【高考精品复习】第九篇 解析几何 第5讲 椭 圆

合集下载

高考数学一轮复习 《第九章 平面解析几何》9-5椭圆课件

高考数学一轮复习 《第九章 平面解析几何》9-5椭圆课件

2
2
Байду номын сангаас答案 D
解析
→ → 设点D(0,b),则 DF1 =(-c,-b), DA =(-
→ → → → a,-b),DF2 =(c,-b),由3DF1 =DA +2DF2 得-3c=-a 1 +2c,即a=5c,故e= . 5 5.(09·广东)已知椭圆G的中心在坐标原点,长轴在 x轴上,离心率为 3 ,且G上一点到G的两个焦点的距离之 2
2 2
答案
1 2
解析
由题意△ABF2的周长为8,根据椭圆的定义得4a
2 2 2
=8,即a=2.又c =a -b =1,所以椭圆的离心率e= 1 . 2
c = a
x y 4.(2011·金华十校)方程为 2 + 2 =1(a>b>0)的椭圆 a b 的左顶点为A,左、右焦点分别为F1、F2,D是它短轴上的 → → → 一个端点,若3 DF1 = DA +2 DF2 ,则该椭圆的离心率为 ( ) 1 A. 2 1 C. 4 1 B. 3 1 D. 5
∴b =a -c =25-9=16, x y 故动圆圆心的轨迹方程为 + =1. 25 16 x y (2)椭圆 + =1上一点P到左焦点距离为6,F是该 25 16 → 1 → → →| 椭圆的左焦点,若点M满足OM= (OP +OF),则|OM 2 =________.
2 2 2 2
2
2
2
【答案】

• • • • • • •
x y y x + = 1 , + 2 2 2 2=1.(其中a>b>0) a b a b 3.椭圆的几何性质
2
2
2
2
x y 4.方程:Ax +By =1或 + =1(A>0,B>0,A≠B)也表 A B

高考数学一轮复习第九章解析几何第五节椭圆课件理

高考数学一轮复习第九章解析几何第五节椭圆课件理

[听前试做] (1)法一:椭圆2y52 +x92=1 的焦点为(0,-4),(0,4), 即 c=4.
由 椭 圆 的 定 义 知 , 2a = 3-02+- 5+42 + 3-02+- 5-42,解得 a=2 5.
由 c2=a2-b2 可得 b2=4. 所以所求椭圆的标准方程为2y02 +x42=1.
解:由原题得 b2=a2-c2=9, 又 2a+2c=18,所以 a-c=1,解得 a=5, 故椭圆方程为2x52 +y92=1.
[探究 2] 本例(2)中条件
、“△PF1F2 的面积为
9”分别改为“∠F1PF2=60°”“S△PF1F2=3 3”,结果如何?
解:|PF1|+|PF2|=2a,又∠F1PF2=60°, 所以|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=|F1F2|2, 即(|PF1|+|PF2|)2-3|PF1||PF2|=4c2, 所以 3|PF1||PF2|=4a2-4c2=4b2, 所以|PF1||PF2|=43b2,又因为 S△PF1F2=12|PF1||PF2|sin 60°
2.已知椭圆xa22+by22=1,作一个三角形,使它的一个顶点为焦 点 F1,另两个顶点 D,E 在椭圆上且边 DE 过焦点 F2,则△F1DE 的周长为________.
答案:4a
3.已知圆(x+2)2+y2=36 的圆心为 M,设 A 为圆上任一点, 且点 N(2,0),线段 AN 的垂直平分线交 MA 于点 P,则动点 P 的轨 迹是________.
(2)(2015·浙江高考)椭圆xa22+by22=1(a>b>0 )的右焦点 F(c,0) 关于直线 y=bcx 的对称点 Q 在椭圆上,则椭圆的离心率是 ________.

2021版高考数学一轮复习第九章平面解析几何第5讲椭圆第2课时直线与椭圆的位置关系教学案理北师大版

2021版高考数学一轮复习第九章平面解析几何第5讲椭圆第2课时直线与椭圆的位置关系教学案理北师大版

第2课时 直线与椭圆的位置关系直线与椭圆的位置关系(自主练透)1.(一题多解)若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5解析:选D.法一:由于直线y =kx +1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上, 则0<1m≤1且m ≠5,故m ≥1且m ≠5.法二:由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立. 由于m >0 且m ≠5,所以m ≥1且m ≠5.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解:将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y 22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过判断定点在椭圆内部或椭圆上来判定直线和椭圆有交点.弦长问题(师生共研)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |=4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.【解】 (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2, 解得a =2,b =3, 所以椭圆的方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=4+3=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k(x -1).将直线AB 的方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以|AB |=k 2+1|x 1-x 2|=k2+1·(x1+x2)2-4x1x2=12(k2+1)3+4k2.同理,|CD|=12⎝⎛⎭⎪⎫1k2+13+4k2=12(k2+1)3k2+4.所以|AB|+|CD|=12(k2+1)3+4k2+12(k2+1)3k2+4=84(k2+1)2(3+4k2)(3k2+4)=487,解得k=±1,所以直线AB的方程为x-y-1=0或x+y-1=0.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2]=⎝⎛⎭⎪⎫1+1k2[(y1+y2)2-4y1y2](k为直线的斜率).已知椭圆M:x2a2+y2b2=1(a>b>0)的离心率为63,焦距为2 2.斜率为k 的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若k=1,求|AB|的最大值.解:(1)由题意得⎩⎪⎨⎪⎧a2=b2+c2,ca=63,2c=22,解得a=3,b=1.所以椭圆M的方程为x23+y2=1.(2)设直线l的方程为y=x+m,A(x1,y1),B(x2,y2).由⎩⎪⎨⎪⎧y=x+m,x23+y2=1,得4x2+6mx+3m2-3=0,所以x1+x2=-3m2,x1x2=3m2-34.所以|AB|=(x2-x1)2+(y2-y1)2=2(x2-x1)2=2[(x1+x2)2-4x1x2]=12-3m22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6.中点弦问题(多维探究) 角度一 由中点弦确定直线方程或曲线方程(1)已知椭圆x 22+y 2=1,则斜率为2的平行弦中点的轨迹方程为________.(2)焦点是F (0,52),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________.【解析】 (1)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为P (x 0,y 0),通解:有x 212+y 21=1,x 222+y 22=1.两式作差,得(x 2-x 1)(x 2+x 1)2+(y 2-y 1)(y 2+y 1)=0.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 2-y 1x 2-x 1=k AB ,代入后求得k AB =-x 02y 0. 即2=-x 02y 0,所以x 0+4y 0=0.优解:由k AB ·k OP =-b 2a 2得2·y 0x 0=-12,即x 0+4y 0=0.故所求的轨迹方程为x +4y =0,将x +4y =0代入x 22+y 2=1得:x 22+⎝ ⎛⎭⎪⎫-x 42=1,解得x=±43,又中点在椭圆内,所以-43<x <43.(2)通解:设所求的椭圆方程为y 2a 2+x 2b 2=1(a >b >0),直线被椭圆所截弦的端点为A (x 1,y 1),B (x 2,y 2).由题意,可得弦AB 的中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,且x 1+x 22=27,y 1+y 22=-37.将A ,B 两点坐标代入椭圆方程中,得⎩⎪⎨⎪⎧y 21a 2+x 21b2=1,y 22a 2+x22b 2=1.两式相减并化简,得a 2b 2=-y 1-y 2x 1-x 2×y 1+y2x 1+x 2=-2×-6747=3,所以a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25,故所求椭圆的标准方程为y 275+x 225=1. 优解:设弦的中点为M ,由k AB ·k OM =-a 2b2得2×2×27-127=-a 2b 2,得a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25,所以所求的方程为y 275+x 225=1.【答案】 (1)x +4y =0⎝ ⎛⎭⎪⎫-43<x <43 (2)y 275+x 225=1 角度二 对称问题如图,已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点,设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.【解】 设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.因为直线AB 过椭圆的左焦点F ,所以方程有两个不等实根,记A (x 1,y 1),B (x 2,y 2),AB 的中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k22k 2+1,y 0=k (x 0+1)=k2k 2+1,所以AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2.因为k ≠0,所以-12<x G <0,所以点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0.(1)处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:(2)解决对称问题除掌握解决中点弦问题的方法外,还要注意“如果点A ,B 关于直线l 对称,则l 垂直于直线AB 且A ,B 的中点在直线l 上”的应用.1.过椭圆x 216+y 24=1内一点P (3,1),且被点P 平分的弦所在直线的方程是________.解析:设所求直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1,两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0. 因为P (3,1)是A (x 1,y 1),B (x 2,y 2)的中点, 所以x 1+x 2=6,y 1+y 2=2, 故k AB =y 1-y 2x 1-x 2=-34, 直线AB 的方程为y -1=-34(x -3),即3x +4y -13=0. 答案:3x +4y -13=02.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.求实数m 的取值范围.解:由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63.椭圆与向量的综合问题(师生共研)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,O 为坐标原点,求△OCD 的面积.【解】 (1)因为过焦点且垂直于长轴的直线被椭圆截得的线段长为433,所以2b 2a =433.因为椭圆的离心率为33,所以c a =33, 又a 2=b 2+c 2,解得b =2,c =1,a = 3. 所以椭圆的方程为x 23+y 22=1. (2)由(1)可知F (-1,0), 则直线CD 的方程为y =k (x +1).联立⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y 得(2+3k 2)x 2+6k 2x +3k 2-6=0. 设C (x 1,y 1),D (x 2,y 2),所以x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.又A (-3,0),B (3,0), 所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2=8,解得k =± 2.从而x 1+x 2=-6×22+3×2=-32,x 1x 2=3×2-62+3×2=0.所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =⎝ ⎛⎭⎪⎫-322-4×0=32,|CD |=1+k 2|x 1-x 2|=1+2×32=332.而原点O 到直线CD 的距离为d =|k |1+k2=21+2=63, 所以△OCD 的面积为S =12|CD |×d =12×332×63=324.解决椭圆中与向量有关问题的方法(1)将向量条件用坐标表示,再利用函数、方程知识建立数量关系. (2)利用向量关系转化成相关的等量关系.(3)利用向量运算的几何意义转化成图形中位置关系解题.(2020·河南郑州二模)已知动点M 到两定点F 1(-m ,0),F 2(m ,0)的距离之和为4(0<m <2),且动点M 的轨迹曲线C 过点N ⎝⎛⎭⎪⎫3,12. (1)求m 的值;(2)若直线l :y =kx +2与曲线C 有两个不同的交点A ,B ,且OA →·OB →=2(O 为坐标原点),求k 的值.解:(1)由0<m <2,得2m <4,可知:曲线C 是以两定点F 1(-m ,0),F 2(m ,0)为焦点,长半轴长为2的椭圆,所以a =2,设曲线C 的方程为x 24+y 2b2=1,把点N ⎝⎛⎭⎪⎫3,12代入得34+14b 2=1,解得b 2=1,由c 2=a 2-b 2,解得c 2=3,所以m = 3.(2)由(1)知曲线C 的方程为x 24+y 2=1,设A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +2,消去y 得⎝ ⎛⎭⎪⎫14+k 2x 2+22kx +1=0,则有Δ=4k 2-1>0,得k 2>14.x 1+x 2=-82k 1+4k 2,x 1x 2=41+4k2, 则OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+2=6-4k21+4k2=2. 得k 2=13>14,所以k 的值为±33.[基础题组练]1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( )A .至多为1B .2C .1D .0解析:选B.由题意知,4m 2+n2>2,即m 2+n 2<2, 所以点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2.2.椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( ) A .-23B .-32C .-49D .-94解析:选A.设以P 为中点的弦所在的直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),斜率为k ,则4x 21+9y 21=144,4x 22+9y 22=144,两式相减得4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)·(y 1-y 2)=0,又x 1+x 2=6,y 1+y 2=4,y 1-y 2x 1-x 2=k ,代入解得k =-23. 3.已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A.223B .423C. 2D .2解析:选B.由条件知c =1,e =c a =22,所以a =2,b =1,椭圆方程为x 22+y 2=1,联立直线方程与椭圆方程可得交点坐标为(0,1),⎝ ⎛⎭⎪⎫43,-13,所以|AB |=423.4.(2020·石家庄质检)倾斜角为π4的直线经过椭圆x 2a 2+y2b 2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且AF →=2FB →,则该椭圆的离心率为( )A.32 B .23 C.22D .33解析:选B.由题可知,直线的方程为y =x -c ,与椭圆方程联立⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x -c ,得(b 2+a 2)y2+2b 2cy -b 4=0,由于直线过椭圆的右焦点,故必与椭圆有交点,则Δ>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=-2b 2c a 2+b2,y 1y 2=-b4a 2+b 2,又AF →=2FB →,所以(c -x 1,-y 1)=2(x 2-c ,y 2),所以-y 1=2y 2,可得⎩⎪⎨⎪⎧-y 2=-2b 2c a 2+b2,-2y 22=-b4a 2+b 2.所以12=4c2a 2+b 2,所以e =23,故选B. 5.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是( )A .4B .3C .2D .1解析:选D.因为(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0,所以PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n ,则m +n =4,m 2+n 2=12,2mn =4,mn =2, 所以S △F 1PF 2=12mn =1.6.已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________.解析:由题意知,椭圆的右焦点F 1的坐标为(1,0),直线AB 的方程为y =2(x -1).由方程组⎩⎪⎨⎪⎧y =2(x -1),x 25+y 24=1,消去y ,整理得3x 2-5x =0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=53,x 1x 2=0.则|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+22)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553.答案:5537.直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为________.解析:由点差法可求出k 1=-12·x 中y 中,所以k 1·y 中x 中=-12,即k 1k 2=-12. 答案:-128.从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.解析:由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-ba,由于OP ∥AB ,所以-y 0c =-b a ,y 0=bc a,把P ⎝ ⎛⎭⎪⎫-c ,bc a 代入椭圆方程得(-c )2a 2+⎝ ⎛⎭⎪⎫bc a 2b 2=1, 所以⎝ ⎛⎭⎪⎫c a 2=12,所以e =c a =22.答案:229.已知椭圆E 的一个顶点为A (0,1),焦点在x 轴上,若椭圆的右焦点到直线x -y +22=0的距离是3.(1)求椭圆E 的方程;(2)设过点A 的直线l 与该椭圆交于另一点B ,当弦AB 的长度最大时,求直线l 的方程. 解:(1)由题意得b =1.右焦点(c ,0)(c >0)到直线x -y +22=0的距离d =|c +22|2=3,所以c = 2.所以a =b 2+c 2=3,所以椭圆E 的方程为x 23+y 2=1.(2)当直线l 的斜率不存在时,|AB |=2,此时直线l 的方程为x =0.当直线l 的斜率存在时,设直线l 的方程为y =kx +1,联立⎩⎪⎨⎪⎧y =kx +1,x 23+y 2=1得(1+3k 2)x 2+6kx =0,所以x A =0,x B =-6k1+3k2, 所以|AB |=1+k 26|k |1+3k 2,|AB |2=36k 2(1+k 2)(1+3k 2)2.令t =1+3k 2,t ∈(1,+∞),则|AB |2=4×⎣⎢⎡⎦⎥⎤-2⎝ ⎛⎭⎪⎫1t 2+1t+1,所以当1t =14,即k 2=1,得k =±1时,|AB |2取得最大值为92,即|AB |的最大值为322,此时直线l 的方程为y =x +1或y =-x +1.因为2<322,所以当弦AB 的长度最大时,直线l 的方程为y =x +1或y =-x +1.10.(2020·安徽五校联盟第二次质检)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点坐标分别为F 1(-1,0),F 2(1,0),P 为椭圆C 上一点,满足3|PF 1|=5|PF 2|且cos ∠F 1PF 2=35.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于A ,B 两点,点Q ⎝ ⎛⎭⎪⎫14,0,若|AQ |=|BQ |,求k 的取值范围. 解:(1)由题意设|PF 1|=r 1,|PF 2|=r 2,则3r 1=5r 2,又r 1+r 2=2a ,所以r 1=54a ,r 2=34a . 在△PF 1F 2中,由余弦定理得,cos ∠F 1PF 2=r 21+r 22-|F 1F 2|22r 1r 2=⎝ ⎛⎭⎪⎫54a 2+⎝ ⎛⎭⎪⎫34a 2-222×54a ×34a =35, 解得a =2,因为c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k2,且Δ=48(3+4k 2-m 2)>0,①设AB 的中点为M (x 0,y 0),连接QM ,则x 0=x 1+x 22=-4km 3+4k 2,y 0=kx 0+m =3m3+4k2, 因为|AQ |=|BQ |,所以AB ⊥QM ,又Q ⎝ ⎛⎭⎪⎫14,0,M 为AB 的中点,所以k ≠0,直线QM 的斜率存在,所以k ·k QM =k ·3m3+4k 2-4km 3+4k 2-14=-1,解得m =-3+4k24k,②把②代入①得3+4k 2>⎝ ⎛⎭⎪⎫-3+4k 24k 2,整理得16k 4+8k 2-3>0,即(4k 2-1)(4k 2+3)>0,解得k >12或k <-12,故k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞.[综合题组练]1.(一题多解)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A.12 B .22 C.32D .55解析:选C.法一:设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),分别代入椭圆方程,得⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式相减得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.因为k AB =y 1-y 2x 1-x 2=1,且x 1+x 2=-8,y 1+y 2=2,所以b 2a 2=14,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=32,故选C.法二:将直线方程x -y +5=0代入x 2a 2+y 2b2=1(a >b >0),得(a 2+b 2)x 2+10a 2x +25a 2-a 2b2=0,设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-10a2a 2+b 2,又由中点坐标公式知x 1+x 2=-8,所以10a 2a 2+b 2=8,解得a =2b ,又c =a 2-b 2=3b ,所以e =c a =32.故选C.2.(一题多解)(2020·广东深圳一模)已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线与椭圆交于P ,Q 两点,PQ ⊥PF 1,且|QF 1|=2|PF 1|,则△PF 1F 2与△QF 1F 2的面积之比为( )A .2- 3B .2-1 C.2+1D .2+ 3解析:选D.法一:可设|PF 1|=t ,则|QF 1|=2|PF 1|=2t , 由椭圆的定义可得|PF 2|=2a -t ,|QF 2|=2a -2t , |PQ |=4a -3t ,则|PQ |2+|PF 1|2=|QF 1|2,即(4a -3t )2+t 2=4t 2,即有4a -3t =3t ,解得t =43+3a ,则△PF 1F 2与△QF 1F 2的面积之比为12|PF 1|·|PF 2|12|QF 1|·|QF 2|·sin 30°=12·43+3a ·2+233+3a 12·83+3a ·23-23+3a ·12=1+33-1=2+ 3.故选D.法二:同法一得出t =43+3a ,则S △PF 1F 2S △QF 1F 2=12|F 1F 2||y P |12|F 1F 2||y Q |=|y P ||y Q |=|PF 2||QF 2|=2a -t2a -2t =2a -43+3a2a -2×43+3a=(2+23)a (23-2)a=2+ 3.故选D.3.(一题多解)(2020·安徽蚌埠一模)已知F 1,F 2是椭圆x 24+y 23=1的左,右焦点,点A的坐标为⎝⎛⎭⎪⎫-1,32,则∠F 1AF 2的平分线所在直线的斜率为________. 解析:法一:因为F 1,F 2是椭圆x 24+y 23=1的左,右焦点,所以F 1(-1,0),F 2(1,0),又A ⎝ ⎛⎭⎪⎫-1,32, 所以AF 1⊥x 轴,所以|AF 1|=32,则|AF 2|=52,所以点F 2(1,0)关于l (∠F 1AF 2的平分线所在直线)对称的点F ′2在线段AF 1的延长线上,又|AF ′2|=|AF 2|=52,所以|F ′2F 1|=1,所以F ′2(-1,-1),线段F ′2F 2的中点坐标为⎝⎛⎭⎪⎫0,-12,所以所求直线的斜率为32-⎝⎛⎭⎪⎫-12-1-0=-2.法二:如图.设∠F1AF2的平分线交x轴于点N,∠F1AN=β,∠ANF2=α.因为tan 2β=|F1F2||AF1|=232=43=2tan β1-tan2β,所以tan β=12或-2(舍).在Rt△AF1N中,tan β=|F1N||AF1|,即|F1N|32=12,所以|F1N|=34,所以k l=tan α=tan(π-∠ANF1)=-tan∠ANF1=-|AF1||F1N|=-3234=-2.答案:-24.如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则椭圆的离心率的取值范围为________.解析:设椭圆的方程为x2a2+y2b2=1(a>b>0),∠B1PA2为钝角可转化为B2A2→,F2B1→所夹的角为钝角,则(a,-b)·(-c,-b)<0,得b2<ac,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a-1>0即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝⎛⎭⎪⎫5-12,15.在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴、y 轴上滑动,CP →=2PD →.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线与曲线E 相交于A ,B 两点,OM →=OA →+OB →,当点M 在曲线E 上时,求四边形AOBM 的面积.解:(1)设C (m ,0),D (0,n ),P (x ,y ). 由CP →=2PD →,得(x -m ,y )=2(-x ,n -y ).所以⎩⎨⎧x -m =-2x ,y =2(n -y ),得⎩⎨⎧m =(2+1)x ,n =2+12y ,由|CD →|=2+1,得m 2+n 2=(2+1)2, 所以(2+1)2x 2+(2+1)22y 2=(2+1)2,整理,得曲线E 的方程为x 2+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由OM →=OA →+OB →, 知点M 的坐标为(x 1+x 2,y 1+y 2). 由题意知,直线AB 的斜率存在.设直线AB 的方程为y =kx +1,代入曲线E 的方程,得 (k 2+2)x 2+2kx -1=0, 则x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2. y 1+y 2=k (x 1+x 2)+2=4k 2+2.由点M 在曲线E 上,知(x 1+x 2)2+(y 1+y 2)22=1,即4k 2(k 2+2)2+8(k 2+2)2=1,解得k 2=2. 这时|AB |=1+k 2|x 1-x 2|=3[(x 1+x 2)2-4x 1x 2]=322,原点到直线AB 的距离d =11+k2=33, 所以平行四边形OAMB 的面积S =|AB |·d =62. 6.(2020·郑州模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,原点到过点A (0,-b )和B (a ,0)的直线的距离为32. (1)求椭圆的方程;(2)设F 1,F 2为椭圆的左、右焦点,过F 2作直线交椭圆于P ,Q 两点,求△PQF 1内切圆半径r 的最大值.解:(1)直线AB 的方程为x a +y-b=1, 即bx -ay -ab =0. 原点到直线AB 的距离为|-ab |(-a )2+b2=32, 即3a 2+3b 2=4a 2b 2,① 由e =c a =63,得c 2=23a 2,② 又a 2=b 2+c 2,③所以联立①②③可得a 2=3,b 2=1,c 2=2. 故椭圆的方程为x 23+y 2=1.(2)由(1)得F 1(-2,0),F 2(2,0), 设P (x 1,y 1),Q (x 2,y 2).易知直线PQ 的斜率不为0,故设其方程为x =ky +2, 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x =ky +2,x 23+y 2=1,(k 2+3)y 2+22ky -1=0.故⎩⎪⎨⎪⎧y 1+y 2=-22kk 2+3,y 1y 2=-1k 2+3.④而S △PQF 1=S △F 1F 2P +S △F 1F 2Q =12|F 1F 2||y 1-y 2|= 2 (y 1+y 2)2-4y 1y 2,⑤ 将④代入⑤,得S △PQF 1=2⎝ ⎛⎭⎪⎫-22k k 2+32+4k 2+3=2 6 k 2+1k 2+3. 又S △PQF 1=12(|PF 1|+|F 1Q |+|PQ |)·r =2a ·r =23r ,所以2 6 k 2+1k 2+3=23r ,故r = 2 k 2+1k 2+3=2k 2+1+2k 2+1≤12, 当且仅当k 2+1=2k 2+1,即k =±1时取等号.故△PQF 1内切圆半径r 的最大值为12.。

高考数学总复习第九章解析几何9.5椭圆课件理新人教A版

高考数学总复习第九章解析几何9.5椭圆课件理新人教A版

x2
-a ≤x≤ a -b ≤y≤ b
对称轴: 坐标轴 A1 (-a,0) ,A2 (a,0) B1 (0,-b) ,B2 (0,b) 长轴 A1A2 的长为 |F1F2|= 2c
c e= ,e∈ (0,1) a
-b ≤x≤ b -a ≤y≤ a
,对称中心: (0,0) A1 (0,-a) ,A2 (0,a) B1 (-b,0) ,B2 (b,0)
������ 2 ������ 2 ������ 2
-15考点1 考点2 考点3
(2)由椭圆的定义知|PF1|+|PF2|=2a,������������1 ⊥ ������������2 ,故 |PF1|2+|PF2|2=|F1F2|2=4c2, 则(|PF1|+|PF2|)2-2|PF1||PF2|=4c2, 所以 2|PF1||PF2|=4a2-4c2=4b2. 所以|PF1||PF2|=2b2. 所以������△������������1 ������2 = 2|PF1||PF2| =2×2b2=b2=9. 所以 b=3.
+
������2 ������
2 =1(a>b>0)的两个焦点,P
为椭圆 C .
上的一点,且������������1 ⊥ ������������2 .若△PF1F2 的面积为 9,则 b=
答案: (1) +y2=1 (2)3
2 ������ 2
-14考点1 考点2 考点3
解析: (1)因为点 P 在线段 MF 的垂直平分线上, 所以|PF|=|PM|,所以|PE|+|PF|=|PE|+|PM|=|EM|=2√2. 所以点 P 的轨迹为以 E,F 为焦点的椭圆. 设椭圆方程为������ 2 + ������ 2 =1, 则 2a=2√2,c=1,所以 a=√2,b=1. 所以点 P 的轨迹方程为 2 +y2=1.

高考数学一轮复习 第9章 平面解析几何 5 第5讲 椭 圆教案 理-高三全册数学教案

高考数学一轮复习 第9章 平面解析几何 5 第5讲 椭 圆教案 理-高三全册数学教案

第5讲 椭 圆1.椭圆的定义条件结论1结论2平面内的动点M 与平面内的两个定点F 1,F 2M 点的轨迹为椭圆F 1、F 2为椭圆的焦点|F 1F 2|为椭圆的焦距|MF 1|+|MF 2|=2a2a >|F 1F 2|2.椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 图形性质范围-a ≤x ≤a-b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性对称轴:x 轴、y 轴对称中心:(0,0) 顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b ,0),B 2(b ,0)轴长轴A 1A 2的长为2a 短轴B 1B 2的长为2b焦距 |F 1F 2|=2c离心率e =ca,e ∈(0,1) a ,b ,c的关系c 2=a 2-b 2已知点P (x 0,y 0),椭圆x 2a 2+y 2b2=1(a >b >0),则(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.4.椭圆中四个常用结论(1)P 是椭圆上一点,F 为椭圆的焦点,则|PF |∈[a -c ,a +c ],即椭圆上的点到焦点距离的最大值为a +c ,最小值为a -c ;(2)椭圆的通径(过焦点且垂直于长轴的弦)长为2b2a,通径是最短的焦点弦;(3)P 是椭圆上不同于长轴两端点的任意一点,F 1,F 2为椭圆的两焦点,则△PF 1F 2的周长为2(a +c ).(4)设P ,A ,B 是椭圆上不同的三点,其中A ,B 关于原点对称,直线PA ,PB 斜率存在且不为0,则直线PA 与PB 的斜率之积为定值-b 2a2.判断正误(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( ) (3)椭圆既是轴对称图形,又是中心对称图形.( )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( )(5)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b2=1(a >b >0)的焦距相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√(教材习题改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 解析:选D.右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a=12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1. 与椭圆x 29+y 24=1有相同离心率的椭圆方程是( )A.y 29+x 24=1B.x 236+y 225=1C.y 236+x 225=1 D.x 236+y 211=1 解析:选A.椭圆y 29+x 24=1与已知椭圆的长轴长和短轴长分别相等,因此两椭圆的形状、大小完全一样,只是焦点所在坐标轴不同,故两个椭圆的离心率相同. 若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4.答案:(3,4)∪(4,5)(教材习题改编)椭圆C :x 225+y 216=1的左右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A 、B 两点,则△F 1AB 的周长为________.解析:△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a .在椭圆x 225+y 216=1中,a 2=25,a =5,所以△F 1AB 的周长为4a =20. 答案:20椭圆的定义及应用[典例引领](1)(2018·豫北六校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16,则|AF 2|=________.(2)(2018·徐州模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________. 【解析】 (1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3, 因为△ABF 2的周长为16,所以4a =16,所以a =4. 则|AF 1|+|AF 2|=2a =8, 所以|AF 2|=8-|AF 1|=8-3=5. (2)设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, 所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3.【答案】 (1)5 (2)3本例(2)中增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解:由原题得b 2=a 2-c 2=9,又2a +2c =18,所以a -c =1,解得a =5,故椭圆的方程为x 225+y 29=1.(1)椭圆定义的应用范围①确认平面内与两定点有关的轨迹是否为椭圆. ②解决与焦点有关的距离问题. (2)焦点三角形的结论椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫作焦点三角形.如图所示,设∠F 1PF 2=θ. ①|PF 1|+|PF 2|=2a .②4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ. ③焦点三角形的周长为2(a +c ).④S △PF 1F 2=12|PF 1||PF 2|sin θ=b 2·sin θ1+cos θ=b 2tan θ2=c |y 0|,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取最大值,为bc .已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN的垂直平分线交MA 于点P ,则动点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:选B.点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,P 的轨迹是椭圆. 椭圆的标准方程[典例引领](待定系数法)(1)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( ) A.x 28+y 26=1 B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 (2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为( )A.x 220+y 24=1B.x 225+y 24=1 C.y 220+x 24=1 D.x 24+y 225=1 【解析】 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12,得a 2=8,b 2=6,故椭圆方程为x 28+y26=1.(2)设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得(-5)225-k +(3)29-k =1,解得k =5(k =21舍去),所以所求椭圆的标准方程为y 220+x24=1.【答案】 (1)A (2)C[提醒] 当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).[通关练习]1.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则该椭圆的方程为________.解析:设椭圆方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ).因为椭圆经过P 1,P 2两点,所以P 1,P 2点坐标适合椭圆方程,则⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,②①②两式联立,解得⎩⎪⎨⎪⎧m =19,n =13.所以所求椭圆方程为x 29+y 23=1. 答案:x 29+y 23=12.已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是________________.解析:设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎨⎧a 2=b 2+c 2,a ∶b =2∶3,c =2,解得a 2=16,b 2=12.所以椭圆C 的方程为x 216+y 212=1.答案:x 216+y 212=1椭圆的几何性质(高频考点)椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大.高考对椭圆几何性质的考查主要有以下三个命题角度: (1)由椭圆的方程研究其性质; (2)求椭圆离心率的值(范围); (3)由椭圆的性质求参数的值(范围).[典例引领]角度一 由椭圆的方程研究其性质已知正数m 是2和8的等比中项,则圆锥曲线x 2+y 2m=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)【解析】 因为正数m 是2和8的等比中项,所以m 2=16,即m =4,所以椭圆x 2+y 24=1的焦点坐标为(0,±3),故选B. 【答案】 B角度二 求椭圆离心率的值(范围)(2017·高考全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为 ( ) A.63 B.33C.23D.13【解析】 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a 2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63,选A.【答案】 A角度三 由椭圆的性质求参数的值(范围)已知椭圆mx 2+4y 2=1的离心率为22,则实数m 等于( ) A .2 B .2或83C .2或6D .2或8【解析】 显然m >0且m ≠4,当0<m <4时,椭圆长轴在x 轴上,则1m -141m=22,解得m=2;当m >4时,椭圆长轴在y 轴上,则14-1m 14=22,解得m =8. 【答案】 D(1)求椭圆离心率的方法①直接求出a ,c 的值,利用离心率公式e =ca =1-b 2a2直接求解. ②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.(2)利用椭圆几何性质求值或范围的思路①将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系. ②将所求范围用a ,b ,c 表示,利用a ,b ,c 自身的范围、关系求范围.[通关练习]1.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( ) A .(-3,0) B .(-4,0) C .(-10,0)D .(-5,0)解析:选D.因为圆的标准方程为(x -3)2+y 2=1, 所以圆心坐标为(3,0),所以c =3.又b =4, 所以a =b 2+c 2=5. 因为椭圆的焦点在x 轴上, 所以椭圆的左顶点为(-5,0).2.(2018·新余模拟)椭圆C 的两个焦点分别是F 1,F 2,若C 上的点P 满足|PF 1|=32|F 1F 2|,则椭圆C 的离心率e 的取值范围是( ) A .e ≤12B .e ≥14C.14≤e ≤12D .0<e ≤14或12≤e <1解析:选C.因为椭圆C 上的点P 满足|PF 1|=32|F 1F 2|,所以|PF 1|=32×2c =3c .由a -c ≤|PF 1|≤a +c ,解得14≤c a ≤12.所以椭圆C 的离心率e 的取值范围是⎣⎢⎡⎦⎥⎤14,12. 3.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A .2 B .3 C .6D .8解析:选C.由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,-2≤x ≤2, 当且仅当x =2时,OP →·FP →取得最大值6. 直线与椭圆的位置关系[典例引领](2017·高考北京卷)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.【解】 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c = 3.所以b 2=a 2-c 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)设M (m ,n ),则D (m ,0),N (m ,-n ). 由题设知m ≠±2,且n ≠0.直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n. 所以直线DE 的方程为y =-m +2n(x -m ). 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n(x -m ),y =n2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n2.由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.(1)直线与椭圆位置关系判断的步骤 ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.(2)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则 |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率,k ≠0). 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,离心率为12,左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点.(1)求椭圆C 的方程;(2)当△F 2AB 的面积为1227时,求直线的方程.解:(1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32, 所以1a 2+94b 2=1.①又因为离心率为12,所以c a =12,所以b 2a 2=34.②解①②得a 2=4,b 2=3. 所以椭圆C 的方程为x 24+y 23=1.(2)当直线的倾斜角为π2时,A ⎝⎛⎭⎪⎫-1,32,B ⎝⎛⎭⎪⎫-1,-32,S △ABF 2=12|AB |·|F 1F 2|=12×3×2=3≠1227. 当直线的倾斜角不为π2时,设直线方程为y =k (x +1),代入x 24+y 23=1得(4k 2+3)x 2+8k 2x +4k 2-12=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以S △ABF 2=12|y 1-y 2|×|F 1F 2|=|k |(x 1+x 2)2-4x 1x 2 =|k |⎝ ⎛⎭⎪⎫-8k 24k 2+32-4·4k 2-124k 2+3 =12|k |k 2+14k 2+3=1227, 所以17k 4+k 2-18=0,解得k 2=1⎝ ⎛⎭⎪⎫k 2=-1817舍去,所以k =±1,所以所求直线的方程为x -y +1=0或x +y +1=0.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n )与椭圆有关的最值问题,在转化为函数求最值时,一定注意函数的定义域. 易错防范(1)判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.(2)在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.(3)椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系. 1.已知椭圆x 2m -2+y 210-m=1的焦点在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5解析:选A.因为椭圆x 2m -2+y 210-m=1的焦点在x 轴上.所以⎩⎪⎨⎪⎧10-m >0,m -2>0,m -2>10-m ,解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.2.(2018·湖北武汉模拟)已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( ) A.x 216+y 27=1B.x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D.x 216+y 225=1或x 225+y 216=1 解析:选B.因为a =4,e =34,所以c =3,所以b 2=a 2-c 2=16-9=7.因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.3.(2018·湖北八校联考)设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59解析:选B.由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,因为OM ⊥F 1F 2,所以PF 2⊥F 1F 2,所以|PF 2|=b 2a =53.又因为|PF 1|+|PF 2|=2a =6,所以|PF 1|=2a-|PF 2|=133,所以|PF 2||PF 1|=53×313=513,故选B.4.(2018·湖南百校联盟联考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( ) A.35 B.12 C.23D.34解析:选A.因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即OC =bc a,因为四边形FAMN是平行四边形,所以点M 的坐标为⎝ ⎛⎭⎪⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0,又0<e <1,所以e =35.故选A.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,22 B.⎝ ⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 解析:选D.由题意可设P ⎝ ⎛⎭⎪⎫a 2c ,y ,因为PF 1的中垂线过点F 2,所以|F 1F 2|=|F 2P |,即2c =⎝ ⎛⎭⎪⎫a 2c -c 2+y 2, 整理得y 2=3c 2+2a 2-a 4c2.因为y 2≥0,所以3c 2+2a 2-a 4c2≥0,即3e 2-1e 2+2≥0,解得e ≥33.所以e 的取值范围是⎣⎢⎡⎭⎪⎫33,1. 6.(2018·贵阳模拟)若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________. 解析:由题意可知e =c a =32,2b =4,得b =2, 所以⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎨⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.答案:x 216+y 24=17.设F 1,F 2是椭圆x 249+y 224=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为________.解析:因为|PF 1|+|PF 2|=14, 又|PF 1|∶|PF 2|=4∶3, 所以|PF 1|=8,|PF 2|=6. 因为|F 1F 2|=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.答案:248.(2018·海南海口模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c ,0),右顶点为A ,上顶点为B ,现过A 点作直线F 1B 的垂线,垂足为T ,若直线OT (O 为坐标原点)的斜率为-3bc,则该椭圆的离心率为________.解析:因为椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 和F 1点坐标分别为(a ,0),(0,b ),(-c ,0),所以直线BF 1的方程是y =b c x +b ,OT 的方程是y =-3b c x .联立解得T 点坐标为⎝ ⎛⎭⎪⎫-c 4,3b 4,直线AT 的斜率为-3b 4a +c .由AT ⊥BF 1得,-3b 4a +c ·b c =-1,因为a 2=b 2+c 2,e =c a ,所以e =12.答案:129.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1. (2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b>0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1. 10.(2018·兰州市诊断考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点(2,1),且离心率为22. (1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P 满足OP →=OM →+2ON →,求点P 的轨迹方程.解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2, 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知,k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程为x 220+y 210=1.1.(2017·高考全国卷Ⅰ)设A 、B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M满足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)解析:选A.依题意得,⎩⎪⎨⎪⎧3m≥tan∠AMB 20<m <3或 ⎩⎪⎨⎪⎧m 3≥tan ∠AMB 2m >3,所以⎩⎪⎨⎪⎧3m≥tan 60°0<m <3或⎩⎪⎨⎪⎧m3≥tan 60°m >3,解得0<m ≤1或m ≥9.故选A. 2.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|PA |+|PF |的最大值为________,最小值为________. 解析:如图所示,设椭圆右焦点为F 1,则|PF |+|PF 1|=6. 所以|PA |+|PF |=|PA |-|PF 1|+6.利用-|AF 1|≤|PA |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立). 所以|PA |+|PF |≤6+2,|PA |+|PF |≥6- 2. 故|PA |+|PF |的最大值为6+2,最小值为6- 2. 答案:6+ 2 6- 23.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a=-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.4.已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=2PB →. (1)求椭圆的方程; (2)求m 的取值范围.解:(1)由题意知椭圆的焦点在y 轴上,可设椭圆方程为y 2a 2+x 2b2=1(a >b >0),由题意知a =2,b =c , 又a 2=b 2+c 2, 则b =2,所以椭圆的方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意知,直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,得⎩⎪⎨⎪⎧y 2+2x 2=4,y =kx +m .则(2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0.由根与系数的关系知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k2x 1x 2=m 2-42+k2,又由AP →=2PB →,即(-x 1,m -y 1)=2(x 2,y 2-m ), 得-x 1=2x 2,故⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22,可得m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22, 整理得(9m 2-4)k 2=8-2m 2, 又9m 2-4=0时不符合题意, 所以k 2=8-2m29m 2-4>0,解得49<m 2<4,此时Δ>0,解不等式49<m 2<4,得23<m <2或-2<m <-23, 所以m 的取值范围为⎝⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2.。

高三数学一轮复习 第九章 解析几何 9.5 椭圆

高三数学一轮复习 第九章 解析几何 9.5 椭圆

则 2a=2√2,c=1,所以 a=√2,b=1.
所以点 P 的轨迹方程为������22+y2=1.
考点1
考点2
考点3
-15-
解题心得1.在利用椭圆定义解题的时候,一方面要注意到常数 2a>|F1F2|这个条件;另一方面要熟练掌握由椭圆上任一点与两个焦 点所组成的焦点三角形中的数量关系.
2.求椭圆标准方程的两种方法 (1)定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置写出椭 圆方程. (2)待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合 已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴 上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).
2
+
������
2
=1
的焦点为(0,-4),(0,4),即
c=4.
25 9
由椭圆的定义知,
2a= (√3-0)2 + (-√5 + 4)2 + (√3-0)2 + (-√5-4)2,
解得 a=2√5.
由 c2=a2-b2 可得 b2=4.
所以所求椭圆的标准方程为������ 2
+
������
2
=1.
思考如何理清椭圆的几何性质之间的内在联系?
考点1
考点2
考点3
-19-
解析:(1)由题意知,2a+2c=2(2b), 即a+c=2b,两边平方得a2+c2+2ac=4b2=4(a2-c2), 化简得5c2-3a2+2ac=0. 两边同除以a2,得5e2+2e-3=0, 解得 e=3或 e=-1(舍去).

2020版高考数学一轮复习第九章解析几何第五节椭圆教案文(含解析)苏教版(最新整理)

2020版高考数学一轮复习第九章解析几何第五节椭圆教案文(含解析)苏教版(最新整理)

{ 解析:由已知得
5-k>0, k-3>0,,5-k≠k-3. 解得 3<k<5 且 k≠4.
3
(江苏专版)2020 版高考数学一轮复习 第九章 解析几何 第五节 椭圆教案 文(含解析)苏教版
答案:(3,4)∪(4,5)
错误! 错误!
[题组练透] x2 1.与椭圆 9 +错误!=1 有相同的焦点,且离心率为错误!的椭圆的标准方程为________. 解析:由椭圆错误!+错误!=1,得 a2=9,b2=4,∴c2=a2-b2=5,∴该椭圆的焦点坐标为 (± 5,0).设所求椭圆方程为错误!+错误!=1,a′>b′>0,则 c′=错误!,又错误!=错误!, 解得 a′=5。∴b′2=25-5=20,∴所求椭圆的标准方程为2x52 +2y02 =1。 答案:错误!+错误!=1 2.(2018·海门中学测试)已知中心在坐标原点的椭圆 C 的右焦点为 F(1,0),点 F 关于直 线 y=错误!x 的对称点在椭圆 C 上,求椭圆 C 的标准方程. 解:设点 F 关于 y=错误!x 的对称点为 P(x0,y0), 又 F(1,0),所以错误!解得错误!
[由题悟法]
利用定义求方程、焦点三角形及最值的方法
求方程
通过对题设条件分析、转化后,能够明确动点 P 满足椭圆的定 义,便可直接求解其轨迹方程
利用定义求焦点三角形的周长和面积.解决焦点三角形问题常
求焦点三角形 利用椭圆的定义、正弦定理或余弦定理.其中 PF1+PF2=2a 两 边平方是常用技巧
求最值
方程为________. 解析:直线 x-2y+2=0 与 x 轴的交点为(-2,0),即为椭圆的左焦点,故 c=2。 直线 x-2y+2=0 与 y 轴的交点为(0,1),即为椭圆的顶点,故 b=1,所以 a2=b2+c2=5,

高考总复习一轮数学精品课件 第九章 平面解析几何 第五节 椭圆

高考总复习一轮数学精品课件 第九章 平面解析几何 第五节 椭圆
数学表达式:P={M||MF1|+|MF2|=2a,2a>|F1F2|}
平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做
椭圆.这两个定点叫做椭圆的 焦点 ,两焦点间的距离叫做椭圆
的 焦距 ,焦距的一半称为 半焦距
.
微思考在椭圆的定义中,若2a=|F1F2|或2a<|F1F2|,动点M的轨迹是什么?
垂直于长轴的焦点弦最短,弦长为 2

2
.
常用结论
1.若点P在椭圆上,点F为椭圆的一个焦点,则
(1)b≤|OP|≤a;
(2)a-c≤|PF|≤a+c.
2.焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角
形.r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆
2

A.x2+25=1
2
2


B.x2+25=1 或25+y2=1
2 2
C.25+y =1
D.以上都不对
2
(2)过点(√3,-√5),且与椭圆
25
2
+ =1 有相同焦点的椭圆的标准方程为
9
)
.
答案 (1)A
2
2
(2)20 + 4 =1
解析 (1)设过两点 P
3
,-4
5
和Q
4
- 5 ,3
的椭圆的标准方程为
第九章
第五节 椭圆




01
强基础 增分策略
02
增素能 精准突破
1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实

2019届高考复习(理科):第9章 第5讲 椭圆 第1课时 椭圆的定义、标准方程及其几何性质

2019届高考复习(理科):第9章 第5讲 椭圆  第1课时 椭圆的定义、标准方程及其几何性质

栏目 导引
第九章
平面解析几何
x 2 y2 → → P 是椭圆 + =1 上一点,F 1,F 2 是两焦点,则PF 1·PF 2 5 4 的范围为________.
x2 y2 解析:设 P(x,y),则 + =1, 5 4 因为 F1(-1,0),F2(1,0), → → 所以PF1·PF2=(-1-x,-y)· (1-x,-y) =x2+y2-1
栏目 导引
第九章
平面解析几何
x2 y2 (2)设椭圆的标准方程为 2+ 2=1(a>b>0).由点(2, 3)在椭 a b 4 3 圆上知 2+ 2=1.① a b 又|PF1|,|F1F2|,|PF2|成等差数列,则|PF1|+|PF2|=2|F1F2|, 即 2a=2· 2c,a=2c,② 由①②及 c2=a2-b2,得 a2=8,b2=6. x2 y2 所以椭圆的标准方程为 + =1. 8 6
(2)集合表示: 若集合 P={M||MF1|+|MF2|=2a}, |F1F2|=2c, 其中 2a>2c>0,即 a>c>0,则 M 的轨迹是以 F1、F2 为两焦点 的椭圆,且|F1F2|=2c 是椭圆的焦距.
栏目 导引
第九章
平面解析几何
2.椭圆的标准方程和几何性质 标准方程 x2 y2 + =1(a>b>0) a2 b2 y2 x2 + =1(a>b>0) a2 b2
图形
栏目 导引
第九章
平面解析几何
标准方程 范围 性质 对称性 顶点
x2 y2 + =1(a>b>0) a2 b2 -a≤x≤a -b≤y≤b
y2 x2 + =1(a>b>0) a2 b2 -b≤x≤b - a≤ y ≤ a
x 轴、y 轴 ,对称中心:(0,0) 对称轴:____________

2019版高考数学一轮总复习第九章解析几何5椭圆一课件

2019版高考数学一轮总复习第九章解析几何5椭圆一课件

椭圆方程的两种设法 x2 y2 Ax +By =1 或 A + B =1(A>0,B>0, A≠B)也表示椭圆.
2 2
1.判断下面结论是否正确(打“√”或“³”). (1)平面内与两个定点 F1, F2 的距离之和等于常数的点的轨迹 是椭圆. (2)椭圆是轴对称图形,也是中心对称图形. (3)椭圆的离心率 e 越大,椭圆就越圆. (4)方程 mx2+ ny2=1(m>0, n>0, m≠ n)表示的曲线是椭圆. x2 y2 y2 x2 (5) 2 + 2=1(a>b>0)与 2+ 2=1(a>b>0)的焦距相同. a b a b 答案 (1)³ (2)√ (3)³ (4)√ (5)√
椭圆的标准方程与几何性质
标准 方程 范围 对称性 顶点 离心率 x2 y2 + =1,(a>b>0) a2 b2 |x|≤a,|y|≤b 关于 x 轴、y 轴、原点对称 (± a,0),(0,±b) c 0<e= <1 a y2 x2 + =1,(a>b>0) a2 b2 |x|≤b,|y|≤a 关于 x 轴、y 轴、原点 对称 (± b,0),(0,±a) c 0<e= <1 a
4. 椭圆 3x2+ky2=3 的一个焦点是(0, 2), 则 k=________.
答案 1 y2 3 2 解析 方程 3x +ky =3 可化为 x + 3 =1.a =k>1=b2,c2=a2 k
2 2 2
3 -bห้องสมุดไป่ตู้= -1=2.解得 k=1. k
2
5.(2018· 皖南八校联考)已知椭圆 G 的中心在坐标原点,长 3 轴在 x 轴上,离心率为 2 ,且 G 上一点到 G 的两个焦点的距离 之和为 12,则椭圆 G 的方程为________.

高考数学直线与椭圆复习课件练习题

高考数学直线与椭圆复习课件练习题

返回导航
下一页
第九章 平面解析几何
33
3.(2020·唐山模拟)直线 x- 3y+ 3=0 经过椭圆xa22+by22=1(a>b>0)的左焦点
F,交椭圆于 A,B 两点,交 y 轴于 C 点,若F→C=2C→A,则该椭圆的离心率
是( )
√A. 3-1
3-1 B. 2
C.2 2-2
D. 2-1
上一页
上一页
返回导航
下一页
第九章 平面解析几何
10
因为 Δ=4m2-8m2+16>0,解得|m|<2.所以 x1+x2=-2m,x1x2=2m2-4. 则|AB|= 1+14× (x1+x2)2-4x1x2= 5(4-m2)= 5. 解得 m=± 3. 所求直线 l 的方程为 y=12x± 3.
上一页
返回导航
√A.
2 2
1 B.2
1 C.4
3 D. 2
上一页
返回导航
下一页
第九章 平面解析几何
23
解析:设 A(x1,y1),B(x2,y2).因为 AB 的中点为 M1,12,所以 x1+x2=2, y1+y2=1.因为 PF∥l,所以 kPF=kl=-bc=xy11--yx22. 因为xa212+by212=1,xa222+by222=1.所以(x1+x2)a(2 x1-x2)+(y1+y2)b(2 y1-y2) =0,所以a22+-b2bc=0,可得 2bc=a2,
下一页
第九章 平面解析几何
31
解析:直线 y=kx+1 恒过定点(0,1),由题意知(0,1)在椭圆x72+my2=1 上或 其内部,所以有m1 ≤1,得 m≥1.又椭圆x72+ym2=1 的焦点在 x 轴上,所以 m<7. 综上,1≤m<7.

2023年人教版高考数学总复习第一部分考点指导第九章平面解析几何第五节 第2课时椭圆的几何性质

2023年人教版高考数学总复习第一部分考点指导第九章平面解析几何第五节 第2课时椭圆的几何性质

)
A.m>1
B.m>0
C.0<m<5 且 m≠1 D.m≥1 且 m≠5
【解析】选
D.方法一:由于直线
y=kx+1
恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则
1 0<m
≤1 且
m≠5,故 m≥1 且 m≠5.
y=kx+1, 方法二:由
消去 y 整理得(5k2+m)x2+10kx+5(1-m)=0.
【解析】(1)由题意知 e=ac =21 ,2a=4.又 a2=b2+c2,解得 a=2,b= 3 ,所以椭圆方程为x42 +y32 =1. (2)①当两条弦中一条弦所在直线的斜率为 0 时,另一条弦所在直线的斜率不存在,由题意知|AB|+|CD|=7,不满足条件.
②当两弦所在直线的斜率均存在且不为 0 时,设直线 AB 的方程为 y=k(x-1),A(x1,y1),B(x2,y2),则直线 CD 的方程为 y=
第2课时 椭圆的几何性质
第九章 平面解析几何
考点探究·悟法培优
考点探究·悟法培优
考点一 椭圆的几何性质 多维探究
高考考情:椭圆的几何性质是历年高考的重点,其中离心率的求解常出现在小题中,直线与椭圆的交点问题
几乎每年必考,难度较大.
·角度 1 求椭圆的离心率的值(范围) [典例 1](1)已知 F1,F2 是椭圆 C:ax22 +by22 =1(a>b>0)的左、右焦点,A 是 C 的左顶点,点 P 在过 A 且斜
·角度 2 与椭圆有关的范围(最值)问题 [典例 2]已知椭圆ax22 +by22 =1(a>b>0)的右焦点为 F2(3,0),离心率为 e.
(1)若 e=
3 2
,求椭圆的方程;

北师大版高考数学一轮复习统考第9章平面解析几何第5讲椭圆课件

北师大版高考数学一轮复习统考第9章平面解析几何第5讲椭圆课件

最新 PPT 欢迎下载 可修改
3
集合 P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中 a>0,c>0,且 a,c 为常数:
(1)若 04 __a_>_c___,则集合 P 表示椭圆; (2)若 05 __a_=__c__,则集合 P 表示线段; (3)若 06 __a_<_c___,则集合 P 为空集.
A.圆
B.椭圆
C.双曲线
D.抛物线
解析 点 P 在线段 AN 的垂直平分线上,故|PA|=|PN|.又 AM 是圆的半 径,所以|PM|+|PA|=|PM|+|PN|=|AM|=6>|MN|.由椭圆的定义知,P 的轨迹 是椭圆.
最新 PPT 欢迎下载 可修改
A.x42+y32=1
B.x42+ y23=1
C.x42+y22=1
D.x92+y82=1
c=1,
解析 依题意,设椭圆方程为ax22+by22=1(a>b>0),所以ac=13,
c2=a2-b2,
解得 a2=9,b2=8.故椭圆 C 的方程为x92+y82=1.
最新 PPT 欢迎下载 可修改
解析 13答案
第九章 平面解析几何 第5讲 椭圆
最新 PPT 欢迎下载 可修改
1
1
PART ONE
基础知识整合
最新 PPT 欢迎下载 可修改
2
1.椭圆的概念 在平面内到两定点 F1,F2 的距离的和等于常数(大于|F1F2|)的点的轨迹 (或集合)叫做 01 __椭__圆____.这两定点叫做椭圆的 02 __焦__点____,两焦点间的距 离叫做 03 __焦__距___.
5.(2019·西安模拟)已知点 P(x1,y1)是椭圆2x52 +1y62 =1 上的一点,F1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲椭圆【高考会这样考】1.考查椭圆的定义及利用椭圆的定义解决相关问题.2.考查椭圆的方程及其几何性质.3.考查直线与椭圆的位置关系.【复习指导】1.熟练掌握椭圆的定义及其几何性质会求椭圆的标准方程.2.掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归等.体会解析几何的本质问题——用代数的方法解决几何问题.基础梳理1.椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形续表范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点性 质顶点 A 1(-a,0),A 2(a,0) B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)轴 长轴A 1A 2的长为2a ;短轴B 1B 2的长为2b焦距 |F 1F 2|=2c 离心率 e =ca ∈(0,1) a ,b ,c 的关系c 2=a 2-b 2一条规律椭圆焦点位置与x 2,y 2系数间的关系:给出椭圆方程x 2m +y 2n =1时,椭圆的焦点在x 轴上⇔m >n >0;椭圆的焦点在y 轴上⇔0<m <n . 两种方法(1)定义法:根据椭圆定义,确定a 2、b 2的值,再结合焦点位置,直接写出椭圆方程.(2)待定系数法:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a 、b 、c 的方程组,解出a 2、b 2,从而写出椭圆的标准方程. 三种技巧(1)椭圆上任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .(2)求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0<e <1).(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴.双基自测1.(人教A 版教材习题改编)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( ).A.x 29+y 216=1B.x 225+y 216=1 C.x 225+y 216=1或x 216+y 225=1D .以上都不对解析 ∵2a +2b =18,∴a +b =9,又∵2c =6,∴c =3,则c 2=a 2-b 2=9,故a -b =1,从而可得a =5,b =4,∴椭圆的方程为x 225+y 216=1或x 216+y 225=1. 答案 C2.(2012·合肥月考)设P 是椭圆x 225+y 216=1上的点,若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ).A .4B .5C .8D .10 解析 依椭圆的定义知:|PF 1|+|PF 2|=2×5=10. 答案 D3.(2012·兰州调研)“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 要使方程x 25-m +y2m +3=1表示椭圆,应满足⎩⎨⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1,因此“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件. 答案 B4.(2012·淮南五校联考)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( ).A .-21B .21C .-1925或21D.1925或21解析 若a 2=9,b 2=4+k ,则c =5-k ,由c a =45即5-k 3=45,得k =-1925; 若a 2=4+k ,b 2=9,则c =k -5,由c a =45,即k -54+k =45,解得k =21.答案 C5.(2011·全国新课标)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________.解析 根据椭圆焦点在x 轴上,可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).∵e =22,∴c a =22,根据△ABF 2的周长为16得4a =16,因此a =4,b =22,所以椭圆方程为x 216+y 28=1. 答案 x 216+y 28=1考向一 椭圆定义的应用【例1】►(2011·青岛模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. [审题视点] 关键抓住点P 为椭圆C 上的一点,从而有|PF 1|+|PF 2|=2a ,再利用PF 1→⊥PF 2→,进而得解. 解析 由题意知|PF 1|+|PF 2|=2a ,PF 1→⊥PF 2→, ∴|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2, ∴2|PF 1||PF 2|=4a 2-4c 2=4b 2. ∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2| =12×2b 2=b 2=9. ∴b =3. 答案 3椭圆上一点P 与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF 1|·|PF 2|;通过整体代入可求其面积等.【训练1】 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ). A .2 3 B .6 C .4 3D .12解析 由椭圆的定义知:|BA |+|BF |=|CA |+|CF |=2a , ∴周长为4a =43(F 是椭圆的另外一个焦点). 答案 C考向二 求椭圆的标准方程【例2】►(1)求与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3)的椭圆方程. (2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5、3,过P 且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.[审题视点] 用待定系数法求椭圆方程,但应注意椭圆的焦点位置是否确定. 解 (1)由题意,设所求椭圆的方程为x 24+y 23=t (t >0), ∵椭圆过点(2,-3),∴t =224+(-3)23=2, 故所求椭圆标准方程为x 28+y 26=1. (2)设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),由已知条件得⎩⎨⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,b 2=12.故所求方程为x 216+y 212=1或y 216+x 212=1.运用待定系数法求椭圆标准方程,即设法建立关于a 、b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx 2+ny 2=1(m >0,n >0,m ≠n ),由题目所给条件求出m 、n 即可. 【训练2】 (1)求长轴是短轴的3倍且经过点A (3,0)的椭圆的标准方程. (2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是F (1,0),若椭圆短轴的两个三等分点M ,N 与F 构成正三角形,求椭圆的方程. 解 (1)若椭圆的焦点在x 轴上, 设方程为x 2a 2+y 2b 2=1(a >b >0), ∵椭圆过点A (3,0),∴9a 2=1,a =3, ∵2a =3·2b ,∴b =1,∴方程为x 29+y 2=1. 若椭圆的焦点在y 轴上,设椭圆方程为y 2a 2+x 2b 2=1(a >b >0), ∴椭圆过点A (3,0),∴02a 2+9b 2=1,∴b =3, 又2a =3·2b ,∴a =9,∴方程为y 281+x 29=1. 综上所述,椭圆方程为x 29+y 2=1或y 281+x 29=1.(2)由△FMN 为正三角形,则c =|OF |=32|MN |=32×23b =1.∴b = 3.a 2=b 2+c 2=4.故椭圆方程为x 24+y 23=1.考向三 椭圆几何性质的应用【例3】►(2011·北京)已知椭圆G :x 24+y 2=1.过点(m,0)作圆x 2+y 2=1的切线l交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.[审题视点] (1)由椭圆方程可直接求出c ,从而求出离心率.(2)可设出直线方程与椭圆方程联立得一元二次方程,由弦长公式列出|AB |长的表达式从而求出|AB |的最大值.解 (1)由已知得,a =2,b =1, 所以c =a 2-b 2= 3.所以椭圆G 的焦点坐标为(-3,0),(3,0), 离心率为e =c a =32. (2)由题意知,|m |≥1.当m =1时,切线l 的方程为x =1,点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32,此时|AB |= 3.当m =-1时,同理可得|AB |= 3.当|m |>1时,设切线l 的方程为y =k (x -m ). 由⎩⎪⎨⎪⎧y =k (x -m ),x 24+y 2=1.得(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则 x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2-41+4k 2.又由l 与圆x 2+y 2=1相切,得|km |k 2+1=1, 即m 2k 2=k 2+1.所以|AB |=(x 2-x 1)2+(y 2-y 1)2= (1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)⎣⎢⎡⎦⎥⎤64k 4m 2(1+4k 2)2-4(4k 2m 2-4)1+4k 2=43|m |m 2+3. 由于当m =±1时,|AB |=3, 所以|AB |=43|m |m 2+3,m ∈(-∞,-1]∪[1,+∞). 因为|AB |=43|m |m 2+3=43|m |+3|m |≤2, 且当m =±3时,|AB |=2,所以|AB |的最大值为2.(1)求椭圆的离心率,其法有三:一是通过已知条件列方程组,解出a ,c 的值;二是由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率. (2)弦长公式l =1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2.【训练3】 (2012·武汉质检)在Rt △ABC 中,AB =AC =1,如果一个椭圆通过A ,B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率为________. 解析设另一个焦点为F ,如图所示,∵|AB |=|AC |=1,△ABC 为直角三角形, ∴1+1+2=4a ,则a =2+24, 设|F A |=x ,∴⎩⎨⎧x +1=2a ,1-x +2=2a ,∴x =22,∴1+⎝ ⎛⎭⎪⎫222=4c 2,∴c =64,e =ca =6- 3. 答案6- 3考向四 椭圆中的定值问题【例4】►(2011·重庆)如图,椭圆的中心为原点O ,离心率e =22, 一条准线的方程为x =2 2.(1)求该椭圆的标准方程;(2)设动点P 满足:O P →=OM →+2O N →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12 .问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.[审题视点] (1)由离心率和准线方程即可求出椭圆方程.(2)充分利用椭圆的定义和性质,利用设而不求的方法求出P 点.解 (1)由e =c a =22,a 2c =22, 解得a =2,c =2,b 2=a 2-c 2=2, 故椭圆的标准方程为x 24+y 22=1. (2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由O P →=OM →+2O N →得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2), 即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM ,ON 的斜率, 由题设条件知k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0, 所以x 2+2y 2=20.所以P 点是椭圆x 2(25)2+y 2(10)2=1上的点,设该椭圆的左、右焦点为F 1,F 2, 则由椭圆的定义|PF 1|+|PF 2|为定值. 又因c =(25)2-(10)2=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).本题考查椭圆方程的求法和椭圆中的定点、定值等综合问题,可先设出动点P ,利用设而不求的方法求出P 点的轨迹方程,从而找出定点. 【训练4】 (2010·安徽)如图,已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =12.(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线l 的方程. 解 (1)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),由e =12,即c a =12,得a =2c ,得b 2=a 2-c 2=3c 2. ∴椭圆方程可化为x 24c 2+y 23c 2=1.将A (2,3)代入上式,得1c 2+3c 2=1,解得c =2,∴椭圆E 的方程为x 216+y 212=1.(2)由(1)知F 1(-2,0),F 2(2,0),∴直线AF 1的方程为y =34(x +2),即3x -4y +6=0,直线AF 2的方程为x =2.由点A 在椭圆E 上的位置知,直线l 的斜率为正数.设P (x ,y )为l 上任一点,则|3x -4y +6|5=|x -2|. 若3x -4y +6=5x -10,得x +2y -8=0(因其斜率为负,舍去).于是,由3x -4y +6=-5x +10,得2x -y -1=0,∴直线l 的方程为2x -y -1=0.规范解答16——怎样求解与弦有关的椭圆方程问题【问题研究】 求椭圆的方程是高考的重中之重,几乎每年必考,有的是以选择题或填空题的形式出现,多数以解答题的形式出现.虽然考向二中学习了求椭圆方程的方法,但在解答题中往往结合弦长等知识来求椭圆方程,难度中等偏上.【解决方案】 解决这类问题首先根据题设条件设出所求的椭圆方程,再由直线与椭圆联立,结合根与系数的关系及弦长公式求出待定系数.【示例】►(本题满分12分)(2011·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2.点P (a ,b )满足|PF 2|=|F 1F 2|.(1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,若直线PF 2与圆(x +1)2+(y -3)2=16相交于M ,N 两点,且|MN |=58|AB |,求椭圆的方程.第(1)问由|PF 2|=|F 1F 2|建立关于a 、c 的方程;第(2)问可以求出点A 、B 的坐标或利用根与系数的关系求|AB |均可,再利用圆的知识求解.[解答示范] (1)设F 1(-c,0),F 2(c,0)(c >0),因为|PF 2|=|F 1F 2|,所以(a -c )2+b 2=2c .整理得2⎝ ⎛⎭⎪⎫c a 2+c a -1=0,得c a =-1(舍),或c a =12.所以e =12.(4分) (2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =3(x -c ).A 、B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0.解得x 1=0,x 2=85c .(6分)得方程组的解为⎩⎨⎧ x 1=0,y 1=-3c ,⎩⎪⎨⎪⎧ x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85c ,335c ,B (0,-3c ), 所以|AB |=⎝ ⎛⎭⎪⎫85c 2+⎝ ⎛⎭⎪⎫335c +3c 2=165c .(8分) 于是|MN |=58|AB |=2c .圆心(-1,3)到直线PF 2的距离d =|-3-3-3c |2=3|2+c |2.(10分) 因为d 2+⎝ ⎛⎭⎪⎫|MN |22=42,所以34(2+c )2+c 2=16. 整理得7c 2+12c -52=0.得c =-267(舍),或c =2.所以椭圆方程为x 216+y 212=1.(12分)用待定系数法求椭圆方程时,可尽量减少方程中的待定系数(本题只有一个c ),这样可避免繁琐的运算而失分.【试一试】 已知直线y =-12x +2和椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A 、B 两点,M 为线段AB 的中点,若|AB |=25,直线OM 的斜率为12,求椭圆的方程.[尝试解答] 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).则⎩⎪⎨⎪⎧ x 21a 2+y 21b 2=1, ①x 22a 2+y 22b 2=1, ②①-②得:y 2-y 1x 2-x 1=-b 2a 2x 1+x 2y 1+y 2. ∴k AB =-b 2a 2×x 0y 0=-12.③ 又k OM =y 0x 0=12,④ 由③④得a 2=4b 2.由⎩⎪⎨⎪⎧ y =-12x +2,x 24b 2+y 2b 2=1得:x 2-4x +8-2b 2=0, ∴x 1+x 2=4,x 1·x 2=8-2b 2. ∴|AB |=1+k 2|x 1-x 2| =52(x 1+x 2)2-4x 1x 2 =5216-32+8b 2 =528b 2-16=2 5.解得:b 2=4.故所求椭圆方程为:x 216+y 24=1.。

相关文档
最新文档