曾谨言《量子力学导论》第二版的课后答案
曾谨言《量子力学导论》第二版的课后答案
+a
= 2mω a 2 ⋅
得 a2 = (3)
π = mωπ a 2 = n h 2
代入(2) ,解出
E n = nℏω ,
积分公式:
n = 1, 2 , 3 , ⋯ a 2 − u 2 du = u a2 u a2 − u2 + arcsin + c 2 2 a
(4)
∫
2π
1.4 设一个平面转子的转动惯量为 I,求能量的可能取值。 提示:利用
)
[ (
) (
)
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
ℏ2 T= d 3 r∇ψ * ⋅ ∇ψ ∫ 2m
结合式(1) 、 (2)和(3) ,可知能量密度
(3)
w=
且能量平均值
ℏ2 ∇ψ * ⋅ ∇ψ + ψ *Vψ , 2m
(1)
1 mω 2 x 2 。 2
−a
0 a x (2)
a = 2 E / mω 2 ,
x = ± a 即为粒子运动的转折点。有量子化条件
+a
∫ p ⋅ dx = 2 ∫
nh 2ℏn = mωπ mω
−a
1 2m( E − mω 2 x 2 ) dx = 2mω 2 ∫ a 2 − x 2 dx 2 −a
∫= 1, 2 , ⋯ , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。
.
它的角动量 pϕ = I ϕ (广义动量) , pϕ 是运动惯量。按量子化条件
∫
∴
因而平面转子的能量
曾谨严量子力学习题解答2
1 [ϕ1 (x ) + ϕ 2 (x )] 2 1 1 ⎡ϕ1 ( x ) e − iE1t / h + ϕ 2 ( x ) e − iE2t / h ⎤ ⎡ϕ1 ( x, t ) + ϕ 2 ( x, t ) ⎤ = 则有:ϕ ( x, t ) = ⎣ ⎦ ⎦ 2⎣ 2 (2)求 x (t ) = ?
⎧ ⎛ nπ pa ⎞ ⎛ nπ pa ⎞ ⎫ a sin ⎜ − + ⎛ nπ pa ⎞ sin ⎜ ⎟ ⎟ i⎜ − ⎟ ⎪ n +1 ⎪ ⎝ 2 2h ⎠ ⎪ 2 2h ⎠ ⎪ ⎝ = π h e ⎝ 2 2h ⎠ ⎨ + ( −1) nπ pa nπ pa ⎬ 2i ⎪ ⎪ − + 2 2h 2 2h ⎭ ⎪ ⎪ ⎩
3. 《曾 P.163-5》 一维无限深势阱(如右图)中的粒子,设处于 ϕ n ( x ) 态。求其动量分布概率。当 n >> 1 时, 与经典粒子运动比较。 解:利用已知解:
⎧ 2 nπ x sin , ⎪ ϕn ( x ) = ⎨ a a ⎪0, ⎩
V ( x)
0
a
(0 < x < a) ( x < 0, x > a )
∗
5π 2 h 2 5 1 = = E1 = ( E1 + E2 ) 2ma 2 2 2
2 (4)求 H = ?
H = ∫ ϕ ∗ ( x ) H 2ϕ ( x )dx
2 −∞
+∞
=∫
+∞
−∞ a
1 1 ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ ⋅ H 2 ⋅ ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ dx ⎣ ⎦ ⎣ ⎦ 2 2
曾谨严量子力学习题解答7
(
)
(8)
t = 0 时,体系的初始状态为
ψ (t = 0 ) = ψ 1 =
Ω ω Ω +ω ψ E+ + ψ E 2Ω 2Ω
(9) (10)
其中 Ω = ω 2 + 4γ 2 h 2 . 因此, t
≥ 0 时波函数为
Ω ω Ω +ω ψ E+ eiE+t h + ψ E e iEt 2Ω 2Ω
h
1 3 2 1 1 1 2 1 1 2 = 1 1 + 1 0 Y11β + Y10α 2 2 3 2 3 3 3
(2)
1
3 1 2 1 1 1 2 1 1 0 + 1 1 = Y10 β + Y11α 2 2 3 2 2 3 3 3 3 3 1 1 = 1 1 Y11β 2 2 2
r
r
r
r
(6)
3 1 2 3 1 2
3 r r ε r i 2 1 r r ε r i 2
2
=
2
1 2 2 2 r (ε x + ε y ) 6 2 2 2 r εz 9
=
2
1
3 2
1 r r ε r i 2
=
2
1 2 2 2 r (ε x + ε y ) 18
3 1 2
1 1 2
3 r r ε r i 2
(
)
(
)
初态: l = m = 0 , j =
i = 0 1 2
1 1 , m j = sz = 2 2 1 1 = 0 0 Y00α 2 2
(1)
终态: l = 1, j = l ±
1 3 1 3 1 = , ,mj = ± ,± . 2 2 2 2 2
曾谨言--量子力学习题及解答
dv , 1
(1) (2) (3)
v c , v dv v d ,
dv d c d v ( ) d ( ) v c
8hc 5
1 e
hc kT
, 1
1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。 本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零, 由此可求得相应的λ的值,记作 m 。但要注意的是,还需要验证 对λ的二阶导数在 m 处的取值是否小于零,如果小于零,那么前面求得的 m 就是要求的,具体如下:
2
k
2 E
2
k
cos 2d (2 ) cos d ,
2 E
k
这里 =2θ,这样,就有
2
A B E
k
d sin 0
(2)
根据式(1)和(2) ,便有
A E
这样,便有
k n h 2
E
k
E
n h 2 k
nh
其中 h
k
,
h 2
最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的 能量是等间隔分布的。 (2)当电子在均匀磁场中作圆周运动时,有
R p qBR
2
qB
这时,玻尔——索末菲的量子化条件就为
又因为动能耐 E
p2 ,所以,有 2
2
2 如果所考虑的粒子是非相对论性的电子( E 动 e c ) ,那么
[理学]《量子力学导论》习题答案曾谨言版_北京大学1
第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2x a E V x m a ω===。
量子力学曾谨言第二章第三章答案
量子力学曾谨言的答案详解,希望能给研友带来帮助目次第二章:波函数与波动方程………………1——25 第三章:一维定态问题……………………26——80 第四章:力学量用符表达…………………80——168 第五章:对称性与守衡定律………………168——199 第六章:中心力场…………………………200——272 第七章:粒子在电磁场中的运动…………273——289 第八章:自旋………………………………290——340 * * * * * 参考用书1.曾谨言编著:量子力学上册 科学。
1981 2.周世勋编:量子力学教程 人教。
19793.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。
19824.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。
1981 5.列维奇著,李平译:量子力学教程习题集 高教。
1958 6.原岛鲜著:初等量子力学(日文) 裳华房。
19727.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。
1948 8.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics(有中译本:陈洪生译。
科学) 19519. A.S.Davydov: Quantum Mechanics Pergamon Press 1965 10. SIEGFRIED.Fluegge:Practical Quantum- Mechanics(英译本) Springer Verlag 197311. A.Messian:Quantum Mechanics Vol I.North.Holland Pubs 1961 ndau,E.Lifshitz:Quantum-Mechanics1958 量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ⎰⎰--=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax-+=⎰ (3) =⎰axdx e axcos )sin cos (22bx b bx a b a e ax++ (4)ax x a ax aaxdx x cos 1sin 1sin 2-=⎰ (5) =⎰axdx x sin 2ax a xaax a x cos )2(sin 2222-+(6)ax a xax aaxdx x sin cos 1cos 2+=⎰(7ax aa x ax a x axdx x sin )2(cos 2cos 3222-+=⎰))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)⎰=+dx c ax 2)arcsin(222x c a ac c ax x --++ (a<0) ⎰20sin πxdx n2!!!)!1(πn n - (=n 正偶数)(9) =⎰20cos πxdx n!!!)!1(n n - (=n 正奇数) 2π(0>a ) (10)⎰∞=0sin dx xax2π- (0<a )(11))1!+∞-=⎰n n ax an dx x e (0,>=a n 正整数) (12)adx e ax π2102=⎰∞- (13) 121022!)!12(2++∞--=⎰n n ax n a n dx ex π(14)1122!2+∞-+=⎰n ax n a n dx e x (15)2sin 022adx x ax π⎰∞=(16)⎰∞-+=222)(2sin b a abbxdx xe ax (0>a ) ⎰∞-+-=022222)(c o s b a b a b x d x xeax(0>a )第二章:函数与波动方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] (解)(甲法)可以用Wilson-Sommerfeld 的量子化条件式:⎰=nh pdq在量子化条件中,令⋅=x m p 为振子动量,x q = 为振子坐标,设总能量E则 22222x m m P E ω+= )2(222x m E m p ω-=代入公式得:nh dx x m E m =-⎰)2(222ω量子化条件的积分指一个周期内的位移,可看作振幅OA 的四倍,要决定振幅a ,注意在A 或B 点动能为0,2221a m E ω=,(1)改写为: nh dx x a m aa=-⎰-222ω (2)积分得:nh a m =πω2遍乘πω21得 ωπω n h E ==2[乙法]也是利用量子化条件,大积分变量用时间t 而不用位移x ,按题意振动角频率为ω,直接写出位移x ,用t 的项表示:t a x q ωsin ==求微分:tdt a dx dq ωωcos == (4) 求积分:t ma x m p ωωcos ==⋅(5) 将(4)(5)代量子化条件:nh tdt ma pdq T==⎰⎰222cos ωωT 是振动周期,T=ωπ2,求出积分,得 nh a m =πω2 ωπωn n h E ==23,2,1=n 正整数#[2]用量子化条件,求限制在箱内运动的粒子的能量,箱的长宽高分别为.,,c b a(解)三维问题,有三个独立量子化条件,可设想粒子有三个分运动,每一分运动是自由运动.设粒子与器壁作弹性碰撞,则每碰一次时,与此壁正交方向的分动量变号(如ppxx-→),其余分动量不变,设想粒子从某一分运动完成一个周期,此周期中动量与位移同时变号,量子化条件:p pn q p xax x xxadx h d 220===⎰⎰ (1)pp n q p yby yyyb dy h d 220===⎰⎰ (2)p pn q p zcz z zzc dz hd 220===⎰⎰(3)p p p zyx,,都是常数,总动量平方222z y x p p p p ++=总能量是:)(2122222z y x p p p mm p E ++===])2()2()2[(21222ch b h a h m n n n z y x ++ =])()()[(82222cb a m h n n n z y x ++ 但3,2,1,,=n n n z y x 正整数.[3] 平面转子的转动惯量为I ,求能量允许值.(解)解释题意:平面转子是个转动体,它的位置由一坐标(例如转角ϕ)决定,它的运动是一种刚体的平面平行运动.例如双原子分子的旋转.按刚体力学,转子的角动量I ω,但⋅=ϕω是角速度,能量是221ωI =E 利用量子化条件,将p 理解成为角动量,q 理解成转角ϕ,一个周期内的运动理解成旋转一周,则有nh d pdq =I =I =⎰⎰ωπϕωπ220(1)(1) 说明ω是量子化的(2) I=I =n nh πω2 (3,2,1=n ……..) (2) (3) 代入能量公式,得能量量子化公式:I=I I =I =2)(2212222 n n E ω (3)#[4]有一带电荷e 质量m 的粒子在平面内运动,垂直于平面方向磁场是B,求粒子能量允许值.(解)带电粒子在匀强磁场中作匀速圆周运动,设圆半径是r ,线速度是v ,用高斯制单位,洛伦兹与向心力平衡条件是:rm v c Bev 2= (1) 又利用量子化条件,令=p 电荷角动量 =q 转角ϕnh mrv mrvd pdq ===⎰⎰πϕπ220(2)即 nh mrv = (3) 由(1)(2)求得电荷动能=mcnBe mv 2212 = 再求运动电荷在磁场中的磁势能,按电磁学通电导体在磁场中的势能=cBr ev c c *****2π==场强线圈面积电流场强磁矩,v 是电荷的旋转频率, r v v π2=,代入前式运动电荷的磁势能=mcnBe 2 (符号是正的) 点电荷的总能量=动能+磁势能=E=mcnBe 2 ( 3,2,1=n )#[5]对高速运动的粒子(静质量m )的能量和动量由下式给出:2221c v mc E -=(1)2221c v mv p -=(2)试根据哈密顿量 2242p c c m E H +== (3)及正则方程式来检验以上二式.由此得出粒子速度和德布罗意的群速度相等的关系.计算速度并证明它大于光速.(解)根据(3)式来组成哈氏正则方程式组:pqiiH ∂∂=⋅,本题中v qi=⋅,p p i=,因而224222242pc c m p c p c c m pv +=+∂∂= (4)从前式解出p (用v 表示)即得到(2).又若将(2)代入(3),就可得到(1)式. 其次求粒子速度v 和它的物质波的群速度vG间的关系.运用德氏的假设: k p =于(3)式右方, 又用ω =E 于(3)式左方,遍除h :)(22242k k c c m ωω=+=按照波包理论,波包群速度vG是角频率丢波数的一阶导数:22242k c c m kv G +∂∂==22422222422pc c m p c k c c m k c +=+最后一式按照(4)式等于粒子速度v ,因而v vG=。
量子力学_答案_曾谨言
第一章量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动,⎩⎨⎧<<><∞=a x ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系λ/h p = (2)而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn hn dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n m p p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(x m x V E a x ω===。
《量子力学导论》习题答案(曾谨言版,北京大学)(2)
第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mr p p R -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。
总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M p ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。
量子力学 曾谨言 习题解答
a
p dx 2
2m(E 1 m 2 x2 ) dx 2m 2 a
a2 x2 dx
a
2
a
2ma2 m a2 nh 2
得 a2 nh 2n m m
(3)
代入(2),解出
En n,
n 1, 2,3,
(4)
积分公式:
a 2 u 2 du u a 2 u 2 a 2 arcsin u c
abc a
b
c
nx , ny , nz 1,2,3,
当 a b c 时,
En n n xyz
2 2 2ma 2
(n
2 x
n
2 y
n
2 z
)
n n n xy z
3
2 2 a
sin nx x sin ny y sin nz y
a
a
a
nx ny nz 时,能级不简并;
nx , n y , nz 三者中有二者相等,而第三者不等时,能级一般为三重简并的。
动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为 x, y, z 轴方向,把粒子沿 x, y, z 轴三个方向的运动
分开处理。利用量子化条件,对于 x 方向,有
px dx nxh , nx 1, 2,3,
即
px 2a nxh ( 2a :一来一回为一个周期)
px nxh / 2a ,
6
t 2m ,
u
k
mx t
,
参照本题的解题提示,即得
x,t
1 e imx2 2t 2
2m t
e i
/
4
k
k
mx t
d
k
(2)
m t
量子力学——第四章作业参考答案
( p × l − l × p )x ,
2 ( p × l − l × p)y , ⎡ ⎣l , p ⎤ ⎦ z = i ( p × l − l × p ) z ,因此
同理 ⎡ ⎣l , p ⎤ ⎦y = i
i
2 ( p × l − l × p) = ⎡ ⎣l , p ⎤ ⎦。
3.10 证明: (a) pr =
可见, ( r × l − l × r ) = r × l − l × r , r × l − l × r 为厄米算符。
+
3.3
证明:一维情况下,由 x 和 p 的对易关系 [ x, p ] = i , 可得 从而
(6) (7)
xp = i + px , px = xp − i
,
m −1 n m n +1 [ p, F ] = ∑ Cmn ( px m p n − x m p n+1 ) = ∑ Cmn ⎡ ⎣( xp − i ) x p − x p ⎤ ⎦ m,n =0 ∞ m,n =0
∂ F。 ∂x
(8)
=
m ,n =0
mn
= −i
m,n =0
∑C
mn
mx m −1 p n = −i
同理,可得 [ x, F ] = i 3.4 证明:
∂ F。 ∂p
(9)
[ AB, C ] = ABC − CAB = ( ABC + ACB ) − ( ACB + CAB )
= A [ B, C ]+ − [ A, C ]+ B
(b) pr =
1⎛r r ⎞ 1 ⎡r r ⎛ r ⎞⎤ ⎜ i p + p i ⎟ = ⎢ i p + i p − i ⎜ ∇i ⎟ ⎥ 2⎝ r r ⎠ 2 ⎣r r ⎝ r ⎠⎦
量子力学_答案_曾谨言
E nx n y nz
π2 2 1 2 2 = + py + p z2 ) = ( px 2m 2m
n x , n y , n z = 1, 2 , 3 ,
2 2 ⎞ ⎛ nx n2 ⎜ + y + nz ⎟ ⎜ a2 b2 c2 ⎟ ⎝ ⎠
1.3 设质量为 m 的粒子在谐振子势 V ( x) = 提示:利用
(1)
V = ∫ d 3 rψ *Vψ
2 ⎞ ⎛ ⎜ T = ∫ d rψ ⎜ − ∇2 ⎟ ⎟ψ ⎠ ⎝ 2m 3 *
(势能平均值)
(2)
(动能平均值)
=−
2m ∫
2
d 3r ∇ ⋅ ( ψ *∇ψ ) − (∇ψ * ) ⋅ (∇ψ )
[
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2 p = 2m[ E − V ( x)]
∫ p ⋅ d x = nh,
n = 1, 2 ,
,
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
(2)
ψ * × (1)-ψ × (2),得
i
2 ∂ * ( ( ψ ψ )= − ψ *∇ 2ψ − ψ∇ 2ψ * ) + 2iψ *V2ψ ∂t 2m
=−
2
2m
∇⋅( ψ *∇ψ − ψ∇ψ * ) + 2iV2ψ *ψ
∴
量子力学导论习题答案(曾谨言)
第四章 力学量用算符表达与表象变换 4.1)设A 与B 为厄米算符,则()BA AB +21和()BA AB i-21也是厄米算符。
由此证明,任何一个算符F 均可分解为-++=iF F F ,+F 与-F 均为厄米算符,且()()+++-=+=F F iF F F F 21 ,21 证:ⅰ)()()()()BA AB AB BA B A A B BA AB +=+=+=⎥⎦⎤⎢⎣⎡++++++21212121()BA AB +∴21为厄米算符。
ⅱ)()()()()BA AB i AB BA i B A A B i BA AB i -=--=--=⎥⎦⎤⎢⎣⎡-+++++21212121()BA AB i-∴21也为厄米算符。
ⅲ)令AB F =,则()BA A B AB F ===++++,且定义 ()()+++-=+=F F iF F F F 21 ,21 (1) 由ⅰ),ⅱ)得-+-+++==F F F F ,,即+F 和-F 皆为厄米算符。
则由(1)式,不难解得 -++=iF F F4.2)设),(p x F 是p x ,的整函数,证明[][]F ,F,,pi F x x i F p ∂∂=∂∂-=整函数是指),(p x F 可以展开成∑∞==,),(n m n m mnp x Cp x F 。
证: (1)先证[][]11, ,,--=-=n n m mp ni p x xmi xp 。
[][][][][][][][]()()[]()111111331332312221111,1,3,,2,,,,,------------------=---=+--==+-=++-=++-=+=m m m m m m m m m m m m m m m m m mx m i x i x i m xxp x i m x x p x i x x p x x p x x i x x p x x p x x i xx p x p x x p同理,[][][][][][]1221222111,2,,,,,--------==+=++=+=n n n n n n n n np ni ppx pi p p x p p x p p i pp x p x p p x现在,[][]()∑∑∑∞=-∞=∞=-==⎥⎦⎤⎢⎣⎡=0,1,0,,,,n m nm mnn m n m mn n m n m mn px m i C p x p C p x C p F p而 ()∑∞=--=∂∂-0,1n m n m mn p x mi C x Fi 。
量子力学曾谨严 第1章作业答案
教材P25 ~27:1、2、3、4(1)、7 1.解:(a)证明能量平均值公式()[]()⎰⎰⎰⎰⎰⎰∞∞∞∞∞⋅ψ∇ψ-⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇=⎭⎬⎫⎩⎨⎧ψψ+ψ∇⋅ψ∇-ψ∇ψ⋅∇-=⎭⎬⎫⎩⎨⎧ψψ+ψ∇ψ-=ψ⎪⎪⎭⎫ ⎝⎛+∇-ψ=sd r r m r r V r r r m r d r r V r r r r r m r d r r V r r r m r d r r V m r r d E)()(2)()()()()(2)()()()()()()(2)()()()()(2)()(2)(*2**23***23*2*2322*3粒子在势场中运动的波函数平方可积()0)()(2*2=⋅ψ∇ψ⎰⎰∞s d r r m因此)()()()()()(23**23r w r d r r V r r r m r d E⎰⎰∞∞=⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇= 其中能量密度为)()()()()(2)(**2r r V r r r mr wψψ+ψ∇⋅ψ∇=(b)证明能量守恒公式S tr i t r t r i t r S r H t r r H t r S tr r V r r r V t r r t r r t r r t r r t r m tr r V r V t r t r r r t r m t w⋅-∇=∂ψ∂∂ψ∂-∂ψ∂∂ψ∂+⋅-∇=ψ∂ψ∂+ψ∂ψ∂+⋅-∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂⋅∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧∂ψ∂∇⋅ψ∇+ψ∇⋅∂ψ∂∇=∂∂)()()()()(ˆ)()(ˆ)()()()()()()()()()()()()()()(2)()()()()()()()(2*******22***2****2即0=⋅∇+∂∂S tw这表明能量守恒,其中能流密度为⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-=)()()()(2**2r t r r t r mS2.解:(a)证明概率不守恒{}{}()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=+∇-∇-=-=⎭⎬⎫⎩⎨⎧∂∂+∂∂==τττττττττψψψψψψψψψψψψψψψψψψψψψψψψψψψψρ2*3**2*3**32*3*22*3***3**3*33222222)ˆ(ˆ1)(V r dS d imV r dr d im V r dr d im H H r d i t t r d r d dtdr r d dt dS⎰⎰⎰⎰⎰ψψ+⋅∇-=ψψ+⋅-=τττ2*332*322V r dj r d V r d S d j S⎰=τρ)(3r r d dtd⎰⎰+⋅∇-ττψψ2*332V r dj r d即022*≠ψψ=⋅∇+∂∂V j tρ这表明概率不守恒。
量子力学曾谨严 第2章作业答案
教材P50 ~ 52:2、3、5、6、7、13 2.解:一维无限深势阱中粒子的本征波函数为⎪⎭⎫ ⎝⎛=ψa x n a x n πsin 2)(,a x <<0 0)(=x n ψ,a x x ><,0计算平均值22cos 1212sin 2)()(0200*a dx a x n x a dx a x n x a dxx x x x aaan n =⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛==⎰⎰⎰ππψψ222220202*223sin 2)()(ππψψn a a dx a x n x a dxx x x x aan n -=⎪⎭⎫ ⎝⎛==⎰⎰(查积分表)因此126112)(2222222a n a x x x x n →∞→⎪⎭⎫ ⎝⎛-=-=-π 在经典力学中,粒子处于dx x x +~的概率为a dx ,而2a x =,则有()1222202a a dx a x x x a=⎪⎭⎫ ⎝⎛-=-⎰因此当∞→n 时,量子力学结果→经典力学结果。
3.解:用p34(12)式⎪⎪⎩⎪⎪⎨⎧≥<⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=ψ2,02,exp exp 221cos 2)(1a x ax a x i a x i a a x a x πππ其Fourier 逆变换为dx px i x p a a ⎪⎭⎫⎝⎛-=⎰-exp )(21)(21ψπΦ ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=22222cos 2 p a a a pa πππ此即粒子动量表象波函数,因此粒子动量分布的概率密度为2)()(p p W Φ=。
5.解:在0=t 时刻22212m a Eπ=,⎪⎩⎪⎨⎧><<<⎪⎭⎫⎝⎛=ψax x a x a x a x ,0,00,sin 2)0,(π 阱宽为a 2时粒子Hamilton 量的本征问题的解为,3,2,1,82222==n n man πε⎪⎩⎪⎨⎧><<<⎪⎭⎫⎝⎛=Φax x a x a x n a x n 2,0,020,2s i n 1)(π因波函数的定义域不同,所以)0,(x ψ已不是这时的本征态。
量子力学导论习题答案(曾谨言)
第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。
解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。
(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。
量子力学曾谨言习题解答第七章
第七章:粒子在电磁场中的运动[1]证明在磁场B中,带电粒子的速度算符的各分量,满足下述的对易关系:[]zy x cq i v v B ˆ,2μ= (1) []xz y cq i v v B ˆ,2μ= (2) []y xz cq i v v B ˆ,2μ= (3) [证明]根据正则方程组:x x p H x v ∂∂== ˆ ,Φ+⎪⎭⎫ ⎝⎛-=q A c qp H 221ˆ μ ⎪⎭⎫ ⎝⎛-=x x x A c q p vˆˆ1ˆμ 同理 ⎪⎭⎫ ⎝⎛-=y y y A c q p v ˆˆ1ˆμ ()z y x p p p pˆ,ˆ,ˆˆ 是正则动量,不等于机械动量,将所得结果代入(1)的等号左方: []⎥⎦⎤⎢⎣⎡--=y y x xyxA c q p A c q p v v ˆˆ,ˆˆ1,2μ =[][][][]y x y x y x y x A A cq p A c q A p c qp pˆ,ˆˆ,ˆˆ,ˆˆ,ˆ122222μμμμ+-- (4) 正则动量与梯度算符相对应,即∇=ipˆ ,因此 []0ˆ,ˆ=y x p p又A ˆ仅与点的座标有关[]0ˆ,ˆ=yxA A[]z x y x y yxB c iq y A x A i c q x i A c q A x i c q v v 2222,,,μμμμ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⋅=⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫⎝⎛∂∂-= (因A B ⨯∇=ˆˆ)其余二式依轮换对称写出。
[2]利用上述对易式,求出均匀磁场中,带电粒子能量的本征值(取磁场方向为Z 轴方向) (解)设磁场沿Z 轴方向,B B B B z y x ===00矢势A ˆ 的一种可能情形是022=-=-=z y x A x B A y BA在本题的情形,哈密顿算符是:(前题){})2(2)1(2221ˆ222222z y x z y x v v v p x c qB p y c qB p H ++=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=μμ速度算符间的对易式是:()()())5(0,)4(0,)3(,2===x z zyyxv v v v B ci q v v μ 根据(54⨯),z v 分别和x v ,y v 对易,因此z v 与22yx v v +对易,而: ()2212ˆyx v v H +=μ 与22ˆ2ˆx v H μ=有共同的本征函数,H ˆ的本征值是21ˆ,ˆH H 本征值之和。
量子力学习题答案(曾谨言版)
同理有
[ x, F ] i F p
P75 习题3.14
解:设lz算符的本征态为m,相应的本征值mћ ˆ dx l *l
x
m x
m
1 * ˆ ˆ ˆl ˆ ) dx m ( l y lz l z y m i 1 * ˆ ˆ * ˆ ˆ [ m l y lz m dx m lz l y m dx] i 1 * ˆ ˆ ) * l ˆ dx] [m m ly dx ( l z m z m y m i 1 * ˆ * ˆ [m m ly dx m z m m l y m dx ] 0 i 类似地可以证明 l y 0
p ' * ( x , t ) ( x , t )dx p ' * ( x, t )dx C ( p) p ( x, t )dp
p ' * ( x , t ) ( x , t )dx p ' * ( x, t )dx C ( p) p ( x, t )dp
c1
2
(ቤተ መጻሕፍቲ ባይዱ) l2的可能测值
l l ( l 1)
2 1 2 2
2 2
2 , l 1 相应本征态Y11
2
l l ( l 1)
2 1
6 , l 2 相应本征态Y20
2
相应的测量概率:
l : c1 ;
平均值:
2 2 1 2
2
l : c2
2 2 2
2 2
2
l l c1 l c2 2
Rnl ( r ) N nl l e 2F ( n l 1, 2l 2, )
曾谨言量子力学第二章习题解答
第二章习题解答p.522.1.证明在定态中,几率流与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m 2i )(m 2i J e )r ( )t (f )r ()t r (**Et iEt i**Et iEt i**Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见tJ 与无关。
2.2 由下列定态波函数计算几率流密度:ikrikrer er -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r mr k r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i m i J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψrJ 1 与同向。
表示向外传播的球面波。
r mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m 2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ 可见,rJ 与2反向。
表示向内(即向原点) 传播的球面波。
补充:设ikxex =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。
其相对位置几率分布函数为12==ψω表示粒子在空间各处出现的几率相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
[ (
) (
)
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
ℏ2 T= d 3 r∇ψ * ⋅ ∇ψ ∫ 2m
结合式(1) 、 (2)和(3) ,可知能量密度
(3)
w=
且能量平均值
ℏ2 ∇ψ * ⋅ ∇ψ + ψ *Vψ , 2m
第一章 1.1 设质量为 m 的粒子在一维无限深势阱中运动,
量子力学的诞生
⎧∞, x < 0, x > a V ( x) = ⎨ ⎩0, 0 < x < a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有
λ 2 ∴ λ = 2a / n a = n⋅
又据 de Broglie 关系
�
E = ∫ d 3r ⋅ w ,
(能量密度)
w=
ℏ2 ∇ψ *ψ + ψ *Vψ 2m ∂w � +∇⋅s = 0 ∂t
(b)证明能量守恒公式
2
⎞ ℏ 2 ⎛ ∂ψ * ∂ψ � ⎜ s =− ∇ψ + ∇ψ * ⎟ ⎜ ⎟ 2m ⎝ ∂ t ∂t ⎠
证: (a)粒子的能量平均值为(设ψ 已归一化)
= mh,
m = 1, 2 , 3 , ⋯
pϕ = mh ,
2 E m = pϕ / 2I = m 2 ℏ 2 / 2I ,
m = 1, 2 , 3 ,⋯
ödinger 方程 第二章 波函数与 Schr Schrö 2.1 设质量为 m 的粒子在势场 V ( r ) 中运动。 (a)证明粒子的能量平均值为
(
)
d d 3 rψ 1* r ,.t ψ 2 r , t = 0 。 ∫ dt
( ) ( )
2.4)设一维自由粒子的初态ψ ( x,0 ) = e
⎛ p2 ⎞ i ⎜ p0 x − 0 t ⎟ / ℏ ⎜ 2 m ⎟ ⎝ ⎠
ip0 x / ℏ
, 求ψ ( x, t ) 。
解:
ψ ( x, t ) = e
令 ξ2 =
t ⎛ mx ⎞ ⎜p− ⎟ ,则 2mℏ ⎝ t ⎠
1 imx 2 2ℏt 2mℏ −iξ 2 ψ ( x, t ) = e ⋅ e dξ 2π ℏ t −∫ ∞ = = 1 2mℏ imx 2 2 ℏt ⋅ e ⋅ π e − iπ / 4 2π ℏ t ⎡ ⎛ mx 2 π ⎞⎤ m exp ⎢i⎜ − ⎟ ⎜ ⎟⎥ 2π ℏt ⎣ ⎝ 2ℏt 4 ⎠⎦
+∞
2
ψ ( x, t ) =
2
m 。 2π ℏt
2.6 设一维自由粒子的初态为ψ ( x,0 ) ,证明在足够长时间后,
2 m ⎡ imx ⎤ ⎛ mx ⎞ ψ ( x, t ) = exp[− iπ 4] ⋅ exp ⎢ ⋅ ϕ⎜ ⎟ ℏt ⎣ 2ℏt ⎥ ⎦ ⎝ ℏt ⎠
式中 ϕ (k ) =
∫
0
2 pϕ dϕ = nh, n = 1, 2 , ⋯ , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。
.
它的角动量 pϕ = I ϕ (广义动量) , pϕ 是运动惯量。按量子化条件
∫
∴
因而平面转子的能量
2π 0
p ϕ dx = 2π pϕ
(4)
E = ∫ d 3r ⋅ w 。
(b)由(4)式,得
. . ⎤ . ∂w ℏ 2 ⎡ . * * * = ∇ ψ ⋅ ∇ ψ + ∇ ψ ⋅ ∇ ψ + ψ Vψ + ψ *V ψ ⎢ ⎥ ∂t 2m ⎣ ⎦
=
. . . . ⎛ .* 2 ℏ2 ⎡ ⎛ .* *⎞ 2 * ⎞⎤ * * ⎜ ⎟ ⎜ ⎟ ∇ ⋅ ψ ∇ ψ + ψ ∇ ψ − ψ ∇ ψ + ψ ∇ ψ + ψ V ψ + ψ V ψ ⎢ ⎟ ⎜ ⎟⎥ 2m ⎣ ⎜ ⎝ ⎠ ⎝ ⎠⎦
− iℏ
∂ * ℏ2 2 * ψ =− ∇ ψ + (V1 − iV2 ) ψ* ∂t 2m
(2)
ψ * × (1)-ψ × (2),得 iℏ
∂ * ℏ2 * 2 ψ ψ =− ψ ∇ ψ − ψ∇ 2ψ * + 2iψ *V2ψ ∂t 2m ℏ2 =− ∇ ⋅ ψ *∇ψ − ψ∇ψ * + 2iV2ψ *ψ 2m
(能流密度)
⎛ ℏ2 2 ⎞ 3 ⎟ E = ∫ψ * ⎜ − ∇ + V ⎜ 2m ⎟ψ d r = T + V ⎝ ⎠
(1)
V = ∫ d 3 rψ *Vψ
3 *
(势能平均值)
(2)
⎛ ℏ2 2 ⎞ T = ∫ d rψ ⎜ ( ⎜ − 2m ∇ ⎟ ⎟ψ ⎝ ⎠ ℏ2 =− d 3 r ∇ ⋅ ψ *∇ψ − ∇ψ * ⋅ (∇ψ ) 2m ∫
1 ϕ ( p )eipx ℏ dp , ∫ 2πℏ − ∞ 1 2π ℏ
+∞
ϕ ( p) =
1 2π ℏ
+∞ −ipx ℏ ∫ ϕ (x,0)e dx =
−∞
−∞
∫ δ ( x )e
−ipx ℏ
dx =
1 2π ℏ
,
5
∴
ψ ( x, t ) =
1 2πℏ
+∞
−∞
∫ ϕ ( p )e
i ( px − Et ) / ℏ
[
]
)
=−
ℏ2 d 3 r ∇ ⋅ ψ 2 ∇ψ 1* − ψ 1*∇ψ 2 − (∇ψ 2 ) ⋅ ∇ψ 1* + ∇ψ 1* ⋅ (∇ψ 2 ) ∫ 2m
[ ( [ (
)
(
) (
]
=−
ℏ2 d 3 r ∇ ⋅ ψ 2 ∇ψ 1* − ψ 1*∇ψ 2 ∫ 2m
)]
=−
即
� ℏ2 (无穷远边界面上,ψ 1 ,ψ 2 → 0 ) ψ 2 ∇ψ 1* − ψ 1*∇ψ 2 ⋅ dS = 0 , ∫ 2m
(
)
(
)
(
)
∴
2V ∂ * ℏ ψ ψ =− ∇ ⋅ ψ *∇ψ − ψ∇ψ * + 2 ψ *ψ ∂t 2im ℏ
(
)
(
)
(
)
(3)
即
� 2V ∂ρ +∇⋅ j = 2 ρ ≠ 0 , ∂t ℏ
此即几率不守恒的微分表达式。 (b)式(3)对空间体积 τ 积分,得
∂ ℏ 2 d 3 r ψ *ψ = − ∇ ⋅ ψ *∇ψ − ψ∇ψ * d 3 r + ∫∫∫ d 3 rV2 ψ *ψ ∫∫∫ ∫∫∫ ∂t τ 2im τ ℏ τ � 2 ℏ * * =− ψ ∇ ψ − ψ ∇ ψ ⋅ d S + ∫∫∫ d 3 rV2ψ *ψ 2im ∫∫ ℏ τ S
∫p
即
x
⋅ dx = n x h ,
(n x
= 1, 2 , 3 , ⋯)来自p x ⋅ 2a = n x h
∴ p x = n x h / 2a ,
( 2a :一来一回为一个周期)
同理可得,
p y = n y h / 2b ,
p z = n z h / 2c ,
n x , n y , n z = 1, 2 , 3 , ⋯
dp
( E = p 2 2m )
=
1 e 2π ℏ −∫ ∞
⎞ i ⎛ p2 +∞ − ⎜ t − px ⎟ ⎟ ℏ ⎜ 2m ⎝ ⎠
dp
(指数配方)
=
2 +∞ ⎡ it ⎛ 1 imx 2 2 ℏt mx ⎞ ⎤ e exp − p − ⎜ ⎟ ⎥ dp ⎢ ∫ 2π ℏ 2 m ℏ t ⎝ ⎠ ⎥ ⎢ −∞ ⎣ ⎦
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2
∫ p ⋅ d x = nh,
n = 1, 2 , ⋯ ,
p = 2m[ E − V ( x)]
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
+a
= 2mω a 2 ⋅
得 a2 = (3)
π = mωπ a 2 = n h 2
代入(2) ,解出
E n = nℏω ,
积分公式:
n = 1, 2 , 3 , ⋯ a 2 − u 2 du = u a2 u a2 − u2 + arcsin + c 2 2 a
(4)
∫
2π
1.4 设一个平面转子的转动惯量为 I,求能量的可能取值。 提示:利用
1 2π
+∞
−∞
∫ψ (x,0)e
α →∞
−ikx
dx 是ψ ( x,0 ) 的 Fourier 变换。
所以
∂w � +∇⋅s = 0 。 ∂t
2.2 考虑单粒子的 Schr ödinger 方程 Schrö
3
iℏ V1 与 V2 为实函数。
∂ � ℏ2 2 � � � � ψ (r , t ) = − ∇ ψ (r , t ) + [V1 (r ) + iV2 (r )] ψ (r , t ) ∂t 2m
(3)
ψ 2 × (3) − ψ 1* × (2),得
∂ * ℏ2 − iℏ ψ 1 ψ 2 = − ψ 2 ∇ 2ψ 1* − ψ 1*∇ 2ψ 2 ∂t 2m
(
)
(
)
对全空间积分: