的边长和角度大小,我们可以将三角形分为不同的类型,如等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等。
其次,全等三角形是指在形状和大小上完全相同的两个三角形,它们的对应边和对应角都相等。
全等三角形有很多应用,比如在证明几何定理时经常会用到。
第十二章轴对称是初中数学中的一个重要概念,它是指一个图形关于某条直线对称后完全重合的情况。
轴对称可以分为水平轴对称和垂直轴对称两种情况,对称轴是指图形中被对称的那条直线。
轴对称有很多应用,比如在绘制图形、证明几何定理和解决实际问题时都会用到。
第十三章整式的乘法与因式分解是初中数学中的一个重要知识点,它涉及到多项式的基本运算和分解。
整式是由常数、变量和它们的乘积以及它们的各项次幂所构成的代数式,而整式的乘法和因式分解则是对多项式进行拆分和组合的过程,能够帮助我们更好地理解和应用代数式。
第十四章分式是初中数学中的一个重要概念,它是指由两个整式相除所得到的代数式。
分式可以分为真分式、带分式和整式三种情况,其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于等于分母次数的分式,而整式则是指分母为常数的分式。
分式在数学中有着广泛的应用,比如在解方程、证明定理和计算实际问题时都会用到。
第十五章三角形单元测试是初中数学中的一种测试形式,它主要考察学生对于三角形相关知识和技能的掌握情况。
本测试共有10道选择题,每道题目有4个选项,只有一个选项是正确的。
测试时间为90分钟,满分为100分。
通过三角形单元测试,学生可以了解自己在三角形方面的薄弱环节,并及时进行补充和提高。
二、填空题11.x的取值范围是 1<x<312.可以构成 4 个三角形13.∠A+∠B+∠C+∠D+∠E+∠F等于 540°14.如果一个正多边形的内角和是900°,则这个正多边形是正 10 边形15.n=816.需要安排 3 种不同的车票17.得到的图形是正三角形,它的内角和(按一层计算)是 360°18.∠BOC的度数是 80°三、解答题19.因为BD平分∠ABC,所以∠CBD=∠ABD=40°又因为DA⊥AB,所以∠ADB=90°-∠ABD=50°所以∠C=∠CBD+∠ADB=40°+50°=90°20.(1) 画出△XXX的外角∠BCD后,再画出∠BCD的平分线CE,如图:image.png](/upload/image_hosting/edn2j1v0.png)2) 由于∠A=∠B,所以∠ACB=∠ABC,而∠BCD是△ABC的外角,所以∠BCD=∠ACB+∠ABC又因为CE是∠BCD的平分线,所以∠ECD=∠DCB,所以∠ECD+∠XXX∠BCD即∠ECD+∠XXX∠ACB+∠ABC又因为∠ACB=∠ABC,所以∠ECD=∠DCB所以CE∥AB21.(1) 如图:image.png](/upload/image_hosting/1a0z4h2p.png)ABC+∠ACB=30°+90°=120°XXX∠XXX∠ABC+∠XXX-∠XXX-∠XCB=120°-90°-30°=0°2) ∠ABX+∠ACX的大小不变,因为它们与三角板XYZ 的位置无关,只与△ABC的角度有关,而△XXX的角度没有变化。
八年级数学第1周周清测试题(解析卷)
八年级数学周周清测试题参考答案与试题解析一.选择题(共10小题)1.下列从左边到右边的变形,是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.2+1=o+1)C.(x+2)(x﹣2)=x2﹣4D.x2﹣4=(x+2)(x﹣2)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,据此逐项判断即可.【解答】解:4a2﹣4a+1=4a(a﹣1)+1中等号右边不是积的形式,则A不符合题意;x2+1=x(x+1)中1不是整式,则B不符合题意;(x+2)(x﹣2)=x2﹣4是乘法运算,则C不符合题意;x2﹣4=(x+2)(x﹣2)符合因式分解的定义,则D符合题意;故选:D.2.多项式2x2﹣13x+b中,有一个因式为(x﹣5),则b的值为()A.﹣15B.﹣3C.15D.3【分析】设另一个因式为(2x+m),根据因式分解的意义计算(x﹣5)(2x+m)后即可求得答案.【解答】解:设另一个因式为(2x+m),则(x﹣5)(2x+m)=2x2﹣13x+b,整理得:2x2+(m﹣10)x﹣5m=2x2﹣13x+b,则m﹣10=﹣13,b=﹣5m,那么m=﹣3,b=15,故选:C.3.分解因式:x2﹣x=()A.x(x﹣1)B.(x+1)(x﹣1)C.2x D.x(x+1)【分析】用提公因式法分解因式即可.【解答】解:x2﹣x=x(x﹣1).故选:A.4.把多项式﹣7ab﹣14abx+49aby分解因式,提公因式﹣7ab后,另一个因式是()A.1+2x﹣7y B.1﹣2x﹣7y C.﹣1+2x+2y D.﹣1﹣2x+7y【分析】﹣7ab﹣14abx+49aby的公因式为﹣7ab,提取公因式后化简即可.【解答】解:﹣7ab﹣14abx+49aby=﹣7ab(1+2x﹣7y).故选:A.5.下列多项式中不能用公式法分解因式的是()A.2++14B.2ab+a2+b2C.﹣a2+25D.﹣4﹣b2【分析】根据完全平方公式和平方差公式逐项进行分析判断即可.【解答】解:A.2++14=(+12)2,能用完全平方公式进行因式分解,不符合题意;B.2ab+a2+b2=(a+b)2,能用完全平方公式进行因式分解,不符合题意;C.﹣a2+25=(5+a)(5﹣a),能用平方差公式进行因式分解,不符合题意;D.﹣4﹣b2=﹣(4+b2),不能用公式法分解,符合题意;故选:D.6.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±24【分析】这里首末两项是3x和4y个数的平方,那么中间一项为加上或减去3x和4y乘积的2倍,进而得出答案.【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±24.故选:D.7.小明做了如下四个因式分解题,你认为小明做得对但不完整的一题是()A.x2y﹣xy2=xy(x﹣y)B.m2﹣2mn+n2=(m﹣n)2C.a3﹣a=a(a2﹣1)D.﹣x2+y2=(y+x)(y﹣x)【分析】原式各项分解得到结果,即可做出判断.【解答】解:A、x2y﹣xy2=xy(x﹣y),正确;B、m2﹣2mn+n2=(m﹣n)2,正确;C、a3﹣a=a(a2﹣1)=a(a+1)(a﹣1),错误;D、﹣x2+y2=(y+x)(y﹣x),正确,故选:C.8.若k为任意整数,则(2k+3)2﹣(2k﹣2)2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【分析】利用平方差公式分解因式后可得结论.【解答】解:(2k+3)2﹣(2k﹣2)2=[(2k+3)+(2k﹣2)][(2k+3)﹣(2k﹣2)]=(2k+3+2k﹣2)(2k+3﹣2k+2)=5(4k+1),∴(2k+3)2﹣(2k﹣2)2的值总能被5整除.故选:C.9.若a+b=3,a﹣b=7,则a2﹣b2的值为()A.﹣21B.21C.﹣10D.10【分析】利用平方差公式分解因式,进而将已知代入求出即可.【解答】解:∵a+b=3,a﹣b=7,∴a2﹣b2=(a+b)(a﹣b)=3×7=21.故选:B.10.已知m+n=8,则2+22+(1﹣m)(1﹣n)的值为()A.32B.25C.10D.64【分析】对所求的式子进行变形处理,得到含(m+n)的式子,再代入m+n=8即可.【解答】解:∵2+22+(1﹣m)(1﹣n)=2+22+1﹣(m+n)+mn,=2+2+2B2+1﹣(m+n)=(rp22+1﹣(m+n)∵m+n=8,所以原式=32+1﹣8=25.故选:B.二.填空题(共4小题)11.将多项式6a2b﹣3ab2+12a2b2分解因式时,应提取的公因式是3ab.【分析】公因式的确定,一看系数:若各项系数都是整数,应提取各项系数的最大公因数;二看字母:公因式的字母是各项相同的字母;三看字母的指数:各相同字母的指数取指数最低的.【解答】解:对多项式6a2b﹣3ab2+12a2b2分解因式时,应提取的公因式是3ab,故答案为:3ab.12.根据如图所示的拼图过程,写出一个多项式的因式分解:x2+2x+4x+8=(x+4)(x+2).【分析】利用两种方法表示出这个图形的面积,列出等式即可.【解答】解:四张长方形或正方形纸片拼成一个大长方形,面积可以表示为:x2+2x+4x+8=x2+6x+8=(x+4)(x+2).故答案为:x2+2x+4x+8=(x+4)(x+2).13.分解因式:ab2﹣a2=a(b2﹣a).【分析】先找出多项式的公因式是a,再分解因式即可.【解答】解:ab2﹣a2=a(b2﹣a).故答案为:a(b2﹣a).14.分解因式:29a2−43a+2=29(a﹣3)2.【分析】先提取公因式29,再对余下的多项式利用完全平方公式继续分解.【解答】解:29a2−43a+2=29(a2﹣6a+9)=29(a﹣3)2.故答案为:29(a﹣3)2.三.解答题15.把下面各式因式分解:(1)6ax﹣12ay+18az;(2)﹣15m3n2+20m2n﹣5mn;(3)3a(x﹣y)﹣3b(x﹣y);【解答】解:(1)6ax﹣12ay+18az=6a(x﹣2y+3z);(2)﹣15m3n2+20m2n﹣5mn=﹣5mn(3m2n﹣4m+1);(3)3a(x﹣y)﹣3b(x﹣y)=3(x﹣y)(a﹣b);16.把下面各式因式分解:(1)9x2﹣16.(3)x2(m﹣2)+y2(2﹣m).(3)x2(x﹣2)﹣16(x﹣2);【解答】解:(1)9x2﹣16=(3x+4)(3x﹣4).(2)x2(m﹣2)+y2(2﹣m)=(m﹣2)(x2﹣y2)=(m﹣2)(x+y)(x﹣y).(3)x2(x﹣2)﹣16(x﹣2)=(x﹣2)(x2﹣16)=(x﹣2)(x﹣4)(x+4);17.把下面各式因式分解:(1)3a2﹣6ab+3b2;(2)(m﹣n)2﹣6(n﹣m)+9.(3)9(2x﹣1)2﹣6(2x﹣1)+1.【解答】解:(1)3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2;(2)(m﹣n)2﹣6(n﹣m)+9=(m﹣n)2+6(m﹣n)+9=[(m﹣n)+3]2=(m﹣n+3)2.(3)9(2x﹣1)2﹣6(2x﹣1)+1=[3(2x﹣1)﹣1]2=(6x﹣4)2=4(3x﹣2)2.18.利用因式分解的方法简算(1)2022﹣542+256×352(2)89×18−25×0.125(3)1022+102×196+982【解答】解:(1)2022﹣542+256×352=(202+54)(202﹣54)+256×352=256×148+256×352=256×(148+352)=256×500=128000;(2)89×18−25×0.125=89×18−25×18=(89−25)×18=64×18=8;(3)1022+102×196+982=1022+2×102×98+982=(102+98)2=2002=40000.19.先分解因式,然后计算;(1)已知x﹣y=1,求12x2﹣xy+12y2;(2)﹣9x2+12xy﹣4y2,其中x=43,y=−12;(3)(r2)2−(K2)2,其中a=−18,b=2.【解答】解:(1)∵x﹣y=1,∴12x2﹣xy+12y2=12(x﹣y)2=12×12=12;(2)∵x=43,y=−12,∴﹣9x2+12xy﹣4y2=﹣(9x2﹣12xy+4y2)=﹣(3x﹣2y)2=﹣[3×43−2×(−12)]2=﹣25;(3)∵a=−18,b=2,∴(r2)2−(K2)2,=(r2+K2)(r2K2)=ab=−18×2=−14.。
初二数学每周一练习题
初二数学每周一练习题
本周练习题目:
1. 计算下列各组数的和:
(a) 3, 5, 7, 9, 11
(b) 10, 20, 30, 40, 50
2. 简化下列各组数的比值:
(a) 12:16
(b) 36:48
3. 某物品原价为120元,现降价20%,请计算降价后的价格是多少。
4. 某商品的原价为80元,现以打折价65元出售。
请计算打折力度
是多少。
5. 设直角三角形的直角边分别为3cm和4cm,求斜边的长度。
解答:
1.
(a) 3 + 5 + 7 + 9 + 11 = 35
(b) 10 + 20 + 30 + 40 + 50 = 150
2.
(a) 12:16 可化简为 3:4
(b) 36:48 可化简为 3:4
3. 原价为120元,降价20%,则降价的金额为120 * 0.2 = 24元。
降价后的价格为120 - 24 = 96元。
4. 打折力度可通过计算折扣率来求得,折扣率为 (原价 - 打折价) / 原价。
打折力度为 (80 - 65) / 80 = 0.1875,即18.75%。
5. 根据勾股定理,斜边的长度可计算为√(直角边1的平方 + 直角边2的平方)。
斜边的长度为√(3^2 + 4^2) = √25 = 5cm。
本周的数学练习题到此结束。
希望通过这些练习题的解答,能够帮助你巩固数学知识和提升解题能力。
如果有任何疑问,欢迎随时向老师或同学请教。
祝好运!。
初中数学八年级上册-第一周小测试卷
命题人老赵:数学是锻炼思维的体操,数学使人聪明!数学加油只要强,考大学一定喜洋洋!!!家长签字:一.选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 得分答案1.下列各组线段的长为边,能组成三角形的是A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm2.下列图形中,不具有稳定性的是3.若一个三角形的三个内角的度数分别为40°,60°,80°,那么这个三角形是A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形4.若AD是△ABC的中线,则以下结论正确的是A.AD⊥BC B.∠BAD=∠CAD C.BD=CD D.以上答案都正确5.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.2题图 5题图6.下列说法正确的是A.三角形的角平分线、中线、和高都在三角形内部 B.直角三角形只有一条高C.三角形的高至少有一条在三角形内部 D.三角形的三条高的交点不在三角形内,就在三角形外7.已知三角形两边长分别是4和10,则此三角形第三边的边长可能是A.5 B.6 C.12 D.168.等腰三角形的一边长为3 cm,周长为19 cm,则该三角形的腰长为()A.3 cm B.8 cm C.3 cm或8 cm D.以上答案均不对9.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为A.1 B.2 C.3 D.4y =0,则以x,y的值为两边长的等腰三角形的周长是10.已知实数x,y满足|x-4|+8A.20或16B.20C.16D.以上答案均不对二、填空题(每小题3分,共30分)11.如图,图中三角形的个数是11题图 15题图 16题图 20题图12.若一个三角形三边长分别为1,2,x,则x的值取值范围是13.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.14.等腰三角形的两边的长分别为2cm和7cm,则三角形的周长是 .15.如图,AD是△ABC的中线,AE是△ABD的中线,若△ABC的面积为24 cm2,则△ABE的面积为________cm2.16.如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.17.已知a、b、c是三角形的三边长,化简:|a-b+c|+|a-b-c|=_____________。
八年级(上)期中数学测试B卷(含答案)
数学八年级上册期中测试1一、选择题(每题3分,共24分) 1、在3125,0,52.3,3,311,414.1,2,25 π-中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个 2、下列说法不正确的是 ( )A .11255的平方根是; B 3=-C .()21.0-的平方根是±0.1 ; D .981是的算术平方根 3、一个正数的平方根为m -2与12+m ,则m 的值为 ( ) A .31 B .31或3- C .3- D .3 4、若9,422==b a ,且0 ab ,则b a -的值为 ( ) A .5± B . 1± C . 5 D . 1- 5、已知点P(3,-2)与点Q 关于y 轴反射,则点Q 的坐标为( )A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2) 6、李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y •(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )7、点A(2,m)和点B(-4,n)都在直线y =321+-x 上,则m 与n 的大小关系应是( ) A .m > n B.m < n C.m = n D.条件不够,无法确定x第5题图8、已知一次函数y=kx+b(k≠0)的草图如右所示,则下列结论正确的是( ) A .k>0,b>0 B .k>0,b<0C .k<0,b>0D .k<0,b<0二、填空题(每题3分,共24分)9、169的算术平方根是 ;25-的相反数 ; 10、比较大小,填>或<号:32; 11、函数xx y -=2 自变量x的取值范围是 .12、已知y与x-3成正比例,当x=4时,y=—3。
数学八年级上册全册全套试卷测试卷附答案
数学八年级上册全册全套试卷测试卷附答案一、选择题(每小题2分,共40分)1. A2. C3. B4. D5. C6. A7. D8. B9. D 10. C11. B 12. A 13. C 14. B 15. B16. C 17. A 18. C 19. B 20. A21. D 22. B 23. D 24. C 25. A26. B 27. A 28. C 29. D 30. A31. C 32. D 33. C 34. B 35. A36. D 37. B 38. A 39. C 40. D二、填空题(每小题2分,共20分)41. x = 3 42. y = -7 43. z = 3 44. p = 545. q = 8 46. r = 11 47. s = 2 48. t = 449. u = 13 50. v = -10三、解答题(每小题10分,共40分)51. 解:三角形ABC和三角形DEF的对应边分别相等,可得:AB/DE = BC/EF = CA/FD根据题意可得:AB/DE = BC/EF = CA/FD = 5/4所以三角形ABC和三角形DEF是相似的。
52. 解:已知矩形ABCD的周长为42 cm,设矩形的长为L,宽为W。
由题意可得2L + 2W = 42,化简得L + W = 21。
又已知矩形的面积为120平方厘米,即L * W = 120。
由上两式可得L = 21 - W,代入第二式得(21 - W) * W = 120。
展开化简后得W^2 - 21W + 120 = 0。
解这个二次方程得W = 5 或 W = 16。
当W = 5时,L = 21 - 5 = 16;当W = 16时,L = 21 - 16 = 5。
所以矩形的长和宽分别为16 cm和5 cm。
53. 解:已知正方形的周长为36 cm,设正方形的边长为x。
由题意可得4x = 36,化简得x = 9。
正方形的面积为x * x = 9 * 9 = 81 平方厘米。
全程检测单元测试卷八年级上册数学b版答案
全程检测单元测试卷八年级上册数学b版答案第1章分式类型之一分式的概念1.若分式2a+1存有意义,则a的值域范围就是 ( )a.a=0b.a=1c.a≠-1d.a≠02.当a ________时,分式1a+2有意义.3. 若式子2x-1-1的值零,则x=________.4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.类型之二分式的基本性质5.a,b为有理数,且ab=1,设p=aa+1+bb+1,q=1a+1+1b+1,则p____q(填“>”、“<”或“=”).类型之三分式的排序与化简6.化简1x-3-x+1x2-1(x-3)的结果是 ( )a.2b.2x-1c.2x-3d.x-4x-17.化简x(x-1)2-1(x-1)2的结果就是______________.8.化简:1+1x÷2x-1+x2x.9.先化简:1-a-1a÷a2-1a2+2a,再挑选出一个最合适的值代入排序.类型之四整数指数幂11.排序:(1)(-1)2 -|-7|+9×(7-π)0+15-1;类型之五科学记数法12.在日本核电站事故期间,我国某监测点监测至极微量的人工放射性核素碘-,其浓度为0. 3贝克/立方米.数据“0. 3”用科学记数法可以则表示为__________________ .类型之六解分式方程13.分式方程12x2-9-2x-3=1x+3的意指 ( )a.x=3b.x=-3c.难解d.x=3或-314.解方程:2x-1=1x-2.15.解方程:23x-1-1=36x-2.类型之七分式方程的应用16.李明至离家2.1千米的学校出席九年级联欢会,至学校时辨认出表演道具还放到家中,此时距联欢会已经开始除了42分钟,于是他立即步行匀速回家,在家拎道具用了1分钟,然后立即匀速骑著自行车回到学校,未知李明骑著自行车的速度就是步行速度的3倍,且李明骑著自行车至学校比他从学校步行到家譬如了20分钟.(1)李明步行的速度是多少米/分?(2)李明若想在联欢会已经开始前赶往学校?17.为了提高产品的附加值,某公司计划将研发生产的1 件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工顺利完成这批产品比乙工厂单独加工顺利完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,谋:甲、乙两个工厂每天分别能够加工多少件新产品.1.c2.≠-23.34.【解析】必须并使分式的值0,必须并使分式的分子为0,且分母不为0,即为|x|-3=0且(x+2)(x-3)≠0.5.=6.b 【解析】原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.7.1x-18.求解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.当a=3时,原式=-13+1=-14.(a的值域为0,±1,-2外的任一值)10.【解析】本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.当x2-x=0时,原式=0-2=-2.11.【解析】先算乘方,再算乘除.求解:(1)原式=-1-7+3+5=0;=14m-6+4-(-3)n-2+6-3=14mn.12.9.63×10-513.c 【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:当x=3时,(x+3)(x-3)=0,即x=3不是原分式方程的解,故原方程难解.14.解:方程两边都乘(x-1)(x-2),得2( x-2)=x-1,回去括号,得2x-4=x-1,移项,得x=3.经检验,x=3就是原方程的求解,所以原分式方程的解是x=3.15.求解:方程两边同时乘6x-2,得4-(6x-2)=3,化简,得-6x=-3,解得x=12.检验:当x=12时,6x-2≠0,所以x=12是原方程的解.16.【解析】 (1)成正比关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家挑道具所用总时间与42分的大小.解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x米/分,根据题意,得2 x-2 x=20,Champsaurx=70,经检验,x=70是原方程的解,所以李明步行的速度就是70米/分后.(2)因为2 +2 ×70+1=41(分)<42(分),所以李明能够在联欢会已经开始前赶往学校.17.【解析】本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.求解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意,得1 x-1 .5x=10,Champsaurx=40,经检验x=40是原方程的根,所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。
(北师大版)八年级数学上册(全册)单元测试卷汇总(打印版)
(北师大版)八年级数学上册(全册)单元测试卷汇总(打印版)第一章达标测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( ) A.2倍B.3倍C.4倍D.5倍2.下列各组线段能构成直角三角形的一组是( )A.30,40,50B.7,12,13 C.5,9,12 D.3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是( ) A.169 B.119 C.13 D.1444.如图,阴影部分是一个长方形,则长方形的面积是( )A.3 cm2B.4 cm2C.5 cm2D.6 cm2(第4题) (第7题) (第10题)5.满足下列条件的△ABC,不是直角三角形的为( )A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=2∶3∶46.已知一轮船以18 n mile/h的速度从港口A出发向西南方向航行,另一轮船以24 n mile/h 的速度同时从港口A出发向东南方向航行,离开港口1.5 h后,两轮船相距( ) A.30 n mile B.35 n mile C.40 n mile D.45 n mile7.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于( )A.1013B.1513C.6013D.75138.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形9.已知直角三角形的斜边长为5 cm,周长为12 cm,则这个三角形的面积是( ) A.12 cm2B.6 cm2C.8 cm2D.10 cm210.如图,分别以直角三角形的三条边为边向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是( )A.S1+S2>S3B.S1+S2=S3C.S1+S2<S3D.无法确定二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,若AB=5 cm,BC=6 cm,则AD=__________.(第11题) (第12题) (第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为________.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A重合,得折痕DE,则△ABE的周长等于________.c-b=0,则△ABC 14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||的形状为_________________________________________.15.如图是一个长方体,则AB=________,阴影部分的面积为________.(第15题) (第16题)16.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,且AH∶AE=3∶4.那么AH等于________.17.红方侦察员小马的正前方400 m处有一条东西走向的公路,突然发现一辆蓝方汽车在公路上行驶,他拿出红外线测距仪测得汽车与他相距400 m,10 s后又测得汽车与他相距500 m,则蓝方汽车的速度是________m/s.18.在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看成圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈(如图为灯管的部分示意图),则彩色丝带的总长度为__________.(第18题)三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?20.如图,在4×4的正方形网格中,每个小正方形的边长都是1.线段AB,AE分别是图中两个1×3的长方形的对角线,请你说明:AB⊥AE.21.如图,四边形ABCD是边长为a的正方形,点E在CD上,DE=b,AE=c,延长CB至点F,使BF=b,连接AF,试利用此图说明勾股定理.22.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?23.如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为30 cm2,求△ADE的面积.25.有一个如图所示的长方体透明玻璃水缸,其长AD=8 cm,高AB=6 cm,水深为AE=4 cm,在水面线EF上紧贴内壁G处有一粒食物,且EG=6 cm,一只小虫想从水缸外的A处沿水缸壁爬进水缸内的G处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).答案一、1.B 2.A 3.A 4.C 5.D 6.D7.C 8.D 9.B 10.B二、11.4 cm 12.400 m 13.7 cm14.等腰直角三角形15.13;30 16.6 17.3018.150 cm 点拨:因为灯管可近似看成圆柱,而圆柱的侧面展开图是一个长方形,所以假设把灯管的侧面展开后,得到一个由30个完全相同的小长方形组成的大长方形,且每个小长方形的长等于灯管的底面周长,小长方形的高等于灯管长度的130,则丝带的长度等于小长方形对角线长的30倍.三、19.解:因为CD=AB=3.8 m,所以PD=PC-CD=9 m.在Rt△ADP中,AP2=AD2+PD2,得AP=15 m.所以此消防车的云梯至少应伸长15 m.20.解:如图,连接BE.(第20题)因为AE2=12+32=10,AB2=12+32=10,BE2=22+42=20,所以AE2+AB2=BE2.所以△ABE是直角三角形,且∠BAE=90°,即AB⊥AE.21.解:在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB =a ,∠D =∠ABF ,DE =BF =b ,所以△ADE ≌△ABF .所以AE =AF =c ,∠DAE =∠BAF ,S △ADE =S △ABF .所以∠EAF =∠EAB +∠BAF =∠EAB +∠DAE =∠DAB =90°,S 正方形ABCD =S 四边形AECF .连接EF ,易知S 四边形AECF =S △AEF +S △ECF =12[c 2+(a -b )(a +b )]=12(a 2+c 2-b 2),S 正方形ABCD=a 2,所以12(a 2+c 2-b 2)=a 2.所以a 2+b 2=c 2. 22.解:垂直.理由如下:因为AB =12 m ,AC =15 m ,BC =9 m , 所以AC 2=BC 2+AB 2. 所以∠CBA =90°. 又因为AD =13 m ,AB =12 m ,BD =5 m ,所以AD 2=BD 2+AB 2. 所以∠ABD =90°, 因此电线杆和地面垂直.点拨:要判定电线杆和地面垂直,只需说明AB ⊥BD 且AB ⊥BC 即可,利用勾股定理的逆定理即可判定△ABD 和△ABC 为直角三角形,从而得出电线杆和地面垂直. 23.解:根据题意,BC =AC =OA -OC =9-OC .因为∠AOB =90°,所以在Rt △BOC 中,根据勾股定理,得OB 2+OC 2=BC 2, 所以32+OC 2=(9-OC )2, 解得OC =4 cm.所以BC =5 cm.24.解:由折叠可知AD =AF ,DE =EF .由S △ABF =12BF ·AB =30 cm 2,AB =DC =5 cm ,得BF =12 cm.在Rt △ABF 中,由勾股定理,得AF =13 cm ,所以BC =AD =AF =13 cm. 设DE =x cm ,则EC =(5-x )cm ,EF =x cm ,FC =13-12=1(cm).在Rt △ECF 中,由勾股定理,得EC 2+FC 2=EF 2,即(5-x )2+12=x 2,解得x =135.所以S △ADE =12AD ·DE =12×13×135=16.9 (cm 2).25.解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 与BC 交于点Q ,则AQ +QG 为最短路线.(第25题)(2)因为AE =4 cm ,AA ′=12 cm ,所以A ′E =8 cm.在Rt △A ′EG 中,EG =6 cm ,A ′E =8 cm ,A ′G 2=A ′E 2+EG 2=102, 所以A ′G =10 cm ,所以AQ +QG =A ′Q +QG =A ′G =10 cm. 所以最短路线长为10 cm.第二章达标测试卷一、选择题(每题3分,共30分) 1.8的平方根是( )A .4B .±4C .2 2D .±2 22. ()231-的立方根是( )A .-1B .0C .1D .±13.有下列各数:0.456,3π2,(-π)0,3.14,0.801 08,0.101 001 000 1…(相邻两个1之间0的个数逐次加1),4,12.其中是无理数的有( ) A .1个B .2个C .3个D .4个4.有下列各式:①2;②13;③8;④1x(x >0);⑤22+x y ;⑥3x .其中,最简二次根式有( ) A .1个B .2个C .3个D .4个5.下列语句不正确的是( )A .数轴上的点表示的数,如果不是有理数,那么一定是无理数B .大小介于两个有理数之间的无理数有无数个C .-1的立方是-1,立方根也是-1D .两个实数,较大者的平方也较大 6.下列计算正确的是( )A. 12=2 3B.32=323-x =-x 2x x7.设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .88.如图,在数轴上表示-5和19的两点之间表示整数的点有( )A .7个B .8个C .9个D .6个(第8题)(第10题)9(y+3)2=0,则x-y的值为( )A.-1 B.1 C.-7 D.710.按如图所示的程序计算,若开始输入的n值为2,则最后输出的结果是( ) A.14 B.16 C.8+52 D.14+2二、填空题(每题3分,共24分)11.比较大小:310 ________ 5 (填“>”或“<”).12.利用计算器计算12×3-5时,正确的按键顺序是________________,显示器上显示的数是________.13.如图,数轴上表示数3的是点________.(第13题)(第16题)14.计算:27×85÷13=________.15.计算:32-82=________.16.如图,在正方形ODBC中,OC=2,OA=OB,则数轴上点A表示的数是________.17.我们规定运算符号“▲”的意义是:当a>b时,a▲b=a+b;当a≤b时,a▲b=a -b,其他运算符号的意义不变,按上述规定,计算:(3▲2)-(23▲32)=________. 18.观察分析下列数据:0,-3,6,-3,23,-15,32,…,根据数据排列的规律得到第16个数据应是________(结果需化简).三、解答题(19题12分,20,21,23题每题8分,其余每题10分,共66分) 19.计算下列各题:(1)(-1)2 017+6×272;(2)( 2-23)(23+2);(3)|3-7|-|7-2|-(8-27)2;(4) 15+603-3 5.20.求下列各式中的x 的值:(1)9(3x +2)2-64=0; (2)-(x -3)3=27.21.已知2a -1的平方根是±3,3a +b -1的算术平方根是4,求a +2b 的值.22.先化简,再求值:(1)(a -3)(a +3)-a (a -6),其中a =3+12;(2)(a +b )2+(a -b )(2a +b )-3a 2,其中a =-2-3,b =3-2. 23.记13-7的整数部分是a ,小数部分是b ,求ab的值.24.先观察下列等式,再回答问题:=1+11-11+1=112;1+12-12+1=116;1+13-13+1=1112;…(1) (2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).25.阅读理解:已知x 2-5x +1=0,求x 2+21x 的值. 解:因为x 2-5x +1=0,所以x 2+1=5x . 又因为x ≠0,所以x +1x=5. 所以1⎛⎫+⎪⎝⎭x x 2=(5)2,即x 2+2+21x =5,所以x 2+21x =3. 请运用以上解题方法,解答下列问题: 已知2m 2-17m +2=0,求下列各式的值: (1) m 2+21m; (2) m -1m.答案一、1.D 2.C 3.C 4.B 5.D 6.A7.D 8.A 9.D 10.C 二、11.<12.■12×■3-5=;113.B 14. 18510 15.216.-2 2 17.42- 318.-3 5 点拨:观察各数,-3=-9,23=12,32=18,被开方数每次增加3,且除第一项外奇数项为正、偶数项为负,故第16个数据应为-3×15=-3 5.三、19.解:(1)原式=-1+9=8;(2)原式=2-12=-10;(3)原式=(3-7)-(7-2)-(8-27)=-3; (4)原式=5+25-35=0.20.解:(1)原方程可化为(3x +2)2=649.由平方根的定义,得3x +2=±83,所以x =29或x =-149.(2)原方程可化为(x -3)3=-27.由立方根的定义得x -3=-3,即x =0.21.解:由题意可知2a -1=9,3a +b -1=16,所以a =5,b =2.所以a +2b =5+2×2=9.22.解:(1)原式=a 2-3-a 2+6a =6a -3.当a =5+12时,原式=6a -3=65+3-3=6 5.(2)原式=a 2+2ab +b 2+2a 2+ab -2ab -b 2-3a 2=ab .当a =-2-3,b =3-2时,原式=ab =(-2)2-(3)2=4-3=1.23.解:因为13-7=3+72,2<7<3,所以52<13-7<3.所以a =2,b =3+72-2=7-12.所以a b=47-1=4(7+1)6=2+273.24.解:(1) 2211145++=1+14-14+1=1120.验证如下: 2211145++=1111625++=25161400400++=441400=1120. (2) ()221111+++n n =1+1n -11+n =1+()11+n n (n 为正整数).25.解:(1)因为2m 2-17m +2=0,所以2m 2+2=17m .又因为m ≠0,所以m +1m=172,所以(m +1m )2=2172⎛⎫⎪ ⎪⎝⎭, 即m 2+2+21m =174. 所以m 2+21m =94. (2) 1m m -=21⎛⎫ ⎪⎝⎭m m -=2212+-m m =14=12,所以m -1m=±12.第三章达标测试卷一、选择题(每题3分,共30分) 1.根据下列表述,能确定位置的是( )A .光明剧院2排B .某市人民路C .北偏东40°D .东经112°,北纬36°2.在平面直角坐标系中,点A (-3,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上3.如图,如果“仕”所在位置的坐标为(-1,-2),“相”所在位置的坐标为(2,-2),那么“炮”所在位置的坐标为( )A.(-3,1) B.(1,-1) C.(-2,1) D.(-3,3)(第3题)(第8题)(第9题)(第10题)4.若点A(m,n)在第二象限,则点B(-m,|n|)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于( )A.y轴对称B.x轴对称C.原点对称D.直线y=x对称6.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为( ) A.(-4,0) B.(6,0)C.(-4,0)或(6,0) D.无法确定7.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( ) A.(-5,1) B.(3,-3) C.(2,2) D.(-2,-1)8.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A可用(2,3)表示,如果小惠不想因点到地雷而结束游戏的话,下列选项中,她应该点( )A.(7,2) B.(2,6) C.(7,6) D.(4,5)9.如图,已知在边长为2的等边三角形EFG中,以边EF所在直线为x轴建立适当的平面直角坐标系,得到点G的坐标为(1,3),则该坐标系的原点在( )A.E点处B.F点处C.G点处D.EF的中点处10.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC 的边时反弹,反弹时反射角等于入射角.小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2……第n次碰到长方形的边时的点为P n,则点P3的坐标是(8,3),点P2 018的坐标是( )A.(8,3) B.(7,4) C.(5,0) D.(3,0)二、填空题(每题3分,共24分)11.已知点A在x轴上,且OA=3,则点A的坐标为__________.12.已知小岛A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的________的方向上.13.对任意实数,点P(x,x-2)一定不在第______象限.14.点__________与(-3,7)关于x轴对称,点__________与(-3,7)关于y轴对称,点(-3,7)与(-3,-2)之间的距离是________.15.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为__________.16.如图,平面直角坐标系中有四个点,它们的横、纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横、纵坐标仍是整数,则移动后点A的坐标为__________.(第16题) (第17题) (第18题)17.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是________________________.18.将正整数按如图的规律排列下去,若用有序数对(m,n)表示m排从左到右第n个数.如(4,3)表示9,则(15,4)表示________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(2,6),(4,6),(4,8),(2,8);(2)(3,0),(3,3),(3,6);(3)(3,5),(1,6);(4)(3,5),(5,6);(5)(3,3),(2,0);(6)(3,3),(4,0).20.小林放学后,先向东走了300 m再向北走200 m,到书店A买了一本书,然后向西走了500 m再向南走了100 m,到快餐店B买了零食,又向南走了400 m,再向东走了800 m到了家C.请建立适当的平面直角坐标系,并在坐标系中画出点A,B,C 的位置.21.如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使点A的坐标为(-2,4),点B的坐标为(-4,2);(2)在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,画出△ABC,则点C的坐标是________,△ABC的周长是________(结果保留根号);(3)作出△ABC关于x轴对称的△A′B′C′.(第21题)22.在直角坐标系中,有点A(3,0),B(0,4),若有一个直角三角形与Rt△ABO全等且它们只有一条公共直角边,请写出这些直角三角形各顶点的坐标(不要求写计算过程).23.长阳公园有四棵古树A,B,C,D,示意图如图所示.(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来划为保护区,请你计算保护区的面积(单位:m).(第23题)24.如图,已知点P(2m-1,6m-5)在第一象限的角平分线OC上,AP⊥BP,点A在x 轴上,点B在y轴上.(1)求点P的坐标.(2)当∠APB绕点P旋转时,OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.(第24题)答案一、1.D 2.B 3.A 4.A 5.B 6.C7.A 8.D 9.A 10.B二、11.(3,0)或(-3,0)12.南偏西30°13.二14.(-3,-7);(3,7);9 15.(1,2)16.(-1,1)或(-2,-2)17.(4,2)或(-4,2)或(-4,3) 18.109三、19.解:画出的图形如图所示.(第19题)20.解:(答案不唯一)以学校门口为坐标原点、向东为x轴的正方向建立平面直角坐标系,各点的位置如图:(第20题)21.解:(1)如图所示(第21题)(2)如图所示.(-1,1);210+22(3)如图所示.22.解:根据两个三角形全等及有一条公共直角边,可利用轴对称得到满足这些条件的直角三角形共有6个.如图:(第22题)①Rt△OO1A,②Rt△OBO1,③Rt△A2BO,④Rt△A1BO,⑤Rt△OB1A,⑥Rt△OAB2.这些三角形各个顶点的坐标分别为:①(0,0),(3,4),(3,0);②(0,0),(0,4),(3,4);③(-3,4),(0,4),(0,0);④(-3,0),(0,4),(0,0);⑤(0,0),(0,-4),(3,0);⑥(0,0),(3,0),(3,-4).23.解:(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)四边形EFGH各顶点坐标分别为E(0,10),F(0,30),G(50,50),H(60,0),另外M(0,50),N(60,50),则保护区的面积S=S长方形MNHO-S△GMF-S△GNH-S△EHO=60×50-12×20×50-12×10×50-12×10×60=3 000-500-250-300=1950(m2).24.解:(1)由题意,得2m-1=6m-5.解得m=1.所以点P的坐标为(1,1).(2)当PA不垂直于x轴时,作PD⊥x轴于点D,PE⊥y轴于点E,则△PAD≌△PBE,所以AD=BE.所以AD=BE.所以OA+OB=OD+AD+OB=OD+BE+OB=OD+OE=2,为定值.当PA⊥x轴时,显然PB⊥y轴,此时OA+OB=2,为定值.故OA+OB的值不发生变化,其值为2.第四章达标测试卷一、选择题(每题3分,共30分)1.正比例函数y=2x的大致图象是( )2.若直线y=kx+b经过第二、三、四象限,则( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 3.一次函数y=2x+4的图象与y轴交点的坐标是( )A.(0,-4) B.(0,4) C.(2,0) D.(-2,0)4.对于函数y=-3x+1,下列结论正确的是( )A.它的图象必经过点(-1,3) B.它的图象经过第一、二、三象限C.当x>1时,y<0 D.y的值随x值的增大而增大5.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是( ) A.x<0 B.x>0 C.x<2 D.x>2(第5题) (第6题) (第10题) 6.如图是小明从学校到家行进的路程s(m)与时间t(min)的函数图象,观察图象,从中得到如下信息,其中不正确的是( )A.学校离小明家1 000 mB.小明用了20 min到家C.小明前10 min走了路程的一半D.小明后10 min比前10 min走得快7.点P1(x1,y1),P2(x2,y2)是一次函数y=-4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是( )A.y1>y2 B.y1>y2>0 C.y1<y2D.y1=y28.为了建设社会主义新农村,某市积极推进“村村通客车工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造的道路里程y(km)与时间x(天)的函数关系的大致图象是( )9.小聪在画一次函数的图象时,当他列表后,发现题中一次函数y =◆x +◆中的k 和b 看不清了,则( )x 0 3 y2A.k =2,b =3 B .k =-23,b =2 C .k =3,b =2 D .k =1,b =-110.一次函数y 1=kx +b 与y 2=x +a 的图象如图所示,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2,错误的个数是( ) A .0B .1C .2D .3二、填空题(每题3分,共24分) 11.已知y =(2m -1)x3m -2是一次函数,则m =________.12.已知直线y =kx +b ,若k +b =-5,kb =6,那么该直线不经过第________象限. 13.点(-3,2),(a ,a +1)在函数y =kx -1的图象上,则k =________,a =________. 14.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是__________.15.一次函数的图象与直线y =-x +1平行,且过点(8,2),那么此一次函数的表达式为______________.16.直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么b 1-b 2=________.17.如图,l 甲,l 乙分别表示甲、乙两弹簧的长度y (cm)与所挂物体的质量x (kg)之间的关系,设甲弹簧每挂1 kg 的物体,伸长的长度为k 甲 cm ;乙弹簧每挂1 kg 的物体,伸长的长度为k乙 cm,则k甲与k乙的大小关系为__________.(第17题)(第18题)18.某天,某巡逻艇凌晨1:00出发巡逻,预计准点到达指定区域,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(n mile)与所用时间t(h)的函数图象,则该巡逻艇原计划准点到达的时刻是__________.三、解答题(19题6分,20,21题每题9分,25题12分,其余每题10分,共66分) 19.已知一次函数y=ax+b.(1)当点P(a,b)在第二象限时,直线y=ax+b经过哪几个象限?(2)如果ab<0,且y随x的增大而增大,则函数的图象不经过哪些象限?20.一个正比例函数和一个一次函数,它们的图象都经过点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求出这两个函数的表达式;(2)在同一坐标系中,分别画出这两个函数的图象;(3)直接写出一次函数图象在正比例函数图象下方时x的取值范围.21.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求点A,B的坐标;(2)求当x=-2时,y的值,当y=10时,x的值;(3)过点B作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.(第21题)22.一盘蚊香长105 cm,点燃时每时缩短10 cm.(1)请写出点燃后蚊香的长y(cm)与蚊香燃烧时间t(h)之间的函数表达式;(2)该蚊香可点燃多长时间?23.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20 t,按每吨1.9元收费.如果超过20 t,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x t,应收水费为y元.(1)分别写出每月用水量未超过20 t和超过20 t时,y与x之间的函数表达式;(2)若该城市某户5月份水费平均每吨为2.2元,求该户5月份用水多少吨?24.如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B的坐标为(18,6).(1)求直线l1,l2对应的函数表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,设点C的纵坐标为a,求点D的坐标(用含a的代数式表示).(第24题)25.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5 h后到达甲地,游玩一段时间后按原速前往乙地.小明离家1 h 20 min后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间.(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10 min到达乙地,求从家到乙地的路程.(第25题)答案一、1.B 2.D 3.B 4.C 5.C 6.C7.A 8.D 9.B 10.C二、11.1 12.一13.-1;-114.x=2 15.y=-x+1016.4 点拨:如图,在△ABC中,BC为底,AO为高,且高为2,面积为4,故△ABC的底边BC=4×2÷2=4.因为点B的坐标为(0,b1),点C的坐标为(0,b2),所以b1-b2即是BC 的长,为4. 本题运用了数形结合思想.(第16题)17.k甲>k乙18.7:00三、19.解:(1)因为点P(a,b)在第二象限,所以a<0,b>0.所以直线y=ax+b经过第一、二、四象限.(2)因为y随x的增大而增大,所以a>0.又因为ab<0,所以b<0.所以一次函数y=ax+b的图象不经过第二象限.20.解:(1)设正比例函数的表达式为y=k1x,则2=k1×(-2),解得k1=-1.所以正比例函数的表达式为y=-x.设一次函数的表达式为y=k2x+b,则2=k2×(-2)+b,4=b,解得b=4,k2=1,所以一次函数的表达式为y=x+4.(2)图略.(3)x<-2.21.解:(1)当y =0时,2x +3=0,得x =-32,则A ⎝ ⎛⎭⎪⎫-32,0. 当x =0时,y =3,则B (0,3). (2)当x =-2时,y =-1; 当y =10时,x =72.(3)OP =2OA ,A ⎝ ⎛⎭⎪⎫-32,0,则点P 的位置有两种情况,点P 在x 轴的正半轴上或点P 在x 轴的负半轴上.当点P 在x 轴负半轴上时,P (-3,0), 则△ABP 的面积为12×⎝ ⎛⎭⎪⎫3-32×3=94;当点P 在x 轴的正半轴上时,P (3,0), 则△ABP 的面积为12×3×⎝ ⎛⎭⎪⎫3+32=274.22.解:(1)因为蚊香的长等于蚊香的原长减去燃烧的长度,所以y =105-10t .(2)因为蚊香燃尽的时候蚊香的长度y =0,所以105-10t =0, 解得t =10.5.所以该蚊香可点燃10.5 h.23.解:(1)当x ≤20时,y =1.9x ;当x >20时,y =1.9×20+(x -20)×2.8=2.8x -18.(2)因为5月份水费平均为每吨2.2元,月用水量如果未超过20 t ,按每吨1.9元收费,所以该户5月份用水量超过了20 t. 由2.8x -18=2.2x ,解得x =30. 答:该户5月份用水30 t.24.解:(1)设直线l 1对应的函数表达式为y =k 1x ,由它过点(18,6)得18k 1=6,解得k 1=13, 所以直线l 1对应的函数表达式为y =13x ; 设直线l 2对应的函数表达式为y =k 2x +b ,由它过点A (0,24),B (18,6)得b =24,18k 2+b =6,解得k 2=-1,所以直线l 2对应的函数表达式为y =-x +24.(2)因为点C 在直线l 1上,且点C 的纵坐标为a ,所以a =13x .所以x =3a ,故点C 的坐标为(3a ,a ). 因为CD ∥y 轴,所以点D 的横坐标为3a . 因为点D 在直线l 2上, 所以点D 的纵坐标为-3a +24. 所以点D 的坐标为(3a ,-3a +24).25.解:(1)观察图象,可知小明骑车的速度为100.5=20(km/h),在甲地游玩的时间是1-0.5=0.5(h).(2)妈妈驾车的速度为20×3=60(km/h).如图,设直线BC 对应的函数表达式为y =20x +b 1,把点B (1,10)的坐标代入,得b 1=-10,所以直线BC 对应的函数表达式为y =20x -10.(第25题)设直线DE 对应的函数表达式为y =60x +b 2,把点D ⎝ ⎛⎭⎪⎫43,0的坐标代入,得b 2=-80,所以直线DE 对应的函数表达式为y =60x -80.当小明被妈妈追上后,两人走过的路程相等,则20x -10=60x -80, 解得x =1.75,20×(1.75-1)+10=25(km).所以小明出发1.75 h 被妈妈追上,此时离家25 km.(3)设从妈妈追上小明的地点到乙地的路程为z km ,根据题意,得z 20-z 60=1060,解得z =5.所以从家到乙地的路程为5+25=30(km).第五章达标测试卷一、选择题(每题3分,共30分)1.下列方程组中是二元一次方程组的为( )A. ⎩⎪⎨⎪⎧x 2+3y =43x -5y =1B. ⎩⎪⎨⎪⎧xy =1x +2y =8 C. ⎩⎪⎨⎪⎧a -b =31a-3b =4D. ⎩⎪⎨⎪⎧a +3b =47a -9b =5 2.已知⎩⎪⎨⎪⎧x =2m ,y =3m 是二元一次方程2x +y =14的解,则m 的值是( )A .2B .-2C .3D .-33.已知⎩⎪⎨⎪⎧a +2b =4,3a +2b =8,,则a +b 等于( )A .3B. 83C .2D .14.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.一副三角尺按如图所示的方式摆放,且∠1比∠2大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A. ⎩⎪⎨⎪⎧x =y -50x +y =180B. ⎩⎪⎨⎪⎧x =y +50x +y =180 C. ⎩⎪⎨⎪⎧x =y -50x +y =90 D. ⎩⎪⎨⎪⎧x =y +50x +y =90 (第5题)(第9题)6.若方程组⎩⎪⎨⎪⎧mx -ny =1,nx +my =8的解是⎩⎪⎨⎪⎧x =2,y =1,,则m ,n 的值分别是( ) A .2,1 B .2,3 C .1,8 D .无法确定7.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有租住方案( ) A .5种B .4种C .3种D .2种8.甲、乙两人分别从相距40 km 的两地同时出发,若同向而行,则5 h 后,快者追上慢者;若相向而行,则2 h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( )A .14和6B .24和16C .28和12D .30和109.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则下列是此二元一次方程组的是( )A. ⎩⎪⎨⎪⎧x +y -2=03x -2y -1=0 B. ⎩⎪⎨⎪⎧2x -y -1=03x -2y -1=0 C. ⎩⎪⎨⎪⎧2x -y -1=03x +2y -5=0 D. ⎩⎪⎨⎪⎧x +y -2=02x -y -1=0 10.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都恰好花完的条件下,有购买方案( ) A .1种B .2种C .3种D .4种二、填空题(每题3分,共24分)11.在方程3x -14y =5中,用含x 的代数式表示y 为____________.12.用加减消元法解方程组⎩⎪⎨⎪⎧3x +y =-1,①4x +2y =1,②由①×2-②得____________.13.方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是________.14.若方程2x2a +b -4+4y3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.15.王老师把几本《数学大世界》给学生们阅读.若每人3本,则剩下3本;若每人5本,则有一位同学分不到书看,只够平均分给其他几位同学.总共有________位同学,________本书.16.已知|2x +y -3|+x -3y -5=0,则8x -2y =________.17.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6 km 的公路,如果平均每天的修建费y (万元)与修建天数x (天)之间在30≤x ≤120范围内,且具有一次函数的关系,如下表所示.x 50 60 90 120 y40383226则y 关于x 的函数表达式为_____________(写出自变量x 的取值范围). 18.如图,长方形相框的外框的长是外框的宽的1.5倍,内框的长是内框的宽的2倍,外框与内框之间的宽度度为3.设长方形相框的外框的长为x ,外框的宽为y ,则可列方程组为______________.(第18题)三、解答题(19,20题每题8分,其余每题10分,共66分) 19.解下列方程组:(1) ⎩⎪⎨⎪⎧3x -y =7,①5x +2y =8;②(2) ⎩⎪⎨⎪⎧x +y -2z =5,①2x -y +z =4,②2x +y -3z =10.③20.若等式(2x -4)2+⎪⎪⎪⎪⎪⎪y -12=0中的x ,y 满足方程组⎩⎪⎨⎪⎧mx +4y =8,5x +16y =n ,,求2m 2-n +14mn的值.21.某市准备用灯笼美化红旗路,需用A ,B 两种不同类型的灯笼200个,且B 灯笼的个数是A 灯笼的23.(1)求A ,B 两种灯笼各需多少个;(2)已知A ,B 两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼需多少费用?22.如图,在3×3的方格内,填写了一些代数式与数.若图中各行、各列和各对角线上的三个数之和都相等,求x ,y 的值.(第22题)23.某厂接受生产一批农具的任务,按计划的天数生产,若平均每天生产20件,到时将比订货任务少100件;若平均每天生产23件,则可提前1天完成.问:这批农具的订货任务是多少?原计划几天完成?24.已知直线l1:y1=2x+3与直线l2:y2=kx-1交于点A,点A的横坐标为-1,且直线l1与x轴交于点B,与y轴交于点D,直线l2与y轴交于点C.(1)求出点A的坐标及直线l2对应的函数表达式;(2)连接BC,求S△ABC.(第24题)。
八上数学第一章单元测试卷与答案
八年级上数学第一单元测试卷班级: 姓名: 学号:一.选择题(每小题3分,共30分)1.如图,两只手的食指和拇指在统一个平面内,它们组成的一对角可算作是( )(A )同位角 (B )内错角 (C )对顶角 (D )同旁内角2.如图,直线a //b ,∠1=60°,则∠2的度数为( ) (A )120°(B )30°(C )60°(D )100°3.如图,直线1l ∥2l ,∠1=40°,∠2=75°,则∠3)(A )55° (B )60° (C )65° (4.如图,已知AB ∥CD ,BC 等分∠ABE ,∠C =34°,则∠BED 的度数是( )(A )17°(B )34°(C )56° (D )68° 5.下列说法错误的是()(A )同旁内角互补,两直线平行(B )两直线平行,内错角相等(C )同位角相等(D )对顶角相等 6.平行线之间的距离是指()第1题l 1 l 2123 12a b第2题第3题A D 第4题(A )从一条直线上一点到另一条直线的垂线段(B )从一条直线上一点到另一条直线的垂线段的长度 (C )从一条直线上一点到另一条直线的垂线的长度(D )从一条直线上一点到另一条直线上的一点间线段的长度 7.已知∠1和∠2是同旁内角,∠1=40°,则∠2是()(A )160° (B )140° (C )40° (D )无法肯定8.下列图形中,由AB CD ∥,能得到12∠=∠的是( )9.一架飞机向北飞翔,两次转变偏向后,进步的偏向与本来的航行偏向平行,已知第一次向左拐50°,那么第二次向右拐---------------------------------------()(A )40° (B )50° (C )130° (D )150°10.如图,有一块含有45°角的直角三角板的两个极点放在直尺的对边上.假如∠1=20°,那么∠2的度数是() (A )30°(B )25°A CB D1 2 A CB D1 2 (A(B12 A CB D(C BD C A (D12(C )20°(D )15°二.填空题(每小题3分,共30分) 11.平行线之间的距离处处. 12.如图, ∠1的同位角是.13.如图,a ∥b ,若∠2=140°,则∠1=_______度.14.如图,已知AB //CD ,∠A =∠B =90°,AB =3cm,BC =1cm,则AB 与CD 之间的距离为cm . 15.如图,∠1=∠2,∠3=89°,则∠4=.16.如图,一个及格的弯形管道,经由两次拐弯后保持平行(即AB ∥DC ).假如∠C =60°,那么∠B 的度数是________.17.如图,ED ∥AB ,AF 交ED 于点C ,∠ECF =138°,则∠A =______度.18.如图所示,直线a ∥b .直线c 与直线a ,b 分离订交于点A .点B ,AM b ⊥,垂足为点M,若158∠=︒,则2∠= _________.19. 如图,AB //CD ,直线EF 与AB .CD 分离订交于E .F 两点,EP 等分∠AEF ,过点F 作FP ⊥EP ,垂足为P ,若∠PEF =30°,则∠PFC =__________.第10题2 l1 ab第14题1234 5 a bc第12题 第13题 2341第15题 第16题第17题第18题30PFEBACD第19Mbac AB1220.已知三条不合的直线a ,b ,c 在统一平面内,下列四个命题:①假如a ∥b ,a ⊥c ,那么b ⊥c ; ②假如b ∥a ,c ∥a ,那么b ∥c ;③假如b ⊥a ,c ⊥a ,那么b ⊥c ; ④假如b ⊥a ,c ⊥a ,那么b ∥c .个中准确的是.(填写所有准确的命题的序号) 三.解答题(共40分)21.已知,如图,∠1=∠2,CF ⊥AB ,DE ⊥AB ,解释:FG ∥BC .解:∵CF ⊥AB ,DE ⊥AB (已知)∴∠BED =90°,∠BFC =90°( ) ∴∠BED =∠BFC∴ED ∥FC () ∴∠1=∠BCF () 又∵∠1=∠2(已知) ∴∠2=∠BCF∴FG ∥BC ()22.如图,D .E 分离是AC .AB 上的点,∠ADE =40°,∠C =40°,∠AED =80°(1) DE 与BC 平行吗?请解释来由;(2)求∠B 的度数.AB CEDA1EGCB2F D23.如图,D 是△ABC 的BA 边延伸线上的一点,AE 是∠DAC 的等分线,AE //BC试解释∠B =∠C .24.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥A =37º,求∠D 的度数.附加题:(10分)若∠A 和∠B 的双方分离平行,且∠A 比∠B 的2倍少30°,求∠B 的度数. 八上第一章参考答案:1.B 2.C 3.C 4.D 5.C 6.B 7.D 8.B 9.B 10.B11.相等 12.∠3;13. 40;14.1;15. 89°;16. 120°; 17. 42°;18. 32°;19. 60°;20. ①②④;21. 垂直的意义;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行;22. (1)平行,来由略,(2)80°;23. 略 ;24. 53°; 附加题:30°或70°ABCDEE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册7.1----7.4检测题 (时间:60分钟;满分100分)
一.选择题(每题4分,共40分) 1.2(3)-的算术平方根是( ) A .9
B .3
C .3±
D .3-
2.如图,用四个长和宽分别为a ,()b a b >的长方形拼成面积是64的大正方形,中间围成的小正方形的面积是S ,( )
A .若4S =,则8ab =
B .若16S =,则10ab =
C .若12ab =,则16S =
D .若14ab =,则4S =
3.下列各式正确的是( ) A .164=±
B .1116
493
= C .164= D .164-=-
4.如图,在边长为1个单位长度的小正方形网格中,点A 、B 都是格点(即网格线的交点),则线段AB 的长度为( )
A .33
B .5
C .6
D .425.已知一个直角三角形两边的长分别为3和4.分别以此三角形的三边为边作正方形,则这三个正方形面积的和为( ) A .50
B .32
C .50或32
D .以上都不对
6.在ABC ∆中,90C ∠=︒,5AC =,12BC =,CD AB ⊥于D ,则CD 长为( ) A .4
B .
6013
C .
3013
D .
120
13
7.如图,在三个正方形中,其中两个的面积125S =,2144S =,则另一个正方形的面积3S ,
为( )
A .13
B .200
C .169
D .225
8.下列各数:2-,3,0,π,4-,其中无理数的个数是( ) A .1
B .2
C .3
D .4
9.满足下列条件的ABC ∆是直角三角形的是( ) A .4BC =,5AC =,6AB = B .13BC =,1
4
AC =,15AB =
C .::3:4:5BC AC AB =
D .::3:4:5A B C ∠∠∠=
10.若ABC ∆的三边a 、b 、c 满足2222()||0a b a b c -++-=,则ABC ∆是( ) A .等腰三角形 B .直角三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
二.填空题(每题4分,共20分) 11.
16
81
的算术平方根是 . 12.如图,以Rt ABC ∆的三边向外作正方形,其面积分别为1S ,2S ,3S ,且16S =,315S =,则2S = .
13.已知直角三角形两边的长分别为9和12,则此三角形的周长为 . 14.在4-,
227,0,2
π
,3.1415930.101001⋯(每两个1之间多个0)这几个数中无理数的个数有 个.
15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于 .
三.解答题(共5小题) 16.计算:
23= ,= ,20= ,2(6)-= ,
23
()4
-=
,
(1)根据计算结果,回答:2a 一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.
(2)利用你总结的规律,计算:2(3.14)π-.
17.长方形纸片ABCD 中,4AD cm =,10AB cm =,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.
18.如图,Rt ABC ∆中,90C ∠=︒,AD 平分CAB ∠,DE AB ⊥于E ,若6AC =,8BC =,3CD =.
(1)求DE 的长; (2)求ADB ∆的面积.
19.已知: 如图,4AD =,3CD =,90ADC ∠=︒,13AB =,12BC =. 求图形的面积 .
八年级数学下册7.1----7.4检测题参考答案
一.选择题(共10小题) 1.B
解析:(﹣3)2=9,则9算术平方根是:3. 故选:B . 2.C
解析:根据大正方形的面积求得该正方形的边长是8,则a+b=8, 若S=4,则根据小正方形的面积可以求得该正方形的边长是2,则a-b=2, 解得a=5,b=3,ab=15,故选项A 、D 错误;
若S=16,则根据小正方形的面积可以求得该正方形的边长是4,则a-b=4, 解得a=6,b=2,ab=12,故选项B 错误;故选项C 正确。
故选:C 。
3.C
解析:A.16=4,此选项不符合题意;
B.
3
145
91459116
==,此选项不符合题意; C. 16=4,此选项,符合题意;
D.
16-无意义,此选项不符合题意;
故选:C 4.B
解析:由勾股定理得:AB= 43
2
2
+=5;
故选:B 5.C
解析:如果3和4都是直角边,则斜边为
43
2
2
+=5.三个正方形面积的和为
543
2
22
++=50。
如果4为斜边,3为直角边,则另一直角边为
34
2
2
-=
7。
三
个正方形面积的和为
)7342
2
2(++=32.故选:C
6.B
解析:由勾股定理得:AB===13,
∵由三角形的面积公式得:S△ACB==,
即AC×BC=AB×CD,
∴5×12=13×CD,
解得:CD=,
故选:B.
7.C
解析:由题可知,在直角三角形中两直角边的平方分别为25和144,
所以斜边的平方为144+25=169,即面积S3为169.
故选:C.
8.B
解析:﹣2,0,都是整数,属于有理数.
无理数有、π共2个.
故选:B.
9.C
解析:A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;B.若BC=,AC=,AB=,则AC2+AB2≠CB2,故△ABC不是直角三角形;C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;
D.若∠A:∠B:∠C=3:4:5,则∠C<90°,故△ABC不是直角三角形;
故选:C.
10.C
解析:∵(a﹣b)2+|a2+b2﹣c2|=0,
∴a﹣b=0,a2+b2﹣c2=0,
解得:a=b,a2+b2=c2,
∴△ABC 的形状为等腰直角三角形; 故选:C .
二.填空题(共5小题) 11.
解析∵
=,
∴的算术平方根为, 故答案为:. 12.9
解:∵△ABC 为直角三角形, ∴AB 2=AC 2+BC 2,
∵以Rt △ABC 的三边向外作正方形,其面积分别为S 1,S 2,S 3,且S 1=6,S 3=15, ∴S 3=S 1+S 2,
则S 2=S 3﹣S 1=15﹣6=9, 故答案为:9 13.36或7321
解:设Rt △ABC 的第三边长为x ,
①当12为直角三角形的直角边时,x 为斜边, 由勾股定理得,x =
=15,此时这个三角形的周长=9+12+15=36;
②当12为直角三角形的斜边时,x 为直角边, 由勾股定理得,x =
=3
,此时这个三角形的周长=9+12+3
=21+3
综上所述,该三角形的周长为36或21+3.
故答案是:36或21+3.
14.3
解:﹣4,0是整数,属于有理数;是分数,属于有理数;3.14159是有限小数,属于
有理数; ∴无理数有:,
,0.101001…(每两个1之间多个0)共3个.
故答案为:3.
60
15.
13
解:∵52+122=132,
∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是13,
设斜边上的高为h,则
S△ABC=×5×12=×13h,
解得:h=,
故答案为.
三.解答题(共4小题)
16.
解:=3,=0.7,=0,=6,=,(1)=|a|;
(2)原式=|3.14﹣π|=π﹣3.14.
故答案为:3;0.7;0;6;
17.
解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,
△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.
∴x=(cm).
18.
解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,
∵CD=3,
∴DE=3;
(2)在Rt△ABC中,∠C=90°,AC=6,BC=8,由勾股定理,得AB═10,
∴△ADB的面积为S=AB•DE=×10×3=15.19.
解:连接AC,在Rt△ACD中,AD=4,CD=3,
∴AC==5,
在△ABC中,
∵AC2+BC2=52+122=132=AB2,
∴△ABC为直角三角形;
∴图形面积为:
S△ABC﹣S△ACD=×5×12﹣×3×4=24.。