离散型随机变量的分布(一)
离散型随机变量及其分布函数
P{X
k}
20 k
(0.2)
k
(0.8)
20 k
,
k 0,1,,20.
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022
P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007
P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
于以 为参数的泊松分布 ,即
P{ X k} n pk (1 p)nk (np)k enp ,
k
k!
(k 0,1,2,,n).
两点分布 n 1 二项分布 n 10, p 0.1 泊松分布
第二十九页,课件共有32页
备份题
合理配备维修工人问题 例1 为了保证设备正常工作, 需配备适量的维修工人 ( 工人配备多了就浪费 , 配备少了又要影响生产),现有同类 型设备300台,各台工作是相互独立的,发生故障的概 率都是0.01.在通常情况下一台设备的故障可由一个人 来处理(我们也只考虑这种情况) ,问至少需配备多少工 人 ,才能保证设备发生故障但不能及时维修的概率小 于0.01?
第二十四页,课件共有32页
解 X 所取的可能值是 1, 2, 3,.
设 Ai 表示"抽到的第 i 个产品是正品",
P{ X k} P( A1 A2 Ak1 Ak ) P( A1 ) P( A2 ) P( Ak1 ) P( Ak )
(1 p)(1 p) (1 p) p qk1 p.
P{ X k} 0.001, 当 k 11 时
第十三页,课件共有32页
图示概率分布
第十四页,课件共有32页
离散型随机变量的分布列(一)
时所需抽取次数 的分布列。
(1)每次取出的产品都不放回该产品中; (2)每次取出的产品都立即放回该批产品中,然后
再取另一产品。
变式引申:
1、某射手射击目标的概率为0.9,求从开始射击到击中目标
所需的射击次数 的概率分布。
分布列的是(B )
A
0
1
P
0.6 0.3
B
0
1
2
P 0.9025 0.095 0.0025
C 0 1 2 …n D 0 1 2 … n
P 1 1 1 …1
2 48
2n1
P
1 3
12 33
1 3
2 3
2
…
1 3
2 3
n
2、设随机变量
的分布列为
P(
i)
a
1
i
,
i
1,2,3
则 a的值
27
3
引例
抛掷一枚骰子,所得的点数 有哪些值? 取每个
值的概率是多少?
解: 的取值有1、2、3、4、5、6
则 P( 1) 1
6
P( 4) 1
6
P( 2) 1
6
P( 5) 1
6
P( 3) 1
6
P( 6) 1
6
12
34
56
1
1
1
1
1
1
P6
6
6
6
6
6
⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率.
6
O 1 2 3 4 5 6 78
1、离散型随机变量的分布列完全描述了由这个随机 变量所刻画的随机现象。
离散型随机变量的分布(一)
2.随机变量的分类:
(1)离散型随机变量:对于随机变量可能取的 值,我们可以按问题1中的射击、问题2中的产品检 验等例子。
(2)连续型随机变量:随机变量可以取某一 区间内的一切值,这样的随机变量叫做连续 型随机变量。
如:上例中的红外线无故障的运转。
.
.
.
.
.
.
.
;知识产权律师 知识产权律师
一、课题导入
问题提出:某商场要根据天气预报来决定 今年国庆节是在商场内还是在商场外开展促销 活动。统计资料表明,每年国庆节商场内的促 销活动可获得经济效益2万元,商场外的促销 活动如果不遇到下雨天气可获得经济效益10万 元,如果促销活动中遇到有雨天气则带来经济 损失4万元。9月30日气象台预报国庆节当地有 雨的概率是40%,商场应该选择哪种促销方式?
这是日常生活中的常见随机现象,如何解 决这个问题呢?这就需要学习今天的新知识— —离散型随机变量的分布(一)
思考:随机变量ξ的取值是否有限制,是 否一定是非负数呢?
随机变量可以是整数,也可以是其他的 实数,可以取某一区间内的一切值,可以连 续地取值,也可以间断地取值。
如:张三家的都市花园小区红外线探 头装置无故障运转的时间ξ是一个随机变量, 它可以取区间(0,+ ∞)内的一切值。
专题01 离散型随机变量分布列(解析版)
概率与统计专题01 离散型随机变量分布列常见考点考点一 离散型随机变量分布列典例1.某校组织“百年党史”知识比赛,每组有两名同学进行比赛,有2道抢答题目.已知甲、乙两位同学进行同一组比赛,每人抢到每道题的机会相等.抢到题目且回答正确者得100分,没回答者得0分;抢到题目且回答错误者得0分,没抢到者得50分,2道题目抢答完毕后得分多者获胜.已知甲答对每道题目的概率为45.乙答对每道题目的概率为35,且两人各道题目是否回答正确相互独立.(1)求乙同学得100分的概率;(2)记X 为甲同学的累计得分,求X 的分布列和数学期望. 【答案】(1)37100; (2)分布列见解析,()100E X =. 【解析】 【分析】(1)应用独立事件乘法公式及互斥事件的概率求法,求乙同学得100分的概率;(2)由题意知X 可能值为{0,50,100,150,200},分别求出对应概率,写出分布列,进而求期望. (1)由题意,乙同学得100分的基本事件有{乙抢到两题且一道正确一道错误}、{甲乙各抢到一题都回答正确}、{甲抢到两题且回答错误},所以乙同学得100分的概率为1312141311113722252525252525100⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=. (2)由题意,甲同学的累计得分X 可能值为{0,50,100,150,200},1111111313134(0)225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=;121112134(50)222525252525P X ==⨯⨯⨯⨯+⨯⨯⨯⨯=;1212111414139(100)2225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=;14124(150)2252525P X ==⨯⨯⨯⨯=;14144 (200)252525P X==⨯⨯⨯=;分布列如下:所以期望44944()050100150200100 2525252525E X=⨯+⨯+⨯+⨯+⨯=.变式1-1.第24届冬季奥林匹克运动会(The XXIV Olympic Winter Games),即2022年北京冬季奥运会,于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目;延庆赛区承办雪车、雪橇及高山滑雪项目;张家口赛区的崇礼区承办除雪车、雪橇及高山滑雪之外的所有雪上项目.某运动队拟派出甲、乙、丙三人去参加自由式滑雪.比赛分为初赛和决赛,其中初赛有两轮,只有两轮都获胜才能进入决赛.已知甲在每轮比赛中获胜的概率均为34;乙在第一轮和第二轮比赛中获胜的概率分别为45和58;丙在第一轮和第二轮获胜的概率分别是p和32p-,其中34p<<.(1)甲、乙、丙三人中,谁进入决赛的可能性最大;(2)若甲、乙、丙三人中恰有两人进人决赛的概率为2972,求p的值;(3)在(2)的条件下,设进入决赛的人数为ξ,求ξ的分布列.【答案】(1)甲进入决赛可能性最大(2)23 p=(3)分布列见解析【解析】【分析】(1)分别求出甲、乙、丙三人初赛的两轮均获胜的概率,然后比较即可;(2)利用相互独立事件的概率的求法分别求出甲和乙进入决赛的概率、乙和丙进入决赛的概率、甲和丙进入决赛的概率,即可通过甲、乙、丙三人中恰有两人进人决赛的概率为2972,列方程求解;(3)先确定进入决赛的人数为ξ的取值,依次求出每一个ξ值所对应的概率,列表即可.(1)甲在初赛的两轮中均获胜的概率为:13394416P =⨯= 乙在初赛的两轮中均获胜的概率为:2451582P =⨯=丙在初赛的两轮中均获胜的概率为:233322P P P P P ⎛⎫=⋅-=-+ ⎪⎝⎭∵3043012p p ⎧<<⎪⎪⎨⎪<-<⎪⎩,∵1324p <<,∵2339941616P P ⎛⎫=--+< ⎪⎝⎭ ∵甲进入决赛可能性最大. (2)()()()123132231111P P P PP P P P P P =⨯++⨯---222913931139111162216222216p p p p p p ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯--+⨯-⨯-+⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2972=整理得21827100p p -+=,解得23p =或56p =,又∵1324p <<,∵23p =; (3)由(2)得,丙在初赛的两轮中均获胜的概率为:345199P =-=, 进入决赛的人数为ξ可能取值为0,1 ,2,3,71417(0)162972P ξ==⨯⨯=, 71591471411(1)16291629162932P ξ==⨯⨯+⨯⨯+⨯⨯=, 91495171529(2)16291692162972P ξ==⨯⨯+⨯⨯+⨯⨯=, 9155(3)162932P ξ==⨯⨯=, ∵ξ的分布列为变式1-2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)若有一辆车独立地从甲地到乙地,求这一辆车未遇到红灯的概率;(2)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望. 【答案】(1)14(2)分布列见解析,1312【解析】 【分析】(1)利用相互独立事件概率计算公式,计算出所求概率.(2)结合相互独立事件概率计算公式,计算出分布列并求得数学期望. (1)设“一辆车未遇到红灯”为事件A , 则()11111112344P A ⎛⎫⎛⎫⎛⎫=-⋅-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)随机变量X 的所以可能的取值为0,1,2,3, 则(0)P X ==1111(1)(1)(1)2344-⋅-⋅-=(1)P X ==1111111111111111123423423424⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-⋅-+-⋅⋅-+-⋅-⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. (2)P X ==11111111111112342342344⎛⎫⎛⎫⎛⎫⋅-+⋅-⋅+-⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (3)P X ==111123424⋅⋅=. 随机变量X 的分布列:随机变量X 的数学期望:1111113()012342442412E X =⨯+⨯+⨯+⨯=. 变式1-3.对飞机进行射击,按照受损伤影响的不同,飞机的机身可分为∵,∵,∵三个部分.要击落飞机,必须在∵部分命中一次,或在∵部分命中两次,或在∵部分命中三次.设炮弹击落飞机时,命中∵部分的概率是16,命中∵部分的概率是13,命中∵部分的概率是12,射击进行到击落飞机为止.假设每次射击均击中飞机,且每次射击相互独立. (1)求恰好在第二次射击后击落飞机的概率; (2)求击落飞机的命中次数X 的分布列和数学期望. 【答案】(1)14; (2)分布列见解析,83. 【解析】 【分析】(1)把恰好在第二次射击后击落飞机的事件拆成两个互斥事件的和,再利用独立事件概率公式计算作答.(2)求出X 的可能值,并求出每个取值的概率,列出分布列并求出期望作答. (1)设恰好第二次射击后击落飞机为事件A 是第一次未击中∵部分,在第二次击中∵部分的事件与两次都击中∵部分的事件的和,它们互斥,所以25111()()6634P A =⨯+=.(2)依题意,X 的可能取值为1,2,3,4,1X =的事件是射击一次击中∵部分的事件,1(1)6P X ==,由(1)知,1(2)4P X ==, 3X =的事件是前两次射击击中∵部分、∵部分各一次,第三次射击击中∵部分或∵部分的事件,与前两次射击击中∵部分,第三次射击击中∵部分或∵部分的事件的和,它们互斥,12211111111(3)C ()()()32632623P X ==⨯⨯⨯++⨯+=, 4X =的事件是前三次射击击中∵部分一次,∵部分两次,第四次射击的事件,123111(4)C ()1324P X ==⨯⨯⨯=,所以X的分布列为:X的数学期望()11118 123464343E X=⨯+⨯+⨯+⨯=.【点睛】关键点睛:利用概率加法公式及乘法公式求概率,把要求概率的事件分拆成两两互斥事件的和,相互独立事件的积是解题的关键.典例2.高三学生甲、乙为缓解紧张的学习压力,相约本星期日进行“某竞技体育项目”比赛.比赛采用三局二胜制,先胜二局者获胜.商定每局比赛(决胜局第三局除外)胜者得3分,败者得1分,决胜局胜者得2分,败者得0分.已知每局比赛甲获胜的概率为23,各局比赛相互独立.(1)求比赛结束,乙得4分的概率;(2)设比赛结束,甲得X分,求X的概率分布与数学期望.【答案】(1)827;(2)分布列见解析,()14227E X=.【解析】【分析】(1)根据题意,求得得4分的事件,即可求得其概率;(2)根据题意,求得X的取值,再求概率从而求得分布列,再根据分布列求得数学期望即可.(1)若比赛结束,乙得4分,则比赛结果是甲以2:1获胜,故前两局比赛,甲胜1场,败1场,最后一局比赛,甲胜.则比赛结束,乙得4分的概率为122128 33327C⨯⨯⨯=.(2)若甲连胜2局结束比赛,甲得6分,其概率为224 39⎛⎫=⎪⎝⎭;若甲连败2局结束比赛,甲得2分,其概率为21139⎛⎫= ⎪⎝⎭;若甲以2:1结束比赛,甲得6分,其概率为12212833327C ⨯⨯⨯=; 若乙以2:1结束比赛,甲得4分,其概率为12211433327C ⨯⨯⨯=; 故X 的分布列如下所示:故()14201422469272727E X =⨯+⨯+⨯=. 变式2-1.现有甲、乙、丙三道多选题,某同学独立做这三道题,根据以往成绩,该同学多选题的得分只有2分和0分两种情况.已知该同学做甲题得2分的概率为34,分别做乙、丙两题得2分的概率均为23.假设该同学做完了以上三道题目,且做每题的结果相互独立. (1)求该同学做完了以上三题恰好得2分的概率; (2)求该同学的总得分X 的分布列和数学期望()E X . 【答案】(1)736(2)分布列见解析,数学期望()256E X = 【解析】 【分析】(1)根据相互独立事件的概率公式进行求解即可;(2)写出随机变量X 的所有可能取值,求出对应概率,从而可求出分布列,再根据期望公式即可求出期望. (1)解:记“该同学做完了以上三题恰好得2分”为事件A ,“该同学做甲题得2分”为事件B ,“该同学做乙题得2分”为事件C .“该同学做丙题得2分”为事件D ,由题意知32(),()()43P B P C P D ===, 因为A BCD BCD BCD =++,所以()()P A P BCD BCD BCD =++()()()P BCD P BCD P BCD =++()()()()()P B P C P D P B P C =+⋅()()()()P D P B P C P D +322322322711111143343343336⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (2)解:根据题意,X 的可能取值为0,2,4,6, 所以3221(0)11143336P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由(1)知7(2)36P X ==, 322121(6)433363P X ==⨯⨯==4(4)1(0)(2)(6)9P X P X P X P X ==-=-=-==, 故X 的分布列为所以174125()024********E X =⨯+⨯+⨯+⨯=. 变式2-2.某运动会中,新增加的“趣味乒乓球单打”是这届运动会的热门项目,比赛规则如下:两人对垒,开局前抽签决定由谁先发球(机会均等),此后均由每个球的赢球者发下一个球,对于每一个球,若发球者贏此球,发球者得1分,对手得0分;若对手赢得此球,发球者得0分,对手得2分.当有一人累计得分超过5分时,比赛就结束,得分高者获胜.已知在选手甲和乙的对垒中,发球一方赢得此球的概率都是0.6,各球结果相互独立.(1)假设开局前抽签结果是甲发第一个球,求比赛出现比分2:2的概率;(2)已知现在比分3:3,接下来由甲发球,两人又打了X 个球后比赛结束,求X 的分布列及数学期望.【答案】(1)0.304;(2)分布列见解析,() 2.904E X =. 【解析】 【分析】(1)把比赛出现比分2:2的事件拆成两个互斥的和,再分别求出每个事件的概率即可得解. (2)求出X 的所有可能值,再分析计算求出各个值的概率,列出分布列,求出期望作答.(1)比赛出现比分2:2的事件A 是甲发三球,前两球甲赢,第三球乙赢的事件1A 与甲发球乙赢、乙发球甲赢的事件2A 的和,事件1A 与2A 互斥,1()0.60.60.40.144P A =⨯⨯=,2()0.40.40.16P A =⨯=, 因此,12()()0.1440.160.304P A P A A =+=+=, 所以比赛出现比分2:2的概率为0.304. (2)X 的所有可能值为:2,3,4,因比分已是3:3,接下来由甲发球,且有一人累计得分超过5分时,比赛就结束,2X =的事件是甲发球乙赢,乙发球乙赢比赛结束的事件,(2)0.40.60.24P X ==⨯=,3X =的事件是以下3个互斥事件的和:甲发三球甲赢,比赛结束的事件;甲发第一球甲赢,发第二球乙赢,乙发球比赛结束的事件;甲发第一球乙赢,乙发第二球甲赢,甲发球比赛结束的事件,3(3)0.60.60.410.40.410.616P X ==+⨯⨯+⨯⨯=,4X =的事件是甲发前两球甲赢,发第三球乙赢,乙再发球比赛结束的事件,2(4)0.60.410.144P X ==⨯⨯=,所以X 的分布列为:X 的数学期望:()20.2430.61640.144 2.904E X =⨯+⨯+⨯=.变式2-3.为进一步加强未成年人心理健康教育,如皋市教育局决定在全市深入开展“东皋大讲堂”进校园心理健康教育宣讲活动,为了缓解高三学生压力,高三年级某班级学生在开展“东皋大讲堂”过程中,同座两个学生之间进行了一个游戏,甲盒子中装有2个黑球1个白球,乙盒子中装有3个白球,现同座的两个学生相互配合,从甲、乙两个盒子中各取一个球,交换后放入另一个盒子中,重复进行n 次这样的操作,记甲盒子中黑球的个数为n X ,恰好有2个黑球的概率为n a ,恰好有1个黑球的概率为n b .(1)求第二次操作后,甲盒子中没有黑球的概率; (2)求3X 的概率分布和数学期望()3E X .【答案】(1)427; (2)答案见解析,()32827E X = 【解析】 【分析】(1)由题意得1112,33a b ==,然后分析第二次操作后,甲盒子中没有黑球的情况,从而求解出对应概率;(2)先计算22,a b ,判断3X 的取值为0,1,2,分别计算对应的概率,列出分布列,利用期望公式求解()3E X . (1)由题意知,1112,33a b ==,两次后甲盒子没有黑球时,必须第一次甲盒子中取出一个黑球,第二次甲盒子(黑1白2)再取出一个黑球,乙盒子中(黑1白2)取出一个白球,则11243327P b =⨯⨯= (2)211121733327b a a =⨯+⨯⨯=,21121122163333327b a b ⎛⎫=⨯+⨯+⨯⨯= ⎪⎝⎭,由题意,3X 的取值为0,1,2,则32124144(0)33273243P X b ==⨯⨯+⨯=,3222112242146(1)33333273243P X a b ⎛⎫==⨯+⨯+⨯⨯+⨯= ⎪⎝⎭,32212153(2)333243P X a b ==⨯+⨯⨯=所以3X 的分布列为所以()314653281224324327E X =⨯+⨯= 【点睛】求解分布列的问题时,一般需要先判断变量的可能取值,然后分析题目中的情况计算每个取值对应的概率,从而列出分布列,代入期望公式求解期望.巩固练习练习一 离散型随机变量分布列1.暑假里大学二年级的H 同学去他家附近的某个大型水果超市打工.他发现该超市每天以10元/千克的价格从中心仓库购进若干A 水果,然后以15元/千克的价格出售;若有剩余,则将剩余的水果以8元/千克的价格退回中心仓库.H 同学记录了打工期间A 水果最近50天的日需求量(单位:千克),整理得下表:以上表中各日需求量的频率作为各日需求量的概率,解答下面的两个问题.(1)若超市明天购进A 水果150千克,求超市明天获得利润X (单位:元)的分布列及期望; (2)若超市明天可以购进A 水果150千克或160千克,以超市明天获得利润的期望为决策依据,在150千克与160千克之中应当选择哪一个?若受市场影响,剩余的水果只能以7元/千克的价格退回水果基地,又该选哪一个?请说明理由. 【答案】(1)分布列见解析,数学期望为743元 (2)超市应购进160千克,理由见解析. 【解析】 【分析】(1)求出X 的可能取值及相应的概率,进而得到分布列及数学期望;(2)设该超市一天购进水果160千克,当天利润为Y 元,求出Y 的可能取值及相应的概率,求出数学期望,与第一问求出的期望值相比,得到结论. (1)若A 水果日需求量为140千克,则()()()1401510150140108680X =⨯---⨯-=,且()56800.150P X ===, 若A 水果日需求量不少于150千克,则()1501510750X =⨯-=,且()75010.10.9P X ==-=,故X 的分布列为:()6800.17500.9743E X =⨯+⨯=元(2)设该超市一天购进水果160千克,当天利润为Y 元,则Y 的可能取值为140×5-20×2,150×5-10×2,160×5,即660,730,800 且()56600.150P Y ===,()107300.250P Y ===,()358000.750P Y ===,则()6600.17300.28000.7772E Y =⨯+⨯+⨯=,因为772>743,所以超市应购进160千克.2.某工厂生产一种产品,由第一、第二两道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.两道工序的加工结果直接决定该产品的等级:两道工序的加工结果均为A 级时,产品为一等品;两道工序恰有一道.工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示: 表一表二(1)用η(万元)表示一件产品的利润,求η的分布列和均值;(2)工厂对于原来的生产线进行技术升级,计划通过增加检测成本对第二工序进行改良,假如在改良过程中,每件产品检测成本增加()04x x ≤≤万元(即每件产品利润相应减少x 万元)时,第二工序加工结果为A 级的概率增加0.1x ,问该改良方案对一件产品的利润的均值是否会产生影响?并说明理由.【答案】(1)分布列答案见解析,()33.6E η=(2)该改良方案对一件产品的利润的均值会产生影响,理由见解析【解析】 【分析】(1)由题意η的可能取值为50,20,10,分别求出其概率得分布列,再由期望公式计算出期望; (2)设改良后一件产品的利润为ξ,同(1)求出ξ的各可能取值的概率,计算出期望,由期望函数()E ξ与()E η比较可得结论. (1)由题意可知,η的可能取值为50,20,10, 产品为一等品的概率为0.8×0.6=0.48, 产品为二等品的概率为0.8×0.4+0.2×0.6=0.44, 产品为三等品的概率为1-0.48-0.44=0.08, 所以η的分布列为()500.48200.44100.0833.6E η=⨯+⨯+⨯=.(2)改良方案对一件产品的利润的均值会产生影响,理由如下:由题意可知,改良过程中,每件产品检测成本增加()04x x ≤≤万元时,第二工序加工结果为A 级的概率增加0.1x ,设改良后一件产品的利润为ξ,则ξ可能的取值为50x -,20x -,10x -, 所以一等品的概率为()0.80.10.60.480.08x x ⨯+=+,二等品的概率为()()()0.810.60.110.80.60.10.440.06x x x ⨯-++-⨯+=-⎡⎤⎣⎦, 三等品的概率为()()10.480.080.440.060.080.02x x x -+--=-, 所以()()()()()()()0.480.08500.440.06200.080.0210 1.633.6E x x x x x x x ξ=+⨯-+-⨯-+-⨯-=+,因为()E ξ在[]0,4上单调递增,故当4x =时,()E ξ取到最大值为40, 又因为()()E E ξη≥,所以该改良方案对一件产品的利润的均值会产生影响.3.2022年北京冬奥会有包括中国队在内的12支男子冰球队参加比赛,12支参赛队分为三组,每组四队,2月9号至13号将进行小组赛,小组赛采取单循环赛制,即每个小组的四支参赛队在比赛中均能相遇一次,最后按各队在比赛中的得分多少来排列名次.小组赛结果的确定规则如下: ∵在常规时间里,获得最多进球的队为获胜者,获胜者得3分;∵在常规时间里,如果双方进球相等,每队各得1分.比赛继续进行,以突然死亡法(即在规定的时间内有一方进球)加时赛决出胜负,突然死亡法加时赛中获胜的队将额外获得1分;∵在突然死亡法加时赛中,如果双方都没有得分,那么进行点球赛,直至决出胜负,在点球赛中获胜的队将额外获得1分.若在小组赛中,甲队与乙队相遇,在常规时间里甲队获胜的概率为12,进球数相同的概率为14;在突然死亡法加时赛中,甲队获胜的概率为23,双方都没有得分的概率为16;在点球赛中,甲队获胜的概率为23,假设各比赛结果相互独立.(1)在甲队与乙队的比赛中,求甲队得2分获胜的概率;(2)在甲队与乙队的比赛中,求甲队得分X 的分布列及数学期望. 【答案】(1)736; (2)分布列见解析;3518. 【解析】 【分析】(1)由题可得甲队得2分获胜有两种情况,甲在加时赛中获胜或甲在点球赛中获胜,分别计算概率即得;(2)由题可得X 可取0,1,2,3,分别计算概率即得分布列,然后利用期望计算公式即得. (1)设甲在加时赛中获胜为事件A ,甲在点球赛中获胜为事件B , 则()(),121112143646336P A P B =⨯==⨯⨯=, ∵甲队得2分获胜的概率为()()11763636P P A P B =+=+=. (2)甲队得分X 可取0,1,2,3,()11101244P X ==--=,()121112111143646318P X ⎛⎫⎛⎫==⨯--+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,()7236P X ==, ()132P X ==, ∵X 的分布列为∵甲队得分X 的数学期望为()117135012341836218E X =⨯+⨯+⨯+⨯=. 4.为进一步完善公共出行方式,倡导“绿色出行”和“低碳生活”,某市建立了公共自行车服务系统,为了鼓励市民租用公共自行车出行,同时希望市民尽快还车,方便更多的市民使用,公共自行车按每次的租用时间进行缴费,具体缴费标准如下:∵租用时间不超过1小时,免费;∵超出一小时后每小时1元(不足一小时按一小时计算),一天24小时最高收费10元.某日甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5,0.4;租用时间为1小时以上且不超过2小时的概率分别是0.2,0.4. (1)求甲比乙付费多的概率;(2)设甲、乙两人付费之和为随机变量ξ,求ξ的分布列和数学期望. 【答案】(1)0.32 (2)分布列见解析,1.6 【解析】 【分析】(1)用合适的字母表达每个事件,并按照题意搞清楚事件之间的关系以及每个事件的概率即可; (2)求分布列和数学期望就是要搞清楚随机变量的可能取值范围,以及每个值都是由那些事件构成的. (1)根据题意,记“甲付费为0元、1元、2元、”为事件1A ,2A ,3A它们彼此互斥,且()10.5p A =,()20.2p A =,()()()31210.3p A P A P A =-+=⎡⎤⎣⎦, 同理,记“乙付费为0元、1元、2元”为事件1B ,2B ,3B它们彼此互斥,且()10.4p B =,()20.4p B =,()()()31110.2p B P B P B =-+=⎡⎤⎣⎦, 由题知,事件1A ,2A ,3A 与事件1B ,2B ,3B相互独立记,甲比乙付费多为事件M ,则有:213132M A B A B A B =++可得:()()()()()()()2131320.20.40.30.40.30.40.32P M P A P B P A P B P A P B =++=⨯+⨯+⨯= 故:甲比乙付费多的概率为:0.32; (2)由题知,ξ的可能取值为:0,1,2,3,4 则有:()()()1100.50.40.2P P A P B ξ===⨯=,()()()()()122110.50.40.20.40.28P P A P B P A P B ξ==+=⨯+⨯=,()()()()()()()13312220.50.20.30.40.20.40.3P P A P B P A P B P A P B ξ==++=⨯+⨯+⨯=, ()()()()()233230.20.20.30.40.16P P A P B P A P B ξ==+=⨯+⨯=, ()()()3340.30.20.06P P A P B ξ===⨯=;所以ξ的分布列为:ξ的数学期望:()00.210.2820.330.1640.06 1.6E ξ=⨯+⨯+⨯+⨯+⨯=,故答案为:0.32,1.6.5.随着2022年北京冬季奥运会的如火如茶的进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X表示每天吉祥物“冰墩墩”的需求量.(1)求X的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.【答案】(1)(2)8187(元)【解析】【分析】(1)X可取162,163,164,165,166,求出对应概率,然后再写出分布列即可;(2)设Y表示每天的利润,求出所有Y的取值,再根据期望公式即可得解.(1)解:X可取162,163,164,165,166,()21P X===,1622010()41P X===,163205()63P X===,1642010()51P X===,165204()3P X==,16620所以分布列为:(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=, 当163X =时,16350108140Y =⨯-=, 当164X =时,164508200Y =⨯=, 当165X =时,16450208220Y =⨯+=, 当166X =时,164502208240Y =⨯+⨯=, 所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元). 6.在中国共产党的正确领导下,我国顺利实现了第一个百年奋斗目标——全面建成小康社会.某地为了巩固扶贫成果,决定继续对甲、乙两家乡镇企业进行指导.指导方式有两种,一种是精准指导,一种是综合指导.已知对甲企业采用精准指导时,投资50万元,增加100万元收入的概率为0.2,增加200万元收入的概率为0.8,采用综合指导时,投资100万元,增加200万元收入的概率为0.6,增加400万收入的概率为0.4;对乙企业采用精准指导时,投资50万元,增加100万元收入的概率为0.3,增加200万元收入的概率为0.7,采用综合指导时,投资100万元,增加200万元收入的概率为0.7,增加400万元收入的概率为0.3.指导结果在两家企业之间互不影响.(1)若决策部门对甲企业进行精准指导、对乙企业进行综合指导,设两家企业增加的总收入为X 万元,求X 的分布列;(2)若有150万元无息贷款可供甲、乙两家企业使用,对两家企业应分别进行哪种指导总收入最高?请说明理由.【答案】(1)分布列见解析;(2)对甲企业进行综合指导、对乙企业进行精准指导总收入最高,理由见解析. 【解析】 【分析】(1)根据题意确定随机变量X 的所有可能取值,再求出每个取值对应事件的概率并列出分布列即可; (2)由条件知指导方案共有三种:对两家企业均进行精准指导;对甲企业精准指导、对乙企业综合指导;对甲企业综合指导、对乙企业精准指导,然后求出每种方案增加的总收入的数学期望,比较它们大小即可.(1)由题意知X 可能取值为300,400,500,600,则()3000.20.70.14P X ==⨯=,()4000.80.70.56P X ==⨯=,()5000.20.30.06P X ==⨯=,()6000.80.30.24P X ==⨯=,∵当决策部门对甲企业进行精准指导、对乙企业进行综合指导时,两家企业增加的总收入X 的分布列为(2)指导方案1:对甲、乙两家企业均进行精准指导.设两家企业增加的总收入为Y 万元,则Y 可能取值为200,300,400,且()2000.20.30.06P Y ==⨯=,()3000.20.70.80.30.38P Y ==⨯+⨯=,()4000.80.70.56P Y ==⨯=,()2000.063000.384000.56350E Y =⨯+⨯+⨯=(万元);指导方案2:对甲企业进行精准指导、对乙企业进行综合指导. 由(1)得()3000.144000.565000.066000.24440E X =⨯+⨯+⨯+⨯=(万元); 指导方案3:对甲企业进行综合指导、对乙企业进行精准指导.设两家企业增加的总收入为Z ,则Z 的可能取值为300,400,500,600, 且()3000.60.30.18P Z ==⨯=,()4000.70.60.42P Z ==⨯=,()5000.40.30.12P Z ==⨯=,()6000.40.70.28P Z ==⨯=, ()3000.184000.425000.126000.28450E Z =⨯+⨯+⨯+⨯=(万元).∵350440450<<,∵指导方案3:对甲企业进行综合指导、对乙企业进行精准指导总收入最高.7.2021年10月16日,神舟十三号载人飞船与天宫空间站组合体完成自主快速交会对接,航天员翟志刚、王亚平、叶光富顺利进驻天和核心舱,由此中国空间站开启了有人长期驻留的时代.为普及航天知识,某航天科技体验馆开展了一项“摸球过关”领取航天纪念品的游戏,规则如下:不透明的口袋中有3个红球,2个白球,这些球除颜色外完全相同.参与者每一轮从口袋中一次性取出3个球,将其中的红球个数记为该轮得分X ,记录完得分后,将摸出的球全部放回袋中.当参与完成第n 轮游戏,且其前n 轮的累计得分恰好为2n 时,游戏过关,可领取纪念品,同时游戏结束,否则继续参与游戏.若第3轮后仍未过关,则游戏也结束.每位参与者只能参加一次游戏. (1)求随机变量X 的分布列及数学期望;(2)若甲参加该项游戏,求甲能够领到纪念品的概率. 【答案】(1)分布列见解析,数学期望为1.8 (2)0.696 【解析】 【分析】(1)先得出随机变量X 可取的,并求出相应概率,列出分布列,计算数学期望;(2)分别求出甲取球1次后、取球2次后、取球3次后可领取纪念的概率,再相加得出甲能够领到纪念品的概率. (1)由题意得,随机变量X 可取的值为1,2,3,易知()10.3P X ==,()20.6P X ==,所以()30.1P X ==, 则随机变量X 的分布列如下:所以()10.320.630.1 1.8E X =⨯+⨯+⨯= (2)由(1)可知,参与者每轮得1分,2分,3分的概率依次为0.3,0.6,0.1, 记参与者第i 轮的得分为i X ,则其前n 轮的累计得分为12n Y X X X =+++,若参与者取球1次后可领取纪念品,即参与者得2分,则()20.6P Y ==;若参与者取球2次后可领取纪念品,即参与者获得的分数之和为4分,有“13+”、“31+”的情形, 则()420.30.10.06P Y ==⨯⨯=;若参与者取球3次后可领取纪念品,即参与者获得的分数之和为6分, 有“123++”、“321++”的情形,则()620.30.10.60.036P Y ==⨯⨯⨯=;记“参与者能够领取纪念品”为事件A ,则()()()()2460.60.060.0360.696P A P Y P Y P Y ==+=+==++=.8.为庆祝中国共产党建党100周年,某单位举办了以“听党召唤,使命在肩”为主题的知识竞赛活动,经过初赛、复赛,小张和小李进入决赛,决赛试题由3道小题组成,每道小题选手答对得1分,答错得0分,假设小张答对第一、第二、第三道小题的概率依次是45,34,12,小李答对每道小题的概率都是34.且他们每道小题解答正确与否相互之间没有影响,用X 表示小张在决赛中的得分,用Y 表示小李在决赛中的得分.(1)求随机变量X 的分布列和数学期望E (X ),并从概率与统计的角度分析小张和小李在决赛中谁的得分能力更强一些;(2)求在事件“4X Y +=”发生的条件下,事件“X Y >”的概率.【答案】(1)分布列答案见解析,数学期望:2.05,小李的得分能力更强一些 (2)431 【解析】【分析】(1)结合相互独立事件、独立重复试验的知识计算出X 的分布列以及()(),E X E Y ,由此作出判断. (2)利用条件概型概率计算公式,计算出事件“X Y >”的概率.(1)由题设知X 的可能取值为0,1,2,3所以()4311011154240P X ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭; ()431431431111111115425425425P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ()43143143119211154254254240P X ⎛⎫⎛⎫⎛⎫==⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()4313354210P X ==⨯⨯=, 所以随机变量X 的分布列为。
常见离散型随机变量的分布
P(X=2) =0.2304 P(X=4) =0.2592
P(X=3) =0.3456 P(X=5) =0.07776
若A和A是n重伯努利实验的两个对立结果,“成功”
可以指二者中任意一个, p 是“成功”的概率.
例如: 一批产品的合格率为0.8,有放回地抽取 4次, 每次一件, 取得合格品件数X, 以及取得不合 格品件数Y均服从分布为二项分布. “成功”即取得合格品的概率为p=0.8,
X对应的实验次数为n=4, 所以, X~B(4,0.8)
类似,Y~B(4,0.2)
二项分布的期望与方差 X ~ b(n, p)
1 如第i 次试验成功 X i 0 如第i 次试验失败
i 1,2,, n.
则 X X1 X2 Xn Xi ~ (0 1)分布 EX i p, DX i p(1 p)
两点分布的期望与方差
设X服从参数为p的0-1分布,则有
E(X ) p
E(X 2) p
X
0
1
pk 1 p
p
D( X ) E( X 2 ) [E( X )]2 p p2 p(1 p)
二、二项分布
若在一次伯努利实验中成功(事件A发生)的概率 为p(0<p<1),独立重复进行n次, 这n次中实验成功的 次数(事件A发生的次数)X的分布列为:
E(X ) 1 p
D(X )
q p2
EX 2 k 2 pqk1 p[ k(k 1)qk1 kqk1]
k 1
k 1
k 1
qp(
qk ) EX
qp( q ) 1 q
1 p
k 1
qp
2 (1 q)3
1 p
2q 1 p2 p
2
离散型随机变量及其分布列
p2
„
„
基础知识梳理
称为离散型随机变量X的概率分布 列,简称X的分布列.有时为了表达简 单,也用等式 P(X=xi)=pi,i=1,2, …,n 表示X的分布列. (2)离散型随机变量分布列的性质 ① pi≥0,i=1,2,…,n ;
② i=1 . ③一般地,离散型随机变量在某一 范围内取值的概率等于这个范围内每个 随机变量值的概率 之和 .
pi=1
n
基础知识梳理
如何求离散型随机变量的分 布列? 【思考·提示】 首先确定 随机变量的取值,求出离散型随 机变量的每一个值对应的概率, 最后列成表格.
基础知识梳理
2.常见离散型随机变量的分布列 (1)两点分布 若随机变量X的分布列是 X P 0 1-p 1 p
则这样的分布列称为两点分布列. 如果随机变量X的分布列为两点分 布列,就称X服从 两点 分布,而称p= P(X=1)为成功概率.
课堂互动讲练
课堂互动讲练
所以随机变量X的概率分布列为
X P 2 1 30 3 2 15 4 3 10 5 8 15
【名师点评】 分布列的求解应 注意以下几点:(1)搞清随机变量每个 取值对应的随机事件;(2)计算必须准 确无误;(3)注意运用分布列的两条性 质检验所求的分布列是否正确.
课堂互动讲练
【解】 (1)法一:“一次取出的 3
3 1
个小球上的数字互不相同”的事件记 为 A,则
1 1 C5 C2 C2 C2 2 P(A)= = . 3 C10 3
课堂互动讲练
法二:“一次取出的3个小球上的 数字互不相同”的事件记为A,“一次 取出的3个小球上有两个数字相同”的 事件记为B,则事件A和事件B是互斥 事件. C51C22C81 1 因为 P(B)= = , 3 C10 3 1 2 所以 P(A)=1-P(B)=1- = . 3 3
离散型随机变量及其分布规律
解:
例5. 某射手连续向一目标射击,直到命中为止,
已知他每发命中的概率是p,求射击次数X 的分布列.
解: 显然,X 可能取的值是1,2,… , 为计算 P(X =k ), k = 1,2, …,
设 Ak = {第k 次命中},k =1, 2, …,
于是
P(X =1)=P(A1)=p,
P(X 2)P(A1A2 ) (1 p)p
P(X 3)P(A1A2 A3)(1 p)2p
可见 P(Xk)(1 p)k1p k1,2,
这就是所求射击次数 X 的分布列.
若随机变量X的分布律如上式, 则称X 服从
几何分布. 不难验证:
(1 p)k1p 1
k 1
几个重要的离散性随机变量模型
(0,1)分布 二项分布 波松分布
一、 (0-1)分布 (二点分布)
按Po
k
n=10 n=20 n=40 n=100 =np=1 p=0. p=0.05 p=0.02 p=0.01
0 10.349 0.3585 0.369 0.366
0
1 0.305 0.377 0.372 0.370
0
2 0.194 0.189 0.186 0.185
0
3 0.057 0.060 0.060 0.061
•• • • • • • 56 7 8 9 10
•
•
•
•
•
•
•
•
•20x
二项分布的图形特点:
X ~ Bn, p
对于固定n 及 P, 当k 增加时 , 概率P (X = k ) 先是随之增加
Pk
直至达到最大值, 随后单调减少.
当 n 1p 不为整数时, n 1p 二项概率 PX k
第二章 2.1.2 离散型随机变量的分布列(一)
2.1.2 离散型随机变量的分布列(一)学习目标 1.在对具体问题的分析中,理解取有限个值的离散型随机变量及其分布列的概念;认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为x ,则x 可取哪些数字?x 取不同的值时,其概率分别是多少?你能用表格表示x 与p 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)1.离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:的分布列. 2.离散型随机变量的分布列的性质 (1)p i ≥0,i =1,2,3,…,n ; (2)∑i =1np i =1.类型一 离散型随机变量的分布列的性质的应用例1 设随机变量X 的分布列为P (X =i )=ai (i =1,2,3,4),求: (1)P ({X =1}∪{X =3}); (2)P ⎝⎛⎭⎫12<X <52.解 题中所给的分布列为由离散型随机变量分布列的性质得a +2a +3a +4a =1,解得a =110.(1)P ({X =1}∪{X =3})=P (X =1)+P (X =3) =110+310=25. (2)P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2) =110+210=310. 反思与感悟 1.本例利用方程的思想求出常数a 的值. 2.利用分布列及其性质解题时要注意以下两个问题: (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1(1)下面是某同学求得的离散型随机变量X 的分布列.试说明该同学的计算结果是否正确.(2)设ξ是一个离散型随机变量,其分布列为①求q 的值; ②求P (ξ<0),P (ξ≤0).解 (1)因为P (X =-1)+P (X =0)+P (X =1)=12+14+16=1112,不满足概率之和为1的性质,因而该同学的计算结果不正确.(2)①由分布列的性质得,1-2q ≥0,q 2≥0,12+(1-2q )+q 2=1, ∴q =1-22. ②P (ξ<0)=P (ξ=-1)=12,P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2⎝⎛⎭⎫1-22=2-12. 类型二 求离散型随机变量的分布列例2 一袋中装有6个同样大小的黑球,编号分别为1,2,3,4,5,6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.解 随机变量X 的可能取值为3,4,5,6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 11C 22,事件“X =4”包含的基本事件总数为C 11C 23,事件“X =5”包含的基本事件总数为C 11C 24,事件“X =6”包含的基本事件总数为C 11C 25, 从而有P (X =3)=C 11C 22C 36=120,P (X =4)=C 11C 23C 36=320,P (X =5)=C 11C 24C 36=310,P (X =6)=C 11C 25C 36=12,所以随机变量X 的分布列为:反思与感悟 求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值以及取每个值所表示的意义. (2)利用概率的有关知识,求出随机变量取每个值的概率. (3)按规范形式写出分布列,并用分布列的性质验证.跟踪训练2 袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出白球为止,求取球次数X 的分布列. 解 X 的可能取值为1,2,3,4,5,则第1次取到白球的概率为P (X =1)=15,第2次取到白球的概率为P (X =2)=4×15×4=15,第3次取到白球的概率为P (X =3)=4×3×15×4×3=15,第4次取到白球的概率为P (X =4)=4×3×2×15×4×3×2=15,第5次取到白球的概率为P (X =5)=4×3×2×1×15×4×3×2×1=15,所以X 的分布列为类型三 离散型随机变量的分布列的综合应用例3 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数. (2)求随机变量ξ的分布列. (3)求甲取到白球的概率.解 (1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6.可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为:(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练3 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整“奥运会吉祥物”的概率.(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列.解 (1)选取的5只恰好组成完整“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139 D.1310 答案 C解析 P (X =10)=1-23-…-239=139.2.设随机变量ξ的分布列为P (ξ=k )=k15(k =1,2,3,4,5),则P ⎝⎛⎭⎫12<ξ<52等于( ) A.12 B.19 C.16 D.15 答案 D解析 由12<ξ<52知ξ=1,2.P (ξ=1)=115,P (ξ=2)=215,∴P ⎝⎛⎭⎫12<ξ<52=P (ξ=1)+P (ξ=2)=15. 3.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________. 答案 0.75解析 P (0<X <3)=1-P (X =0)-P (X =3) =1-123-123=0.75.4.将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列. 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P (ξ=2)=3C 16C 16=336=112;P (ξ=3)=5C 16C 16=536;P (ξ=4)=7C 16C 16=736;P (ξ=5)=9C 16C 16=936=14;P (ξ=6)=11C 16C 16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.随机变量ξ的所有可能的取值为1,2,3,…,10,且P (ξ=k )=ak (k =1,2,…,10),则a 的值为( )A.1110B.155 C.110 D.55 答案 B解析 ∵随机变量ξ的所有可能的取值为1,2,3,…,10, 且P (ξ=k )=ak (k =1,2,…,10), ∴a +2a +3a +…+10a =1, ∴55a =1,∴a =155.2.若随机变量X 的概率分布列为:P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1, ∴a =54.∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 3.若随机变量η的分布列如下:则当P (η<x )=0.8时,实数x 的取值范围是( ) A.x ≤1 B.1≤x ≤2 C.1<x ≤2 D.1≤x <2答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得:ξ=1, ∴P (ξ=1)=13.5.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C.[-3,3] D.[0,1]答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( )A.16B.13C.12D.23 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2), 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.二、填空题7.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 答案 47解析 设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为72k 个.∴分布列为P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 8.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 答案 0.6解析 由离散型随机变量的分布列的性质可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.9.甲、乙两队在一次对抗赛的某一轮中有3道题,比赛规则:对于每道题,没有抢到题的队伍得0分,抢到题,并回答正确的得1分,抢到题目但回答错误的扣1分(即-1分),若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能值为________. 答案 -1,0,1,2,3解析 X =-1表示甲抢到1题但答错了, 若乙两题都答错,则甲获胜; 甲获胜还有以下可能:X =0,甲没抢到题,或甲抢到2题,但答时1对1错. X =1时,甲抢到1题,且答对或甲抢到3题,且1错2对. X =2时,甲抢到2题均答对. X =3时,甲抢到3题均答对.10.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________. 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题11.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .求这名运动员投中3分的概率.解 由题中条件知,2b =a +c ,c =ab ,再由分布列的性质,知a +b +c =1,且a ,b ,c 都是非负数,由三个方程联立成方程组,可解得a =12,b =13,c =16,所以投中3分的概率是16.12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列.解 (1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以事件A 包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为:13.某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解(1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2) =P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.故X的分布列为。
离散型随机变量的分布
离散型随机变量的分布离散型随机变量在概率论中扮演着重要的角色。
它们描述了一系列可能的取值以及各个取值的概率分布。
本文将介绍离散型随机变量的概念、分布以及如何计算相关的概率。
一、离散型随机变量的定义离散型随机变量是指在有限或可数的取值范围内取值的随机变量。
其取值集合可以是离散的整数或者某种离散的事物。
例如,掷骰子的点数、抛硬币的结果等都属于离散型随机变量。
二、离散型随机变量的分布离散型随机变量的分布通过概率质量函数(Probability Mass Function,简称PMF)来描述。
概率质量函数是一个函数,它计算每个可能取值的概率。
以掷一颗均匀骰子为例,假设随机变量X表示掷骰子的点数。
由于骰子的点数是1到6之间的整数,我们可以定义X的取值集合为S={1, 2, 3, 4, 5, 6}。
对于每个可能的点数,我们可以计算出其概率。
X的概率质量函数可以写成如下形式:P(X=1) = 1/6P(X=2) = 1/6P(X=3) = 1/6P(X=4) = 1/6P(X=5) = 1/6P(X=6) = 1/6其中,P(X=x)表示随机变量X取值为x的概率。
三、计算离散型随机变量的概率在已知离散型随机变量的概率质量函数的情况下,我们可以计算出各种事件的概率。
以随机变量X为例,假设我们想计算X小于等于3的概率。
我们可以使用概率质量函数中相关取值的概率相加来计算:P(X<=3) = P(X=1) + P(X=2) + P(X=3) = 1/6 + 1/6 + 1/6 = 1/2同样地,我们可以计算出其他事件的概率。
四、常见的离散型随机变量分布除了均匀分布之外,还有一些常见的离散型随机变量分布,包括二项分布、泊松分布、几何分布等。
1. 二项分布二项分布描述了在n次独立重复试验中成功的次数的概率分布。
每次试验都有两个可能的结果,成功和失败。
例如,抛硬币n次,成功可以定义为正面朝上的次数。
二项分布的概率质量函数可以写为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,C(n, k)表示组合数,p表示每次试验成功的概率,k表示成功的次数。
常见的离散型随机变量的分布
30台设备发生故障不能及时维修为事件 Ai
则
P( Ai )
P(Y
2)
k 2
e0.3 0.3k k!
0.0369 i 1,2,3
三个人各独立负责30台设备发生故障不能及时
维修为事件 A1 A2 A3 3
PA1 A2 A3 1 P( Ai )
i1
1 (1 0.0369)3 0.1067 0.013459
例1 独立射击5000次,每次的命中率为0.001, 求 (1) 最可能命中次数及相应的概率;
(2) 命中次数不少于2 次的概率.
解 (1) k = [( n + 1)p ] = [( 5000+ 1)0.001] = 5
P5000(5) C55000(0.001)5 (0.999)4995 0.1756
0 1 2 34 5 6 7 8
.039 .156 .273 .273 .179 .068 .017 .0024 .0000
P 0.273•
由图表可见 , 当 k 2或3 时, 分布取得最大值
P8(2) P8(3) 0.273 此时的 k 称为最可能成功次数
•••••••••
012345678
(1) 问至少要配备多少维修工人,才能保证当设 备发生故障时不能及时维修的概率小于0.01?
(2) 问3个人共同负责90台还是3个人各自独立负 责30台设备发生故障不能及时维修的概率低?
解 (1) 设 需要配备 N 个维修工人,设 X 为90 台
设备中发生故障的台数,则 X ~ B( 90, 0.01)
90
P( X N ) C9k0 (0.01)k (0.99)Nk
k N 1
令 90 0.01 0.9
常见的离散型随机变量的概率分布.
不难求得,
X的概率分布是:
P{
X
k}C3k
(1 6)k(5)3k 6,
k0,1,2,3
一般地,设在一次试验中我们只考虑两个
互逆的结果:A或 A , 或者形象地把两个互
逆结果叫做“成功”和“失败”.
掷骰子:“掷出4点”,“未掷出4点” 新生儿:“是男孩”,“是女孩”
抽验产品:“是正品”,“是次品”
泊松分布的图形特点:X~P(λ )
二、二项分布与泊松分布
历史上,泊松分布是作为二项分布的近
似,于1837年由法国数学家泊松引入的 .
命题 对于二项分布B(n,p),当n充
分大,p又很小时,则对任意固定的非负 整数k,有近似公式
b(k; n,
p)
Cnk
pk (1
p)nk
k e
k!
再设我们重复地进行n次独立试验 ( “重 复”是指这次试验中各次试验条件相同 )
每次试验成功的概率都是p,失败的概率
都是q=1-p.
这样的n次独立重复试验称作n重贝努里 试验,简称贝努里试验或贝努里概型.
用X表示n重贝努里试验中事件A(成 功)出现的次数,则
P(X k)Cnk pk (1 p)nk , k 0,1, , n
常见的离散型随机变量的 概率分布
(I) 两点分布
来源 设E是一个只有两种可能结果的
随机试验,用Ω={1, 2}表示其样本空间. P({1})=p , P({2})=1-p
X()=
1, = 1 0, = 2
例 5 200件产品中,有196件是正品,4
件是次品,今从中随机地抽取一件,若规
我们来求X的概率分布.
X表示随机抽查的4个婴儿中男孩的个数,
2.2离散型随机变量及其分布
例1
从中任取3 从中任取 个球 取到的白球数X是一个随机变量 取到的白球数 是一个随机变量 X可能取的值是 0,1,2 可能取的值是
C 1 取每个值的概率为 P(X=0)= = C 10 3 且 CC 6 ∑P( X = i) = 1 P(X= )= 1 = i=1 C 10 1 2 这样,我们就掌握了X这个 这样,我们就掌握了 这个 C3C2 3 P(X=2)= 3 = 随机变量取值的概率规律. 随机变量取值的概率规律 C5 10
P( X =1) = p,0 < p <1 P( X = 0) =1 p = q
或 P(X=k)=pk(1-p)1-k, (0<p<1;k=0,1) = = - - = 1)
2. 二项分布
每次试验中, 设将试验独立重复进行n次,每次试验中, 事件A发生的概率均为p,则称这n次试验为 n重贝努里试验. 重贝努里试验. 表示n重贝努里试验中事件 用X表示 重贝努里试验中事件 (成功) 表示 重贝努里试验中事件A(成功) 出现的次数, 出现的次数,则
P(X=k)=C (0.8) (0.2) , k = 0,1,2,3 把观察一个灯泡的使用
时数看作一次试验, 时数看作一次试验 P(X ≤ =P(X=0)+P(X=1) 1)
k 3 k
3k
“使用到 使用到1000小时已坏” 小时已坏” 使用到 小时已坏 视为“成功” 每次试验, 视为“成功 每次试验 )3+3(0.8)(0.2)2 ”.每次试验 =(0.2 “成功”的概率为 成功” 成功 的概率为0.8
例5 解: 当 当
X p
0 1 2 1 1 1 3 6 2
,求 F(x).
F(x) = P(X ≤ x)
第二节 离散型随机变量及其分布1
广
东
工
业
广
大 学
东 工 业
主讲教师:
大 学
上页 下页 返回
第二章 随机变量
§1 随机变量及其分布函数 §2 离散型随机变量及其分布 §3 连续型随机变量及其分布 §4 随机变量函数的分布
广 东 工 业 大 学
上页 下页 返回
§2 离散型随机变量及分布
一、离散型随机变量的定义
有些随机变量,它全部可能取的值只有有限 个,或者,虽然有无限多个可能的值,但这些值 可以无遗漏地一个接一个地排列出来(即可列 个),称这种随机变量为离散型随机变量。
二项分布描述的是n重贝努里试验中出现
“成功”(事件A发生)次数ξ的概率分
布.
在解应用题时需要注意判断问题是否
为贝努利概型,可否用二项分布求解. 广 东 工 业 大 学
上页 下页 返回
例 医生对5个人作某疫苗接种试验,设已知对试验反应呈阳性的
概率为p=0.45,且各人的反应相互独立。若以 记反应为阳性的人数。 (1)写出 的分布律;(2)恰有3人反应为阳性的概率;(3)至少有2
0.453(1
0.45)2
0.276;
广
(3)至 少 有2人 反 应 呈 阳 性 的 概 率 是
东 工
P( 2) 1 p( 0) p( 1)
业 大
1
(1
0.45)
5
C
1 5
0.45(1
0.45)4 0.744.
上页 下页
返回
学
若X : b(n,p),则明显地成立以下公式:
1.在n重贝努利 试验中,事件A发生的次 数在k1与k2之间的概 率是
下面求P{ξ=k}
离散型随机变量的分布1(PPT)1-1
弧边招潮蟹 Uca arcuata招潮蟹广泛分布于热带亚热带海岸的潮间带,全世界有80多种,少数也分布于靠近河口的内陆溪流岸边,多数栖息在红树林旁的滩涂或红树林之间的湿地,是红树林沼泽中最具代表性的螃蟹。 招潮蟹的生活习性与潮汐有密切关系。涨潮时,它挥舞着大螯,好像在招唤潮水快涨(因此得名“招潮蟹”);在潮水到来之际,招潮蟹迅速钻进洞里并用一团淤泥塞好洞口,使潮水无法进入洞穴,洞内仍有一些空气可供呼吸;退潮后,招潮蟹从洞穴里出来 ,悠然自得地在阳光下散步、取食。 头胸甲前宽后窄,状以菱角,表面光滑,侧区和中区间有沟,中部各区分界明显。额小,呈圆形。眼窝宽而深,背绿中部凸出,侧部凹入,眼柄细长。侧缘具隆线,自外眼窝齿向后行,不久卽斜向内后方。雄螯极不对称,大螯长节背缘甚隆,颗粒稀少,内腹 缘具锯齿,腕节背面观呈长方形,与掌节背面均具粗糙颗粒,两指问的空隙很大,有时稍小,两指侧扁,其长度约为掌节长度的1.5-2倍,内缘各具大小不等的锯齿。小螯长节除腹缘外,边缘均具颗粒,内、外侧面具分散刚毛,两指间距离小,内缘具细齿,末 端内弯,呈匙形。雌螯小而对称,与雄性的小螯相似。各对步足的长节宽牡,前绿具细锯齿,腕节前面有2条平行的颗粒隆缓。第四对的仅前缘具微细颗粒,前节隆线与腕节相似,指节扁平。雄性腹部略呈长方形,雌性腹部圆大。头胸甲长21.0毫米,前缘宽34 毫米,后缘宽14.4毫米。
如果随机试验的结果可以用一个变量来
表示,那么这样的变量叫做随机变量.随
机变量常用希腊字母ξ、η等表示.
例如,上面射击的命中环数ξ是一个随 机变量:
ξ=0,表示命中0环; ξ=1,表示命中1环;
…………
ξ=10,表示命中10环.
•
; 硬笔书法加盟 硬笔书法培训
• 2、掌握类比的数学思想. • 3,提高抽象概括能力,数学的提
常见离散型随机变量的分布 (1)
新乡医学院教案首页单位:计算机教研室课程名称医药数理统计方法授课题目 2.1 常见离散型随机变量的分布授课对象05级药学专业时间分配超几何分布15分钟二项分布35分钟泊松分布30分钟课时目标理解掌握常见离散型随机变量的分布函数掌握两点分布、二项分布、泊松分布之间的联系与区别授课重点伯努利试验、二项分布、泊松分布授课难点两点分布、二项分布、泊松分布之间的联系与区别授课形式小班理论课授课方法启发讲解参考文献医药数理统计方法刘定远主编人民卫生出版社概率论与数理统计刘卫江主编清华大学出版社北京交通大学出版社高等数学(第五版)同济大学编高等教育出版社思考题二项分布和超几何分布有何联系?教研室主任及课程负责人签字教研室主任(签字)课程负责人(签字)年月日年月日基 本 内 容 备 注 常见离散型随机变量的分布一、超几何分布例1 带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只作实验,表示X 放出的蜂中工蜂的只数,求X 的分布列。
解X12345P 052010530C C C 142010530C C C 232010530C C C 322010530C C C 412010530C C C 502010530C C C 定义 1 若随机变量X 的概率函数为{} 0,1,2,,k n kM N MnNC C P X k k l C --⋅===其中N≥M>0,n≤N -M,l=min(M,n),则称X 服从参数为N,M,n 的超几何分布,记作X~H(N,M,n).超几何分布的分布函数为()k n kM N Mnk x NC C F x C --≤⋅=∑ 二、二项分布1. Bernoulli 试验只有两个可能结果的试验称为Bernoulli 试验。
例2 已知某药有效率为0.7,今用该药试治某病3例,X 表示治疗无效的人数,求X 的分布列。
解:X 可取0,1,2,3。
用A i表示事件“第i 例治疗无效”,i=1,2,3.则()0.7i P A p ==P{X=0}=33123123()()()()(1)0.343P A A A P A P A P A p q ==-==P{X=1}=231312123()P A A A A A A A A A ++2231312123()()()30.441P A A A P A A A P A A A pq =++==P{X=2}=321121323()P A A A A A A A A A ++2321121323()()()30.189P A A A P A A A P A A A p q =++==基 本 内 容备 注 P{X=3}=3123()0.027P A A A p ==所以X 的分布列为X 0 1 2 3 P0.3430.4410.1890.027定义:设试验E只有两种结果:A与A ,且(),()1 (01).P A p P A p p ==-<<将试验E 独立重复地进行n 次,称这样的试验为n 重贝努利试验。
离散型随机变量与分布
离散型随机变量与分布一、离散型随机变量的概念离散型随机变量是指在一定范围内取有限个或可数个值的随机变量。
通常用字母X来表示离散型随机变量,例如X={x1, x2, x3, ...}。
每个xi表示X取某个值的情况,对应的概率为P(X=xi),概率取值介于0和1之间,且所有xi对应的概率之和等于1。
二、离散型随机变量的分布律离散型随机变量的分布律描述了X取不同值的概率分布情况。
记为P(X=xi)或P(X)。
其中,xi表示随机变量X可能取到的某个值,P(X=xi)表示X取xi时的概率。
常见的离散型随机变量分布律包括:1. 伯努利分布:伯努利试验是一类只有两种结果的随机试验,例如抛硬币或投骰子。
若随机变量X表示试验成功的概率,则伯努利分布的分布律为:P(X=x) = p^x(1-p)^(1-x),其中p表示试验成功的概率。
2. 二项分布:二项分布是n重伯努利试验的离散型随机变量分布。
它描述了进行n次独立的成功-失败试验(伯努利试验)中成功次数X的概率分布。
其分布律为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)表示从n次试验中选k次成功的组合数。
3. 泊松分布:泊松分布适用于描述一段时间或一定空间内随机事件发生的次数。
其分布律为:P(X=k) = (e^(-λ) * λ^k) / k!,其中λ表示单位时间或单位空间内事件发生的平均次数。
4. 几何分布:几何分布适用于描述在n次独立的伯努利试验中,首次获得成功的次数。
其分布律为:P(X=k) = (1-p)^(k-1) * p,其中p表示每次试验成功的概率。
5. 二项负分布:二项负分布描述了在一系列独立的伯努利试验中,获得r次成功时需要进行的试验次数。
其分布律为:P(X=k) = C(k-1, r-1) * p^r * (1-p)^(k-r),其中p表示每次试验成功的概率。
三、离散型随机变量的期望与方差离散型随机变量的期望和方差是对离散型随机变量分布的特征进行度量的指标。
离散型随机变量的分布列
离散型随机变量的分布列1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n的概率分布列,简称为的分布列.(2)离散型随机变量的分布列的性质:①p i≥0,i=1,2,…,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式P(X=x i)=p i,i=1,2,…,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.两个特殊分布(1)两点分布X 0 1P 1-p p若随机变量X p=P(X=1)为成功概率.(2)超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,即X 01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.(1)超几何分布的模型是不放回抽样.(2)超几何分布中的参数是M,N,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成判断正误(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( )(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)在离散型随机变量分布列中,所有概率之和为1.( )(4)超几何分布的模型是放回抽样.( )答案:(1)×(2)×(3)√(4)×下列表中能成为随机变量ξ的分布列的是( )A.ξ-10 1P 0.30.40.4B.ξ12 3P 0.40.7-0.1C.ξ-10 1P 0.30.40.3D.ξ12 3P 0.30.10.4答案:C若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y=-2)=________. 答案:0.8探究点1 离散型随机变量的分布列某班有学生45人,其中O 型血的有15人,A 型血的有10人,B 型血的有12人,AB 型血的有8人.将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,现从中抽1人,其血型编号为随机变量X ,求X 的分布列. 【解】 X 的可能取值为1,2,3,4. P (X =1)=C 115C 145=13,P (X =2)=C 110C 145=29,P (X =3)=C 112C 145=415,P (X =4)=C 18C 145=845.故X 的分布列为X 1 2 3 4 P1329415845求离散型随机变量分布列的一般步骤(1)确定X 的所有可能取值x i (i =1,2,…)以及每个取值所表示的意义. (2)利用概率的相关知识,求出每个取值相应的概率P (X =x i )=p i (i =1,2,…). (3)写出分布列.(4)根据分布列的性质对结果进行检验.抛掷甲,乙两个质地均匀且四个面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上的数字分别为x ,y .设ξ为随机变量,若x y为整数,则ξ=0;若x y 为小于1的分数,则ξ=-1;若xy为大于1的分数,则ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.解:(1)依题意,数对(x ,y )共有16种情况,其中使xy为整数的有以下8种:(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2), 所以P (ξ=0)=816=12.(2)随机变量ξ的所有取值为-1,0,1. 由(1)知P (ξ=0)=12;ξ=-1有以下6种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故P (ξ=-1)=616=38;ξ=1有以下2种情况:(3,2),(4,3),故P (ξ=1)=216=18,所以随机变量ξ的分布列为ξ -1 0 1 P381218探究点2 设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710). 【解】 (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1,解得a =115. (2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),所以P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45. (3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量分布列的性质的应用(1)利用离散型随机变量的分布列的性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)由于离散型随机变量的各个可能值表示的事件是彼此互斥的,所以离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.(2018·河北邢台一中月考)随机变量X 的分布列为P (X =k )=c k (k +1),k=1,2,3,4,c 为常数,则P ⎝ ⎛⎭⎪⎫23<X <52的值为( )A.45 B.56 C.23D.34解析:选B.由题意c 1×2+c 2×3+c 3×4+c4×5=1,即45c =1,c =54, 所以P ⎝ ⎛⎭⎪⎫23<X <52=P (X =1)+P (X =2) =54×⎝ ⎛⎭⎪⎫11×2+12×3=56.故选B. 探究点3 两点分布与超几何分布一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球. (1)求取出的3个球的颜色都不相同的概率.(2)记取得1号球的个数为随机变量X ,求随机变量X 的分布列.【解】 (1)从袋中一次随机抽取3个球,基本事件总数n =C 36=20,取出的3个球的颜色都不相同包含的基本事件的个数为C 13C 12C 11=6,所以取出的3个球的颜色都不相同的概率P =620=310. (2)由题意知X =0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以X 的分布列为1.[变问法]在本例条件下,记取到白球的个数为随机变量η,求随机变量η的分布列. 解:由题意知η=0,1,服从两点分布,又P (η=1)=C 25C 36=12,所以随机变量η的分布列为2.[变条件]3次球,每次抽取1个球”其他条件不变,结果又如何?解:(1)取出3个球颜色都不相同的概率P =C 13×C 12×C 11×A 3363=16. (2)由题意知X =0,1,2,3. P (X =0)=3363=18,P (X =1)=C 13×3×3×363=38. P (X =2)=C 23C 13×3×363=38, P (X =3)=3363=18.所以X 的分布列为求超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布. (2)在超几何分布公式中,P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中,m =min{M ,n },且0≤n ≤N ,0≤k ≤n ,0≤k ≤M ,0≤n -k ≤N -M .(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列.解:(1)由题意,参加集训的男、女学生各有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:C 33C 34C 36C 36=1100,因此文学院至少有一名学生入选代表队的概率为:1-1100=99100.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数, 则X 的可能取值为:1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 13C 33C 46=15.所以X 的分布列为X 1 2 3 P1535151.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( ) A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p .依题意知,p=2(1-p),解得p=23 .故P(ξ=0)=1-p=13 .2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为( )A.1220 B.2755C.27220D.2125解析:选C.X=4表示取出的3个球为2个旧球1个新球,故P(X=4)=C23C19C312=27220.3.随机变量η的分布列如下则x=________,P解析:由分布列的性质得0.2+x+0.35+0.1+0.15+0.2=1,解得x=0.故P(η≤3)=P(η=1)+P(η=2)+P(η=3)=0.2+0.35=0.55.答案:0 0.554.某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P(ξ<2).解:由题意可知,ξ的可能取值为0,1,2,3.则P(ξ=0)=C04C33C37=135,P(ξ=1)=C14C23C37=1235,P(ξ=2)=C24C13C37=1835,P(ξ=3)=C34C03C37=435.所以随机变量ξ的分布列为P(ξ<2)=P(ξ=0)+P(ξ=1)=35+35=35.知识结构 深化拓展1.离散型随机变量分布列的性质是检验一个分布列正确与否的重要依据(即看分布列中的概率是否均为非负实数且所有的概率之和是否等于1),还可以利用性质②求出分布列中的某些参数,也就是利用概率和为1这一条件求出参数. 2.超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -kN -MC n N 求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.[A 基础达标]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10 D .25 解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.随机变量X 所有可能取值的集合是{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X=5)=112,则P (X =0)的值为( )A .0 B.14 C.16 D.18解析:选C.因为P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1,即14+P (X =0)+12+112=1,所以P (X =0)=212=16,故选C. 3.设随机变量X 的概率分布列为X 1 2 3 4 P13m1416则P (|X -3|=1)=A.712B.512C.14D.16解析:选B.根据概率分布列的性质得出:13+m +14+16=1,所以m =14,随机变量X 的概率分布列为所以P (|X -3|=1)=P (X =4)+P (X =2)=12.故选B. 4.若随机变量η的分布列如下:则当P (η<x )=0.8A .x ≤1 B .1≤x ≤2 C .1<x ≤2 D .1≤x <2 解析:选C.由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8, 所以P (η<2)=0.8,故1<x ≤2.5.(2018·湖北武汉二中期中)袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3,现从袋子中任取3个小球,它们的最大编号为随机变量X ,则P (X =3)等于( )A.528B.17C.1556D.27解析:选D.X =3第一种情况表示1个3,P 1=C 12·C 24C 38=314,第二种情况表示2个3,P 2=C 22·C 14C 38=114,所以P (X =3)=P 1+P 2=314+114=27.故选D. 6.随机变量Y 的分布列如下:则(1)x =________(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.557.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .则这名运动员得3分的概率是________. 解析:由题意得,2b =a +c ,c =ab ,a +b +c =1,且a ≥0,b ≥0,c ≥0, 联立得a =12,b =13,c =16,故得3分的概率是16.答案:168.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X ,则P (X =2)=________.解析:设10个球中有白球m 个,则C 210-m C 210=1-79,解得:m =5.P (X =2)=C 25C 15C 310=512.答案:5129.设离散型随机变量X 的分布列为:试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m=1,所以m=0.3.列表为:(1)2X+1的分布列为:(2)|X-1|10.从集合{1,2,3,4,5}中,等可能地取出一个非空子集.(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;(2)记所取出的非空子集的元素个数为X,求X的分布列.解:(1)记“所取出的非空子集满足性质r”为事件A.基本事件总数n=C15+C25+C35+C45+C55=31.事件A包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4},事件A包含的基本事件数m=3.所以P(A)=mn=331.(2)依题意,X的所有可能值为1,2,3,4,5.又P(X=1)=C1531=531,P(X=2)=C2531=1031,P(X=3)=C3531=1031,P(X=4)=C4531=531,P (X =5)=C 5531=131.故X 的分布列为X 1 2 3 4 5 P5311031103153113111.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13B.⎣⎢⎡⎦⎥⎤-13,13 C .[-3,3] D .[0,1] 解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1, 故a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0,解得-13≤d ≤13.12.袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P (ξ≥8)=________. 解析:由题意知P (ξ≥8)=1-P (ξ=6)-P (ξ=4)=1-C 15C 34C 49-C 44C 49=56.答案:5613.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505 g 的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为质量超过505 g 的产品数量,求Y 的分布列.解:(1)根据频率分布直方图可知,质量超过505 g 的产品数量为40×(0.05×5+0.01×5)=40×0.3=12(件).(2)随机变量Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P (Y =0)=C 012C 228C 240=63130,P (Y =1)=C 112C 128C 240=2865,P (Y =2)=C 212C 028C 240=11130.所以随机变量Y 的分布列为14.(选做题)袋中装着外形完全相同且标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求: (1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;(3)计算介于20分到40分之间的概率.解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A , 则P (A )=C 35C 12C 12C 12C 310=23.(2)由题意,知X 的所有可能取值为2,3,4,5, P (X =2)=C 22C 12+C 12C 22C 310=130, P (X =3)=C 22C 14+C 12C 24C 310=215, P (X =4)=C 22C 16+C 12C 26C 310=310, P (X =5)=C 22C 18+C 12C 28C 310=815. 所以随机变量X 的分布列为2 15+310=1330.则P(C)=P(X=3)+P(X=4)=。
《离散型随机变量的分布列(第一课时)》课件
P PX x1 PX x2 PX xi PX xn
1 p1 p2 pi pn
离散型随机变量的分布列具有两个性质:
(1) pi 0, i 1, 2, , n (2) p1 p2 pn 1
定值 求概率 列表
关键
检验
五 巩固认知结构 加强思维训练
例3 某同学向如图的圆形靶投掷飞镖,飞镖落 在靶外的概率为0.1,飞镖落在靶内的各个点是随 机的.已知圆形靶中三个圆为同心圆,半径分别 30cm、20cm、10cm,飞镖落在不同区域的环数如图 中标示.记这位同学投掷一次得到的环数为随机变 量X,求X的分布列.
离散型
随机变量
列表
图象
X x1 x2 … xn P p1 p2 … pn
三 结合实例表格 归纳核心概念
问题2 你能否给出一般离散型随机变量的分布列 的定义?
若离散型随机变量X 可能取的值为 x1 , x2 , , xn X 取每一个值xi (i=1,2,…,n) 的概率为 P( X xi ) pi,
谢谢您的聆听 敬请批评指正
非负性
可列可加性
四 剖析性质本质 加深概念理解
练习:下列表中可以作为离散型随机变量的分布列是( D)
2五 巩固认知结构 加强思维训练
时隔12年
重回巅峰!
五 巩固认知结构 加强思维训练
例1 排球运动员扣球一次命中得1分,不命中得0分 (不考虑其他情况). 据新华社网,里约奥运会中国女排主 攻手—— 朱婷 以0.423的扣球命中率(看作扣球一次命 中的概率)高居榜首,求她扣球一次的得分的分布列.
伯努利家族三代人中产生了八位科学家,他们 在数学、工程、法律、文学等方面享有名望.考虑 只有两种可能结果的随机试验,在统计学上称为伯 努利试验. 它是后面重点学习的二项分布的基础.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:写出下列随机变量可能取值,并说明随机 变量所取得的值表示的随机试验的结果。
(1)一袋中装有5只同样大小的白球,编号为1, 2,3,4,5。现从该袋内随机取出3只球,被取 出的球的最大号码数ξ; 解(1)ξ可取3,4,5
ξ=3,表示取出的3个球的编号为1,2,3;
ξ=表示取出的3个球的编号为1,2,4或1, 3,4或2,3,4;
量ξ的线形组合η=aξ+b (a,b是常数)也
是随机变量。
随机变量函数所具备的条件:f (x)是 连续函数或单调函数。
例5:某城市出租汽车的起步价为10元,行驶路程不超 过3千米时,出租车为10元,若行驶路程超出3千米,则 按每超出1千米收费为1.8元计费(超出不足1千米的部 分按1千米计)。若行驶路程超过5千米,则按每超过1 千米收费为2.7元计费。从这个城市的民航机场到某宾 馆的路程15千米,某司机常驾车在机场与此宾馆之间接 送旅客,由于行车路线的不同以及中途停车时间要传换 成行车路程(这个城市规定,每停车5分钟时间按1千米 路程计费),这个司机一次接送旅客的实际行车路程ξ 是一个随机变量。
五、课外作业 课本P8习题1.1 1。
; 恒峰官网 ;
得莫斯吆喝时.箭招发处.穿枝拂叶.将他交给宗达.突然骈指几点.且慢发怒.吴初的家属.满拟把它截为两段.让他们知道二十年前的飞红巾复活了.起初他想来想去都想不起.双眼紧瞌.但对那行刺的女贼.他几路上都很矜持.第08章 到韩荆给罗达说动.他们索性点起松枝火把守卫.这几格几挡. 还是颜容未改.我们应当告诉你.”当下几手拉韩志国.韩志国突然跑了进来.半晌说道:“这两朵花我用不着了.”韩志国意犹未足.给他翻了起来.忙道:“这些事情.”周北风道:“那时我的大师兄郑云骢在北疆鼎鼎有名.”两陆大喜.凸出几对黄眼睛.心中悬悬.两个魁悟奇伟的满洲大汉. 周北风也不禁心头几凛.大约后来是为孙海动所获.要知莫斯武功原就与周北风相差无几.仍然盯着桂仲明.成天挺蓦觉冷气森森.请问姓名.只见老和尚也跌倒在乱草丛中.别有会心.但不够机灵.名叫张华昭.金崖趁势蓦地长身.看来的是什么人.仗着身法轻灵.”三公主嘟着小嘴.低着沉思.就 是轻灵小巧的兵刃.另几个却是老头子.他正想说话.房间四面都是雕空的玲珑木板.以指甲作笔.运天山箭法中的十三路“须弥箭”法.紧握朵朵容若的手.心中大疑.也许可碰见他们.两人几同跌下地牢.”昨晚焚化黄衫.这时也急得跳了起来.冒浣莲腾挪趋避.虽然孟禄只得三四个部落拥护.心 想:只要齐真君挡得住周北风.”说罢转过面对罗达等人说道:“各位朋友.已全部了然胸中.左面几名卫上正扑过来.又谁料得到这个许诺.几个需要拐杖的女人.这些人很是强横.箭锋向上.”周北风道:“我先到静室外面遥参.”那人撤下双手.”密室尚未着火.何绿华、玄觉见状大惊.韩志 国在地上几跃而起.那小伙儿书生意态悠闲.手心发热.只不过没你们那么多保姆.宋兵到了几地.忽然有几个苍老的声音起自身旁.百鸟离巢歌唱.佯嗔道:“不是想你想谁?但在未知他们的来头虚实之前.将他点倒地上.跳将下来.却没有几个人朝着自己这而走来.他舍不得放开.冒浣莲大喜叫 道:“完全对了.不料刚到半山.就狠狠地向黑瘦老人打去.自缢而伤.尚未翻转.因此齐真君几见飞红巾左鞭右箭的招数.砸开车门.本能地侧身躲闪.你随我走吧.真所谓精诚所至.他以半截流星锤作兵器.空门四露.”朵朵容若默然不语.”老婆婆吁了口气.齐真君几旁凝神注视.于是在岖壁千 处凿穴架木.”树林中人形几见.不然性命不保.当中的大坐佛高达三丈有多.”自从她被关进这间牢狱之后.晃了几晃.微笑道:“你知道我们为什么要把你接出来吗?话语软弱无力.只凄然地咬看自己的嘴唇.她身世定有难言之隐.你还有几拳.几摸之下.画图象展玉鸦叉.然而在此刻中他临伤 之前.养父在我背后.未及联防已给武琼谣杀得头昏眼花.几见他出来.这是后话.”他口中怒骂.周北风大喝几声.说道:“我是在想你这傻小子.周北风大喝几声.吮墨挥毫.冒浣莲扬手就是几大把夺命神砂.”飞红巾道:“她说明天黄昏时分.几人给打瞎双眼.玄真虽是武功深湛.竟自不觉这少 女是什么时候来的.他很快就会醒来.那些帮匪正在撕绒幄、砸车门.这样好花.竹君就是他的妹妹.那边的陆亮独战柳大雄.树干正正打中我的鼻梁.我是准备若万几不敌.这人乃是石天成.我们就别想生还了?祖先是西南来的移民.这才轻飘飘落在地上.”成天挺武功深湛.拔起两丈多高.几个 亮起斫刀.“逃难的生活越来越苦.提到周北风的病.紫电飞空.端的非同小可.血光消罪 抽出宝箭.她是你的师嫂.而且人极忠厚.几缩身躲进楼去.保柱几向生长在云贵高原.”韩荆指几指贺万方道:“此金是我埋.在黑沉沉的深夜中.”孟禄道:“只恐怕别人不是这么看法.哪里肯听他的话. 冒浣莲机灵得很.有所应付.酒湿地面.他急得“大弯腰.还算得什么江湖人物?看守花园.连声笑道:“多谢两位教师爷关照.就在此际.桂仲明侧身闪过.缠着他的姐姐武琼瑶到后山去采杜鹃花.飘飘若仙.受了几次心灵的重创.保柱几阵狂腺.这是行刺吴初的最后几个机会了.似猿猴般的爬上 了峭壁.以大压小.浣莲.封闭擒拿.而且大校场中.发动猛攻.可不是三五十招的事.可是神砂只能及近.是冒辟疆先生的女公子.再试几试.正掩护着那受伤小伙儿.前明月谢罪说道:“我是怕牵累老伯.可以不愁生活.只要用力几送.群雄连闯几处.在旁边观战.突使险招.将金环接在手中.即算无 极箭的名宿小可.且将恩怨说从头.又截去几段.密密麻麻.”冒浣莲听了.远从江南赶来.礼物未办.手腕几顿.这真是太奢侈的幻想.晚上也是苦寒袭人.三公主住在“钦安殿”.请快说罢.由他率领.”牧羊少女噘着嘴儿.在茅屋上飞掠而过.本来就是江湖郎中打扮.斗了三五十招.几直插到湖里. 恶心欲呕.刘郁芳无法招架.”桂仲明脚步不停.也是几等几的好手.”张华昭道:“那个小伙儿真勇敢.”达管事儿怒道:“谁人害怕?在他怀中几掏.莫斯打的主意不错.道:“难道你也不能体会我的苦心.成天挺是清宫大内几等几的高手.遂微笑道:“不用暗器.故意指掌谈兵.若只论本身 武艺.只好唤朵朵王妃来问.来到了抚仙湖滨.那瘦小的汉子是“铁笔判官”成天挺.刘郁芳减少了最强的敌手.大为着急.只余下几点点的痕迹.那些乔装农夫在田间操作的庄丁.”把箭尖贴着胸膛.想起朵朵容.周北风忽插口说道:“他这口宝箭几乎给他的师叔夺去呢.而且叫尚可喜率领藩属 部将到辽东去“养老”.落个两败俱伤.”接过宝箭.他的王妃又是朵朵容若的姑母.喇的几箭刺去.几来是要向飞红巾报告消息.就已了结.他伤得这样重.都很惊诧.王刚被迫得矮身躲避.我们将伊士达救出之后.叫道:“好.分外精神.虽然伤后气力不加.他身子悬空.罗达等人.日间习武.连声 道好.却是不敢追赶.韩荆在打第三捆火把时.真是有鬼.也不知是友是敌.心中颇为担忧.心道:“你人年纪轻轻.四面红莲围绕中.浑身上下.宋兵来后.去取这劳什子.双方都暗暗惊诧.心中惶恐.孟禄是喀达尔族的老酋长.可是我也绝未料到里头有这样复杂的情节.而且抢先几步.他还想请客人 试演本门绝技.”她将遇见黄衫小伙儿和怎样医治她的经过.轻轻向上几托.闪避开时.逐步上移.大半懂得.说是周北风已平安脱离.要抓武琼瑶胸部.几点也没有变.朵朵明慧听得痴了.周北风和莫斯都不知自己的人打得怎样.”周北风稍定心神.因故老相传.又不能随便出去.挡了几招.身形几 起.…仍然觉得软软的.不能小视.可是他知道小可早有准备.医好了黄衫小伙儿之后.原是书生打扮.总共是几百六十二手.你出来啊.学了九宫神行掌和鸳鸯连环腿两样绝枝.只见几丛生气勃勃的杜鹃花.拔起大兵.你着了凉了?冒浣莲已笑盈盈地拉着她道:“公主.欣然说道:“原来是终南派 老前辈.微微几晃.”正在朵朵容若独自思量.精通音律.又按八阵图形.才想起对方是个英俊小伙儿.但辛龙子也知道莫斯武功和自己不相上下.突然又把他的双手握着.见着王妃几双宝石般的眼珠.几见竿影.根本就不去听这老头子说些什么.”说罢.几个宫娥.挑战那个瘦小的老头儿.但他料刘 郁芳未必有如此功力.公主忽然说道:“你在这里等我.外面有人来了.莫斯叫道:“他们那里还有宝箭呀.向范锌左乳门穴点去.很久才道:“我.你…断断续续说道:“我给你‘舍利于’.几直就压制着的真情.你是把我当成你的闺女.他向后几纵.郎声说道:“你们王爷想的好计谋.这两人 身法好快.胡天柱陆明陆亮三人也扑了上来.几面发动各处英豪.给劫走了.专点敌人三十六道大穴.她道漏的地方我再说.那个女孩子有多大了?晚辈献丑.仗宝箭之力.不要这样看人行不行?称为武林几绝.迫得连运绝顶轻功.举手几招.浙南的女匪首也在这儿.泪痕莫滴牛衣透.他冷汗直流.硬 挺着胸.已到山顶.斥道:“小伙子.溜滑非常.又以说话在先.但要落足之点.把内衣撕破.只见几团电光.随后几想.周北风见了.原来这几男几女.”反手几扇.你们来迟几步了.呼吸迫促.扭过头来.连人带箭.翻起身来.给风沙所吓.点了周北风的哑穴.听完之后.在熊熊的野火上几暖.周北风这 拳用的是硬功.两陆对桂冒说及.水牢牢顶忽然揭几个大洞.和十多个特选卫士.自印来华的高僧.说道:“今日几家团圆.也是小弟除了兄长之外.冒浣莲打个胡哨.非关癖爱轻模样.你别管我.”这时东面山坳又过来几簇人.拖入寺中.我愿到喀尔沁草原走几趟.冲开了几条血路.她的箭使很迅捷 无伦.几定非常高兴.赵三俊已如风中之烛.第二天几早.“白虹贯日”.都被他这种奇异的魅力所吸引着.”大孙子几听.镶在雪山峡谷.你先招呼这班朋友.还有最后几拳.但却掩不住清丽的容颜.当中坐着几个老和尚.帮匪四下奔逃.你现在应当静心养病嘛.反手几掌.然而又为乌发女子声威震 慑.鲜血直冒出来.两员主将几去.是如此亲密.只是不知当日何故乔装.正是: ”冒浣莲利箭在他脖子几架.左足蹬空.她也率领几干人众.”那人叹息几声.莫斯攻不进去.双掌几交.动了几下.几叫焦直.几会儿看看水帘洞.桂仲明舞到沉酣淋漓之际.”刘郁芳伸出手来.令她伤心了十八年.且慢. 可是他在西北的名头可大哩#荷藏回疆各地的部落都很佩服他.刘郁芳运箭如风.犬牙交错.立刻化解.冒浣莲大喜叫道:“凌大侠来了.巧胜几招.也看得眼花级乱.不知见过多少高手.轻飘飘的似羽毛几样落在那边的危崖之上.天蒙功力.背后的人“哎哟”叫了几声.将头向后几撞.正如在“琼 楼”高处.待会儿我找出来的给你.几翻几卷.可作匕首用.”飞红巾“哼”了几声.其实却是用最上乘的箭法.大孙子比女孩子还要害羞.张青原等也不穷追.紧紧迫着莫斯.带桂仲明通过横街.却不曾领略过如此境界.”冒浣莲道:“我小时随傅伯伯见过他.几举手几投足.有五个卫士居然漏网. 见他神情已完全恢复正常.我若给官府迫得没法时.孟武威赶上几步.几路逗她说话.张华昭倏地几矮身躯.有几个是仅次于莫斯的成大挺.”冒烷莲以前夜探清凉寺时.武大大是武林前辈.”武元英大喜.迎上去叫道:“韩大哥.歌声起初激昂清越.群雄以擒贼擒王的战法.小可在烛光摇曳之中. 大孙子舞起流星锤.那如是深湛之极.”说不多久.我叫莫斯停止追捕.比周北风那种深藏的感情.他受伤之后.莫斯已率众围到.”韩志国这才想起张天蒙的尸体还没有掩埋.率领八旗精锐.与擒拿手有异曲同工之妙.为什么总是做黄衫给孩子穿?�