第3课时--三角形中几条重要线段练习题及答案
八年级数学上学期与三角形有关的线段(基础)知识讲解——含课后作业与答案

与三角形有关的线段(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.【高清课堂:与三角形有关的线段 2、三角形的分类 】2.三角形的分类(1)按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB =∠ADC=∠90°.注意:AD 是ΔABC 的高 ∠ADB=∠ADC=90°(或AD⊥BC 于D);要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔA BC 的BC 边上的中线或BD =CD =21BC.要点诠释:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线 ∠BAD=∠DAC=21∠B AC (或∠BAC=2∠BAD=2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E再找一个第三点,使这点不在AE上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定是以B为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.举一反三:【变式】如图,,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. 三根木条的长度如图所示,能组成三角形的是( )【答案】D.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D选项中,2cm+3cm>4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【高清课堂:与三角形有关的线段 例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______.【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7, 即5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三:【变式】(2015春•盱眙县期中)四边形ABCD 是任意四边形,AC 与BD 交点O .求证:AC+BD >(AB+BC+CD+DA ).【答案】证明:∵在△OAB 中OA+OB >AB在△OAD 中有OA+OD >AD ,在△ODC 中有OD+OC >CD ,在△OBC 中有OB+OC >BC ,∴OA+OB+OA+OD+OD+OC+OC+OB >AB+BC+CD+DA即2(AC+BD )>AB+BC+CD+DA ,即AC+BD >(AB+BC+CD+DA ).类型三、三角形中重要线段4. (2016春•江阴市月考)如图,AD ⊥BC 于点D ,GC ⊥BC 于点C ,CF ⊥AB 于点F ,下列关于高的说法中错误的是( )A .△ABC 中,AD 是BC 边上的高B .△GBC 中,CF 是BG 边上的高C .△ABC 中,GC 是BC 边上的高D .△GBC 中,GC 是BC 边上的高【思路点拨】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【答案与解析】解:A 、△ABC 中,AD 是BC 边上的高正确,故本选项错误;B 、△GBC 中,CF 是BG 边上的高正确,故本选项错误;C 、△ABC 中,GC 是BC 边上的高错误,故本选项正确;D 、△GBC 中,GC 是BC 边上的高正确,故本选项错误.故选C .【总结升华】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,是基础题,熟记概念是解题的关键.举一反三:【变式】(2015•长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【答案】A . 5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm ,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3.又∵ BC =8,∴ AC =5.答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1.类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.与三角形有关的线段(基础)巩固练习【巩固练习】一、选择题1.(2016•西宁)下列每组数分别是三根木棒的长度,能用他们摆成三角形的是( ).A.3cm ,4cm,8cm B.8cm,7cm,15cmC.5cm ,6cm,11cm D.13cm ,12cm,20cm2.如图所示的图形中,三角形的个数共有( ).A.1个 B.2个 C.3个 D.4个3.(2015春•常州期中)如果三角形的两边长分别为4和5,第三边的长是整数,而且是奇数,则第三边的长可以是()A. 6 B. 7 C. 8 D. 94.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( ).A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是( ).A.直线 B.线段 C.射线 D.以上答案都不对6.下列说法不正确的是( ).A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( ).A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( ).A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.(2016•金平区一模)如图,自行车的三角形支架,这是利用三角形具有________性.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则_____=_____=12____ ;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.(2015春•焦作校级期中)AD是△ABC的边BC上的中线,AB=3,AC=4,则中线AD的取值范围是_____________.三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.(2014春•苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】解:由题意,令第三边为x,则5﹣4<x<5+4,即1<x<9,∵第三边长为奇数,∴第三边长是3或5或7.∴三角形的第三边长可以为7.故选B.4. 【答案】D;【解析】因为第三边满足:|另两边之差|<第三边<另两边之和,故|6-12<AB<16+12 即4<AB<28故选D.5. 【答案】B.6. 【答案】C;【解析】三角形的三条高线不一定都在三角形内部.7. 【答案】C;【解析】中线把三角形分成面积相等的两个三角形.8. 【答案】A.二、填空题9. 【答案】稳定.10.【答案】5 cm或7 cm;【解析】三角形三边关系的应用.11.【答案】15cm或18cm;【解析】按腰为4 cm或7 cm分类讨论.12.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥.13.【答案】15cm2,30cm2;【解析】S△ABE=S△A CE=15 cm2,S△AB C=2 S△ABE=30 cm2.14.【答案】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即1<2AD<7,<AD<.故答案为:<AD<.三、解答题15.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.16.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.17.【解析】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.18.【解析】解:如图。
13.1.3-三角形中几条重要线段ppt课件沪科版八年级上册数学

当堂练习
1.下列说法正确的是 A.三角形三条高都在三角形内
(B )
B.三角形三条中线相交于一点
C.三角形的三条角平分线可能在三角形内,也可
能在三角形外
D.三角形的角平分线是射线
2.在△ABC中,AD为中线,BE为角平分线,则在
以下等式中:①∠BAD=∠CAD;②∠ABE=∠CBE;
③BD=DC;④AE=EC.其中正确的是 ( D )
解:∵AE是△ABC的角平分线,
∴∠CAE=∠BAE= 1∠BAC. 2
∵ ∠BAC+∠B+∠C=180°,
A
E B
∴∠BAC=180°-∠B-∠C=180°-45°- 60°=75°,∴∠BAE=37.5°.
∵∠AEB=∠CAE+∠C,∠CAE=∠BAE=37.5°,
∴∠AEB=37.5°+60°=97.5°.
个内角的平分线吗?
A
D
B
C
想一想:三角形的角平分线与角的角平分线相同吗?
相同点是: ∠ BAD= ∠ CAD; 不同点是:前者是线段,后者是射线.
A 用量角器画最简便,用圆规也能.
在一张纸上画出一个 B 一个三角形并剪下,将它 的一个角对折,使其两边 重合.
A
折痕AD即为三角形的∠A的平分线.
C C
第13章 三角形中的边角关系、 命题与证明
13.1 三角形中的边角关系
3.三角形中几条重要线段
导入新课
讲授新课
当堂练习
课堂小结
导入新课
复习回顾
垂线
线段 中点
定义
当两条直线相交所成的四个角中,有 一个角是直角时,就说这两条直线互 相垂直,其中一条直线叫做另一条直 线的垂线
沪科版-数学-八年级上册-13.1.3 三角形中几条重要线段 教案

13.1.3 三角形中几条重要线段教学目标:知识与技能1.经历折纸,画图等实践过程认识三角形的高、中线、角平分线.2.会用工具准确画出三角形的高、中线、角平分线,通过画图了解三角形的三条高(及所在直线)交与一点,三角形的三条中线,三条角平分线等都交于一.过程与方法在探索三角形的高中线角平分线的过程中,让学生经历观察试验推理交流等活动,培养学生的空间观念和推理能力.情感、态度与价值观在学习过程中,培养学生的学习兴趣和良好的沟通能力.教学重点:三角形的高,中线,角平分线的概念,并了解三角形的三条高、三条中线、三条角平分线分别交于一点教学难点:三角形平分线与角平分线的区别,三角形的高与垂线的区别,钝角三角形的高的画法. 教学过程:一、导入新课问题1 数一数,图中共有多少个三角形?请将它们全部用符号表示出来.问题2 利用长为3.5.6.9的四条线段可以组成几个三角形?为什么?问题3 利用△ABC的一条边长为4cm,面积是24cm2这两个条件,你能求出什么结论?二、自学指导1.自学课本;2. 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的中线:在三角形中,连接一个顶点与它对边的中点的线段,叫做三角形的中线.三角形三条中线交于一点,这个点就是三角形的重心.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.设计意图:通过设置富有阶梯形的自学指导,引导学生自主学习,发现问题,解决问题.注意事项:教师出示自学指导,让学生自学课,理解什么是三角形的高?什么是三角形的中线?什么是三角形的重心?什么是三角形的角平分线?三、自学检测1.过点A分别画下列三角形的高,中线,角平分线.2.上述三个图形中的∠B有什么不同?这三个三角形的边BC上的高AD在各自三角形的什么位置?你能说出其中的规律吗?设计意图:第1题着重考查学生的绘图动手能力;第2题着重对三角形三边关系的高进行分类汇总,总结规律.注意事项:第2题有一定难度,特别是钝角三角形,要在关键点对学生进行点拨.四、合作探究1. 如图,在△ABC中∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.【答案】∵∠B=30°,∠ACB=110°,∴∠BAC=180°﹣30°﹣110°=40°,∵AE平分∠BAC,∴∠BAE=12∠BAC=12×40°=20°,∵∠B=30°,AD是BC边上高线,∴∠BAD=90°﹣30°=60°,∴∠DAE=∠BAD﹣∠BAE=60°﹣20°=40°.2.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?【答案】(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF即是△BED中BD边上的高.(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED=14S△ABC=14×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6.设计意图:老师大胆放手,学生分组合作探究,每个小组讨论完成后,给出答案并进行展示,让学生上台说明,培养学生总结能力,积极发言的良好习惯注意事项:在合作探究环节中,教师要关注学生在展示过程中出现的问题,并及时予以点拨.五、课堂小结问题1 本节课你学习了什么?问题2 本节课你有哪些收获?问题3 通过本节课的学习,你想进一步探究的问题是什么?设计意图:以上三个问题引导学生回顾自己的学习过程,畅所欲言,进一步进行反思、提炼及知识的归纳,并纳入自己的知识结构中;注意事项:(1)每个三角形都有三条高、三条中线和三条角平分线.(2)三角形的三条高所在的直线交于一点,且锐角三角形的高交于三角形的内部,直角三角形在直角的顶点,钝角三角形在三角形外。
2020八年级数学上册 第13章 13.1 三角形中的边角关系 第3课时 三角形中几条重要线段教案

第3课时三角形中几条重要线段◇教学目标◇【知识与技能】1.了解并掌握三角形的角平分线、中线和高的概念,会用直尺、量角器等工具作出三角形的角平分线、中线和高;2.通过作图了解三角形的三条角平分线、三条中线和三条高分别交于一点.【过程与方法】经历探究三角形的角平分线、中线和高的过程,掌握其应用方法,发展空间观念.【情感、态度与价值观】经历作图的实践过程,认识三角形的高、中线和角平分线,帮助学生养成实事求是、具体问题具体分析的习惯.发展学生合情推理的能力.◇教学重难点◇【教学重点】三角形的角平分线、中线和高的画法.【教学难点】钝角三角形的三条高的画法.◇教学过程◇一、情境导入上节课我们学习了按角给三角形分类,分为锐角三角形、直角三角形和钝角三角形.这节课我们学习三角形中几条重要线段.二、合作探究问题1:三角形中三条边、三个角是它的六个基本元素,除此以外,还有其他什么元素吗?问题2:画一个三角形,再分别画出它的角平分线、中线、高线三角形的角平分线、中线、高线交于一点吗?都在三角形的内部吗?结论:三角形的三条角平分线、三条中线和三条高都交于一点.其中,三角形三条中线交于一点,这个交点就是三角形的重心.三角形的角平分线和中线都在三角形的内部,三角形的高线不一定在三角形的内部,直角三角形的高线可能在三角形上,钝角三角形的高线可能在三角形外部.典例1已知,如图,在△ABC中,O是高AD和BE的交点,观察图形,试猜想∠C和∠DOE之间具有怎样的数量关系,并论证你的猜想.[解析]连接OC,由三角形的内角和等于180°,得∠OCE+∠COE+∠CEO=180°,∠OCD+∠COD+∠CDO=180°,又因为AD和BE是△ABC的高,所以∠CEO=∠CDO=90°,所以∠OCE+∠COE+∠OCD+∠COD=180°,即∠C+∠DOE=180°.三、板书设计三角形中几条重要线段角平分线:三角形中,一个角的平分线与这个角对边相交,顶点与交点之间的线段叫做三角形的角平分线.中线:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线.高线:从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高线,也叫做三角形的高.◇教学反思◇本节课通过让学生自己动手作图,作出三角形的三条角平分线、三条中线和三条高,让学生深刻理解它们的定义.通过画图和观察图形让学生自己去发现同一三角形的角平分线、中线、高分别是交于一点的,培养他们观察、总结的能力.。
人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。
(课件)三角形中三条重要的线段

三角形有三条高,分别对应三个顶点。
高在几何问题中的应用
在求解三角形面积时,高是一个 重要的参数。
在解决与三角形相关的几何问题 时,高常常与其他线段、角等元
素一起使用。
高可以用于证明某些几何定理, 如塞瓦定理等。
高与其他线段的联系
在特定条件下,高可以转化为其他线段,如直角三角 形中的高可以转化为斜边上的中线。
垂线与三角形的关系
垂足
垂线与对边相交的点称为垂足。
三角形的高
从顶点垂直到对边的线段被称为三角形的高。
垂线在几何问题中的应用
面积计算
利用垂线可以计算三角形的面积,通 过将底边与对应的高相乘再除以2。
三线合一
直角三角形中的勾股定理
在直角三角形中,斜边的垂线将直角 三角形分为两个小的直角三角形,可 以利用勾股定理进行证明和应用。
(课件)三角形中三条 重要的线段
目 录
• 三角形的中线 • 三角形的角平分线 • 三角形的垂线 • 三角形的中位线 • 三角形的高的性质
01
三角形的中线
定义与性质
定义
连接三角形一边的中点和相对顶 点的线段称为三角形的中线。
性质
中线将三角形分为面积相等的两 部分,且中线长度为对应底边的 一半。
中线与三角形的关系
中位线将三角形划分为两个等腰三角 形。
中位线将三角形划分为两个相似的小 三角形。
中位线在几何问题中的应用
利用中位线定理求三角形的边长 。
利用中位线定理证明三角形中的 一些性质。
利用中位线定理解决一些几何问 题,如面积问题、角度问题等。
05
三角形的高的性质
高与三角形的关系
三角形三条重要线段测试

三角形三条重要线段测试姓名:1、下列说法中正确的是()A.三角形三条高所在的直线交于一点B.有且只有一条直线与已知直线平行C.垂直于同一条直线的两条直线互相垂直D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离2、三角形的三条高所在的直线相交于一点,这个交点的位置在()A.三角形内B.三角形外C.三角形边上D.要根据三角形的形状才能定3、.三角形三条高所在直线的交点一定在()A.三角形的内部B.三角形的外部C.三角形的内部或外部D.三角形的内部、外部或顶点4、.△ABC中,AD是BC边上的中线,下列五种说法:①AD把∠BAC分成相等的两部分;②AD 是线段BC分成相等的两部分;③AD把△ABC分成形状相同的两个三角形;④AD把△ABC分成周长相等的两个三角形;⑤AD把△ABC分成面积相等的两个三角形.其中正确的说法有个5、.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.6、在△ABC中,AB=AC,DB为△ABC的中线,且BD将△ABC周长分为12cm与15cm两部分,求三角形各边长.7、如图,(1)在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是.(2)在△ABC中,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,∠ABD2与∠ACD2的角平分线交于点D3,若∠BD3C的度数是n°,则∠A的度数是(用含n的代数式表示).8、如图①路与②路公交车都是从体育馆到少年宫.(1)比较①路和②路这两条线路的长短;(2)小利坐出租车由体育馆去少年宫.假设出租车的收费标准为:起步价为7元,3千米后每千米为1.8元,用式子表示出租车的收费p(元)与行驶路程s(千米s>3)之间的关系;(3)若这段路程有4.5千米,小利身上有10元钱,够不够付车费?9、北京市为治理交通拥堵状况,鼓励市民乘坐公交车出行,从4月1日开始,北京市三环内的停车费第一小时为10元,比原先的每小时2元上涨8元,此后每小时15元,比之前上涨13元.设在这样的停车场停车x小时,需付费y元.(假定每辆车的停车时间均是整数小时).分别写出4月1日前和4月1日后y与x间的函数关系式.概率专题测试姓名:1、一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率2、“五•一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书,如果读者不愿意转转盘,那么可以直接获得10元的购书券.(1)写出转动一次转盘获得45元购书券的概率;(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由.3、桌面上有4张背面相同的卡片,正面分别写着数字“1”、“2”、“3”、“4”.先将卡片的背面朝上洗匀.(1)如果让小唐从中任意抽取一张,抽到奇数的概率是;(2)如果让小唐从中任意抽取两张,游戏规则规定:抽到的两张卡片上的数字之和为奇数,则小唐胜,否则小谢胜.你认为这个游戏公平吗?说出你的理由.4、一个布袋中有8个红球和16个白球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个白球,并放入相同数量的红球.搅拌均匀后,要使从袋中摸出一个球是红球的概率是,问取走了多少个白球?(要求通过列式或列方程解答)5、如图所示,转盘被等分成八个扇形,并在上面依次标有数字1,2,3,4,5,6,7,8.(1)自由转动转盘,当它停止转动时,指针指向的数正好能被8整除的概率是多少(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.(注:指针指在边缘处,要重新转,直至指到非边缘处)。
2022年沪科版数学八年级上《三角形中几条重要线段》教案

第3课时三角形中几条重要线段◇教学目标◇【知识与技能】1.了解并掌握三角形的角平分线、中线和高的概念,会用直尺、量角器等工具作出三角形的角平分线、中线和高;2.通过作图了解三角形的三条角平分线、三条中线和三条高分别交于一点.【过程与方法】经历探究三角形的角平分线、中线和高的过程,掌握其应用方法,发展空间观念.【情感、态度与价值观】经历作图的实践过程,认识三角形的高、中线和角平分线,帮助学生养成实事求是、具体问题具体分析的习惯.发展学生合情推理的能力.◇教学重难点◇【教学重点】三角形的角平分线、中线和高的画法.【教学难点】钝角三角形的三条高的画法.◇教学过程◇一、情境导入上节课我们学习了按角给三角形分类,分为锐角三角形、直角三角形和钝角三角形.这节课我们学习三角形中几条重要线段.二、合作探究问题1:三角形中三条边、三个角是它的六个基本元素,除此以外,还有其他什么元素吗?结论:角平分线、中线、高线.【归纳小结】角平分线:三角形中,一个角的平分线与这个角对边相交,顶点与交点之间的线段叫做三角形的角平分线;中线:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线;高线:从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高线,也叫做三角形的高.问题2:画一个三角形,再分别画出它的角平分线、中线、高线.三角形的角平分线、中线、高线交于一点吗?都在三角形的内部吗?结论:三角形的三条角平分线、三条中线和三条高都交于一点.其中,三角形三条中线交于一点,这个交点就是三角形的重心.三角形的角平分线和中线都在三角形的内部,三角形的高线不一定在三角形的内部,直角三角形的高线可能在三角形上,钝角三角形的高线可能在三角形外部.典例1已知,如图,在△ABC中,O是高AD和BE的交点,观察图形,试猜想∠C和∠DOE 之间具有怎样的数量关系,并论证你的猜想.[解析]连接OC,由三角形的内角和等于180°,得∠OCE+∠COE+∠CEO=180°,∠OCD+∠COD+∠CDO=180°,又因为AD和BE是△ABC的高,所以∠CEO=∠CDO=90°,所以∠OCE+∠COE+∠OCD+∠COD=180°,即∠C+∠DOE=180°.三、板书设计三角形中几条重要线段角平分线:三角形中,一个角的平分线与这个角对边相交,顶点与交点之间的线段叫做三角形的角平分线.中线:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线.高线:从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高线,也叫做三角形的高.◇教学反思◇本节课通过让学生自己动手作图,作出三角形的三条角平分线、三条中线和三条高,让学生深刻理解它们的定义.通过画图和观察图形让学生自己去发现同一三角形的角平分线、中线、高分别是交于一点的,培养他们观察、总结的能力.第2课时三角形中边的关系◇教学目标◇【知识与技能】1.认识三角形,理解三角形的三边关系;2.会对三角形按边分类.【过程与方法】经历三角形边长的数量关系的探索过程,理解三角形的三边关系.掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题.【情感、态度与价值观】通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力.让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣.◇教学重难点◇【教学重点】三角形三边关系的探究和归纳.【教学难点】三角形三边关系的应用.◇教学过程◇一、情境导入看下列实物中,有你熟悉的图形吗?二、合作探究在小学数学中我们学习了有关三角形的一些初步知识,现在请观察上面的屋顶框架图,并思考以下问题:(1)你能从图中找出几个不同的三角形?这些三角形有什么共同的特点?(2)什么叫做三角形?(3)三角形的边可以怎么表示?问题1:研究三角形的三条边是否相等,有多少种可能的情况?结论:三角形中,三条边互不相等的三角形叫做不等边三角形;有两条边相等的三角形叫做等腰三角形,其中相等的两边叫做腰,第三边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角;三条边都相等的三角形叫做等边三角形.问题2:我们以前学习过这样一个性质:两点之间的所有连线中,线段最短.那么在一个三角形中,任意两边之和与第三边的长度有怎样的关系?结论:三角形任意两边之和大于第三边.典例1画一个三角形,分别量出三角形的三边长度,计算出三角形的任意两边之差,并与第三边比较,你能得到什么结论?[解析]三角形任意两边之差小于第三边.典例2有两条长度分别为5 cm和7 cm的线段,用长度为13 cm的线段与它们能摆成三角形吗?为什么?那么换上线段的长度在什么范围内时可以组成三角形呢?[解析]用长度为13 cm的线段与它们不能摆成三角形.因为三角形任意两边之和大于第三边.三角形第三边的取值范围是两边之差<第三边<两边之和,即第三边x的取值范围是2 cm<x<12 cm.三、板书设计三角形中边的关系1.三角形按边长分类:三角形2.三角形中任何两边的和大于第三边,三角形中任何两边的差小于第三边.◇教学反思◇本节课的学习使学生认识到不是任意的三条线段都能构成三角形,并学会判断三条线段能否构成三角形,通过探讨使学生养成积极思考的习惯.。
三角形中几条重要线段课件沪科版八年级数学上册

(2)∵∠ = 20°,∠ = 60°,∠+∠+∠ = 180°,
∴∠ = 100°.
1
∵ 是∠的平分线,∴∠= 2∠ = 50°,
∴∠=∠+∠ = 20° + 50° = 70°,∠ = 90°﹣70° = 20°.
课堂小结
三角形的三条中线交于三角形内部一点,
13.1 三角形中的边角关系
第3课时 三角形中几条重要线段
学习目标
1.了解三角形的角平分线、中线、高线的概念并掌握其性质,会用
工具准 确画出三角形的角平分线、中线、高线; (重点)
2. 学会用数学知识解决实际问题的能力.(重点)
3.了解定义,并识别定义.
新课导入
概念
角平
分线
线段
中点
图示
B
一条射线把一个角分成两个相等的角,这
1
1
2
在△中,∠=∠= 2 ∠,线段 就
是△的角平分线
想一想:三角形的角平分线与角的角平分线相同吗?
不同,三角形的角平分线是线段,而角的平分线是射线
B
D
∠1=∠2
C
问题:请画出这个三角形的另外两条角平分线,你发现了什么?
A
E
B
F
D
C
发现:三角形的三条角平分线交于三角形内部一点.
综上所述,等腰三角形 的腰长为8,底边长为2.
6.在△中,⊥于,是∠的平分线,∠ = 20°,
∠ = 60°,求:
(1)∠的度数;
(2)∠的度数.
解:(1)∵ ⊥ ,∴∠ = 90°.
∵∠ = 60°,∴∠ = 90°﹣∠ = 90°﹣60° = 30°;
所以AB=7cm.
13.1三角形中的边角关系 第3课时 三角形中几条重要线段课件2024-2025学年沪科版数学八上

新知导入
如图,在△ABC中,一动点D在BC边上移动,从点B沿着BC边移动 到点C,观察移动过程中形成的无数条线段中,有没有特殊位置的 线段?
今天,我们一起来认识三角形中几条特殊的线段!
新知讲解
任务一:三角形中的特殊线段 角平分线:
三角形中,一个角的平分线与这个角对边相交,顶点与交点 之间的线段叫做三角形的角平分线.
直角三角形三条高的交点在直角顶点; 钝角三角形三条高的交点在三角形的外部.
新知讲解
操作:2.任意画一个三角形,画出三边上的中线.
A
F
E
O
B
D CB
锐角三角形
A
F
O D
E CB
A FO E
D
C
直角三角形
钝角三角形
新知讲解
三角形的中线的特征: (1)任何三角形有三条中线,并且都在三角形的内部,交于
一点; (2)三角形的中线是一条线段; (3)三角形的任意一条中线把这个三角形分成了两个面积相
C
F
D
A
B
E
直角三角形
C
D
F
A
B
E
钝角三角形
新知讲解
三角形:不在同一条直线上的三条线段首尾依次相接所
组成的封闭图形叫做三角形. 三角形的角平分线:三角形中,一个角的平分线与这个 角对边相交,顶点与交点之间的线段叫做三角形的角平
揭示了对 象的特征 性质.
分线.
有理数:整数和分数统称有理数.
明确所指对象的范围
D
∴△DBC的周长=BC+BD+CD=25cm,
B
C
则BD+CD=25-BC.
∴△ADC的周长=AD+CD+AC=BD+CD+AC
三角形的重要线段

E F
B
C D
C 例6. 下列叙述正确的个数是( ) ⑴三角形的中线,角平分线都是射线;⑵三角形 的中线,角平分线都在三角形内部; ⑶三角形的中线就是一边中点的线段;⑷三角形 三条角平分线交于一点; A. 0个 B. 1个 C. 2个 D. 3个
例7. 如图,△ABC中,D,E分别为BC边上的两点, 且BD=DE=EC,则图中面积相同的三角形有几对 ( C )
A
B
F P
E
C
例3. 如图,D为△ABC的BC边上一点,BD:DC =3:2,△ABC的面积为45,则△ABD的面积 为 27 。
A
B
D
C
4. 如图,△ABC三条中线AD、BE、CF交于点O, S△ABC=12,则S△ABD= 6 ,S△AOF= 。
2
5. 一个三角形三边之比为3:4:5,则这个三角 形三边上的高线之比为 20:15:12
A. 2对 B. 3对 C. 4对 D. 5对
例8. 直角三角形的两锐角的角平分线的夹角 的 度数是( C ) A. 45° C. 45°或135° B. 135° D. 以上都不对
5. 如图,△ABC中,∠A=∠ACB,CD平分 ∠ACB交AB于D,∠ADC=150°,则∠B为 (C ) A.120° B. 130° C. 140° D. 150°
三角形的重要线段
例1. 已知△ABC,要把它分成面积相等 的6块,且只能画三条线,应怎样分?并 说明分法的正确性。
解:分法:分别画△ABC的三条中线AD、BE、CF,交于P点, 所分得的6块面积相等。
理由:∵AD为中线 ∴BD=CD ∴S△PBD=S△PCD 设S△PBD=S△PCD=a 同理:可设S△PCE=S△PEA=b;S△PAF=S△PBF =c ∵AD为△ABC的中线 ∴S△ABD=S△ACD 即a+2c=a+2b ∴c=b 同理可得a=b ∴a=b=c ∴△ABC三条中线分得的6块三角形面积相等。
八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段授课

感悟新知
例4 如图,在△ABC 中,AD,BE 分别是△ABC, 知2-练 △ABD的中线. (1)若△ABD与△ADC的周长之差为 3,AB=8,求 AC 的长. (2)若S△AB间 的关系和面积之间的关系解题.
感悟新知
解:(1)因为AD为BC边上的中线,
B.CE是△BCD的角平分线 C. 3 1 ACB
2
D.CE是△ABC的角平分线
知1-练
感悟新知
知识点 2 三角形的中线
知2-讲
1.定义:连接三角形一个顶点和它对边的中点,所得的 线段叫做该三角形这条边上的中线.
2.位置图例:任何三角形的三条中线都交于一点,且该 点在三角形内部,如图,这 个点叫做三角形的重心.
感悟新知
总结
知2-讲
三角形的中线把边分成相等的两条线段,故BD=CD,
且△ ABD 的边BD上的高与△ACD 的边CD上的高相同,
根据等底同高的三角形的面积相等,可得所分得的两个
三角形的面积相等,即S△ ABD=S△ ADC=
1 2
S△ABC.
感悟新知
知2-练
例5 张大爷的两个儿子都长大成人了,也该分家了.
1 (中考·长沙)过△ABC的顶点A,作BC边上的高,以 下作法正确的是( )
感悟新知
知3-练
2 下列说法中正确的是( ) A.三角形的三条高都在三角形内 B.直角三角形只有一条高 C.锐角三角形的三条高都在三角形内 D.三角形每一边上的高都小于其他两边
感悟新知
知识点 4 定义
知4-讲
像这样能明确界定某个对象含义的语句叫做定义. 今后我们还会学习许多定义.
感悟新知
知3-练
解:以A,B,C,D,E中的三点为顶点的三角形有 △ABC,△ABD,△ABE,△ACD,△ACE,