小学奥数乘法原理

合集下载

小学四年级奥数题精选乘法原理章节2

小学四年级奥数题精选乘法原理章节2

小学四年级奥数题:乘法原理一:何为乘法原理(路线问题分析:树状图)二:乘法原理的相关经典题型1、 如下图由火柴组成的一个图形,一只蚂蚁由A 点顺着火柴走到B 点,一支火柴只能经过一次,问一共有几种走法?2、 课桌上有两个盒子,第一个盒子里装着标有1、2、3、4、5、6的6个同样大小的球,第二个盒子里装着7、8、9、0的4个同样大小的球,现分别从第一个盒子和第二个盒子分别抓出一个球;问题一:若第一个盒子里面的球放在十位上,第二个盒子的球放在个位上,共有几个数字?问题二:若第二个盒子里面的球放在十位上,第一个盒子里面的球放在个位上,共有几个数字?3、 好老师培训中心近期将举办一场户外比赛,共有跳绳、跳远、打乒乓球和游泳4个项目,学校的小花同学、小红同学和张三同学三位同学准备报名参加,若每个项目不限制人数,则报名结果有几种情况?4、 由数字0、1、2、3组成三位数,则:可组成多少个不相等的三位数?可组成多少没有重复数字的三位数?5、 由数字1、2、3、4、5、6、7可以组成多少个没有重复数字的四位奇数?可以组成多少个没有重复数字的四位偶数?6、 用1元、2元和5元的3种面值的纸币(每张纸币没有限制张数)组成10元钱,有多少种方法?AB四年级奥数题:速算与巧算(一)1.【试题】计算9+99+999+9999+999992【试题】计算199999+19999+1999+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999) 4【试题】计算9999×2222+3333×33345.【试题】56×3+56×27+56×96-56×57+566.【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,儿子23岁。

问几年前父亲年龄是儿子的2倍?2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。

小学奥数--加法原理乘法原理

小学奥数--加法原理乘法原理

加法原理与乘法原理加法原理:完成一件工作共有N类方法。

在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。

运用加法原理计数,关键在于合理分类,不重不漏。

要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。

乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m1×m2×…×mn种方法。

运用乘法原理计数,关键在于合理分步。

完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。

这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。

运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。

计数时要注意区分是分类问题还是分步问题,正确运用两个原理。

灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。

小学阶段只学习两个原理的简单应用。

【题目1】:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法【解析】:运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。

②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。

奥数专题 乘法原理精讲

奥数专题  乘法原理精讲

放在中间十位数的位置上,有 3 种不同的选择.根据乘法原理,可以组成 3×4×3=36 个不同的三位
偶数.
【答案】36
【例 4】 有 5 张卡,分别写有数字 2,3,4,5,6.如果允许 6 可以作 9 用,那么从中任意取出 3 张卡片,
并排放在一起.问:⑴ 可以组成多少个不同的三位数?⑵ 可以组成多少个不同的三位偶数?
2、每步找种数(每步的情况都不能单独完成该件事); 3、步步相乘
四、考题常见类型
1、路线种类问题——比如说老师举的这个例子就是个路线种类问题; 2、字的染色问题——比如说要 3 个字,然后有 5 种颜色可以给每个字然后,问 3 个字有多少种染色方法; 3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张
确定个位上的数字,因为要组成没有重复数字的两位数,因此十位上用的数字个位上不能再用,因
此第二步只有 1 种方法,由乘法原理,能组成 2×1=2 个两位数,即 12,21.
【答案】⑴4
⑵2
【巩固】 ⑴由 3、6、9 这 3 个数字可以组成多少个没有重复数字的三位数?
⑵ 由 3、6、9 这 3 个数字可以组成多少个三位数?
运用乘法原理计数,关键在于合理分步。完成这件工作的 N 个步骤,各个步骤之间是相互联系的,任何 一步的一种方法都不能完成此工作,必须连续完成这 N 步才能完成此工作;各步计数相互独立;只要有一步 中所采取的方法不同,则对应的完成此工作的方法也不同。
三、乘法原理关键点
1、完成一件事分 N 个必要步骤;
么1 只能在首位上,故经过 4 次置换后得到的数必定是12345 .1 与 2 ,3 ,4 ,5 中的某个数置换一次
有 4 种选择,这个数与其它的 3 个数置换有 3 种选择……也可以得到符合条件的数有 4 3 21 24

四年级奥数培优《乘法原理》

四年级奥数培优《乘法原理》

乘法原理一、知识梳理我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理。

乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法。

乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”。

二、例题精讲例1. 在下图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过,问这只甲虫最多各有几种不同走法?例 2. 要从五年级六个班中评选出学习,体育、卫生先进集体各一个,有多少种不同的评选结果(同一个班级只能得到一个先进集体?)例3. 5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?例4. 如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?A B例5. 北京到上海之间一共有6站,车站应该准备多少种不同的车票?(往返车票算不同的两种)三、课堂小测7. 邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?8.将四封不同的信投入3个不同的信箱中,有多少种不同的投法。

9. “IMO”是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色.现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的“IMO”?10.用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色.问:共有多少种不同的染色方法?11. 北京到广州之间有10个站,其中有四个站是大站(包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票。

乘法原理和加法原理(小学奥数5年级)

乘法原理和加法原理(小学奥数5年级)

加法原理和乘法原理知识方法一、分类计数原理(加法原理)1、完成一件事情,有n类方法,在第1类方法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……在第n类方法中有mn种不同的方法,则完成这件事有N=m1+m2+……+m n 种不同的方法2、分类计数原理的特点:针对的是“分类”问题,各类方法是相互独立的。

二、分步计数原理(乘法原理)1、完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有有m2种不同的方法,……做第n步有mn种不同的方法,则完成这件事有N=m1×m2×……×m n 种不同的方法2、分不计数原理的特点:针对的是“分步”问题,各类方法是相互依存的。

例1:从资阳到成都可乘火车,也可乘汽车,一天中,火车有3列,汽车有12辆,一天中乘坐这些交通工具从资阳到成都有多少种不同的方法?例2:陈老师从资阳到美国,第1天,乘高铁到成都有3辆,次日,从成都乘飞机到美国有5班,陈老师从资阳到美国有多少种不同的乘车方法?变式:一个盒子里装有5个小球。

另一个盒子里装有9个小球。

所有这些小球的颜色各不相同。

(1)从两个盒子中任取一个小球,有多少种不同的取法?(2)从两个盒子中各取一个球,有多少种不同的取法?例3:4个数字3、5、6、8可以组成多少个没有重复数字的四位数?变式:有7、3、6三个数字卡片,能组成几个不同的三位数?(每个数字只能用1次)例4、用4种不同颜色给下面的图形涂色。

使相邻两个长方形颜色不相同,有多少种不同的涂法?变式:在A 、B 、C 、D 四个长方形区域中涂上红黄蓝黑这4种不同颜色,使相邻两个长方形颜色不相同,有多少种不同的涂法?例5、南京与上海的动车组特快列车,中途只停靠常州,无锡,苏州三个火车站。

共要准备多少种不同的车票?(考虑往返)变式:北京到广州的火车中间要停靠8个大站。

火车站要准备多少种不同的车票?有多少种不同的票价?(考虑往返)练习题1、小军小蓝和小红三个朋友排成一排照相,有多少种不同的排法?2、书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书,如果从中各取一本科技书,一本故事书和一本英语书,那么总共有多少种取法?3、有8、0、2、4、6五个数字,可以组成几个不同的五位数?4、五一前夕,学校举行亲子活动。

小学四年级奥数教程乘法原理

小学四年级奥数教程乘法原理

《小学四年级奥数教程乘法原理》2023-10-28contents •乘法原理概述•乘法原理基础•乘法原理进阶•乘法原理的应用•乘法原理的练习题与解析目录01乘法原理概述乘法原理定义乘法原理是关于两个或两个以上整数相乘的原理,即任何整数都可以表示为其他整数的和与倍数的乘积。

乘法原理公式乘法原理的公式为a×b=a×(b+n)−n,其中a、b和n均为整数,且n为任意整数。

什么是乘法原理基础数学知识乘法原理是小学数学中的基础知识,对于理解乘法的本质和解决乘法问题具有重要意义。

数学思维的培养学习乘法原理有助于培养学生的数学思维能力和逻辑推理能力,为后续学习更复杂的数学知识和解决实际问题打下基础。

乘法原理的重要性在古代数学中,乘法原理已经得到广泛应用。

例如,在古埃及和古希腊的数学文献中,都有关于乘法原理的记载和应用。

古代数学中的乘法原理在现代数学中,乘法原理不仅是基础数学知识之一,还在其他数学分支和实际应用领域发挥着重要作用。

现代数学中的乘法原理乘法原理的历史与发展02乘法原理基础如果有一个数 a 和另一个数 b 相乘,那么它们的乘积就是 a × b。

乘法原理定义乘法原理是关于乘法的数学原理,它描述了两个或多个数相乘的结果和如何进行这些乘法运算。

乘法原理公式乘法原理的公式与定义VS乘法结合律将三个数相乘,可以任意组合,它们的乘积不变。

例如:(a × b)× c = a × (b × c)。

乘法交换律交换两个数的位置,它们的乘积不变。

例如:a × b = b × a。

分配律将一个数与另一个数的和相乘,等于分别将这两个数相乘再求和。

例如:a × (b + c) = a × b+ a × c。

乘法原理的运算规则在购物时,如果一个商品的价格是 a 元,购买 b 个,那么总价就是 a × b 元。

六年级奥数-22加法和乘法原理

六年级奥数-22加法和乘法原理

加法和乘法原理1.了解加法原理和乘法原理的含义,理解分类计数原理与分步计数原理,培养学生的归纳概括能力.2.会利用两个原理分析和解决一些简单的应用问题.1.分类计数原理(加法原理)的准确理解与应用;2.分步计数原理(乘法原理)的准确理解应用;①加法原理:完成一件事有k 类方法,第一类方法中有1m 种不同的方法,第二类方法中有2m 种不同的方法,……第k 类方法中有k m 种不同的方法。

那么完成这件事共有1m +2m +…+k m 种不同的方法;②乘法原理:一般地,如果完成一件事需要n 个步骤,其中,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,第n 步有n m 种不同的方法,那么完成这件事一共有1m ×2m ×…×n m 中不同的方法。

在乘法原理中需要注意的是:(1)这件事要分几个独立步骤来完成;(2)每个步骤各有若干种不同的方法来完成。

解题方法①公式法:主要是直接运用加法原理公式与乘法原理公式进行解题,在运用公式的过程中需理解题意,不要把加法原理与乘法原理混淆。

②图示法:在一些过程较为复杂的加法乘法原理问题中,为了明确过程,可以采用画树状图进行解答。

××加法原理××例1.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9B.8C.7D.6练习1.一次乒乓球比赛,共有512名乒乓球运动员参加比赛.比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛()场.A.1024B.511C.256D.174在典型例题1中,逐步分析所有可能的情况,再应用加法原理。

例2.某旅店招工考试,有一道题:“用20把不同钥匙开20个客房门,如果不知道哪把钥匙开哪一个门,最多要试开____次,才能把钥匙与门锁配对妥当.”练习1.艾迪、大宽、薇儿今天想要从北京去天津旅游,从北京到天津,可以乘火车,也可以坐大巴,如果乘火车,那么一天有23趟火车;如果坐大巴,一天有12辆大巴,那么宫宝今天去天津,不同的走法共有种.对于加法原理的应用要注意考虑所有的可能,做到不遗不漏不重。

四年级奥数详解答案乘法原理

四年级奥数详解答案乘法原理

四年级奥数详解答案第九讲乘法原理一、知识概要如果要完成一件任务需要分成几个步骤进行做,第一步有m1种方法,做第二步有m2种方法……,做第n步有m n种方法,即么,按这样的步骤完成这件任务共有N= m1×m2×…×m n种不同的方法。

这就是乘法原理。

乘法原理和加法原理的区别是:加法原理是指完成一件工作的方法有几类,之间不相关系,每类都能独立完成一件工作任务;而乘法原理是指完成一件工作的方法是一类中的几个不同步骤,互相关联,缺一不可,共同才能完成一件工作任务。

二、典型例题精讲1. 从甲地到乙地有两条路可走,从乙地到丙地有三条路可走,试问:从甲地经乙地到丙地共有多少种不同的走法?分析:如图,很明显,这是个乘法原理的题目。

要完成“从甲到丙的行走任务”必须分两步完成。

第一步:甲分别通过乙的三条路线到达丙,故有3种走法。

第二步:甲从第二条路线出发又分别通过乙的三条路线到达丙,故又有3种走法。

这两种走法相类似,共同完成“从甲到丙”的任务。

解:3×2=6(种) 答:共有6种不同的走法。

2. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行、每列只能出现一个棋子,共有多少种不同的放法?分析:(如图二)摆放四个棋子分四步来完成。

第一步放棋子A,A可任意摆放,有16种摆放;第二步摆B,由于A所在的位置那一行,那一列都不能放,故只有9种放法;第三步摆C子,也由A、B所在的那一行,那一到都不能,只有四格可任意放,故有4种放法;第四步,只剩一格放D子,当然只有一种放法。

解:16×9×4×1=576(种) 答:共有576种不同的放法。

3. 有五张卡片,分别写有数字1,2,4,5,8。

现从中取出3张片排在一起,组成一个三位数,如□1□5□2,可以组成个不同的偶数。

分析:分三步取出卡片:1.个位,个位只能放2、4、8;故有3种放法;2.百位,因个位用去1张,所以百位上还有四张可选,故有4种放法;3.十位,因个位和百位共放了两张,所以还有3张可选放,有3种放法。

奥数讲义计数专题:加法原理、乘法原理

奥数讲义计数专题:加法原理、乘法原理

华杯赛计数专题:加法原理、乘法原理基础知识:1.加法原理:如果完成一件事情可以分成几类方法,每一类又包含若干种不同方法,那么将所有类中的方法数累加就是完成这件事的所有方法数.加法原理的关键在于分类,类与类之间用加法.2.乘法原理:如果完成一件事情可以分成几个步骤,每一步又包含若干种不同方法,那么将所有步骤中的方法数连乘就是完成这件事的所有方法数.乘法原理的关键在于分步,步与步之间用乘法.3.分类原则:分类要做到“不重不漏”.任意两类之间不可以重复,这叫做不重;把所有的类别累加在一起就得到整体,这叫做不漏.4.分步原则:分步要做到“前不影响后”.无论前面步骤采取哪种方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.例题:例1.从1开始依次写下去一直到999,得到一个多位数1234567891011121314…997998999,请问:(1)这个多位数一共有多少位?(2)第999位数字是多少?(3)在这个多位数中,数字9一共出现了多少次?(4)数字0一共出现了多少次?问题(1)这个多位数一共有多少位?【答案】(1)2889;(2)9;(3)300;(4)189【解答】分析1:999个自然数构成一个多位数,可以利用加法原理分类的思想求这个多位数的位数.将这999个自然数分成3类:第1类是1位数;第2类是2位数;第3类是3位数.分别计算每一类自然数占了多少位,再求和就可以得出多位数的位数了.详解1:按照自然数的位数去分类.构成这个多位数的自然数中1位数有9个,占了9位;2位数有90个,占了2×90=180位;3位数有900个,占了3×900=2700位;所以这个多位数总共有9+180+2700=2889位.问题(2)第999位数字是多少?详解2:1位数和2位数一共占了189位,999位数数字还需要3位数占据999-189=810位.由810÷3=270…0可知第999位数字是第270个3位数的最后1位.第270个3位数是369,所以第999位数字是9.问题(3)在这个多位数中,数字9一共出现了多少次?分析3:前面2问分类的方法是按照自然数的位数去分类,1位数,2位数,3位数各自分为一类.但按照这种分类的思路来解第3问就不是很方便了:1位数含有1个9,2位数含有19个9,但是考虑3位数含有多少个9还是比较复杂.通过这种分类的思路去分析问题并没有使问题变得简单.可以考虑按照分段的方法去分类,第1类1—99;第2类100—199;第3类200—299;……;第10类900—999.分别计算每一类中包含了多少个9,然后再加和就可以了.注意利用每一类的相似性,比如第1类到第9类每一类所包含9的个数应该一样多,当然第10类900—999中9的个数比前9类要多100个.再考虑一种分类的方法,按照9出现的位置去分类.首先考虑9在百位出现了多少次;再考虑9在十位出现了多少次;最后考虑9在个位出现了多少次.详解3:按照分段的方法去分类.实际这种分类方法也是按照百位数的不同去分类,在每一类中百位数是相同的(1—99可以看成百位数为0).考虑第1类1—99中包含了多少个9,个位包含9的有:9,19,29,39,49,59,69,79,89,99一共10个;十位包含9的有:90,91,92,93,94,95,96,97,98,99也是10个.这样在1—99中9在个位和十位各出现了10次,一共是20次.同理,第2类100—199;第3类200—299;……;第9类800—899;每一类中也都包含20个9.第10类900—999中9的个数比前9类要多100个,应该是120个.所以原来的多位数中总共有20×9+120=300个9.其实更快的方法是按9出现的位置去数,应用乘法原理.问题(4)数字0一共出现了多少次?详解4:按照0出现在个位、十位去分类当0出现在十位时,百位可以为1~9,个位可以为0~9,根据乘法原理,共有9×10=90次;同理,当0出现在个位时,共有9×10+9=99次,所以原来的多位数中0出现了99+90=189次.例2.允许数字重复,那么用数字0、1、3、5、7、9最多可以组成多少个不同的三位数?【答案】180【解答】百位有5种选择,十位和个位都有6种选择.根据乘法原理,一共可以组成5×6×6=180个三位数.变化:如果不允许数字重复呢?其中被5整除的无重复数字的三位数又有多少个呢?例3.在所有的三位数中,至少出现一个2的偶数有________个.【答案】162【解答】①个位是2的有9×10=90个;②十位是2但个位不是2的偶数有9×4=36个;③百位是2但十位和个位都不是2的偶数有9×4=36个,所以一共有90+36+36=162个符合条件的三位数.例4.用1、2、3、4、5这5个数字组成四位数,至多允许有1个数字重复两次.例如1234、1233和2454是满足条件的,而1212、3335和4444就是不满足条件的.那么,所有这样的四位数共有________个.【答案】480个【解答】方法1:分类讨论.如果包含4个互不相同的数字,一共有5×4×3×2=120个;如果包含3个互不相同的数字,我们可以先从5个数字中选出3个数字,然后再从挑出的3个数字中选1个可以重复,最后把这3个数字带上1个重复的数字共4个数字排成1行.根据乘法原理,就有个,所以一共有120+360=480个四位数.方法2:排除法.所有可能的四位数有5×5×5×5=625个;只包含1个数字的有5个,包含2个数字的有5×4×(2×2×2-1)=140个.那么包含3个或4个不同数字的四位数有625-5-140=480个.例5.书架上有1本英语书,9本不同的语文书,9本不同的数学书和7本不同的历史书.现在要从中取出3本书,而且不能有两本是同一科的.那一共有多少种取法?【答案】774【解答】因为一共要4种书中选3种,所以要分4种情况讨论:如果拿的是英语、语文和数学书,根据乘法原理一共有1×9×9种方法;如果拿的是英语、语文和历史书,一共有1×9×7种拿法,同理另外两种情况分别有1×9×7种和9×9×7种拿法.最后我们根据加法原理,一共有1×9×9+1×9×7+1×9×7+9×9×7=1×9×16+10×9×7=144+630=774种拿法.例6.用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码;(2)四位数;(3)四位奇数.【答案】(1)120(个);(2)96(个);(3)36(个).【解答】(1)完成“组成无重复数字的四位密码”这件事,可以分四个步骤:第一步:选取左边第一个位置上的数字,有5种选取方法;第二步:选取左边第二个位置上的数字,有4种选取方法;第三步:选取左边第三个位置上的数字,有3种选取方法;第四步:选取左边第四个位置上的数字,有2种选取方法;由乘法原理,可组成不同的四位密码共有N=5×4×3×2=120(个).(2)完成“组成无重复数字的四位数”这件事,可以分四个步骤:第一步:从1,2,3,4中选取一个数字作千位数字,有4种选取方法;第二步:从1,2,3,4中余下的三个数字和0中选取一个数字作百位数字,有4种选取方法;第三步:从余下的三个数字中选取一个数字作十位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作个位数字,有2种选取方法;由乘法原理,可组成不同的四位数共有N=4×4×3×2=96(个).(3)完成“组成无重复数字的四位奇数”这件事,可以分四个步骤:第一步:从1,3中选取一个数字作个位数字,有2种选取方法;第二步:从1,3中余下的一个数字和2,4中选取一个数字作千位数字,有3种选取方法;第三步:从余下的三个数字中选取一个数字作百位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作十位数字,有2种选取方法;由乘法原理,可组成不同的四位奇数共有N=2×3×3×2=36(个).例7.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?【答案】90(种)【解答】取a+b与取b+a是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由乘法原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据加法原理共有45+45=90种不同取法.例8.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案有多少种?【答案】150(种)【解答】5名志愿者分配到3个不同的奥运场馆,可以分成3,1,1和2,2,1两类,第一类:分成3,1,1,完成此件事可以分成3步,第1步:3个馆选一个馆去3个人,共有3种选法,第2步:5个人中选3个人,共有种选法,第3步:剩下的2个人分别去两个馆,所以当分配成3,1,1时,根据乘法原理,共有3×10×2=60(种);第二类:分成2,2,1,完成此件事可以分成3步,第1步:5个人中选出一个人,共有5种选法,第2步:3个馆中选出一个馆,共有3种选法,第3步:剩下的4个人中选2个人去剩下两个馆中的一个,最后一个人去另外一个馆,共有(种),所以当分配成2,2,1时,根据乘法原理,共有5×3×6=90(种);所以根据加法原理,不同的分配方案共有60+90=150(种).例9.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数有多少个?【答案】40(个)【解答】可分三步来做这件事:第一步:先将3、5放到六个数位中的两个,共有2种排法;第二步:再将4、6插空放入剩下四个数位中的两个,共有2×2=4种排法;第三步:将1、2放到3、5、4、6形成的空位中,共有5种排法.根据乘法原理:共有2×4×5=40(种).例10.在一个3行4列的方格表内放入4枚相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?在一个3行4列的方格表内放入4枚互不相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?【答案】81(种);1944(种)【解答】「问题1」4枚棋子放入4列,每一列有且仅有1枚棋子,因此总共分4个步骤考虑.第1步考虑第1列的棋子放在什么位置;第2步考虑第2列的棋子放在什么位置;第3步考虑第3列的棋子放在什么位置;第4步考虑第4列的棋子放在什么位置.每一步都有3种选择方法,所以方法数一共有3×3×3×3=81种.「问题2」假设4枚互不相同的棋子为A,B,C,D.将按照下面的4个步骤进行考虑,先放棋子A,12个格子可以随便选择,一共有12种方法.第2步放棋子B,A那一列的3个格子不能选择,其它的格子都可以放B,所以一共有9种方法.第3步放棋子C,A、B那两列一共6个格子不能选,所以一共有6种方法.第4步放棋子D,A、B、C三列一共9个格子不能选,还剩3个格子,所以一共有3种方法.利用乘法原理,放入4个不同棋子的方法数一共有12×9×6×3=1944种方法.另外一种解法.「问题2」4个棋子要占4个方格,先选出放棋子的4个方格.实际上挑出4个方格的方法数和第1问是完全相同的,总共有3×3×3×3=81种选择方法.选好方格后再将棋子排列进去,第1列的方格可以选择A,B,C,D中的任何一个棋子,所以有4种方法;第2列的方格还剩下三个棋子可供选择,所以有3种方法;第3列的方格还剩下两个棋子可供选择,有2种方法;第4列的方格只有1种方法.所以选好4个方格后排列棋子的方法数一共是4×3×2×1=24种.选4个方格有81种方法,选好4个方格后放棋子一共有24种方法,所以将表格中放入4个互不相同的棋子的总方法数是81×24=1944种.例11. 如图,把图中的8个部分用红、黄、绿、蓝4种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.那么,这幅图共有多少种不同的着色方法?【答案】768(种)【解答】按照A,B,D,E,C,G,F,H的步骤进行染色.对A进行染色的时候没有任何的限制,总共有4种染色的方法;对B进行染色的时候由于不能和A同色,所以有3种染色的方法;对D进行染色的时候由于不能和A,B同色,所以只剩2种染色的方法;对E进行染色时不能和B,D同色,所以有2种染色的方法;对C进行染色时不能和B,E同色,所以有2种染色方法;对G进行染色时不能和D,E同色,所以有2种染色的方法;对F进行染色时不能和D,G同色,所以有2种染色的方法;对H进行染色时不能和E,G同色,所以有2种染色的方法.综合上面的八个步骤,利用乘法原理,共有4×3×2×2×2×2×2×2=768种着色的方法.「评议」本题染色的步骤还有很多种,大家考虑一下按照A,B,C,D,E,F,G,H的步骤进行染色是否可以?可能有同学发现按照A,B,C,D,E,F,G,H的步骤进行染色会算出另外一个答案4×3×3×2×1×3×1×2=432.当然,正确答案只能有一个,那么这种分步方法到底错在哪里呢?这里要提到利用乘法原理一条重要的原则:“前不影响后”.无论前面步骤采取哪种染色方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.而按照A,B,C,D,E,F,G,H的步骤来染色就违反了这个原则.请看下面图中的例子:在上面的例子中,左图前4步采取的染色方法是红、黄、绿、蓝,第5步对E进行染色时只有1种方法;右图前4步采取的染色方法是红、黄、绿、绿,这样第5步对E进行染色时有2种方法.于是第5个步骤对E进行染色无法确定到底有几种染色的方法,前4步不同的染色方案影响到了第5步的方法数,既然不能确定是1种还是2种,乘法原理自然也就无法应用了.。

小学奥数 加法与乘法原理

小学奥数 加法与乘法原理

加法原理与乘法原理一、知识要点加法原理:做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

二、精讲精练【例题1】书架上层有6本不同的数学书,下层有5本不同的语文书,若任意从书架上取一本数学书和一本语文书,有多少种不同的取法?练习1:1、商店里有5种不同的儿童上衣,4种不同的裙子,妈妈准备为女儿买上衣一件和裙子一条组成一套,共有多少种不同的选法?2、小明家到学校共有5条路可走,从学校到少年宫共有3条路可走。

小明从家出发,经过学校然后到少年宫,共有多少种不同的走法?3、张师傅到食堂吃饭,主食有2种,副食有6种,主、副食各选一种,他有几种不同的选法?【例题2】由数字0,1,2,3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?练习2:1、由数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?3、由数字1,2,3,4,5,6,7,8,可组成多少个:①三位数;②三位偶数;③没有重复数字的三位偶数;④百位是8的没有重复数字的三位数;⑤百位是8的没有重复数字的三位偶数。

【例题3】有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。

将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形?练习3:1、在1—1000的自然数中,一共有多少个数字1?2、在1—500的自然数中,不含数字0和1的数有多少个?3、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问最多试开多少次,就能把锁和钥匙配起来?【例题4】在2,3,5,7,9这五个数字中,选出四个数字,组成被3除余2的四位数,这样的四位数有多少个?练习4:1、在1,2,3,4,5这五个数字中,选出四个数字组成被3除余2的四位数,这样的四位数有多少个?2、在1,2,3,4,5这五个数字中,选出四个数字组成能被3整除的四位数,这样的四位数有多少个?3、在1,4,5,6,7这五个数字中,选出四个数字组成被3除余1的四位数,这样的四位数有多少个?【例题5】下图(1)中有7个点和10条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?(1)(2)(3)(4)练习5:1,上图(2)中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?2,上图(3)中一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?3,上图(4 )中从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?三,作业:1. 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?2. 书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3. 一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?4、由数字0,1,2,3,4可以组成多少个没有重复数字的三位偶数?5. 某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?6. 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?。

奥数:加法原理、乘法原理

奥数:加法原理、乘法原理

题型一:乘法原理【知识要点】1. 乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,做第2步有m2种方法……做第n步有mn种方法,那么按照这样的步骤完成这件任务共有N=m1×m2×…×mn种不同的方法。

2. 从乘法原理可以看出:将完成一件任务分成几步做,是解决问题的关键,而这几步是完成这件任务缺一不可的。

【典型例题】例1:马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。

问:小丑的帽子和鞋共有几种不同搭配?例2:从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。

问:从甲地经乙、丙两地到丁地,共有多少种不同的走法?例3:用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?例4:如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?例5:有10块糖,每天至少吃一块,吃完为止。

问:共有多少种不同的吃法?【同步训练】1.有五顶不同的帽子,两件不同的上衣,三条不同的裤子。

从中取出一顶帽子、一件上衣、一条裤子配成一套装束。

问:有多少种不同的装束?2. 四角号码字典,用4个数码表示一个汉字。

小王自编一个“密码本”,用3个数码(可取重复数字)表示一个汉字,例如,用“011”代表汉字“车”。

问:小王的“密码本”上最多能表示多少个不同的汉字?3. “IMO”是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色。

现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的“IMO”?4. 用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色。

问:共有多少种不同的染色方法?题型二:加法原理(一)加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……在第n类方法中有mn种不同方法,那么完成这件任务共有N=m1+m2+…+mn种不同的方法。

小学奥数乘法原理【三篇】

小学奥数乘法原理【三篇】

小学奥数乘法原理【三篇】考点:乘法原理.分析:根据题意,由图可知,从A到中间一个点有3条路线,再从中间的那个点到B点也有3条路线,根据乘法原理解答即可.解答:解:根据题意,由乘法原理可得,3×3=9(条)答:这只甲虫最多有9种不同走法.点评:根据题意,找个中间点,由乘法原理实行解答即可.【第二篇:不重复的四位数】从1、3、5中任选2个数字,从2、4、6中任选2个数字,共可组成多少个没有重复数字的四位数?考点:乘法原理.分析:从1、3、5中任选2个数字共有3种组合,从2、4、6中任选2个数字共有3种组合,再把选出的4个数实行排列,即可得出答案.解答:解:3×3×4×3×2×1=216(个),答:共可组成216个没有重复数字的四位数.点评:本题考查了排列组合的应用,即先找出组合数,再实行排列,即可得出答案.【第三篇:自助餐】小明在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心.若不考虑食物的挑选次序,则他能够有多少不同选择方法?考点:乘法原理.分析:三种肉选一个有3种选法,四种蔬菜选两种有4×3÷2=6种选法,四种心选一个有4种选法,根据乘法原理,他能够有3×6×4=72种不同选择方法.解答:解:3×(4×3÷2)×4=3×6×4,=72(种).答:他能够有72种不同选择方法.点评:乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2不同的方法,…,做第n步有mn不同的方法.那么完成这件事共有N=m1m2…mn种不同的方法.。

四上奥数——3加法原理-、乘法原理

四上奥数——3加法原理-、乘法原理

加法原理、乘法原理1.基本概念①加法原理:为了完成一件事,有几类方法。

第一类方法中有m1种不同的方法,第二类方法中有m2种不同的方法……第n类方法中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法。

②乘法原理:为了完成一件事,需要几个步骤。

做第一步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有m n种不同的方法。

那么,完成这件事共有N=m1×m2×…×m n种不同的方法。

2.理解要点:①加法原理和乘法原理的本质区别:能否一步做完,一步骤为加法,多步骤为乘法②乘法原理为什么要用乘法去计算,和我们之前的搭配问题一样,本质是和的形式,也可以用树状图理解③要深刻站在题目的角度,寻找每一步骤拥有的方法种数,题目画出限制条件,全面考虑加乘原理歌:一件事情几类分,类类独立能完成,共有方法多少种?几类方法来相加;一件事情需几步,步步做好才完成,共有方法多少种?几步可能来相乘.基础篇:1.每天从武汉到北京去,有6班火车,3班飞机,1班汽车.请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同走法?2。

学校开展“诵读经典"读书竞赛活动,小明要从4大名著、2本外国名著和3本科普书里任意选取一本书,共有多少种不同的选法?3.如图,从甲村去乙村有3条道路,从乙村去丙村有2条道路,从丙村去丁村有4条道路。

小华要从甲村经乙村、丙村去丁村,共有多少种不同的走法?4。

如图,A、B、C是三个村庄,从A村到B村有2条路可走,从B村到C村有3条路可走,从A 村到C村有4条路可走,从A村到C村共有多少种不同的走法?5。

有四张卡片,上面分别写有0、1、2、4四个数字,从中任意抽出三张卡片组成三位数,这些卡片共可组成多少个不同的三位数?6.有五张卡片,卡片上写有数字1、2、3、4、5,从中任取两张卡片,摆放在一起,就可以组成一个两位数;请问:一共可以组成多少个不同的奇数?7.在实践活动课上,张老师发给每个学生一张简易地图(如图),地图上有A、B、C、D四个相邻的城市.现从红、黄、蓝、绿四种颜料中选出若干种给地图涂色,要求相邻城市的颜色不同,有种不同的涂色方法.8.如图,A、B、C、D、E五个区域分别用红、蓝、黄、白、绿五种颜色中的某一种涂染,若使相邻的区域涂不同的颜色,问:有几种不同的涂法?9.某信号兵用红、黄、蓝三面旗子从上到下挂在竖直的旗杆上表示信号,每次可以任挂一面、两面或三面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?10。

六年级奥数培训第4讲乘法原理和加法原理

六年级奥数培训第4讲乘法原理和加法原理

乘法原理和加法原理是数学中非常重要的概念,它们在解决问题时起到了重要的作用。

今天我们就来详细学习乘法原理和加法原理。

首先,我们来学习乘法原理。

乘法原理也叫乘法法则,它是指:如果一个事件可以分成两个独立的步骤,第一步有m种可能性,第二步有n种可能性,那么这个事件一共有m×n种可能性。

乘法原理在实际生活中也十分常见。

例如,现在小明要穿衣服去上学,他有2件上衣和3条裤子可以选择,那么他一共有2×3=6种搭配方式。

又例如,小明有3本数学书和4本英语书,他要从中选择一本书来看,那么他有3×4=12种选择的可能性。

乘法原理是非常简单的,但要注意的是,乘法原理只适用于这两个事件是相互独立的情况。

也就是说,第二个事件的结果不会受到第一个事件的结果的影响。

接下来我们来学习加法原理。

加法原理是指:如果一个事件可以分成两个互斥的部分,第一部分有m种可能性,第二部分有n种可能性,那么这个事件一共有m+n种可能性。

例如,小明想吃水果,他可以选择苹果、香蕉或者橙子,那么他有3种选择的可能性。

又例如,小红要去超市买东西,她可以选择买水果或者蔬菜,那么她有2种选择的可能性。

加法原理同样也非常简单,但需要注意的是,加法原理只适用于这两个事件不可能同时发生的情况。

乘法原理和加法原理在解决问题时非常有用,但有时候问题会比较复杂,我们需要运用这两个原理来解决。

例如,小明要做一个三道题的数学作业,第一题有2种解法,第二题有3种解法,第三题有4种解法,那么他一共有2×3×4=24种解题方法。

又例如,小红要去参加学校组织的活动,参加活动的学生可以选择合唱或者跳舞,男生可以选择跳舞或者打乒乓球,女生可以选择合唱或者打乒乓球。

如果有2个男生和3个女生要参加活动,那么一共有2×2+3×2=10种组合的可能性。

通过学习乘法原理和加法原理,我们能够更好地理解和解决问题。

在实际生活中,我们会遇到很多需要使用乘法原理和加法原理的情况,只有通过不断的实践和练习,才能真正的掌握它们。

(小学奥数)简单乘法原理

(小学奥数)简单乘法原理

7-2-1.簡單乘法原理教學目標1.使學生掌握乘法原理主要內容,掌握乘法原理運用的方法;2.使學生分清楚什麼時候用乘法原理,分清有幾個必要的步驟,以及各步之間的關係.3.培養學生準確分解步驟的解題能力;乘法原理的數學思想主旨在於分步考慮問題,本講的目的也是為了培養學生分步考慮問題的習慣.知識要點一、乘法原理概念引入老師週六要去給同學們上課,首先得從家出發到長寧上8點的課,然後得趕到黃埔去上下午1點半的課.如果說申老師的家到長寧有5種可選擇的交通工具(公交、地鐵、計程車、自行車、步行),然後再從長寧到黃埔有2種可選擇的交通工具(公交、地鐵),同學們,你們說老師從家到黃埔一共有多少條路線?我們看上面這個示意圖,老師必須先的到長寧,然後再到黃埔.這幾個環節是必不可少的,老師是一定要先到長寧上完課,才能去黃埔的.在沒學乘法原理之前,我們可以通過一條一條的數,把線路找出來,顯而易見一共是10條路線.但是要是老師從家到長寧有25種可選擇的交通工具,並且從長寧到黃埔也有30種可選擇的交通工具,那一共有多少條線路呢?這樣數,恐怕是要耗費很多的時間了.這個時候我們的乘法原理就派上上用場了.二、乘法原理的定義完成一件事,這個事情可以分成n個必不可少的步驟(比如說老師從家到黃埔,必須要先到長寧,那麼一共可以分成兩個必不可少的步驟,一是從家到長寧,二是從長寧到黃埔),第1步有A種不同的方法,第二步有B種不同的方法,……,第n 步有N 種不同的方法.那麼完成這件事情一共有A ×B ×……×N 種不同的方法.結合上個例子,老師要完成從家到黃埔的這麼一件事,需要2個步驟,第1步是從家到長寧,一共5種選擇;第2步從長寧到黃埔,一共2種選擇;那麼老師從家到黃埔一共有5×2個可選擇的路線了,即10條.三、乘法原理解題三部曲1、完成一件事分N 個必要步驟;2、每步找種數(每步的情況都不能單獨完成該件事);3、步步相乘四、乘法原理的考題類型1、路線種類問題——比如說老師舉的這個例子就是個路線種類問題;2、字的染色問題——比如說要3個字,然後有5種顏色可以給每個字然後,問3個字有多少種染色方法;3、地圖的染色問題——同學們可以回家看地圖,比如中國每個省的染色情況,給你幾種顏色,問你一張包括幾個部分的地圖有幾種染色的方法;4、排隊問題——比如說6個同學,排成一個隊伍,有多少種排法;5、數碼問題——就是對一些數字的排列,比如說給你幾個數字,然後排個幾為數的偶數,有多少種排法.【例 1】 郵遞員投遞郵件由A 村去B 村的道路有3條,由B 村去C 村的道路有2條,那麼郵遞員從A 村經B 村去C 村,共有多少種不同的走法?2号路1号路南中C B A【考點】簡單乘法原理 【難度】1星 【題型】解答【解析】 把可能出現的情況全部考慮進去.第一步 第二步例題精講A 村村 C 村中A 村村 C 村北南 C 村村A 村由分析知郵遞員由A 村去B 村是第一步,再由B 村去C 村為第二步,完成第一步有3種方法,而每種方法的第二步又有2種方法.根據乘法原理,從A 村經B 村去C 村,共有3×2=6種方法.【答案】6【巩固】 如下圖所示,從A 地去B 地有5種走法,從B 地去C 地有3種走法,那麼李明從A 地經B 地去C 地有多少種不同的走法?【考點】簡單乘法原理 【難度】1星 【題型】解答【解析】 從A 地經B 地去C 地分為兩步,由A 地去B 地是第一步,再由B 地去C地為第二步,完成第一步有5種方法,而每種方法的第二步又有3種方法.根據乘法原理,從A 地經B 地去C 地,共有5×3=15種方法.【答案】15【例 2】 如下圖中,小虎要從家沿著線段走到學校,要求任何地點不得重複經過.問:他最多有幾種不同走法?【考點】簡單乘法原理 【難度】1星 【題型】解答【解析】 從家到中間結點一共有2種走法,從中間結點到學校一共有3種走法,根據乘法原理,一共有3×2=6種走法.【答案】6【巩固】 在下圖中,一只甲蟲要從A 點沿著線段爬到B 點,要求任何點不得重複經過.問:這只甲蟲最多有幾種不同走法?CBA【考點】簡單乘法原理【難度】1星【題型】解答【解析】甲蟲要從A點沿著線段爬到B點,需要經過兩步,第一步是從A點到C點,一共有3種走法;第二步是從C點到B點,一共也有3種走法,根據乘法原理一共有3×3=9種走法.【答案】9【巩固】在右圖中,一只甲蟲要從A點沿著線段爬到B點,要求任何點不得重複經過.問:這只甲蟲最多有幾種不同走法?D C BA【考點】簡單乘法原理【難度】2星【題型】解答【解析】從A點沿著線段爬到B點需要分成三步進行,第一步,從A點到C點,一共有3種走法;第二步,從C點到D點,有1種走法;第三步,從D點到B點,一共也有3種走法.根據乘法原理,一共有3×1×3=9種走法.【答案】9【巩固】在右圖中,一只螞蟻要從A點沿著線段爬到B點,要求任何點不得重複經過.問:這只螞蟻最多有幾種不同走法?BDCA【考點】簡單乘法原理【難度】2星【題型】解答【解析】解這道題時千萬不要受鋪墊題目的影響,第一步,A點到C點的走法是3種;第二步,從C點到D點,有1種走法;但第三步,從D點到B點的走法並不是3種,由D出去有2條路選擇,到下一岔路口又有2條路選擇,所總共有2×2=4(種)走法,根據乘法原理,這只螞蟻最多有31412⨯⨯=(種)不同走法.【答案】12【巩固】在右圖中,一只甲蟲要從A點沿著線段爬到B點,要求任何點不得重複經過.問:這只甲蟲最多有幾種不同走法?D C BA【考點】簡單乘法原理【難度】2星【題型】解答【解析】從A點沿著線段爬到B點需要分成三步進行,第一步,從A點到C點,一共有3種走法;第二步,從C點到D點,一共也有3種走法;第三步,從D 點到B點,一共也有3種走法.根據乘法原理,一共有33327⨯⨯=種走法.【答案】27【巩固】在右圖中,一只甲蟲要從A點沿著線段爬到B點,要求任何點不得重複經過.問:這只甲蟲最多有幾種不同走法?CBA【考點】簡單乘法原理【難度】3星【題型】解答【解析】解這道題時千萬不要受鋪墊題目的影響,A點到C點的走法不是3種,而是4種,C點到B點的走法也是4種,根據乘法原理,這只甲蟲最多有4416⨯=種走法.【答案】16【例 3】如果將四面顏色不同的小旗子掛在一根繩子上,組成一個信號,那麼這四面小旗子可組成種不同的信號。

奥数 乘法原理

奥数 乘法原理

奥数乘法原理
乘法原理是解决组合问题时经常使用的一种方法。

它可以用来计算将两个或多个事件相互组合时的可能情况总数。

乘法原理的核心思想是,对于两个或多个独立事件的组合,每个事件都有自己的选择数目。

如果一个事件有m种选择,另
一个事件有n种选择,那么两个事件组合起来的可能情况总数就是m乘以n。

例如,假设有两个骰子,一个有6个面,另一个有4个面。

现在要计算同时投掷这两个骰子时出现的所有可能情况总数。

根据乘法原理,第一个骰子有6种选择,第二个骰子有4种选择,所以组合起来的可能情况总数就是6乘以4,即24种情况。

乘法原理在解决排列、组合、数列等问题时非常有用。

它可以帮助我们计算得出所有可能的情况总数,从而更好地理解和解决数学题目。

需要注意的是,乘法原理只适用于独立事件的组合。

如果事件之间存在依赖或重叠,那么乘法原理就不适用了。

在解决问题时,我们需要仔细分析事件之间的关系,选择合适的方法进行计算。

小学四年级奥数教程-乘法原理

小学四年级奥数教程-乘法原理

综合练习题
• 总结词:综合运用知识、提升解题能力 • 求一个三位数与一个两位数的乘积 • 123×45 • 456×78 • 789×90 • 求一个三位数分别乘以两个两位数的积之和 • 123×25+456×37 • 456×48+789×59 • 789×68+123×79
05
答案与解析
基础练习题答案与解析
综合练习题答案与解析
总结词:综合运用
详细描述:综合练习题是在基础练习题和进阶练习题的基础上,将多个知识点和 难点融合在一起,这些题目的答案与解析,可以帮助学生综合运用乘法原理,提 高解题能力和思维水平,为更高难度的学习做好准备。
THANK YOU.
多位数乘法
总结词
分位数相乘,化繁为简
详细描述
将多位数拆分成若干个一位数和十位数等,分别与另一个数相乘,然后将结 果相加。例如,计算31 × 4时,可将其拆分为30 × 4+1 × 4=120+4=124。
乘法的结合律和分配律
总结词
灵活运用,提升计算能力
详细描述
结合律指的是将几个数相乘时,可以随意改变它们的 顺序,只要不改变它们的运算符号和个数。例如,(2 × 3) × 4=2 × (3 × 4)=6 × 4=24。分配律指的是将 一个数分别分配到若干个数的和或差中,可以分别进 行运算。例如,2 × (3+4)=2 × 3+2 × 4=6+8=14。
乘法原理的作用
简化计算
乘法原理可以用来简化计算,将多个乘积的运算转化为一个 简单的乘法运算。
优化算法
乘法原理还可以用来优化算法,将复杂的计算过程转化为简 单的乘法运算,提高计算效率。
乘法原理的分类

奥数乘法原理

奥数乘法原理

奥数乘法原理乘法是数学中的基本运算之一,而奥数乘法原理则是在奥林匹克数学竞赛中经常出现的一个重要概念。

奥数乘法原理是指,如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件同时发生的方式有mn种。

举个简单的例子来说明奥数乘法原理,小明有3种不同的上衣,2种不同的裤子,那么他有多少种不同的穿法呢?根据奥数乘法原理,他的穿衣方式有32=6种。

这个例子很好地诠释了奥数乘法原理的应用。

在实际生活中,奥数乘法原理也有着广泛的应用。

比如,我们在超市购物时,如果有3种不同的饮料和4种不同的零食,那么我们可以用奥数乘法原理来计算出一共有多少种不同的搭配方式。

又比如,在排列组合问题中,奥数乘法原理也经常被用到。

除了上面提到的例子,奥数乘法原理还可以应用在更复杂的问题中。

比如,一个班级有5个男生和4个女生,如果要从中选出一位班长和一位副班长,那么一共有多少种不同的组合呢?根据奥数乘法原理,答案是54=20种。

奥数乘法原理的应用并不局限于数学竞赛或者课堂上的题目,它实际上贯穿于我们日常生活的方方面面。

只要我们能够灵活运用奥数乘法原理,就能够更好地解决各种实际问题。

在使用奥数乘法原理时,需要注意的是,事件之间必须是相互独立的。

也就是说,一个事件的发生方式不会对另一个事件的发生方式产生影响。

只有在这种情况下,奥数乘法原理才能够正确地应用。

总的来说,奥数乘法原理是一种十分实用的数学工具,它能够帮助我们更好地理解和解决各种排列组合和概率相关的问题。

通过不断练习和应用,我们可以更加熟练地掌握奥数乘法原理,并在实际生活中灵活运用,为我们的思维和解决问题的能力增添新的武器。

4年级奥数第五讲:乘法原理.doc

4年级奥数第五讲:乘法原理.doc

一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?二、乘法原理的定义完成一件事,这个事情可以分成n 个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A 种不同的方法,第二步有B 种不同的方法,……,第n 步有N 种不同的方法.那么完成这件事情一共有A ×B ×……×N 种不同的方法.三、乘法原理解题三部曲1、完成一件事分N 个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色的方法;第五讲乘法原理知识要点3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.模块一、简单乘法原理的应用【例 1】 邮递员投递邮件由A 村去B 村的道路有3条,由B 村去C 村的道路有2条,那么邮递员从A 村经B 村去C 村,共有多少种不同的走法?(2级)【巩固】 如下图所示,从A 地去B 地有5种走法,从B 地去C 地有3种走法,那么李明从A 地经B 地去C地有多少种不同的走法?(2级)【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?(2级)【巩固】 在下图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?(2级)CB A例题精讲【例 3】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?(4级)D C BA【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?(4级)D C BA【例 4】按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?(4级)【例 5】题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷.问:由该题库共可组成多少种不同的试卷?(4级)【巩固】文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级)【巩固】小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?(4级)【例 6】要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?每个班最多只能获得一种荣誉称号。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

学科培优数学“乘法原理”学生姓名授课日期教师姓名授课时长知识定位我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.知识梳理一乘法原理完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,。

,第n步有N种不同的方法。

那么完成这件事情一共有A×B×.....×N种不同的方法。

二乘法原理的考题类型:1、路线种类问题——比如说老师举的这个例子就是个路线种类问题。

2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色的方法3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法。

4、排队问题——比如说6个同学,排成一个队伍,有多少种排法。

5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法。

三解题关键:1、分清有几个必要的步骤2. 分请每个步骤有多少种选择情况,有的时候要考虑前面几个步骤的选择结果,再考虑本步骤有多少个选择情况。

例题精讲【试题来源】【题目】邮递员投递邮件由A村去B村的道理有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?【答案】6【解析】A经过B到C,肯定是要先到B,再到C。

那么这个过程可分成两个必不可少的过程,第一步是A——B;第二步是B——C,然后可以根据乘法原理算出答案。

3×2=6【知识点】乘法原理【适用场合】当堂例题【难度系数】1【试题来源】【题目】如下图,有个小蚂蚁要从A点,沿着线段爬到B点,要求任何点不得重复经过,问:这只小蚂蚁一共有几种不同走法【答案】91、【解析】首先看提问,提问可以转成——小蚂蚁一共有多少种走法2、2、怎么分步是关键。

首先看蚂蚁从A到C,可以分成几步。

A到C必经哪点呢?马上可以找到必经B点(见下图),那么就可以分成必不可少的两步。

第一步是从A——B;第二步是从B——C。

那么从A到B,因为蚂蚁不能重复走过任何一点,所有这一步一共有3种可选择的线路;从B到C,同样的道理,蚂蚁只有3种可选择的线路。

3、然后根据乘法原理可求出来。

3×3=9【知识点】乘法原理【适用场合】当堂例题【难度系数】1【试题来源】【题目】按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?【答案】27【解析】1、造一个句子必须包含三个部分,即人、交通工具、目的地。

2、那么这个句子可以分成三个部分;第一个步——选择人物,有三种选择;第二步——选择交通工具,有三种选择;第三个步——选择目的地,有三种选择。

3、根据乘法原理:3×3×3=27【知识点】乘法原理【适用场合】当堂例题【难度系数】2【试题来源】【题目】文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?【答案】12【解析】共要选2个领唱,一男一女。

那么怎么分步是关键。

我们可以第一步从3个男生中选一个男生,第二步从4个女生中选取一个女生。

或者先从女生中选,再从男生中选,也是一样的。

然后根据乘法原理。

拓展题:题库中有三中类型的题目,其中计算题、几何题、应用题的数量分别是30道、40道、45道,每次考试要从三种类型的题目中各取一道题组成一张试卷。

问:由该题库共可组成多少种不同的试卷?【知识点】乘法原理【适用场合】当堂例题【难度系数】1【试题来源】【题目】“IMO”是国际数学奥林匹克的缩写,现有5种不同颜色的笔。

如果允许3个字母用相同的颜色,有多少种不同的写法?【答案】125【解析】写3个字母,必须是分3步,一步写一个字母。

那么写第一个字母有多少种颜色的笔可写呢?第二步呢?第三步呢?拓展:把上题的后一句改成“如果这3个字母用3种不同的颜色来写,有多少种写法”【知识点】乘法原理【适用场合】当堂例题【难度系数】1【试题来源】【题目】北京到上海之间一共有6个大站,车站应该准备多少种不同的车票?有多少种票价?(往返车票算不同的2种,比如说上海——北京;北京——上海,这两种票是不相同的;相同城市之间的往返票价相同,不同城市之间往返票价不一样)【答案】28【解析】1、弄清楚题目的意思。

任意两个城市之间的票价是不相同的。

2、今天我们学习的是乘法原理,那么怎么运用呢?首先得分步.3、北京到上海,一个共有多少个大站?8个。

4、我们可以这么分步——第一步确定起点站;第二步确定终点站。

那么第一步就有8个选择;第二步就有7个选择了。

第一问:那么就是8×7=56第二问:有多少种票价呢?车票有56种,它里面包含的是每两个城市之间是两种票,但是价格却是一种的。

那么票价就是56÷2=28【知识点】乘法原理【适用场合】当堂例题【难度系数】2【试题来源】【题目】奥运吉祥物中有5个福娃,分别是贝贝、晶晶、欢欢、迎迎、妮妮。

如果在个盒子里从左向右放5个不同的福娃,那么有几种不同的排法?【答案】120【解析】排5个娃娃,分5步。

第一步确定最左边的位置;第二步是确定第二个位置。

第五步确定第五个位置。

注意:前一个选择结果对后面可供选择项的影响。

【知识点】乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?【答案】6【解析】涂三块毫无疑问是分成三步。

第一步,涂A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了。

然后再根据乘法原理。

【知识点】乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】有数字1、2、3可以组成多少个数字可以重复的两位数?多少个没有重复数字的两位数?【答案】9 6【解析】可以重复的两位数第一步先选十位上有3种方法,再选个位上有3中方法,有乘法原理一共有9种方法,除开11,22,33,还有6种是没有重复数字的两位数。

【知识点】乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】0个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?【答案】60【解析】两人相邻的情况有10种,第三个人不能与他们相邻,所以对于每一种来说,只剩6个人可选,10×6=60(种)共有60种不同的选法【知识点】乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,一张地图上有五个国家A,B,C,D,E,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?【答案】96【解析】第一步,给A国上色,可以任选颜色,有四种选择;第二步,给B国上色,B国不能使用A国的颜色,有三种选择;第三步,给C国上色,C国与B,C两国相邻,所以不能使用A,B国的颜色,只有两种选择;第四步,给D国上色,D国与B,C两国相邻,因此也只有两种选择;第五步,给E国上色,E国与C,D两国相邻,有两种选择.共有4×3×2×2×2=96种着色方法.【知识点】乘法原理【适用场合】当堂例题【难度系数】2【试题来源】【题目】用1,2,3这三个数字可以组成多少个不同的三位数.如果按从小到大的顺序排列,213是第个数.【答案】3【解析】排百位、十位、个位依次有3种、2种、1种方法,故一共有3×2×1=6(种)方法,即可以组成6个不同三位数.它们依次为123,132,213,231,312,321.故213是第3个数.【知识点】乘法原理【适用场合】当堂例题【难度系数】3E DC BA【试题来源】【题目】国际象棋棋盘是8×8的方格网,下棋的双方各有16个棋子位于16个区格中,国际象棋中的“车”同中国象棋中的“车”一样都可以将位于同一条横行或竖行的对方棋子吃掉,如果棋局进行到某一时刻,下棋的双方都只剩下一个“车”,那么这两个“车”位置有多少种情况?【答案】3136【解析】对于如果只有一只“车”的情况,它可以有64种摆放位置,如果在棋盘中再加入一个“车”,那么它不能在原来那个“车”的同行或同列出现,他只能出现在其他七行七列,所以它只有7×7=49中摆放,所以这两个“车”的摆放位置有64×49=3136种方法.【知识点】乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】9、8、7、6、5、4、3、2、1、0这10个数字中划去7个数字,一共有多少种方法?【答案】120【解析】相当于在10个数字选出7个划去,一共有10×9×8×7×6×5×4÷(7×6×5×4×3×2×1)=10×9×8÷(3×2×1)=120种.【知识点】乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】三位数中,百位数比十位数大,十位数比个位数大的数有多少个?【答案】120【解析】相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种。

实际上,前铺中每一种划法都对应着一个数.【知识点】乘法原理【适用场合】当堂例题【难度系数】3习题演练【试题来源】【题目】小霞有许多套的服装,帽子的数量5顶、衣服有10件和裤子有8条还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?【答案】2880【解析】2880【知识点】乘法原理【适用场合】随堂课后练习【难度系数】1【试题来源】【题目】.“maths”是在英语中表示数学,把这5个字母用5种颜色来写,要求各字母各不相同问共有多少种不同的写法?【答案】120【解析】120【知识点】乘法原理【适用场合】随堂课后练习【难度系数】2【试题来源】【题目】右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?【答案】80【解析】80【知识点】乘法原理【适用场合】随堂课后练习【难度系数】2【试题来源】【题目】4男2女6个人站成一排合影留念,要求2个女的紧挨着有多少种不同的排法?【答案】240【解析】240【知识点】乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】从地面到七楼,每层都有楼梯,但电梯只停底楼、四楼、五楼、六楼、七楼,二楼、三楼不停,那么从底楼上七楼有几种方式?【答案】16【解析】16【知识点】乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】有一种用六位数表示日期的方法,如:890817表示的是1989年8月17日,也就是从左到右第一、二位数表示年,第三、四位数表示月,第五、六位数表示日.如果用这种方法表示1991年的日期,那么全年中六个数字都不相同的日期共有多少天?【答案】30【解析】30【知识点】乘法原理【适用场合】随堂课后练习【难度系数】5。

相关文档
最新文档