算法设计与分析第1章2015
算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6
第一章习题(1-1,1-2,1-3,1-6)1-1 求下列函数的渐进表达式3n2+10n = O(n2)n2/10+2n = O(2n)21+1/n = O(1)logn3 = O(logn)10log3n = O(n)知识点:如果存在正的常数C和自然数N0,使得:当N>=N0时有f(N)<=Cg(N),则称f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)).这时,可以说f(N)的阶不高于g(N)的阶。
1-2 论O(1)和O(2)的区别O(1)和O(2)差别仅在于其中的常数因子,根据渐进上界记号O的定义可知,O(1)=O(2)。
1-3 从低到高排列以下表达式(按渐进阶排列以下表达式)结果:2 logn n2/320n 4n23n n! 分析:当n>=1时,有logn< n2/3当n>=7时,有3n < n!补充:当n>=4时,有logn> n1/31-6 对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=Θ(g(n))。
知识点:f(n)的阶不高于g(n)的阶:f(n)=O(g(n));f(n)的阶不低于g(n)的阶:f(n)=Ω(g(n));f(n)与g(n) 同阶:f(n)=Θ(g(n)) (1)f(n)= logn2 ; g(n)= logn+5f(n)与g(n)同阶,故f(n)=Θ(g(n)) (2) f(n)= logn2 ; g(n)= n1/2当n>=8时,f(n)<=g(n),故f(n)=O(g(n))分析:此类题目不易直接看出阶的高低,可用几个数字代入观察结果。
如依次用n=1, 21, 22, 23, 26, 28, 210 (3) f(n)= n ; g(n)= log2nf(n)=Ω(g(n))(4) f(n)= nlogn+n; g(n)= lognf(n)=Ω(g(n))(5) f(n)= 10 ; g(n)= log10f(n)=Θ(g(n))(6) f(n)= log2n ; g(n)= lognf(n)=Ω(g(n))(7) f(n)= 2n ; g(n)= 100 n2f(n)=Ω(g(n))(8) f(n)= 2n ; g(n)= 3nf(n)=O(g(n))。
算法设计和分析习题答案解析1_6章
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
算法分析与设计概论
9
How to Study Algorithm?
“Sometimes we have experiences, and sometimes not. Therefore, the better way is to learn more."
10
1.1 算法与程序
算法:是满足下述性质的指令序列。
输 入:有零个或多个外部量作为算法的输入。 输 出:算法产生至少一个量作为输出。 确定性:组成算法的每条指令清晰、无歧义。 有限性:算法中每条指令的执行次数有限,执行 每条指令的时间也有限。
1) 第一种解法:
输入:所购买的三种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[ ],m[ ],s[ ] 1. void chicken_question(int n,int &k,int g[ ],int m[ ],int s[ ]) 2. { int a,b,c; 4. k = 0; 5. for (a=0;a<=n;a++) 6. for (b=0;b<=n;b++) 7. for (c=0;c<=n;c++) { 8. if ((a+b+c==n)&&(5*a+3*b+c/3==n)&&(c%3==0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. }}}
矩阵。
数组 T:表示售货员的路线,依次存放旅行路线中的城 市编号。
售货员的每一条路线,对应于城市编号的一个排列。
n 个城市共有 n! 个排列,采用穷举法逐一计算每一条路线的费 用,从中找出费用最小的路线,便可求出问题的解。
计算机算法设计与分析第1章算法概述
理论课:1~10周,40学时 周二(5-6)、周五(1-2)
上机: 18学时
期末考试: 闭卷笔试,第 11周
上课点名三次不到者取消考试资格; 迟到或作业缺交,一次扣10分(平时成绩)。
1
教学目的和要求
本课程是计算机类专业的专业基础课程; 通过课程学习和上机实践,对计算机常用算 法有一个较全面的了解,掌握通用算法的一 般设计方法; 学会对算法的时间、空间复杂度分析,掌握 提高算法效率的方法和途径。
24
三、算法复杂性分析
本课程主要对算法的时间复杂性进行分析。
关于算法的复杂性,有两个问题要弄清楚:
(1)用怎样的一个量(指标)来表达一个算法的
复杂性;
(2)对于一个算法,怎样具体计算它的复杂性。
25
1、算法的三种时间复杂性
算法的最坏、最好和平均时间复杂性 (1)最坏情况下的时间复杂性 Tmax(n) = max{ T(I) | size(I)=n } (2)最好情况下的时间复杂性
8
图1.1 算法的概念图
(一)算法的性质
1、算法具有某些特性,如下几条:
(1)输入:有零个或多个外部提供的量作为算
法的输入。
(2)输出:算法产生至少一个量作为输出。这 些输出是和输入有某种特定关系的量。
9
(一)算法的性质
(3)确定性:组成算法的每条指令是清晰,无
歧义的。
(4)有限性(有穷性):算法中每条指令的执
29
2、算法的时间复杂性计算
int search(int A[ ], int m, int c) { int i=1; while( A[i]<c && i<m ) i=i+1; if (A[i]==c) return i; else return 0; }
算法设计与分析-王-第1章-算法设计基础
2)有没有已经解决了的类似问题可供借鉴?
1.4 算法设计的一般过程
在模型建立好了以后,应该依据所选定的模型对问 题重新陈述,并考虑下列问题: (1)模型是否清楚地表达了与问题有关的所有重要
的信息?
(2)模型中是否存在与要求的结果相关的数学量? (3)模型是否正确反映了输入、输出的关系? (4)对这个模型处理起来困难吗?
程序设计研究的四个层次:
算法→方法学→语言→工具
理由2:提高分析问题的能力
算法的形式化→思维的逻辑性、条理性
1.2 算法及其重要特性
一、算法以及算法与程序的区别
例:欧几里德算法——辗转相除法求两个自然数 m 和 n 的最大公约数
m n
欧几里德算法
r
1.2 算法及其重要特性
欧几里德算法
① 输入m 和nห้องสมุดไป่ตู้如果m<n,则m、n互换;
对不合法的输入能作出相适应的反映并进行处理。 (2) 健壮性(robustness): 算法对非法输入的抵抗能力, 即对于错误的输入,算法应能识别并做出处理,而不是 产生错误动作或陷入瘫痪。 (3)可读性:算法容易理解和实现,它有助于人们对算 法的理解、调试和修改。 (4) 时间效率高:运行时间短。 (5) 空间效率高:占用的存储空间尽量少。
算法设计与分析
Design and Analysis of Computer Algorithms
高曙
教材:
算法设计与分析(第二版),清华大学出版社,王红梅, 胡明 编著
参考书目:
Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,机械工 业出版社,2012
算法设计与分析(第2版) 郑宗汉 第1章-1
8
Байду номын сангаас
学习要求
深刻理解每一类算法的思想及其实现
能熟练运用所学知识解决实际问题
培养提高计算思维能力
9
考核方式
Homework and Reading: 20%
Final Exam (Written Test): 80%
10
第1章 算法的基本概念
1.1 引言
1.1.1 算法的定义和特性
c %3 0
(1.1.3)
16
1.1.2 算法的设计和复杂性分析
百鸡问题的穷举法
输入:所购买的3种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[],m[],s[]
1. void chicken_question(int n, int &k, int g[], int m[], int s[]) 2. { 3. int a,b,c; 分析发现:只能买到n/5 4. k = 0; 只公鸡,n/3只母鸡,将 5. for (a = 0; a <= n; a++) { 算法进行改进。 6. for ( b = 0; b <= n; b++) { 7. for (c = 0; c <= n; c++) { 8. if ((a + b + c == n) && (5 * a + 3 * b + c / 3 == n) && (c%3 == 0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. } 14. } 15. } 16. } 17. }
《算法设计与分析》(全)
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
《算法分析与设计》(李春葆版)课后选择题答案与解析
《算法及其分析》课后选择题答案及详解第1 章——概论1.下列关于算法的说法中正确的有()。
Ⅰ.求解某一类问题的算法是唯一的Ⅱ.算法必须在有限步操作之后停止Ⅲ.算法的每一步操作必须是明确的,不能有歧义或含义模糊Ⅳ.算法执行后一定产生确定的结果A.1个B.2个C.3个D.4个2.T(n)表示当输入规模为n时的算法效率,以下算法效率最优的是()。
A.T(n)=T(n-1)+1,T(1)=1B.T(n)=2nC.T(n)= T(n/2)+1,T(1)=1D.T(n)=3nlog2n答案解析:1.答:由于算法具有有穷性、确定性和输出性,因而Ⅱ、Ⅲ、Ⅳ正确,而解决某一类问题的算法不一定是唯一的。
答案为C。
2.答:选项A的时间复杂度为O(n)。
选项B的时间复杂度为O(n)。
选项C 的时间复杂度为O(log2n)。
选项D的时间复杂度为O(nlog2n)。
答案为C。
第3 章─分治法1.分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。
这要求原问题和子问题()。
A.问题规模相同,问题性质相同B.问题规模相同,问题性质不同C.问题规模不同,问题性质相同D.问题规模不同,问题性质不同2.在寻找n个元素中第k小元素问题中,如快速排序算法思想,运用分治算法对n个元素进行划分,如何选择划分基准?下面()答案解释最合理。
A.随机选择一个元素作为划分基准B.取子序列的第一个元素作为划分基准C.用中位数的中位数方法寻找划分基准D.以上皆可行。
但不同方法,算法复杂度上界可能不同3.对于下列二分查找算法,以下正确的是()。
A.intbinarySearch(inta[],intn,int x){intlow=0,high=n-1;while(low<=high){intmid=(low+high)/2;if(x==a[mid])returnmid;if(x>a[mid])low=mid;elsehigh=mid;}return –1;}B.intbinarySearch(inta[],intn,int x) { intlow=0,high=n-1;while(low+1!=high){intmid=(low+high)/2;if(x>=a[mid])low=mid;elsehigh=mid;}if(x==a[low])returnlow;elsereturn –1;}C.intbinarySearch(inta[],intn,intx) { intlow=0,high=n-1;while(low<high-1){intmid=(low+high)/2;if(x<a[mid])high=mid;elselow=mid;}if(x==a[low])returnlow;elsereturn –1;}D.intbinarySearch(inta[],intn,int x) {if(n>0&&x>=a[0]){intlow= 0,high=n-1;while(low<high){intmid=(low+high+1)/2;if(x<a[mid])high=mid-1;elselow=mid;}if(x==a[low])returnlow;}return –1;}答案解析:1.答:C。
计算机算法设计与分析(第4版) 王晓东习题解答
第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。
若f=Ο(g),则必然存在常数c1>0和n0,使得∀n≥n0,有f≤c1*g(n)。
由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。
必要性。
同理,若g=Ω(f),则必然存在c2>0和n0,使得∀n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。
2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得∀n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。
由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。
3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。
证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得∀n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。
4)log(n!)= Θ(nlogn)证明:∙由于log(n!)=∑=n i i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。
∙由于对所有的偶数n 有,log(n!)= ∑=n i i 1log ≥∑=n n i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。
当n ≥4,(nlogn)/2-n/2≥(nlogn)/4,故可得∀n ≥4,log(n!) ≥(nlogn)/4,即log(n!)= Ω(nlogn)。
算法分析与设计习题集整理
算法分析与设计习题集整理算法分析与设计习题集整理第⼀章算法引论⼀、填空题:1、算法运⾏所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂度和空间复杂度。
2、多项式10()m m A n a n a n a =+++ 的上界为O(n m)。
3、算法的基本特征:输⼊、输出、确定性、有限性、可⾏性。
4、如何从两个⽅⾯评价⼀个算法的优劣:时间复杂度、空间复杂度。
5、计算下⾯算法的时间复杂度记为: O(n 3) 。
for(i=1;i<=n;i++)for(j=1;j<=n;j++) {c[i][j]=0; for(k=1;k<=n;k++) c[i][j]= c[i][j]+a[i][k]*b[k][j]; }6、描述算法常⽤的⽅法:⾃然语⾔、伪代码、程序设计语⾔、流程图、盒图、PAD 图。
7、算法设计的基本要求:正确性和可读性。
8、计算下⾯算法的时间复杂度记为: O(n 2) 。
for (i =1;i{ y=y+1; for (j =0;j <=2n ;j++ ) x ++; }9、计算机求解问题的步骤:问题分析、数学模型建⽴、算法设计与选择、算法表⽰、算法分析、算法实现、程序调试、结果整理⽂档编制。
10、算法是指解决问题的⽅法或过程。
⼆、简答题:1、按照时间复杂度从低到⾼排列:O( 4n 2)、O( logn)、O( 3n )、O( 20n)、O( 2)、O( n 2/3), O( n!)应该排在哪⼀位?答:O( 2),O( logn),O( n 2/3),O( 20n),O( 4n 2),O( 3n),O( n!)2、什么是算法?算法的特征有哪些?答:1)算法:指在解决问题时,按照某种机械步骤⼀定可以得到问题结果的处理过程。
通俗讲,算法:就是解决问题的⽅法或过程。
2)特征:1)算法有零个或多个输⼊;2)算法有⼀个或多个输出; 3)确定性;4)有穷性3、给出算法的定义?何谓算法的复杂性?计算下例在最坏情况下的时间复杂性?for(j=1;j<=n;j++) (1)for(i=1;i<=n;i++) (2) {c[i][j]=0; (3) for(k=1;k<=n;k++) (4) c[i][j]= c[i][j]+a[i][k]*b[k][j]; } (5)答:1)定义:指在解决问题时,按照某种机械步骤⼀定可以得到问题结果的处理过程。
大学_计算机算法设计与分析第4版(王晓东著)课后答案下载
计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。
全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。
主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。
书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。
为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。
(陈慧南 第3版)算法设计与分析——第1章课后习题答案
第一章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术
1-4 证明等式 gcd(m,n)=gcd(n mod m, m) 对每对正整数 m 和 n,m>0 都成立。
1-13 写一个递归算法和一个迭代算法计算二项式系数:
#include<stdio.h> int Coef_recursive(int n,int m);//递归算法 int Coef_iteration(int n,int m);//迭代算法 int Factorial(int n);//计算 n 的阶乘 int main() { int n,m;
1-12 试用归纳法证明程序 1-7 的排列产生器算法的正确性。
证明:主函数中,程序调用 perm(a,0,n),实现排列产生器。 ① 当 n=1 时,即数组 a 中仅包含一个元素。函数内 k=0,与(n-1)=0 相等,因此函 数内仅执行 if(k==n-1)下的 for 语句块,且只执行一次。即将 a 数组中的一个元 素输出,实现了对一个元素的全排列。因此当 n=1 时,程序是显然正确的; ② 我们假设程序对于 n=k-1 仍能够满足条件, 将 k-1 个元素的全排列产生并输出; ③ 当 n=k 时,程序执行 else 下语句块的内容。首先执行 swap(a[0],a[0]),然后执 行 Perm(a,1,n),根据假设②可知,该语句能够产生以 a[0]为第一个元素,余下 (k-1)个元素的全排列; 然后再次执行 swap(a[0],a[0]), 并进行下一次循环。 此时 i=1, 即在本次循环中, 先执行 swap(a[0],a[1]), 将第二个元素与第一个元素互换, 下面执行 Perm(a,1,n), 根据假设②可知, 该语句产生以 a[1]为第一个元素, 余下(k-1)个元素的全排列; 以此类推,该循环每一次将各个元素调到首位,通过执行语句 Perm(a,1,n)以及 基于假设②,能够实现产生 k 个元素的全排列。 因此 n=k 时,程序仍满足条件。 ④ 综上所述,该排列器产生算法是正确的,证毕。
算法设计与分析知识点
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
计算机算法设计与分析(第5版)第1章
算法渐近复杂性
• T(n) , as n ; • (T(n) - t(n) )/ T(n) 0 ,as n; • t(n)是T(n)的渐近性态,为算法的渐近复杂性。 • 在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶
问题求解(Problem Solving)
理解问题 精确解或近似解
选择数据结构 算法设计策略
设计算法 证明正确性
分析算法 设计程序
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
算法的时间复杂性
项留下的主项。它比T(n) 简单。
渐近分析的记号
• 在下面的讨论中,对所有n,f(n) 0,g(n) 0。 • (1)渐近上界记号O • O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
0 f(n) cg(n) } • (2)渐近下界记号 • (g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
• (1)最坏情况下的时间复杂性 • Tmax(n) = max{ T(I) | size(I)=n } • (2)最好情况下的时间复杂性 • Tmin(n) = min{ T(I) | size(I)=n } • (3)平均情况下的时间复杂性
• Tavg(n) = p(I )T (I ) size(I )n
•
for x > -1,
x ln(1 x) x 1 x
•
for any a > 0,
Hale Waihona Puke log b nlim
算法设计与分析 第1章
例1 f(n) = 2n + 3 = O(n) 当n≥3时,2n+3≤3n,所以,可选c = 3,n0 = 3。对于n≥n0,f(n) = 2n + 3≤3n,所以,f(n) = O(n),即2n + 3O(n)。这意味着,当n≥3 时,例1的程序步不会超过3n,2n + 3 = O(n)。
例2 f(n) = 10n2 + 4n + 2 = O(n2) 对于n≥2时,有10n2 + 4n + 2≤10n2 + 5n,并 且当n≥5时,5n≤n2,因此,可选c = 11, n0 = 5;对于n≥n0,f(n) = 10n2 + 4n + 2≤11n2,所 以f(n) = O(n2)。
算法设计与分析
湖南人文科技学院计算机系 授课:肖敏雷
邮箱:minlei_xiao@
关于本课程
课程目的:计算机算法设计与分析导引
不是一门试验或程序设计课程 也不是一门数学课程
教材:计算机算法设计与分析-王晓东 前导课:数据结构+程序设计 参考资料:
算法设计与分析—C++语言描述 陈慧南编 电子工业出版社 计算机算法基础(第三版) 余祥宣 华中科技大学
渐近时间复杂度 使用大O记号及下面定义的几种渐近表示法 表示的算法时间复杂度,称为算法的渐近时间复 杂度(asymptotic complexity)。 只要适当选择关键操作,算法的渐近时间复 杂度可以由关键操作的执行次数之和来计算。一 般地,关键操作的执行次数与问题的规模有关, 是n的函数。 关键操作通常是位于算法最内层循环的语句。
当 n≥n0 时 , 有 f(n)≥cg(n) , 则 记 做 f(n)=Ω
计算机算法设计与分析--第1章 算法概述
③确认算法。算法确认的目的是使人们确信这一算 法能够正确无误地工作,即该算法具有可计算性。 正确的算法用计算机算法语言描述,构成计算机程 序,计算机程序在计算机上运行,得到算法运算的 结果; ④ 分析算法。算法分析是对一个算法需要多少计算 时间和存储空间作定量的分析。分析算法可以预测 这一算法适合在什么样的环境中有效地运行,对解 决同一问题的不同算法的有效性作出比较; ⑤ 验证算法。用计算机语言描述的算法是否可计算、 有效合理,须对程序进行测试,测试程序的工作由 调试和作时空分布图组成。
16
算法描述
1. 从第一个元素开始,该元素可以认为已 经被排序 2. 取出下一个元素,在已经排序的元 素序列中从后向前扫描 3. 如果该元素(已排序)大于新元素, 将该元素移到下一位置 4. 重复步骤3,直到找到已排序的元素 小于或者等于新元素的位置 5. 将新元素插入到该位置中 6. 重复步骤2
15
1.3 算法示例—插入排序算法
算法的思想:扑克牌游戏
a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1
= = = = = = =
5,2,4,6,1,3 5,2,4,6,1,3 2,5,4,6,1,3 2,4,5,6,1,3 2,4,5,6,1,3 1,2,4,5,6,3 1,2,3,4,5,6
8
算法≠程序
算法描述:自然语言,流程图,程序设计
语言,伪代码 用各种算法描述方法所描述的同一算法, 该算法的功用是一样的,允许在算法的描述 和实现方法上有所不同。
本书中采用类C++伪代码语言描述算法
9
人们的生产活动和日常生活离不开算法, 都在自觉不自觉地使用算法,例如人们到 商店购买物品,会首先确定购买哪些物品, 准备好所需的钱,然后确定到哪些商场选 购、怎样去商场、行走的路线,若物品的 质量好如何处理,对物品不满意又怎样处 理,购买物品后做什么等。以上购物的算 法是用自然语言描述的,也可以用其他描 述方法描述该算法。
算法设计与分析报告习题
《算法设计与分析》习题第一章算法引论1、算法的定义?答:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。
通俗讲,算法:就是解决问题的方法或过程。
2、算法的特征?答:1)算法有零个或多个输入;2)算法有一个或多个输出; 3)确定性;4)有穷性3、算法的描述方法有几种?答:自然语言、图形、伪代码、计算机程序设计语言4、衡量算法的优劣从哪几个方面?答:(1) 算法实现所耗费的时间(时间复杂度);(2) 算法实现所所耗费的存储空间(空间复杂度);(3) 算法应易于理解,易于编码,易于调试等等。
5、时间复杂度、空间复杂度定义?答:指的是算法在运行过程中所需要的资源(时间、空间)多少。
6、时间复杂度计算:{i=1;while(i<=n)i=i*2; }答:语句①执行次数1次,语句②③执行次数f(n), 2^f(n)<=n,则f(n) <=log2n;算法执行时间: T(n)= 2log2n +1时间复杂度:记为O(log2n) ;7.递归算法的特点?答:①每个递归函数都必须有非递归定义的初值;否则,递归函数无法计算;(递归终止条件)②递归中用较小自变量函数值来表达较大自变量函数值;(递归方程式)8、算法设计中常用的算法设计策略?答:①蛮力法;②倒推法;③循环与递归;④分治法;⑤动态规划法;⑥贪心法;⑦回溯法;⑧分治限界法9、设计算法:递归法:汉诺塔问题?兔子序列(上楼梯问题)?整数划分问题?蛮力法:百鸡百钱问题?倒推法:穿越沙漠问题?答:算法如下: (1) 递归法● 汉诺塔问题void hanoi(int n, int a, int b, int c) {if (n > 0) {hanoi(n-1, a, c, b); move(a,b);hanoi(n-1, c, b, a); } }● 兔子序列(fibonaci 数列 )递归实现:Int F(int n) {if(n<=2) return 1; elsereturn F(n-1)+ F(n-2); }● 上楼梯问题 Int F(int n) {if(n=1) return 1 if(n=2) return 2; elsereturn F(n-1)+ F(n-2); }● 整数划分问题问题描述:将正整数n 表示成一系列正整数之和,n=n1+n1+n3+…将最大加数不大于m 的划分个数,记作q(n,m)。
算法设计与分析教案
《算法设计与分析》教案张静第1章绪论算法理论的两大论题:1. 算法设计2. 算法分析1.1 算法的基本概念1.1.1 为什么要学习算法理由1:算法——程序的灵魂➢问题的求解过程:分析问题→设计算法→编写程序→整理结果➢程序设计研究的四个层次:算法→方法学→语言→工具理由2:提高分析问题的能力算法的形式化→思维的逻辑性、条理性1.1.2 算法及其重要特性算法(Algorithm):对特定问题求解步骤的一种描述,是指令的有限序列。
算法的五大特性:⑴输入:一个算法有零个或多个输入。
⑵输出:一个算法有一个或多个输出。
⑶有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
⑷确定性:算法中的每一条指令必须有确切的含义,对于相同的输入只能得到相同的输出。
⑸可行性:算法描述的操作可以通过已经实现的基本操作执行有限次来实现。
1.1.3 算法的描述方法⑴自然语言优点:容易理解缺点:冗长、二义性使用方法:粗线条描述算法思想注意事项:避免写成自然段欧几里德算法⑶程序设计语言优点:能由计算机执行缺点:抽象性差,对语言要求高使用方法:算法需要验证注意事项:将算法写成子函数欧几里德算法#include <iostream.h>int CommonFactor(int m, int n) {int r=m % n;while (r!=0){m=n;n=r;r=m % n;}return n;}void main( ){cout<<CommonFactor(63, 54)<<endl;}⑷伪代码——算法语言伪代码(Pseudocode):介于自然语言和程序设计语言之间的方法,它采用某一程序设计语言的基本语法,操作指令可以结合自然语言来设计。
优点:表达能力强,抽象性强,容易理解使用方法:7 ± 2欧几里德算法1. r = m % n;2. 循环直到 r 等于02.1 m = n;2.2 n = r;2.3 r = m % n;3. 输出 n ;1.1.4 算法设计的一般过程1.理解问题2.预测所有可能的输入3. 在精确解和近似解间做选择4. 确定适当的数据结构5.算法设计技术6.描述算法7.跟踪算法8.分析算法的效率9.根据算法编写代码1.2 算法分析算法分析(Algorithm Analysis):对算法所需要的两种计算机资源——时间和空间进行估算➢时间复杂性(Time Complexity)➢空间复杂性(Space Complexity)算法分析的目的:➢设计算法——设计出复杂性尽可能低的算法➢选择算法——在多种算法中选择其中复杂性最低者时间复杂性分析的关键:➢ 问题规模:输入量的多少;➢ 基本语句:执行次数与整个算法的执行时间成正比的语句for (i=1; i<=n; i++)for (j=1; j<=n; j++)x++;问题规模:n基本语句:x++1.2.1 渐进符号1. 大O 符号定义1.1 若存在两个正的常数c 和n 0,对于任意n ≥n 0,都有T (n )≤c ×f (n ),则称T (n )=O (f (n ))2. 大Ω符号定义1.2 若存在两个正的常数c 和n 0,对于任意n ≥n 0,都有T (n )≥c ×g (n ),则称T (n )=Ω(g (n ))问题规模n 执行次3. Θ符号定义1.3 若存在三个正的常数c 1、c 2和n 0,对于任意n ≥n 0都有c 1×f (n )≥T (n )≥c 2×f (n ),则称T (n )=Θ(f (n ))例: T (n )=5n 2+8n +1当n ≥1时,5n 2+8n +1≤5n 2+8n +n=5n 2+9n ≤5n 2+9n 2≤14n 2=O (n 2)当n ≥1时,5n 2+8n +1≥5n 2=Ω(n 2)∴ 当n ≥1时,14n 2≥5n 2+8n +1≥5n 2则:5n 2+8n +1=Θ(n 2)0问题规模n 执行次数问题规模n 执行次数定理 1.1 若T(n)=amnm +am-1nm-1 + … +a1n+a0(am>0),则有T(n)=O(nm)且T(n)=Ω(n m),因此,有T(n)=Θ(n m)。
算法设计与分析习题答案1-6章
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(LeonhardEuler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
图 七桥问题南2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。
#include<iostream>using namespace std;int main(){double value=0;for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。
为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. if i < n return i
T(n) :算法的运行时间 问题规模n的函数
输入分布:最坏情况、 最好情况、平均情况
Tmax(n), Tmin(n), Tavg(n)
算法运行时间
假设每条语句的执行 时间均为单位时间。
=
全部语句的执行时间之和
算法运行中主要影响运行 时间的语句是基本操作, 即占有最多比例的语句。
算法设计
丘奇-图灵论点:凡是可计算的函数都是一般递归函数 (或图灵机可计算函数) • 凡是可以从某些初始符号开始,而在有 限步骤内计算的函数都是递归函数。 • 计算机只能计算一般递归函数。 • 算法设计就是根据某个算法设计策略写 出递归函数或递归算法。
算法的描述方法
• 可以用自然语言、伪代码(pseudocode)或计 算机程序语言来描述算法,必须精确地描 述计算过程。
算法设计与分析
Algorithm Design And Analysis
东北大学 信息学院 计算机应用技术研究所 郭楠
2015版
教学目标及内容
• 教学内容
– 王晓东,《计算机算法设计与分析》,1~6章
• 教学目标
– 通过对典型算法的分类介绍,掌握算法设计的主要策 略以及对算法性能正确分析的能力。 策略 算法设计
– 用有限的指令和有限的存储空间可算尽一切可算之物 – 凡是可计算的过程都可用图灵机实现 – 机器能思考吗?
程序 内部状态
纸带
Here is an implementation of a Turing machine
控制器
一台图灵机是一个七元组M = (Q, Σ, Γ, Δ, q0, B, F)
– – – – Q是内部状态的有穷集合; Σ是输入符号集,其中不包含特殊的空白符; Γ是允许使用的纸带符号的有穷集合; Δ是转移函数(即程序),根据当前状态及当前输入 符号确定下一状态及读写头的动作,包括对输入符 号的运算以及读写头的移动(左移L或右移R);
问题 计算的过程就是 执行算法的过程 输出
问题实例 输入
算法
计算模型
图灵机(Turing Machine)
• Alan M. Turing (1912-1954) • 1936年,一种在理论计算机科学中广泛采用的抽 象计算机。它是通用数字计算机的理论原型。 • 可制造出一种十分简单但计算能力极强的计算机 装置。
– 伪代码:自然语言和计算机程序语言的混合体。
算法的正确性
• 若一个算法对于每个合理的输入实例均能终止并 给出正确的结果,则称该算法是正确的。 • 一个不正确的算法是指对某些合理的输入实例不 终止,或者虽然终止但给出的结果不是所期望得 到的答案。
An algorithm is said to be correct if, for every input instance, it halts with the correct output. An incorrect algorithm might not halt at all on some input instances, or it might halt with an incorrect answer.
平均情况性能
• The average-case efficiency
算法设计与分析
算法分析
实例 性能
what are algorithms?
• Informally, an algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output. • We can also view an algorithm as a tool for solving a well-defined computational problem.
初始 状态 读入 第1个数值 读入 第2个数值
当前状态 0 0 1 1 10 10 11 11
输入符号 0 1 1 0 1 0 0 1
下一状态 0 1 1 10 10 11 0
输出符号 0 1 1 1 1 0 0
读写头移动 右移 右移 右移 右移 右移 左移 错误 停机
读入完毕
程序Δ 0,0 → 0,0R 0,1 → 1,1R 1,1 → 1,1R 1,0 → 10,1R 10,1 → 10,1R 10,0 → 11,0L 11,0 → E 11,1 → 0,0S
– 时间复杂性:需要时间资源的量 – 空间复杂性:需要空间资源的量
Different algorithms devised to solve the same problem often differ dramatically in their efficiency.
算法复杂性分析
• 算法复杂性C采用一种与算法外部因素无关的测 量方法,只依赖于问题规模N、输入I以及算法A 本身的函数。分别用T和S来表示时间复杂性和空 间复杂性。
← 全部语句的执行次数之和 (问题规模n的运行时间函数) ← 基本操作的执行次数 ← (渐近)阶
为了简化算法分析过程, 并易于对不同算法的运行 时间进行对比,只考虑问 题规模充分大时的情况。
← 算法的时间复杂性
最坏情况性能
• The worst-case efficiency
– 最坏情况的输入对应最多的基本操作执行次数 – Tmax(n) = max{T(n)} – 意义:界定运行时间的上界,即对于任何输入, 运行时间不会超过Tmax(n) – 实践表明可操作性最好且最有实际价值的是最 坏情况下的时间复杂性。
如何证明 一个算法 是正确的?
算法正确性证明
• 找反例:能够使算法运行失败的输入实例。 • 数学归纳法:对于任意输入实例
– 证明:(i)算法的第1步是正确的;(ii)假设算法 的第n步是正确的,那么算法的第n+1步也是正 确的。
证明:Insertion Sort算法是正确的。
算法分析
• 算法复杂性(Complexity):算法运行所需要 的计算机资源的量。
T = T(N, I, A) 通常,A隐含在复杂性函数名当中,因此可简化为: T = T(N, I) 只考虑某类有代表性的输入实例,因此可进一步简化为: 最好情况下Tmin(n),最坏情况下Tmax(n),平均情况下Tavg(n) 如果算法的时间复杂性不依赖输入实例,则简化为T(n)
such instructions like arithmetic, data movement, and control takes a constant amount of time. 该算法的 问题规模 运行时间? 算法:顺序查找 输入:数组A[0...n-1],数值K 输出:第一个与K相同的元素的下标,否则输出-1 t c11=1 1. i = 0
程序和算法
• 程序是算法用某种程序设计语言的具体实现。 • 程序可以不满足算法的有限性。
– 例如,操作系统是一个在无限循环中执行的程序,因 而不是一个算法。
(数据结构) 用料
(算法) 做法
(语言工具 和环境) 工具
…
(程序设计 方法) 厨艺
问题求解过程
判定性问题 构造性问题 计数问题 最优化问题
一个问题是不是 可计算的?是 “易”计算的还 是“难”计算的?
什么是计算?
计算模型
对于同一个问题 的不同算法,如 何知道哪个算法 更有效?
如何说明 一个算法 是有效的?
计算模型
• 计算模型(抽象计算机、数学模型)
–如果应用某个计算模型能够建立一个算法来求解这个问 题(即算法可停机),那么这个问题就是可计算的。 –问题的计算复杂性可以通过解决该问题所需计算量的多 少来衡量。
最好情况性能
• The best-case efficiency
– 最好情况的输入对应最少的基本操作执行次数 – Tmin(n) = min{T(n)} – 意义:虽然期望得到最好情况的输入是没有意 义的,但是对于一些算法,一个好的Tmin(n)可 以扩展到一些有用的次好输入类型。另外,如 果一个算法的Tmin(n)不令人满意,那么我们可 以立刻放弃它。
: Q Q L, R
q0 Q – q0是初始状态, {B} – B是空白符, – F是终止状态, F Q
• 设一个图灵机M = (Q, Σ, Γ, Δ, q0, B, F)
– 状态集合Q={0,1,10,11},输入符号集Σ={1},允许使用 的纸带符号集Γ={0,1},空白符B=0,初始状态q0=0,程 序Δ是一个以1的个数表示数值的加法运算。 – 如果纸带上的数据0000001110110000代表3+2,那么输 出是什么? 0000001111100000
t c2 2
t c3 3
2. while i < n and A[i] ≠ K do 3. i=i+1 基本操作 该算法的运行时间 T(n)依赖输入实例: 最坏情况Tmax(n) =? 最好情况Tmin(n) =? 平均情况Tavg(n) =?
c =1t5 t4 4或 + 或c5=1 5. else return -1
问题规模
理解问题 确定计算模型、 数据结构及 算法设计策略
输入 约束条件
输出 目标函数
设计算法
证明正确性 分析算法
问题建模
• 确定问题的数学模型
– 问题类型:计数问题、判定性问题、构造性问 题、最优化问题 – 输入:给定问题实例、规模 – 输出:定义解空间,给出问题的解 – 约束和目标:定义函数 – 问题的计算复杂度:不依赖特定算法
算法
• 算法是指解决问题的方法或过程,是若干指令的 有穷序列。solution to a problem