高中数学《函数的概念》公开课优秀教学设计新版
高中数学《函数的概念》公开课优秀教学设计三

⾼中数学《函数的概念》公开课优秀教学设计三1.2.1函数的概念教学设计⼀、教材分析:本节内容为《1.2.1函数的概念》,是⼈教A版⾼中《数学》必修⼀《1.2函数及其表⽰》的第⼀课.函数是中学数学最重要的基本概念之⼀,在初中,学⽣已经学习过函数的概念,它是从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念⼏乎等同于解析式.后来,⼈们逐渐意识到定义域与值域的重要性,⽽要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了⼀定的限制.如果只根据变量观点,那么有些函数就很难进⾏深⼊研究.例如:1,当X是有理数时,f(X)=」P,当X是⽆理数时.对这个函数,如果⽤变量观点来解释,会显得⼗分勉强,也说不出X的物理意义是什么?但⽤集合、对应的观点来解释,就⼗分⾃然?函数思想也是整个⾼中数学最重要的数学思想之⼀,⽽函数概念是函数思想的基础,它不仅对前⾯学习的集合作了巩固和发展,⽽且它是学好后继知识的基础和⼯具.函数与代数式、⽅程、不等式、数列、三⾓函数、解析⼏何、导数等内容的联系也⾮常密切,函数的基础知识在现实⽣活、社会、经济及其他学科中有着⼴泛的应⽤.本节课⽤集合与对应的语⾔进⼀步描述函数的概念,让学⽣感受建⽴函数模型的过程和⽅法.⼆、学情分析:在学习⽤集合与对应的语⾔刻画函数之前,学⽣已经会把函数看成变量之间的依赖关系,同时,虽然函数⽐较抽象,但是函数现象⼤量存在于学⽣的周围,教科书选⽤了运动、⾃然界、经济⽣活中的实际例⼦进⾏分析,从实例中抽象概括出⽤集合与对应的语⾔来定义函数概念,对学⽣的抽象、归纳能⼒要求⽐较⾼,能很好的锻炼学⽣的抽象思维能⼒以及加深对函数概念的理解三、教学⽬标:(⼀)知识与技能理解函数的定义,能⽤集合与对应的语⾔来刻画函数,体会对应关系在刻画函数概念中的作⽤;了解构成函数的三要素.(⼆)过程与⽅法通过三个实例共性的分析到函数概念的形成,再对三个实例进⾏拓展,让学⽣对函数概念进⾏辨析,体现从特殊到⼀般,再从⼀般到特殊的思想⽅法,渗透了归纳推理,实现了感性认识到理性认识的升华.(三)情感、态度与价值观通过从实际问题中抽象概括函数的概念,培养学⽣的抽象概括能⼒,体会函数是描述变量之间依赖关系的重要数学模型,在此基础上学会⽤集合与对应的语⾔来刻画函数,感受数学的抽象性和简洁美.四、教学重点与难点:(⼀)教学重点体会函数是描述变量之间的依赖关系的重要数学模型,并能⽤集合与对应的语⾔来刻画函数(⼆)教学难点函数概念的理解及符号“ y⼆f (X)”的含义.五、教学策略:⾸先,通过魔术表演,体现函数在实际⽣活中的运⽤,激发学⽣进⼀步学习函数的积极性;其次,在学⽣习惯⽤解析式表⽰函数的基础上借助教科书实例,从解析法、图象法、列表法等不同的⽅式,结合函数的数与形两个⽅⾯给学⽣充分的认识,为学⽣⽤集合与对应的语⾔刻画函数打下感性基础;再次,分析讲解函数概念中的关键点时,对于对应关系f、函数关系中多对⼀的情况、值域是集合B的⼦集等较为抽象问题的理解采取放乒乓球的实验,让抽象问题具体化;最后,通过对三个实例进⾏拓展让学⽣抛开物理运动背景,⽤集合与对应的语⾔来分析函数并强调函数关系中对应关系的⽅向.六、教学基本流程:七、教学情景设计:教学流程教学内容设计意图探索新知研讨探究:分析、归纳三个实例中,变量之间关系的共同点概括出函数的定义师⽣活动师:让学⽣分组讨论三个实例中,变量之间关系的共同点? ⽣:概括出三个实例中,变量之间关系的共同点四、新课讲解⼀般地,设A, B是⾮空的数集,如果按照某种确定的对应关系f,使对于集合A中任意⼀个数X,在集合B中都有唯⼀确定的数f(x)和它对应,那么就称f : A》B为从集合A到集合B的⼀个函数,记作y = f (x), x A.其中,x叫做⾃变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)x?A}通过集合与对应的语⾔来刻画初中已学函数,使学⽣加深理解函数的本质及构成函数的基本要素.师:强调、分析概念中的关键点.①A,B是⾮空的数集;②对应关系f可以通过解析式、图象、列表来表⽰;③任意、存在、唯⼀;④符号“ y = f(x)”的含义;⑤函数三要素:定义域A、值域、对应关系.五、实验操作叫做函数的值域.动⼀动:请将A盒⼦中的所有乒乓球放⼊B盒⼦中.思考:A中的乒乓球和 B 中的格⼦都标有数字,可以把A,B看成两个⾮空数集,那么每⼀种放法是从A到B的⼀个函数吗?若是,它的值域是什么?通过放乒乓球的实验,将函数概念中:①对应关系f ;②函数关系中多对⼀的情况;③值域是集合B的⼦集.等较为抽象的问题题具体化,⽣活化.师:启发学⽣思考每⼀种⽅法实质就是⼀个对应关系,通过对应关系,可以出现多对⼀,但不可⼀对多,同时,通过实验结果理解值域是集合B的⼀个⼦集.⽣:⼩组合作讨论每⼀种放法是否为从集合A到集合B的⼀个函数.若是,则求它的值域.师:强调初、⾼中对函数定义本质是⼀样的,只是出发点不同,⽤集合与对应的语⾔来描述函数可以摆脱物理运动的束缚.1.2.1本节课教学⽬标是:正确理解函数的概念,能⽤集合与对应的语⾔刻画函数。
《函数的概念》教学教案

《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。
2. 掌握函数的表示方法,包括列表法、图象法、解析式法。
3. 能够判断两个变量之间的关系是否为函数。
4. 理解函数的性质,如单调性、奇偶性等。
二、教学内容1. 函数的定义及概念。
2. 函数的表示方法:列表法、图象法、解析式法。
3. 判断两个变量之间的关系是否为函数。
4. 函数的性质:单调性、奇偶性。
三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。
2. 教学难点:函数的性质的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。
2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。
3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。
2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。
3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。
4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。
5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。
6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
7. 总结本节课的主要内容,布置课后作业,巩固所学知识。
六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。
2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。
3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。
七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。
2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。
3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。
八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。
高中数学《函数的概念》公开课优秀教学设计三

课堂活动
01 02
分组讨论
学生分组讨论与函数相关的实际问题,如“如何描述一个物体的运动规 律?”、“如何用函数表示一个经济现象?”等,培养学生的应用意识 和合作能力。
互动问答
老师提出问题,学生抢答或小组讨论后回答,检验学生对新课内容的掌 握情况。
03
课堂练习
学生完成与新课内容相关的练习题,巩固所学知识。
3
关注学生需求
教师需要关注学生的需求和发展,根据学生的特 点和需求调整自己的教学方式和内容。
提高自身专业素养和教育教学能力
提高学科知识水平
教师需要不断深化自己的学科知识,掌握学科前沿动态,以便更 好地指导学生。
增强教育教学能力
教师需要提高自己的教学设计能力、课堂管理能力、教学评价能力 等,以确保教学质量。
高中数学《函数的概 念》公开课优秀教学
设计三
目录
• 课程介绍与背景 • 教学内容与方法 • 教学过程设计 • 学生学情分析与应对策略 • 教学评价与反馈 • 教师专业素养提升与未来发展
01
课程介绍与背景
高中数学课程目标
01 知识与技能
掌握函数的基本概念和性质,理解函数的表示方 法,能够运用函数知识解决实际问题。
教师互评
邀请其他数学教师观摩课堂,并提供专业的评价和建议,以促进 教学水平的提高。
教学反思
教师应对自身的教学过程进行深入反思,总结成功经验和不足之 处,为改进教学方案提供依据。
调整和改进教学方案
01 针对学生反馈和测试结果,对教学内容进行适当 调整,强化重点和难点部分的讲解和练习。
02 根据学生的学习需求和兴趣,引入更多实际应用 的例子和探究性问题,激发学生的学习兴趣和积 极性。
高中数学《函数的概念》教学设计

目录
• 课程背景与目标 • 函数概念引入 • 函数图像与性质 • 函数运算与变换 • 函数应用举例 • 课程总结与拓展
01
课程背景与目标
课程背景
01
函数是数学中的重要概念,贯穿整个数学体系,是连接 初、高中数学的桥梁。
02
在现代社会中,函数的应用广泛,涉及到经济、科技、 工程等多个领域。
y = a^x (a > 0, a ≠ 1) ,其图像是一条指数曲 线,具有单调性、无界 性等性质。
y = log_a(x) (a > 0, a ≠ 1),其图像是一条对 数曲线,具有单调性、 无界性等性质。
如y = sin(x)、y = cos(x)等,其图像是周 期性的波形曲线,具有 周期性、有界性等性质 。
函数的表示方法
解析法、列表法和图象法。其中解析法是用数学表达式表示 两个变量之间的对应关系;列表法是通过列出表格来表示两 个变量之间的对应关系;图象法是用图象来表示两个变量之 间的对应关系。
函数性质探讨
函数的单调性
当自变量x增大时,函数值f(x)随 着增大(或减小),则称该函数 在此区间内为增函数(或减函数
伸缩变换
对称变换
了解函数图像的对称性质,掌握关于坐标轴 对称和关于原点对称的变换规律。
掌握函数图像沿坐标轴伸缩的变换规律,理 解伸缩变换对函数解析式的影响。
02
01
翻折变换
了解函数图像的翻折性质,掌握关于坐标轴 翻折的变换规律。
04
03
05
函数应用举例
实际问题中的函数模型建立
经济学中的函数模型
01
学生自我评价报告
知识掌握情况
通过自我检测,评估自己对函数概念及相关知识点的掌握情况,找 出薄弱环节,以便后续针对性复习。
高中数学函数概念优秀教案

高中数学函数概念优秀教案教学目标:1. 了解函数的定义及特点;2. 掌握函数的表示方法;3. 能够通过实例识别函数;4. 能够解决与函数相关的简单问题。
教学重点:1. 函数的定义;2. 函数的表示方法;3. 函数的特点。
教学内容:一、函数的定义函数是指一种对应关系,对于集合A的每一个元素,都有唯一确定的集合B中的元素与之对应。
数学上通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
二、函数的表示方法1. 函数表达式:通常以代数式的形式表示,如y = 2x + 1;2. 函数图像:以坐标平面上的曲线或直线表示函数。
三、函数的特点1. 自变量与因变量的对应关系是一一对应的;2. 域:自变量的取值范围称为函数的定义域;3. 值域:因变量的取值范围称为函数的值域。
教学过程:一、引入概念1. 引用一个生活中的实例,让学生思考其中的对应关系是否符合函数的定义;2. 引导学生从实例中了解函数的概念。
二、讲解函数的定义及表示方法1. 老师用简单的数学表达式示范函数的表示方法;2. 通过幻灯片展示函数的图像,让学生感受函数的几何意义。
三、讲解函数的特点1. 域和值域的概念及其重要性;2. 通过实例演示函数的一一对应关系。
四、综合练习1. 学生完成一些简单的函数的表示和对应的值的计算;2. 带领学生用学到的知识解决一些实际问题。
五、总结1. 整理函数的定义、表示方法和特点,让学生进行总结;2. 引导学生思考函数在实际生活中的应用。
教学反馈:1. 学生进行简答题和计算题的练习,检查学生对函数概念的掌握情况;2. 结合学生的表现给予针对性的指导和反馈。
教学延伸:1. 学生可以进一步了解复合函数、反函数等相关知识;2. 开展更多实例分析和求解问题,提高学生对函数的理解和应用能力。
教学资源:1. 教科书资料;2. 幻灯片展示;3. 实例分析题。
教学评价:1. 老师根据学生对函数概念的理解程度,进行及时评价和反馈;2. 学生通过练习题和作业巩固所学知识,检验教学效果。
函数的概念优秀教学设计

函数的概念优秀教学设计函数是数学中的一个概念,它描述了一种特定的关系,将一个或多个自变量的取值映射到相应的因变量的取值。
函数通常用符号表示,例如f(x)=x^2,其中f(x)表示函数名,x表示自变量,x^2表示函数对自变量x的运算。
通过函数的定义,我们可以通过给定自变量的值来计算出相应的因变量的值。
在教学设计中,理解函数的概念和应用是非常重要的,因为函数是数学学科中的核心概念之一、在初中数学中,学生开始学习函数的基本概念和性质,例如定义域、值域、单调性、奇偶性等,并学习如何通过图像和方程式来描述函数。
进一步地,在高中数学中,学生将学习更加复杂的函数,例如指数函数、对数函数、三角函数以及其他特殊函数。
在教学设计中,以下是一些优秀的教学策略和活动,可以帮助学生更好地理解和应用函数的概念。
1.概念引入活动:引入函数的概念可以通过与学生日常生活相关的例子来进行,例如温度与时间的关系、距离与速度的关系等。
通过这些例子,学生可以探索其中存在的规律,并引导学生将这种规律转化为函数的表达式。
2.反问题解决活动:在教学中,教师可以提出一个问题,要求学生寻找一个特定的函数,满足给定的条件。
这种活动可以激发学生的思考和研究能力,帮助学生理解函数的多样性和灵活性。
3.图像展示活动:通过使用计算机或投影仪,展示各种函数的图像可以帮助学生更直观地理解函数的性质和特点。
教师可以让学生观察和比较不同函数的图像,解释图像上的特点与函数的关系。
4.探究性学习:教师可以给学生一些函数的简单表达式,并要求他们通过改变一些参数来观察函数的变化。
学生可以通过此过程来寻找函数的规律和性质,并进一步推广到其他类型的函数中。
5.制作折线图:通过要求学生制作一些与函数相关的折线图,可以帮助学生理解函数的定义和关系。
学生可以使用纸和铅笔或计算机工具来制作这些折线图,并通过折线图来描述和分析函数的特点。
6.探讨实际问题:教师可以提出一些实际问题,要求学生建立相应的函数模型来解决问题。
高中数学优质课《函数的概念》教学设计共4套

分析函数关系
学生分析实际问题中的函数关系, 如速度与时间的关系、成本与产量 的关系等,提高运用函数知识解决 实际问题的能力。
函数运算实践
学生进行函数运算实践,如函数的 四则运算、复合运算等,通过具体 操作加深对函数运算规则的理解。
展示评价:展示成果,互相学习
学生成果展示
学生展示自己的学习成果,如绘 制的函数图像、分析的实际问题 等,通过互相观摩和学习,拓宽
高中数学优质课《函数的概 念》教学设计共4套
目录
• 课程背景与目标 • 教学内容与方法 • 教学过程设计 • 学生活动设计 • 教学评价与反馈 • 教学资源与开发
01
课程背景与目标
高中数学课程标准要求
了解函数的有界性、单调性、周期 性和奇偶性等性质,理解复合函数 及分段函数的概念,了解反函数及 隐函数的概念。
分享生活中的函数实例
02
学生分享生活中与函数相关的实例,将抽象的数学概念与实际
生活相联系,提高学习兴趣。
探讨函数性质
03
学生探讨函数的性质,如单调性、奇偶性等,通过对比分析不
同函数的性质,加深对函数性质的理解。
动手实践:操作练习,巩固知识
绘制函数图像
学生动手绘制不同函数的图像, 通过观察图像的变化趋势和特征,
提问与回答 鼓励学生提出问题,并对学生的问题进行及时回 应和解答,通过学生的提问和回答情况来评价学 生的理解程度。
随堂测试 通过简短的随堂测试,了解学生对本节课内容的 掌握情况,及时发现学生的学习困难。
及时收集反馈信息,调整教学策略
01
02
03
学生反馈
在课后向学生收集对本节 课的反馈意见,包括教学 内容、教学方法、教学进 度等方面的意见和建议。
函数概念教案

函数概念教案《函数的概念》教案篇一教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2略.问题3略(详见23页).2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合a到b的函数:(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;(3)a={1,2,3,4,5},b=n,f:x→2x.练习:判断下列对应是否为函数:(1)x→2x,x≠0,x∈r;(2)x→,这里2=x,x∈n,∈r。
高中数学《函数的概念》公开课优秀教学设计

函数的概念教学设计教学内容分析函数的概念是数学中最重要的概念之一,其本质是从一个非空数集到另一个非空数集的特殊对应,它揭示了现实世界中数量关系之间相互依存和变化的实质,是描述客观世界中变量间依赖关系的数学模型。
本节课在高中数学中有着承上启下的作用,从初中运动观下的函数定义出发,过渡到使用集合语言描述了更为确切的函数定义,本节课渗透的函数思想将被应用到数学的各个分支领域。
本课的教学重点是:理解函数的概念,教学难点是:函数概念及对符号的理解。
教学目标设置知识与能力:理解函数的集合观定义,并会使用符号表示;理解函数符号;会求一些简单函数的定义域,理解对应法则;使学生提高抽象概括、分析总结、数学表达等基本数学能力。
过程与方法:创设情境,使学生经历从具体函数实例和运动观定义去解析函数的基础上,理解函数的集合观定义,进而理解法则,培养学生类比与联想的学习能力。
情感、态度和价值观:学生亲身经历了由特殊到一般的研究过程,培养了学生质疑、探究的科学精神,也培养学生唯物主义观点。
学生学情分析教学对象:市重点高中学生。
学生对函数概念并不陌生,初中的函数概念教会学生认识变量间的依存关系,并且掌握了一次函数、二次函数和反比例函数的基本性质,已经基本具备建模的能力。
学生思维普遍活跃,善于表达,善于发现问题,乐于和教师交流分享他们的解题心得。
但高一学生的抽象概括能力较弱,由实例到抽象的数学语言,需要教师的引领。
教学策略分析在短短的45分钟要让学生经历函数定义发展史上100年的探究历程,学生不可能独立完成,这需要教师用材料铺好一条路,要了解学情并对学生的疑问做好预设,难度大的地方搭好梯子,本节课以“学生为主体,教师引导”教学原则来设计,着重解决了学生的几个疑问。
1、怎么从初中概念出发得到高中函数概念?学生的抽象概括能力还很薄弱,这使得用集合语言刻画函数概念很有难度,如果直接归纳定义学生会失去刚刚燃起的探究欲望,所以我选择从生活中的三个实例入手,用问题串引领学生完成实例的分析,在分析过程中,重点让学生体会每个例子的“变化过程”就是对应法则,初中定义的”某一区间”用集合语言描述就是定义域A,自然过渡到集合语言描述函数概念。
《函数的概念》教学教案

《函数的概念》教学教案一、教学目标1. 知识与技能:(1)理解函数的定义及其基本性质;(2)能够正确运用函数的概念解决实际问题。
2. 过程与方法:(1)通过实例分析,引导学生掌握函数的定义;(2)利用数形结合,让学生理解函数的性质。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)函数的定义及其基本性质;(2)函数图像的特点。
2. 教学难点:(1)函数概念的理解;(2)函数图像的解读。
三、教学方法1. 情境导入:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。
2. 讲授法:(1)讲解函数的定义及基本性质;(2)分析函数图像的特点,引导学生理解函数的概念。
3. 讨论法:(1)分组讨论函数实例,让学生深入理解函数的概念;(2)组织学生展示讨论成果,促进学生之间的交流。
4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。
四、教学过程1. 导入新课:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。
2. 讲解函数的定义及基本性质:(1)讲解函数的定义,让学生理解函数的概念;(2)介绍函数的基本性质,如单调性、奇偶性等。
3. 分析函数图像的特点:(1)让学生观察函数图像,理解函数的性质;(2)引导学生学会解读函数图像,掌握函数图像的特点。
4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。
5. 课堂小结:(2)强调函数在实际问题中的应用价值。
五、课后作业1. 复习本节课所学内容,整理函数的定义及基本性质;2. 运用函数概念,解决实际问题;3. 观察函数图像,分析函数的单调性、奇偶性等性质。
《函数的概念》教学设计

《函数的概念》教学设计一、教学目标:1.理解函数的概念,能够区分函数和非函数关系;2.掌握函数的表示方法,包括用方程、图像、表格等形式表示函数;3.能够根据函数的定义和表示方法,对函数进行分析和运用;4.培养学生独立解决问题的能力,培养学生数学思维。
二、教学重点:1.函数的定义和性质;2.函数的表示方法;3.函数的应用。
三、教学难点:1.区分函数和非函数的关系;2.基本函数的性质和应用。
四、教学过程:1.导入(5分钟)教师简要介绍函数的概念,引导学生思考日常生活中的各种关系,例如温度和时间的关系、距离和时间的关系等,并让学生探讨这些关系是否符合函数的定义。
2.探究函数的定义(15分钟)通过实际例子引导学生了解函数的定义,即每个自变量对应唯一的因变量。
让学生在小组内互相讨论、设计实验验证函数的定义,并总结出符合函数定义的例子。
3.函数的表示方法(20分钟)教师介绍函数的表示方法,包括函数方程、图像和表格等形式。
通过示例讲解,引导学生学会用这些表示方法来描述函数的特点和性质。
让学生自行练习,将给定的函数用不同的表示方法表示出来。
4.函数的性质(20分钟)教师讲解函数的基本性质,包括定义域、值域、奇偶性、单调性等。
通过例题演练,帮助学生理解这些性质的含义和作用,并能灵活运用到具体问题中。
5.函数的应用(20分钟)教师介绍函数在实际生活中的应用,例如成本函数、收入函数、利润函数等。
通过实例分析,让学生了解函数在解决实际问题中的重要性,并培养学生应用函数分析问题的能力。
6.练习与讨论(15分钟)学生进行一些练习题,巩固所学知识,并在小组内讨论解答过程中遇到的问题。
教师进行点拨和解答,指导学生掌握函数的相关知识。
7.总结与展望(5分钟)教师对本节课的内容进行总结,强调函数的重要性和应用价值。
展望下节课的内容,引导学生继续深入学习函数的更多性质和应用。
五、教学反思:本节课通过引导学生探究函数的定义、性质和表示方法,让学生初步了解函数的基本概念。
高中数学《函数的概念》公开课优秀教学设计三

高中数学《函数的概念》公开课优秀教学设计三教学内容:本节课的教学内容选自高中数学教材必修一第二章第一节《函数的概念》。
具体内容包括:函数的定义、函数的表示方法、函数的性质等。
教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 能够运用函数的性质解决实际问题。
3. 培养学生的逻辑思维能力和创新能力。
教学难点与重点:重点:函数的定义,函数的表示方法,函数的性质。
难点:函数概念的理解,函数性质的应用。
教具与学具准备:教具:多媒体教学设备,黑板,粉笔。
学具:教材,笔记本,铅笔。
教学过程:一、情境引入(5分钟)教师通过展示一些生活中的实际问题,如温度随时间的变化,物体的高度随时间的变化等,引导学生思考这些问题的数学模型。
二、新课导入(10分钟)1. 教师引导学生思考如何用数学语言来描述这些实际问题中的关系。
2. 教师给出函数的定义,并解释函数的概念。
3. 教师讲解函数的表示方法,包括列表法、图象法、解析法等。
三、例题讲解(10分钟)教师通过讲解一些典型的例题,让学生理解函数的性质,并学会如何运用函数的性质解决实际问题。
四、随堂练习(5分钟)教师给出一些练习题,让学生现场解答,以巩固所学知识。
五、课堂小结(5分钟)六、板书设计(5分钟)教师根据教学内容设计板书,突出函数的定义、表示方法和性质。
作业设计:1. 请用列表法、图象法、解析法各表示一个函数。
答案:列表法:y = 2x图象法:过原点,斜率为2的直线解析法:y = f(x) = 2x2. 请解释下列函数的定义域和值域:y = √(x+1),y = |x|。
答案:y = √(x+1)的定义域为x≥1,值域为y≥0。
y = |x|的定义域为全体实数,值域为y≥0。
课后反思及拓展延伸:本节课通过生活中的实际问题引入函数的概念,让学生能够更好地理解函数的内涵。
在讲解函数的表示方法时,通过多种方法的展示,让学生能够全面地了解函数的表示方式。
在讲解函数的性质时,通过典型的例题让学生掌握如何运用函数的性质解决实际问题。
高中数学-《函数的概念》教案、教学设计

《函数的概念》教案、教学设计一、教学目标理解函数的概念,掌握用集合与对应的语言刻画函数。
在探究函数概念的过程中,增强观察、思考和解决问题的能力,感知函数在实际生活中的应用,体会对应关系在刻画函数概念中的作用。
二、教学重难点【重点】理解函数概念。
【难点】用集合与对应语言刻画函数。
三、教学方法讲授法、问题情境设置法、组织讨论法四、教学过程环节一:导入新课回顾初中学习的函数概念。
学生回答:设在一个变化过程中有两个变量x与y,对于x的每一个值,y都有唯一确定的值与它对应,则称x是自变量,y是x的函数。
教师继续追问:高中研究的函数概念与初中有何不同。
环节二:新课讲授(一)探究函数概念大屏呈现第一个实例,请学生在导学案中画出的图象,提出问题:1、时间t的变化范围是多少;高度h的变化范围是多少?2、100s所对应的高度是多少?3、如何才能真实反映炮弹的发射过程?请同桌两人相互讨论,得出答案。
教师说明:对于数集A中的任意一个时间t,按照对应关系,在数集B中都有唯一确定的高度h和它对应。
大屏展示实例2、3。
引导学生思考在对应关系呈现上三个实例有什么不同,有什么相同的特征。
请前后四人为以小组进行讨论,时间为5分钟,讨论结束后,请小组代表发言。
学生观察后得出例1是用解析式刻画变量间的对应关系,例2是用图象刻画变量间的对应关系,例3是用表格刻画变量之间的关系。
第二问共同点为:1、都有两个非空数集A、B2、两个数集之间都有一种确定的对应关系。
教师引导学生探究函数能否看作是两个集合之间的一种对应关系,如何重新定义函数。
师生共同归纳总结函数的概念。
强调函数的三要素为定义域、对应关系和值域。
(二)深化函数概念教师提出问题:初中学过哪些函数,它们的定义域、值域,对应法则分别是什么?引导学生画图,结合图象观察。
教师大屏幕展示正确答案,请同桌互相批改订正。
环节三:巩固提升展示四个图象,判断是否为函数。
师生共同总结判断方法,观察自变量x是否有唯一的函数值y与之对应。
高中数学《函数的概念》公开课优秀教学设计一

《函数的概念》教学设计一、教材内容分析“函数”是中学数学的核心概念。
函数贯穿于整个高中数学的教学中,是整个高中数学的主题内容。
学生在初中已经学习过函数的概念。
初中函数的概念是:一般地,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
如果当a x =时b y =,那么b 叫做当自变量的值为a 时的函数值。
这个定义把函数看成是两个变量之间的依赖关系。
根据这个观点,有些函数很难进行深入研究。
例如1=y ,对于这个函数,如果用变量观点来解释,会显得特别勉强。
但用高中集合、对应的观点来解释就十分自然。
在高一,学生需要建立的函数概念是:设B A ,是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作.),(A x x f y ∈=其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。
实际上,初中的函数概念和高中的函数概念本质上是一样的。
只是高中的函数概念更具有一般性,高中用集合、对应的语言描述函数概念,在初中虽然没有提及,但事实上是客观存在的,学生在解决具体问题的过程中也渗透了集合与对应的观点。
不同之处在于初中没有明确强调“确定的对应关系”,或者所接触的函数多数是有解析式的,而高中引入了用“f ”表示对应关系,用)(x f 表示集合B 中与x 对应的那个数。
在函数的概念教学中,我认为需要注意以下几点:1、集合A 和集合B 都必须是非空的数集,这与映射是不同的。
2、两个数集之间有确定的对应关系f,即对于数集A中的每一个数x,在集合B中都有唯一确定的y和它相对应。
对于集合A中的数,不能有些在B中有元素跟它对应,而有些没有;而且,在集合B中只能有一个数跟它对应,不能是两个或两个以上。
函数的概念教学设计(全国优质课)

函数的概念教学设计(全国优质课)
二、学情分析
学生在初中已经学习了基于运动学的函数定 义且具备一定运算能力,思维活跃、求知欲强、 自我表现欲望强。
3.理解符号 f ( x ) 的含义,能解释 y f (x)与 y f (a) 的区别与联系。
函数的概念教学设计(全国优质课)
三、教学目标设置
函数定义的形成。通过具体实例的引
重 点 导,借助初中函数定义,探寻集合间的对
应关系,总结函数定义。
难
1.理解函数符号,
点
2.函数概念的整体性认识,
3.理解值域和集合B的关系。
6.对比两种定义,升华提高。
函数的概念教学设计(全国优质课)
五、教学过程设计
环节一:回顾初中定义,提供基础。
1.个别回答
2.总结凝练
复习初中函数定义
总结“对应”和“依赖”特征
函数的概念教学设计(全国优质课)
五、教学过程设计
环节二:实例引导思考,认知冲突。
1.引例一 (代数式)
2.引例二 (图像)
3.引例三 (表格)
引出“集合”、 “对应”
引出 “f”
引出“f(x)”
函数的概念教学设计(全国优质课)
五、教学过程设计
环节三:归纳函数要点,凝练定义。
1.归纳要点
2.凝练定义
总结三个引例的共同
归纳要点,串联得出定义。
特点:集合、对应。
函数的概念教学设计(全国优质课)
五、教学过程设计
环节四:提供正反辨析,深化认知。
高一数学教案:函数的概念4篇

高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。
教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。
教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。
步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。
步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。
步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。
步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。
步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。
教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。
教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。
在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。
在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。
高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。
高中数学必修一 《3 1 函数的概念及其表示》优秀教案教学设计

【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
《函数的概念》教学设计

《函数的概念》教学设计第一篇:《函数的概念》教学设计《函数的概念》教学设计教材分析:函数作为初等数学的核心内容,贯穿于整个初等数学体系之中函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段对函数的概念加入“对应”,这一章内容渗透了函数的思想、特殊到一般,数形结合思想,从感性到理性,数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响教学目标:知识与技能:(1)理解函数的概念,;(2)能够正确使用“区间”的符号表示某些集合。
2过程与方法:通过学生自身对实际问题分析、抽象与概括,培养了抽象、概括、归纳知识以及建模等方面的能力;3情感与价值观:以熟知的生活实例引入,激发了学习数学的兴趣,增强其数学应用意识、创新意识。
相互合作学习,增强其合作意识体会合作学习的重要性。
教法:启发探究为主,讨论法为辅学法:观察分析、自主探究、合作交流教学重点:理解函数的实际背景,用集合与对应的语言来刻画函数教学难点:理解函数的实际背景,用集合与对应的语言来刻画函数教学过程:一、复习引入:.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x和,对于x的每一个值,都有唯一确定的值与之对应,此时是x的函数,x是自变量,是因变量。
表示方法有:解析法、列表法、图象法二、概念情景引入:思考1:(本P1)给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为84米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见本P1图).国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念教学设计
教学内容分析
函数的概念是数学中最重要的概念之一,其本质是从一个非空数集到另一个非空数集的特殊对应,它揭示了现实世界中数量关系之间相互依存和变化的实质,是描述客观世界中变量间依赖关系的数学模型。
本节课在高中数学中有着承上启下的作用,从初中运动观下的函数定义出发,过渡到使用集合语言描述了更为确切的函数定义,本节课渗透的函数思想将被应用到数学的各个分支领域。
本课的教学重点是:理解函数的概念,教学难点是:函数概念及对符号的理解。
教学目标设置
知识与能力:理解函数的集合观定义,并会使用符号表示;理解函数符号;会求一些简单函数的定义域,理解对应法则;使学生提高抽象概括、分析总结、数学表达等基本数学能力。
过程与方法:创设情境,使学生经历从具体函数实例和运动观定义去解析函数的基础上,理解函数的集合观定义,进而理解法则,培养学生类比与联想的学习能力。
情感、态度和价值观:学生亲身经历了由特殊到一般的研究过程,培养了学生质疑、探究的科学精神,也培养学生唯物主义观点。
学生学情分析
教学对象:市重点高中学生。
学生对函数概念并不陌生,初中的函数概念教会学生认识变量间的依存关系,并且掌握了一次函数、二次函数和反比例函数的基本性质,已经基本具备建模的能力。
学生思维普遍活跃,善于表达,善于发现问题,乐于和教师交流分享他们的解题心得。
但高一学生的抽象概括能力较弱,由实例到抽象的数学语言,需要教师的引领。
教学策略分析
在短短的45分钟要让学生经历函数定义发展史上100年的探究历程,学生不可能独立完成,这需要教师用材料铺好一条路,要了解学情并对学生的疑问做好预设,难度大的地方搭好梯子,本节课以“学生为主体,教师引导”教学原则来设计,着重解决了学生的几个疑问。
1、怎么从初中概念出发得到高中函数概念?
学生的抽象概括能力还很薄弱,这使得用集合语言刻画函数概念很有难度,如果直接归纳定义学生会失去刚刚燃起的探究欲望,所以我选择从生活中的三个实例入手,用问题串引领学生完成实例的分析,在分析过程中,重点让学生体会每个例子的“变化过程”就是对应法则,初中定义的”某一区间”用集合语言描述就是定义域A,自然过渡到集合语言描述函数概念。
师生共同研究得到函数定义;锻炼了学生的语言表达及思辨能力,让学生感受建立函数模型的过程和方法。
2、对应法则是指什么?
票指数的情况,股票指数是时间的函数吗?
下列图中能表示函数关系的是?
1.判断下列各式中是不是的函数? ; (2)(3).
2.求下列函数的定义域:
3..
.
4.已知函数
(1)求的值;(2)求的值;(3)你从中发现了什么结论?
《函数概念》课例点评
一、理解教材和《课标》,恰当分析学生认知水平,并使三者融合
1、基于学生认知设计教学。
首先创设三个问题情景,引导学生利用初中函数定义判断是否为函数,激起学生对已有知识的回忆与联想,同时也感受到初中定义的局限性,激发学生学习新知的愿望。
教师引导学生用“初中x 在某一确定范围内去理解非空集合A ”,“初中某一变化过程去理解按照一定对应法则f ”,这样处理有利于形成知识的正迁移.
通过学生的“观察分析→比较→归纳→概括”培养学生抽象思维的能力,同时也培养了学生的创新意识。
2、科学设计,突破难点。
本课难点:一是符号)(x f 的理解;二是法则的理解。
教师列举初中“二次函数一般式2y ax bx c =++,)(x f 2ax bx c =++(0a ≠为常数)”及“当1x =求y 的值,1f ()”,让学生感受引入)(x f 的简捷性。
教师用具体事例21()f x x =-的法则为变量的平方加1,函数-1()f x 的变量为1x -等引导学生由具体到抽象理解对应法则,感受到由特殊到一般、具体到抽象的分析问题的方法。
二.充分激发学生学习主动性
关注学生的学习过程,充分利用直观、形象、肢体语言等。
小组合作探究的教学方法,营造了一种轻松愉快、团队合作的学习氛围,让学生在不知不觉中参与了函数概念学习活动中。
本课贵在真实、自然,巧在开放、民主,妙在营造了一个贴近生活,学以致用的数学天地。