第七章紫外可见分光光度法案例

合集下载

实例解析——紫外可见分光光度法(UV-VIS)

实例解析——紫外可见分光光度法(UV-VIS)

紫外可见分光光度法实例解析一、原理分析UV-VIS依据电子跃迁光谱,通常分子轨道基态外层电子处在,当分子外层吸收紫外或者可见辐射后,从基态向激发态跃迁。

其中紫外光谱:200~400nm,可见400~780nm。

其定性依据是不同物质对不同波长吸光度不同,定量依据是朗伯比尔定律A= εbc 吸光度分子二、适用范围一般适用于有机物,尤其是含有发色光能团、大共轭体系如含有苯环的有机物的测定三、特点:灵敏度高、选择性好、准确度好、通用性强、操作简单、价格低廉缺点:远不如红外光谱好,很多化合物在紫外没有吸收或者吸收很弱,而且紫外光谱特征性不强。

可以用来检验一些具有大的共轭体系或者发色官能团,并作为其他方法的补充。

四、仪器组成:光源——单色器——狭缝——样品池——检测器五、准备工作实验开始前查相关文献确定显色剂,显色剂:将待测组分形成有色化合物反应类型:络合反应氧化还原反应取代反应缩合反应显色剂选择条件:(1)灵敏度(2)选择性(3)生色物质稳定(4)组成恒定(5)显色剂在测定波长处无明显吸收,有色化合物与显色剂颜色对比大六、实验仪器前期设定:由待测物质查阅相关文献,确定使用可见区还是紫外区,确定光源钨丝或者氢、氘。

由待测物质确定样品池采用紫外区的石英池或者可见区的玻璃池检测器选用光电倍增管达到最佳检测效果七、配置标准检测液、显色剂溶液、参比溶液、标准溶液标准溶液:由分析纯的待测物质配置而成的溶液参比溶液:若仅待测组分和显色剂反应产物有吸收,其他试剂无吸收,用水做参比若显色剂和其他试剂略有吸收,试液本身无吸收,用“试剂空白”(不加试样溶液)参比若待测试液有吸收,而显色剂无吸收,则用“试样空白”(不加显色剂)做参比一般都选用试剂空白,即八、样品前处理,制成相应的溶液,如果其中有干扰离子,则加入掩蔽剂进行掩蔽或者采用化学方法分离出干扰离子九、实验条件确定:(1)最大吸收波长确定取1ml的标准溶液,1ml显色剂配制成溶液,稀释、定容、差文献确定谱线大致范围,多次测定,选择有最大吸收时的波长定为最大吸收波长,并且和标线对比,确定其误差是否在允许范围内,适当控制吸光度在最适范围(2)显色剂用量确定分别取1ml标准液,不同体积显色剂配成溶液,稀释、定容、多次测定得到吸光度-显色剂用量曲线,选择使得曲线平缓的最低用量再增加0.5ml为最佳显色剂用量(设为a ml)(3)显色温度确定取分别取1ml标准液、和a ml的显色显色液,稀释定容,测量在相同时间,不同温度下的吸光度显色时间曲线,得到最适温度T0(4)显色时间的确定分别取1ml标准液、和a ml的显色显色液,稀释定容,恒温T0测量,分在测量得到吸光度-显色时间曲线。

紫外可见光分光光度法的应用

紫外可见光分光光度法的应用

紫外可见光分光光度法的应用大家好,今天我们来聊聊一个神奇的科学实验——紫外可见光分光光度法。

这个方法可是大名鼎鼎的,它可以用来测量各种物质的颜色、浓度和化学反应等等。

那么,它到底是怎么工作的呢?别急,我们一步一步来揭开它的神秘面纱。

我们需要准备一些工具和材料。

这里有一把紫外线灯、一台分光光度计和一些待测样品。

别看这些简单的工具,它们可是紫外可见光分光光度法的核心哦!接下来,我们就开始实验吧!第一步,我们需要让紫外线灯发出紫色的光线。

这是因为紫色光线的波长最短,所以能够穿透最厚的物质。

当然啦,如果要测量更深层次的物质,我们就需要使用更长的波长的光线了。

第二步,我们需要将待测样品放在分光光度计上。

这时候,分光光度计会根据样品吸收的光线的强度来计算出样品的浓度。

这个过程就像是我们在做视力检查一样,只不过我们是用眼睛来看,而分光光度计是用光线来看。

第三步,我们需要调整分光光度计的参数。

比如说,我们可以调整波长的范围、增益和零点等等。

这样一来,我们就可以得到更加准确的结果了。

第四步,我们需要重复实验几次。

因为不同的样品可能会有不同的吸收特性,所以我们需要多次测量才能得到一个比较准确的结果。

当然啦,如果你是一个非常有经验的科学家,你可能只需要一次就能够得到完美的结果了。

好了,现在我们已经知道了紫外可见光分光光度法的基本原理和步骤。

那么,它在实际生活中有哪些应用呢?下面就让我来给大家介绍一下吧!紫外可见光分光光度法可以用来检测食品中的有害物质。

比如说,我们可以通过测量食品中某种特定波长的光线的强度来判断它是否含有致癌物质。

这样一来,我们就可以保障家人的健康了。

紫外可见光分光光度法还可以用来研究植物的生长情况。

比如说,我们可以通过测量植物叶子中某种特定波长的光线的强度来判断它是否受到了病虫害的影响。

这样一来,我们就可以及时采取措施保护植物了。

紫外可见光分光光度法还可以用来研究大气中的污染物质。

比如说,我们可以通过测量空气中某种特定波长的光线的强度来判断它是否来自某种污染源。

紫外可见分光光度法案例

紫外可见分光光度法案例
全国高职高专药品类专业卫生部“十二五”规划教 材
第七章 紫外-可见分光光度法
分析化学(第2版) 谢庆娟 李维斌
◆学习目标⊙ ◆知识要求⊙ ◆能力要求⊙全国高职高专药品类来自业卫生部“十二五”规划教材
◆学习目标
分析化学(第2版) 谢庆娟 李维斌
通过学习光谱分析法概论、紫外-可见分光光度法 的基本原理、分光光度计的基本构造、降低测量误 差的方法、常用的定性、定量方法等知识,了解光 学分析法的知识体系,熟悉紫外-可见分光光度法 的实际应用,会用紫外-可见分光光度计测定溶液 的吸光度,并对有关物质进行定性定量分析,为学 习红外分光光度法、荧光分光光度法、核磁共振波 谱法及药物分析课中有关药品的定性鉴别、杂质检 查和含量测定方法奠定基础。
全国高职高专药品类专业卫生部“十二五”规划教

◆知识要求
分析化学(第2版) 谢庆娟 李维斌
1.掌握光的吸收定律概念、表达式及条件,吸光系数和 吸收光谱的意义,常用定量分析方法的原理和应用。
2.熟悉紫外-可见分光光度计的基本结构、吸光度测量 条件的选择、偏离光的吸收定律的主要因素。
3.了解光谱分析法的分类、紫外-可见吸收光谱的产生 机制、定性分析的依据和方法。
仪器简单
操作简便
价格低廉
测定快速
全国高职高专药品类专业卫生部“十二五”规划教 材
第一节 概述
分析化学(第2版) 谢庆娟 李维斌
课堂活动
1.紫外-可见光的波长范围是
A.200~400nm
B.400~760nm
C.200~760nm
D.360~800nm
2.下列叙述错误的是
A.光的能量与其波长成反比
B.有色溶液越浓,对光的吸收也越强烈

紫外可见分光光度法测定药物含量的计算实例.

紫外可见分光光度法测定药物含量的计算实例.

(二)分光光度法
对乙酰氨基酚原料药含量测定
A 1 V D
含量%
E 1% 1cm
100
100 %
m
0.582 1 250 100
715 100
5 100% 99.05%
0.0411
(二)分光光度法
甲氧苄啶注射液(规格2 ml:0.1g)含量测定
精密量取本品1ml,置25ml量瓶中,用稀醋酸稀释至刻度 ,摇匀,精密量取1ml置100ml量瓶中,用稀醋酸稀释至刻度, 摇匀。照紫外-可见分光光度法,在271nm波长处测定吸光度为 0.420。另取甲氧苄啶对照品适量0.05134g,置25ml量瓶中,用 稀醋酸稀释至刻度,精密量取1ml置100ml量瓶中,用稀醋酸稀 释至刻度,摇匀。在271nm波长处测定吸光度为0.416,计算甲 氧苄啶标示量百分含量。
Байду номын сангаас
(二)分光光度法
甲氧苄啶注射液(规格2 ml:0.1g)含量测定
标示量%

cR

Ax AR

D
每支容量
100%
S
0.05134 0.420 25 100 2 25100 0.416 1 1 100% 103.7%
0.1
药物分析/药物的含量测定
紫外可见分光光度 法测定药物含量的 计算实例
制作人:谭韬
(二)分光光度法
对乙酰氨基酚原料药含量测定
精密称取对乙酰氨基酚0.04110g,置250ml量瓶中,加 0.4%氢氧化钠溶液50ml,加水至刻度,摇匀,精密量取5ml, 置100ml量瓶中,加0.4%氢氧化钠溶液10ml,加水至刻度,摇 匀。依照分光光度法,在257nm波长处测得吸收度为0.582。 按C8H9NO2的百分吸收系数为715计算对乙酰氨基酚的百分含 量

紫外可见分光光度法在化学分析中的应用

紫外可见分光光度法在化学分析中的应用

紫外可见分光光度法在化学分析中的应用概述紫外可见分光光度法(UV-Vis)是一种重要的分析技术,广泛应用于化学分析领域。

通过测量物质在紫外和可见光区域的吸收和透射特性,可以得到目标物质的浓度、纯度以及反应动力学等相关信息。

本文将从理论背景、仪器原理、应用实例等方面探讨紫外可见分光光度法在化学分析中的应用。

一、理论背景紫外可见分光光度法基于光与物质相互作用的原理。

物质会吸收特定波长的光线,吸收光线的强度与物质的浓度成正比关系。

当物质溶液中有多种物质存在时,它们的光线吸收能力会相互影响,因此需要进行光谱分离和定量。

二、仪器原理紫外可见分光光度法的仪器主要由光源、光解析系统和光度计三部分组成。

1. 光源:常用光源包括汞灯、氘灯、钨灯等。

它们能发出紫外和可见光,提供光照射样品的能量。

2. 光解析系统:该部分包括进光设备(光栅、光纤等)和出光设备(单色器、滤光片等)。

进光设备用于区分不同波长的入射光,而出光设备用于选择特定波长的光作为检测信号。

3. 光度计:光度计是紫外可见分光光度法的核心组件,用于测量样品的吸收光强度。

常见的光度计包括双光束光度计和单光束光度计。

三、应用实例1. 离子浓度测定:紫外可见分光光度法常被用于测定溶液中金属离子的浓度。

通过比较标准曲线,可以确定待测溶液中金属离子的浓度,如钙、镁、铁等。

2. 有机物定量分析:紫外可见分光光度法在有机物定量分析中也得到广泛应用。

例如,通过测量有机物溶液的吸光度,可以确定有机物的浓度,如蛋白质浓度的测定、核酸浓度的测定等。

3. 反应动力学研究:紫外可见分光光度法可以用于研究化学反应的动力学过程。

通过测量反应溶液中吸光度的变化,可以获得反应速率常数等相关参数。

4. 药物分析:药物分析中,紫外可见分光光度法常被用于测定药物的含量和纯度。

通过把目标药物与特定试剂反应后,测量光谱吸光度的变化,可以计算出药物的含量和纯度。

四、优势与前景紫外可见分光光度法具有分析简便、操作方便、灵敏度高等优点,因此在化学分析中得到了广泛应用。

紫外可见分光光度法

紫外可见分光光度法
ΔT =1%, 溶液浓度相对误差Δc/c 与其透光度T 的关系曲线如右图。
由图可见ΔT =1%, T 在20%~ 65%之间时, 浓度相对误差较小, 此为 最佳读数范围。
所以要求选择适宜的吸光度范围 (0.2-0.7), 以使测量结果的误差最 小。
2024/10/5
措施: (a)控制溶液的浓度;(b) 选择不同厚度的比色
2024/10/5
2
溶液颜色与光吸收的关系
当一束太阳光照射某一溶液时, 太阳光中某一颜色的光 被吸收, 其互补色光透过溶液, 刺激人的眼睛, 使人感觉到它 的颜色。
实例:
1)高锰酸钾吸收绿光显紫 红色;
2)重铬酸钾吸收蓝光显黄 色;
3)邻菲罗啉铁溶液吸收蓝 绿光显红色。
2024/10/5
可见光波长及其互补光
(如国产710型,730型); 3.双波长双光束分光光度计
(如国产WFZ800-5型)
2024/10/5
20
紫外可见分光光度的使用
2024/10/5
21
2024/10/5
22
721分光光度计操作步骤
➢ 1.预热仪器。为使测定稳定, 将电源开关打开, 使仪器预热20min, 为了防止光电管疲劳, 不要连续光照。预热仪器和不测定时应将比 色皿暗箱盖打开, 使光路切断。
ε: 摩尔吸收系数,单位L·mol -1·cm-1。(讲解78页 例题)
摩尔吸收系数越大表明该物质的吸光能力越强,用光度法测
定该物质的灵敏度越高。
ε > 105: 超高灵敏;
ε = (6~10)×104 : 高灵敏;
ε < 2×104
: 不灵敏。
2024/10/5
10
吸光度的加和性

紫外可见分光光度法(仪器分析课件)

紫外可见分光光度法(仪器分析课件)
吸收池(也叫比色皿、样品池)有玻璃和石英两种。玻璃吸收池只能用于可见光域内。石英吸收池可用于紫外、可见和近红外三个光域。常用的吸收池规格有:0.5cm、1.0cm、2.0cm、3.0cm、5.0cm等。
拿:只能捏两侧的毛玻璃面,不可接触光学面;洗:依次用自来水、溶剂、待装液各润洗3次;装:吸收池高度的2/3~3/4;4.擦:先用滤纸吸干外壁,然后用擦镜纸或丝绸擦干;5.查:内部溶液无气泡,光学面外壁无垃圾;6.放:光学面对光路,垂直放入吸收池架,用吸收池夹固定。
z
项目二 紫外(UV)-可见(VIS)分光光度法
项目二 紫外(UV)-(VIS)分光光度法
VIS & UV
教学目标
目录
Contents
3
吸收曲线
(Absorption Spectra)
用不同波长的单色光照射,测吸光度— 吸收曲线
紫外可见吸收光谱:分子价电子能级跃迁。电子跃迁的同时,伴随着振动能级、转动能级的跃迁。带状光谱。
0.1nm~
10nm~
780nm~0.1cm
0.1mm~1m
1m~1000m
10nm~200nm
200~400nm
远紫外
近紫外
(真空紫外)
单色光,复合光
单色光
复合光
单一波长的光
由不同波长的光(不同能量的光子)组合而成的光
人们肉眼所见的白光(如阳光等)和各种有色光实际上都是包含一定波长范围的复合光。白炽灯灯光?
z
项目二 紫外(UV)-可见(VIS)分光光度法
项目二 紫外(UV)-(VIS)分光光度法
VIS & UV
教学目标
目录
Contents
分光光度法起源

(完整word版)紫外-可见分光光度法

(完整word版)紫外-可见分光光度法

紫外-可见分光光度法1 简述紫外-可见分光光度法是在190-800nm 波长范围内测定物质的吸光度,用于鉴别、杂质检查和含量测定的方法。

定量分析通常选择物质的最大吸收波长处测出吸光度,然后用对照品或吸收系数求算出被测物质的含量,多用于制剂的含量测定;对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若该物质本身在紫外光区无吸收,而其杂质在紫外光区有相当强度的吸收,或杂质的吸收峰处该物质无吸收,则可用本法作杂质检查。

物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产生,因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。

有机化合物分子结构中如含有共轭体系、芳香环等发色基团,均可在紫外区(200~400nm )或可见光区(400~850nm )产生吸收。

通常使用的紫外-可见分光光度计的工作波长范围为190~900nm 。

紫外吸收光谱为物质对紫外区辐射的能量吸收图。

朗伯-比尔(Lambert-Beer )定律为光的吸收定律,它是紫外-可见分光光度法定量分析的依据,其数学表达式为: A=logT1=ECL 式中 A 为吸光度;T 为透光率;E 为吸收系数;C 为溶液浓度;L 为光路长度。

如溶液的浓度(C )为1%(g/ml ),光路长度(L )为lcm ,相应的吸光度即为吸收系数以%11cm E 表示。

如溶液的浓度(C )为摩尔浓度(mol/L ),光路长度为lcm 时,则相应有吸收系数为摩尔吸收系数,以ε表示。

2 仪器紫外-可见分光光度计主要由光源、单色器、样品室、检测器、记录仪、显示系统和数据处理系统等部分组成。

为了满足紫外-可见光区全波长范围的测定,仪器备有二种光源,即氘灯和碘钨灯,前者用于紫外区,后者用于可见光区。

单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件,聚焦透镜或反射镜等组成。

色散元件有棱镜和光栅二种,棱镜多用天然石英或熔融硅石制成,对200~40Onm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。

紫外可见分光光度法(食品仪器分析课件)

紫外可见分光光度法(食品仪器分析课件)

二者关系为: A = lg(1/T) = -lgT
二、朗伯-比尔定律
当一束平行单色光通过含有吸光物质的稀溶液 时,溶液的吸光度与吸光物质浓度、液层厚度乘积成 正比,即
A= κbc 式中比例常数κ与吸光物质的本性,入射光波长
及温度等因素有关。K可用a(吸光系数)或ε(摩尔 吸光系数)表示。 c为吸光物质浓度,b为透光液层
厚度。 朗伯-比尔定律是紫外-可见分光光度法的理论基础。
朗伯和比尔分别研究了吸光度与液层厚度和吸光
度与浓度之间的定量关系,合称朗伯-比尔定律,其
数学表达式为:
吸光质点浓度
A=lg(I0/It)=κbc
吸光度
吸收层厚度(cm)
物理意义: 当一束平行单色光通过均匀、透明的吸光 介质时,其吸光度与吸光质点的浓度和吸收层厚度的 乘积成正比——分光光度法定量分析的理论基础
分光光度计只能获得近乎单色的狭窄光带,而复合 光可导致对朗伯—比耳定律的正或负偏离。
在实际工作中,为了避免非单色光带来的影响,一般 选用峰值波长进行测定。
选用峰值波长,也可以得到较高的灵敏度。
三、溶液本身发生化学变化
❖ 溶液中存在着离解、聚合、互变异构、配合物的形成等化 学平衡时,使吸光质点的浓度发生变化,影响吸光度。
h
(片)
红敏管 625-1000 nm 蓝敏管 200-625 nm
五、指示器(数据处理) 低档仪器:刻度显示
中高档仪器:数字显示,自动扫描记录
紫外-可见分光光度法定量分析
一、单组分的定量分析 1、吸光系数法(绝对法)
2、标准对照法(直接比较法) As=kbCs Ax=kbCs
Cs=AsCx/Ax
❖ 当溶液浓度c >10-2 mol/L 时,吸光质点间可能发生缔合等 相互作用,直接影响了对光的吸收。

紫外-可见分光光度计法测定饮料中苯甲酸钠的含量

紫外-可见分光光度计法测定饮料中苯甲酸钠的含量

紫外-可见分光光度计法测定饮料中苯甲酸钠的含量一、实验目的1.了解和熟悉紫外-分光光度计的原理和结构,学习UV-2501的操作。

2.掌握紫外分光光度法测定苯甲酸钠的吸收光谱图。

3.掌握标准曲线法测定样品中苯甲酸钠的含量。

二、实验原理为了防止食品在储存、运输过程中发生腐蚀、变质,常在食品中添加少量防腐剂。

防腐剂使用的品种和用量在食品卫生标准中都有严格的规定,苯甲酸及其钠盐、钾盐是食品卫生标准允许使用的主要防腐剂之一,根据GB2760- 1996规定,碳酸饮料中苯甲酸钠的允许最大使用量为0.2g/kg。

苯甲酸具有芳香结构,在波长225nm和272nm处有K吸收带和B吸收带。

根据苯甲酸(钠)在225nm处有最大吸收,测得其吸光度即可用标准曲线法求出样品中苯甲酸钠的含量。

三、仪器和试剂1.紫外可见分光光度计UV-2501(日本岛津),1.0cm石英比色皿,50ml容量瓶。

2.NaOH溶液(0.1mol/L)3.苯甲酸钠标准溶液的配制(1)苯甲酸钠标准贮备液(1.000g/L):准确称量经过干燥的苯甲酸钠1.000g(105℃干燥处理2h)于1000mL容量瓶中,用适量的蒸馏水溶解后定容。

该贮备液可置于冰箱保存一段时间。

(2)苯甲酸钠标准溶液(100.0mg/L):准确移取苯甲酸钠储备液10.00mL于100mL容量瓶中,加入蒸馏水稀释定容。

(3)系列标准溶液的配制:分别准确移取苯甲酸钠标准溶液1.00mL、2.00mL、3.00mL、4.00mL和5.00mL于5个50mL容量瓶中,各加入0.1mol/L NaOH溶液1.00mL后,用蒸馏水稀释定容。

得到浓度分别为2.0 mg/L、4.0mg/L、6.0mg/L、8.0mg/L和10.0mg/L的苯甲酸钠系列标准溶液。

4.雪碧(500mL)5.蒸馏水四、实验步骤1.吸收曲线的绘制(1)系列标准溶液的配制50mL瓶编号 1 2 3 4 5 6 100.0mg/L苯甲酸钠标准溶液体积(mL)0.00 1.00 2.00 3.00 4.00 5.000.1mol/L NaOH溶液体积(mL) 1.00用蒸馏水容量50.0系列标准溶液浓度(mg/L)0.0 2.0 4.0 6.0 8.0 10.0 记录吸光度A值(2)吸收曲线的测定用某一浓度较高的标准液如4号或5号溶液,于210nm~300nm波长范围内扫描,即的苯甲酸钠的吸收曲线。

紫外-可见分光光度法-n经典案例

紫外-可见分光光度法-n经典案例
定义
紫外-可见分光光度法是一种基于物 质分子对紫外-可见光的吸收特性来 进行定量和定性分析的方法。
特点
具有较高的灵敏度、准确度和重现性 ,可广泛应用于多种物质的分析。
工作原理
ቤተ መጻሕፍቲ ባይዱ
物质分子在紫外-可见光的特定波长范 围内能够吸收光能,引起分子振动和 电子能级跃迁,从而产生吸收光谱。
通过测量物质在特定波长下的吸光度, 可以推算出物质的浓度。
根据标准曲线和吸光度数据,计 算出水样中重金属离子的浓度。
结果分析
通过对比标准曲线和吸光度数据,可以确定水样中是否存在重金属离子,并计算 出其浓度。
结果的准确性受到多种因素的影响,如试剂的纯度、实验操作的准确性、仪器的 精度等。因此,实验过程中需要严格控制实验条件,确保结果的可靠性。
05
经典案例三:药物中有效成分的测定
结果解释
根据检测结果,判断样品是否符合国家或国际标 准,以及防腐剂的种类和浓度是否合理。
结果应用
为食品监管部门提供依据,对不合格产品进行处 理或召回,保障消费者权益。
04
经典案例二:水中重金属离子的检测
案例概述
目的
检测水样中是否存在重金属离子,如铜、铅、锌等。
原理
重金属离子可以与某些显色剂发生反应,生成有色化合物,通过紫外-可见分光 光度法测定其吸光度,从而确定重金属离子的浓度。
结果分析
1
通过实验,测得感冒清热颗粒中有效成分的浓度 为0.98 mg/mL,与标准值相符。
2
精密度实验结果表明,该方法的相对标准偏差 (RSD)为0.8%,说明方法的精密度较高。
3
回收率实验结果表明,该方法的平均回收率为 98.5%,说明方法的准确度较高。

紫外可见分光光度法(共73张PPT)

紫外可见分光光度法(共73张PPT)
)。
2022/11/21
分光光度计的类型
2022/11/21
3.紫外-可见吸收光谱及其特征
吸收光谱
用不同波长的紫外-可见光(200~ 760 nm)依次照一定浓度的被测样品溶液时,就 会发现部分波长的光被吸收。如果以波长λ为 横座标(单位nm),吸收度 (absorbance)A为纵座标作图,即得到紫 外-可见吸收光谱(ultraviolet-visible spectra,简称UV)。
对光波来说,产生感光作用与生理作用的是 电场强度 E 。
2022/11/21
光的波长越短(频率越高),其能量越 大。
紫外光区 可见光区
远紫外区 10-200 nm (真空紫外区)
近紫外区 200 - 400 nm (UV光谱的研究区域)
400 - 760 nm
2022/11/21
2022/11/21
能量最小,λ 200~400nm(近紫外区)
ε = 10~ 100,弱吸收
跃迁能量大小: σ→σ* > n→σ* > π→π* > n→π*
2022/11/21
∆E
n → σ*
σ→ σ*
π → π* n → π*
200
300
σ*反键轨道 π*反键轨道
n 非键轨道 π 成键轨道 σ 成键轨道
λ(nm)
第二节 紫外-可见分光度计
紫外-可见分 光光度计
2022/11/21
一、分光光度计的主要部件
Major Components of spectrometer
紫外-可见分光光度计的基本组成模块( general process)
2022/11/21
1.光源
在整个紫外光区或可见光谱区可以发射连 续光谱,具有足够的辐射强度、较好的稳定性、 较长的使用寿命。

第七章 紫外分光光度法

第七章 紫外分光光度法

3)吸收池(样品池)(Cell,Container):
吸收池放置各种类型的吸收池(比色皿)和相应的池 架附件。吸收池主要有石英池和玻璃池两种。 在紫外区须采用石英比色皿,可见区一般用石英比色 皿和玻璃池比色皿。
4)检测器
利用光电效应将透过吸收池的光信号变成可测的电 信号,常用的有硒光电池、光电管或光电倍增管。
式中:
E为光的能量;
γ为频率;
λ为波长;
h为普朗克常数,6.6256×10-27尔格· 秒;
c为光速。
§2 紫外-可见光分光光度法
基于物质的分子对可见和紫外区域辐射的吸收
而进行分析的方法,广泛用于无机物和有机化合物
的定性、定量分析。
紫外-可见吸收光谱波长范围
(1)远紫外光区(真空紫外区): (2)近紫外光区: (3)可见光区:
取代基 -SR 红移距离 45(nm) -NR2 40(nm) -OR 30(nm) -Cl 5(nm) CH3 5(nm)
3. 共轭双烯
在不饱和烃类分子中,当有两个以上的双键 共轭时,随着共轭系统的延长, *跃迁的吸收
带 将明显向长波方向移动,吸收强度也随之增强
。共轭双键愈多,红移愈显著,甚至产生颜色。
短移:使吸收峰向短波长移动的现象称为短移或蓝移 (blue shift),引起蓝移效应的基团称为向蓝基 团。
2.4 分子结构与紫外吸收光谱
1. 饱和烃化合物
饱和烃类化合物只含有单键(σ键),只能产 生σ→σ* 跃迁,由于电子由σ被跃迁至σ*反键所 需的能量高,吸收带位于真空紫外区,如甲烷和乙 烷的吸收带分别在125nm和135nm。
定义:不饱和度是指分子结构中达到饱和所缺一价元素的“对”数。 如:乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。 计算:若分子中仅含一,二,三,四价元素(H,O,N,C),则可 按下式进行不饱和度的计算:

紫外可见分光光度法测定阿司匹林中乙酰水杨酸和水杨酸含量

紫外可见分光光度法测定阿司匹林中乙酰水杨酸和水杨酸含量

紫外可见分光光度法测定阿司匹林中水杨酸和乙酰水杨酸的含量一、实验目的1 •掌握用紫外可见分光光度法测定药物中乙酰水杨酸的方法。

2 •学会使用UV-2550紫外-可见分光光度计。

二、实验原理阿司匹林是解热镇痛药,主要成分为乙酰水杨酸,摩尔质量180.16g/mol。

阿司匹林少量水解成水杨酸,因而在阿司匹林样品中混有少量水杨酸。

本实验采用双波长法和校正曲线法。

水杨酸干扰阿司匹林的吸光度测定,在选定的两波长下测定吸光度差值。

配制一系列浓度不同的标准阿司匹林溶液,在测定条件相同的情况下,分别测定其在两个波长下的吸光度,以标准浓度为横坐标,以相应吸光度差值为纵坐标,绘制△ A-C关系图,在相同条件下测出试样在两波长处的吸光度,可从校正曲线上查出试样液的浓度。

Ate■■呻I图1 紫外吸收图谱I, 阿司匹林2*水杨酸三、仪器和试剂1. 仪器UV-2550紫外-可见分光光度计、容量瓶10ml、50ml。

2. 水杨酸标准品1.008mg/ml、阿司匹林标准品1.008mg/ml、阿司匹林样品40mg/ 片、乙醇。

四、实验步骤1.样品溶液、标准溶液的配置:标准溶液的配置:取6个10ml容量瓶,标号1~6。

使用微量进样器精密吸取阿司匹林标准品0.4ml、0.6ml、0.8ml、1.0ml、1.2ml注入各个容量瓶,95% 乙醇定容。

配置成约40卩l/ml、60卩l/ml、80卩l/ml、100卩l/ml、120卩l/ml 的标准溶液,备用。

并将水杨酸标准品溶液稀释为20 11 l/ml,备用。

样品溶液的配置:取1片阿司匹林研细,加入无水乙醇1~2ml分次研磨,使溶解。

利用滤膜过滤后转入50ml容量瓶中,充分振摇,乙醇定容(浓度:800 1 l/ml )。

取1ml定容后的样品溶液,转入10ml容量瓶,乙醇定容。

配置成约为80卩l/ml的样品溶液。

2. 波长选择使用紫外-可见分光光度计,先用95汇醇进行基线校正。

用阿司匹林标准品3和稀释过的水杨酸标准品进行光谱测量。

紫外-可见分光光度法

紫外-可见分光光度法

对固体物质来说,当白光照射到物质上时,如果物质对各种波长的光完全吸收,则呈现黑色;如果完全反射,则呈现白色;如果对各种波长的光均匀吸收,则呈现灰色;如果选择地吸收某些波长的光,则呈现反射或透射光的颜色。

对溶液来说,溶液呈现不同的颜色是由于溶液中的质点(离子或分子)对不同波长的光具有选择性吸收而引起的。

图朗伯-比尔定律示意图
当一束平行单色光照射到任何均匀、非散射的介质(固体、液体或气体)
如溶液时,光的一部分被吸收,一部分透过溶液,一部分被器皿的表面反射。

如果入射光的强度为I0,吸收光的强度为I a,透过光的强度为
I r,则
I0 = I a + I t + I r•
,其中
图分光光度工作曲线
非单色光引起的偏离。

非单色光引起的偏离朗伯-比尔定律的基本假设条件是入射光为单色光。

但目前仪器所提供的入射光实际上是由波长范围较窄的光带组成的复合光。

由于物质对不同波长光的吸收程度不同,因而引起了对比耳定律的
化学因素引起的偏离。

图光度计的一般结构图721型分光光度计的构造
Mo(SCN)
HR
图吸收波长的选择(选择510nm,而不是410nm) 控制适当的吸光度范围
浓度相对误差合透光度误差的关系式:。

紫外可见分光光度法经典案例PPT79页

紫外可见分光光度法经典案例PPT79页


29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
谢谢!
紫外可见分光光度法经典案例
•ห้องสมุดไป่ตู้
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
紫外光谱中常用的术语
生色团:从广义来说,所谓生色团,是指分子中可 以吸收光子而产生电子跃迁的原子基团。但是,人 们通常将能吸收紫外、可见光的原子团或结构系统 定义为生色团。
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯 溶剂 正庚烷 正庚烷 乙醇 水 正己烷 乙醇 异辛酯 乙醚
饱和烃类分子中只含有键,只能产生*跃迁。 饱和烃的最大吸收峰一般小于150 nm,超出紫外、可 见分光光度计的测量范围。 饱和烃的取代衍生物如卤代烃,其卤素原子上存 在n电子,可产生n* 的跃迁。 n* 的能量低于 *。例如,CH3Cl、CH3Br和CH3I的n* 跃迁 分别出现在173、204和258nm处。氯、溴和碘原子 引入甲烷后,其相应的吸收波长发生了红移,显示了 助色团的助色作用。 直接用烷烃和卤代烃的紫外吸收光谱分析这些化合 物的实用价值不大。但是它们是测定紫外和(或)可 见吸收光谱的良好溶剂。
苯 184 ( *) 204 254
苯酚
(—OH为助色团)
/nm
14
紫外光谱中常用的术语
红移与蓝移
有机化合物的吸收谱带常常因引入取代基或改变溶 剂使最大吸收波长λmax和吸收强度发生变化: 某些 有机化合物经取代反应引入含有未共享电子对的基 团( -OH、 -OR、 -NH2、-SH 、-Cl、-Br、-SR、NR2 )之后,吸收峰的波长将向长波方向移动,这 种效应称为红移效应。在某些生色团如羰基的碳原 子一端引入一些取代基之后,吸收峰的波长会向短 波方向移动,这种效应称为蓝移效应。如-CH2、CH2CH3、-OCOCH3。
⑶电荷转移吸收光谱-络合物的吸收 当吸收紫外可见辐射后,分子中原定域在金属M 轨道上电荷的转移到配位体L的轨道,或按相反方 向转移,这种跃迁称为电荷转移跃迁,所产生的 吸收光谱称为荷移光谱。 在分光光度法中具有重要意义: 微量组分的定量分析。
17
有机化合物紫外-可见吸收光谱
1. 饱和烃及其取代衍生物
E=Ee+Ev+Er
ΔΕe>ΔΕv>ΔΕr 电子能级 振动能级
转动能级
3
一、概述 – 分子光谱
ΔΕr 0.005~0.050eV 远红外光谱(分子转动光谱) ΔΕv 0.05~1eV ΔΕe 1~20eV
红外光谱(分子振动光谱) 紫外—可见光谱(分子的电子光谱)4
二、紫外可见光谱
紫外吸收光谱:电子跃迁光谱
吸收光波长范围200400 nm(近紫外区) ,可用于 结构鉴定和定量分析。
可见吸收光谱:电子跃迁光谱
吸收光波长范围400780 nm ,主要用于有色物质的定量分析。
特点
灵敏度高 准确度较好 操作简单 选择性较好 通用性强 价格低廉
5
二、紫外可见吸收光谱
吸收曲线与最大吸收波长 max
用不同波长的单色光照射,测吸光度
第七章 紫外可见分光光度法
(UV-VIS spectrometry)
一、概述 – 分子光谱
物质分子内部三种运动形式
电子相对于原子核的运动 --- 电子能级 (Ee) 原子核在其平衡位置附近的相对振动 --振动能级( Ev ) 分子本身绕其重心的转动 --- 转动能级 (Er)
2
一、概述 – 分子光谱
15
紫外光谱中常用的术语
红移—λmax向长波方向移动 蓝移— 向短波方向移动减色效应—吸收强度即摩尔吸光 系数, ε减小的现象 引入取代基或改变溶剂
16
无机化合物的紫外—可见吸收光谱
⑴过渡金属离子d一d的电子跃迁
(2)镧系和锕系离子的f一f电子跃迁
* 和 n * 跃迁
• * 和 n * 跃迁能量低(>200 nm)
• 含有不饱和键的有机分子易发生这类跃迁 C=C; C=C ; N=N ; C=O
• 有机化合物的紫外-可见吸收光谱分析多以这两 类跃迁为基础
• * 比 n * 跃迁几率大 100-1000 倍 • *跃迁吸收强, ~ 104 • n * 跃迁吸收弱, 500
7
有机化合物的紫外—可见吸收光谱
分子中外层价电子跃迁的结果(三种):形成单键 的σ电子、形成双键的π电子、未成键的n电子
分子轨道理论:一个成键轨道必 定有一个相应的反键轨道。通常 外层电子均处于分子轨道的基态 ,即成键轨道或非键轨道上。 当外层电子吸收紫外或可见辐射后,就从基态向激发态(反键 轨道)跃迁。主要有四种跃迁,所需能量ΔΕ大小顺序为:
不同浓度的溶液,测吸光度
6
二、紫外可见吸收光谱
吸收光谱的波长分布是由产生谱带的跃迁能级间 的能量差所决定,反映了分子内部能级分布状况, 是物质定性分析的依据。 同一种物质对不同波长光的吸光度不同。吸光度 最大处对应的波长称为最大吸收波长λmax 不同浓度的同一种物质,其吸收曲线形状相似 λmax不变。而对于不同物质,它们的吸收曲线 形状和λmax则不同。 吸收谱带的强度与该物质分子吸收的光子数成正 比,是物质定量分析的依据。
12
紫外光谱中常用的术语
助色团
助色团是指带有非键电子对的基团,如-OH、
-OR、 -NHR、-SH、-Cl、-Br、-I等,它们本身
不能吸收大于200nm的光,但是当它们与生色 团相连时,会使生色团的吸收峰向长波方向移
动,并且增加其吸光度。
13
紫外光谱中常用的术语
生色团 —— 含有 键不饱和官能团 助色团 —— 基团本身无色,但能增强生色团颜色 为含有n电子,且能与电子作用,产 生n 共轭 270
n→ π * < π → π * < n→ σ * < σ → σ *
8
*跃迁
• 能量很大 • 吸收光谱在真空紫外区 • 多为饱和烃
甲烷
乙烷
125 nm
135 nm
9
n
* 跃迁
• 所需能量小于 *跃迁(150-250 nm) • 若饱和烃中的氢原子被氧、氮、卤素等原子或基团所取代, 由于这些原子中含有n电子,可以发生n * 跃迁 •摩尔吸光系数比较小,一般在100-3000 L / mol cm 化合物 H2O CH3OH CH3Cl (CH3)2O max 167 184 173 184 max 1480 150 200 2520
二氧杂环己烷
/nm 177 178 204 214 186 339,665 280 300,665 270
max
13000 10000 41 60 1000 150000 22 100 12
跃迁类型
* * n* n*
n*, n*
n*, n* n* n*
相关文档
最新文档