(完整版)幂的运算奥数题
幂的运算总结性练习题
幂的运算总结性练习题幂运算是数学中常见且重要的运算方法之一。
它的原理是将一个数字乘以自己多次,通过指数来表示运算的次数。
在实际应用中,幂运算常用于表示面积、体积、复利计算等方面。
为了巩固对幂运算的理解和运用,下面给出一些幂运算的练习题,帮助读者巩固相关知识点。
题目一:计算幂1. 计算 2^3。
2. 计算 4^2。
3. 计算 5^0。
4. 计算 6^1。
5. 计算 3^4。
题目二:幂的运算规则1. 计算 (2^3)^2。
2. 计算 2^(3+2)。
3. 计算 (4^2)^(1/2)。
4. 计算 2^(3-2)。
5. 计算 (6^3)^(-1)。
题目三:幂运算的性质1. 把一个数的幂的幂记作数的幂的幂的幂,简化表达式2^(2^3)。
2. 计算 2^0+2^1+2^2+2^3+2^4。
题目四:应用题1. 小明每年年末将10000元存入银行,年利率为5%。
存款连续存5年,计算五年后小明的本息合计。
2. 若一个正方形的边长为a,计算正方形的面积。
3. 若一个圆的半径为r,计算圆的周长。
4. 若一个正方体的边长为a,计算正方体的体积。
5. 若一个长方体的长、宽、高分别为a、b、c,计算长方体的体积。
以上练习题旨在通过计算幂的运算,帮助读者熟悉幂运算的基本概念、运算规则和性质,并将其应用于实际问题中。
通过多次练习,读者将对幂运算有更深入的理解和熟练的运用。
建议读者在完成练习题后,自行核对答案,找出自己的错误,并尝试录入实际数值进行计算,提高运算的准确性和速度。
(完整版)幂的运算经典习题
一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
完整版)幂的运算练习题及答案
完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299 B。
-2 C。
299 D。
22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。
4个 B。
3个 C。
2个 D。
1个3.下列运算正确的是()A。
2x+3y=5xy B。
(-3x^2y)^3=-9x^6y^3C。
D。
(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXX^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1) D。
a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。
0个 B。
1个 C。
2个 D。
3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
(完整版)幂的运算练习及答案
初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数 次数 2、多项式2a 2b-35是 次 项式。
各项的系数分别是3、在下列各式53b a +, 3x , π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式 有 多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。
5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。
11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是( )A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是( )A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为( )A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为( )A 、a<b<c<dB 、a<b<d<cC 、b<a<c<dD 、a<d<b<c6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -⋅-⋅-⋅-(4) 2344()()2()()x x x x x x -⋅-+⋅---⋅四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关, 求y 的值。
(完整word版)幂的运算练习题及答案
则;
考点 :单项式乘单项式;幂的乘方与积的乘方;多项式乘多
(2)同类项的概念是所含字母相同, 相同字母的指数也相同
项式。
的项是同类项,不是同类项的一定不能合并.
分析: 根据幂的乘方与积的乘方、合并同类项的运算法则进
4、 a 与 b 互为相反数,且都不等于 0,n 为正整数,则下列
行逐一计算即可.
各组中一定互为相反数的是(
)
A、2x+3y=5xy
B、(﹣ 3x2y)3= ﹣ 9x6y3
C、
,正确;
D、应为( x﹣ y) 3=x3﹣3x2y+3xy 2﹣ y3,故本选项错误.
故选 C. 点评:( 1)本题综合考查了整式运算的多个考点,包括合并
C、
D 、 同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法
(x﹣y)3=x 3﹣y3
法公式做(注意一个负数的偶次幂是正数,奇次幂是负数) ;
④利用乘法分配律的逆运算. 解答: 解: ①∵ a5+a5=2a5;,故 ①的答案不正确; ②∵(﹣ a)6?(﹣ a)3=(﹣ a)9=﹣ a9,故② 的答案不正确; ③∵ ﹣ a4?(﹣ a)5=a9;,故 ③的答案不正确;
8 / 17
④25+2 5=2 ×25=2 6. 所以正确的个数是 1, 故选 B. 点评: 本题主要利用了合并同类项、同底数幂的乘法、乘法 分配律的知识,注意指数的变化. 二、填空题(共 2 小题,每小题 5 分,满分 10 分) 6、计算: x2?x3= x5 ;(﹣ a2)3+(﹣ a3)2= 0 . 考点 :幂的乘方与积的乘方;同底数幂的乘法。 分析: 第一小题根据同底数幂的乘法法则计算即可;第二小 题利用幂的乘方公式即可解决问题. 解答: 解: x2?x3=x5;
专题12幂的运算(解析版)
专题12幂的运算类型一正向运用幂的运算的性质1,都是正整数)、n m aa nm n m(a+=⋅2,()都是正整数)、n m mn (m a an=3,()都是正整数)、n m b annn(ab =【例1】(2021•海南)下列计算正确的是()A .a 3+a 3=a 6B .2a 3﹣a 3=1C .a 2•a 3=a 5D .(a 2)3=a 5【答案】C【解答】解:A .a 3+a 3=2a 3,故本选项不合题意;B .2a 3﹣a 3=a 3,故本选项不合题意;C .a 2•a 3=a 5,故本选项符合题意;D .(a 2)3=a 6,故本选项不合题意;故选:C .【练1】(2020•黔南州)下列运算正确的是()A.(a3)4=a12B.a3•a4=a12C.a2+a2=a4D.(ab)2=ab2【答案】A【解答】解:A、(a3)4=a12,故原题计算正确;B、a3•a4=a7,故原题计算错误;C、a2+a2=2a2,故原题计算错误;D、(ab)2=a2b2,故原题计算错误;故选:A.【例2】(2021春•广陵区校级期末)计算:(1)(x2y)3•(﹣2xy3)2;(2)(x n y3n)2+(x2y6)n;(3)(x2y3)4+(﹣x)8•(y6)2(4)a•a2•a3+(﹣2a3)2﹣(﹣a)6.【答案】(1)4x8y9(2)2x2n y6n(3)2x8y12(4)4a6.【解答】解:(1)原式=x6y3•4x2y6=4x8y9;(2)原式=x2n y6n+x2n y6n=2x2n y6n;(3)原式=x8y12+x8y12=2x8y12;(4)原式=a6+4a6﹣a6=4a6.【练2】(2021春•新吴区月考)计算:(1)﹣t3•(﹣t)4•(﹣t)5;(2)(x﹣y)3•(y﹣x)2;(2)(﹣x)3+(﹣4x)2x.【答案】(1)t12(2)(x﹣y)5(3)15x3【解答】解:(1)﹣t3•(﹣t)4•(﹣t)5=t3•t4•t5=t 12;(2)(x ﹣y )3•(y ﹣x )2=(x ﹣y )3•(x ﹣y )2=(x ﹣y )5;(3)(﹣x )3+(﹣4x )2x =﹣x 3+16x 3=15x 3.【例3】(2021春•陈仓区期末)计算:(x 2)3•x 3﹣(﹣x )2•x 9÷x 2.【答案】0【解答】解:原式=x 6•x 3﹣x 2•x 9÷x 2=x 9﹣x 9=0.【练3】(2021春•莱山区期末)计算:(1)(﹣x 2)5÷x +2x 6x 3.(2)(9x 2y 3﹣27x 3y 2)÷(3xy )2.【答案】(1)x 9(2)y ﹣3x【解答】解:(1)原式=﹣x 10÷x +2x 9=﹣x 9+2x 9=x 9;(2)原式=(9x 2y 3﹣27x 3y 2)÷9x 2y 2=9x 2y 3÷9x 2y 2﹣27x 3y 2÷9x 2y 2=y ﹣3x类型二逆向运用幂的运算性质方法:将指数相加二点幂转化为同底数幂的积,即a a nmnm ⋅=+a(m、n 都是正整数);将指数相乘的幂转化为幂的乘方,即()a m nmn=a(m、n 都是正整数);将相同指数幂的积转化为积的乘方,即()ab ba nn n=(n 为正整数)。
幂的运算计算题
幂的运算计算题1. 幂的定义在数学中,幂是重复用一个数字相乘的操作。
幂的运算可以表示为a^n,其中a被称为底数,n被称为指数。
幂的运算可以进行乘法和除法操作。
例如,2^3表示将数字2重复相乘3次,即2乘以2乘以2,结果为8。
2. 幂的基本运算规则幂的运算满足以下基本规则:2.1 乘法规则当底数相同时,幂的乘法可进行简化。
例如,2^3 * 2^2可以简化为2^(3+2),即2^5,结果为32。
2.2 除法规则当底数相同时,幂的除法可进行简化。
例如,(2^4) / (2^2)可以简化为2^(4-2),即2^2,结果为4。
2.3 幂的乘法规则当幂相乘时,底数保持不变,指数相加。
例如,(2^3)^2可以简化为2^(3*2),即2^6,结果为64。
2.4 幂的除法规则当幂相除时,底数保持不变,指数相减。
例如,(2^5) / (2^3)可以简化为2^(5-3),即2^2,结果为4。
3. 幂的运算计算题示例下面通过一些示例题来练习幂的运算:3.1 示例题1计算3^4 * 3^2。
按照乘法规则,可以简化为3^(4+2),即3^6,结果为729。
3.2 示例题2计算(2^3)^4。
按照幂的乘法规则,可以简化为2^(3*4),即2^12,结果为4096。
3.3 示例题3计算(5^6) / (5^4)。
按照除法规则,可以简化为5^(6-4),即5^2,结果为25。
4. 小结幂的运算是数学中常用的运算之一,掌握幂的基本规则可以帮助我们简化计算。
幂的乘法和除法规则可以帮助我们简化幂的复杂运算。
通过练习幂的运算计算题,可以加深对幂运算规则的理解和应用。
以上就是幂的运算计算题的介绍和示例,希望对大家有所帮助!。
(完整word版)幂运算基础练习题(整理1)
1幂的运算基础题小测一.填空题(每空 1 分)1 .计算:(1)x 2 4()2 32 x y(3)a2 4 ? a 3 (4)a4 a2 .填上适合的指数:(1)a4 ? a a5 (2)a5 a a 4(3)a4 a8 (4)ab3 ab a3b3 3 .填上适合的代数式:(1)x3? x4 ? x 8()a12 a62(3)x y 5 ? x y 44、若a x 2, 则a3 x= 若 a m=2,a n=3,则 a m+n=2 35. 计算: ( a2b ) ? ab3 2 = 1 xy2z3 =26、a2 4? a 3 x 2 5=7、( a2b ) ? ab3 2 =(a +b) 2·(b +a) 3=(2m-n) 3·(n -2m)2=;二.选择题(每题 2 分)1 .以下各式中,正确的选项是()A .m4m4m8 B.m 5 m52m25 C.m3m3m9 D.y6 y6 2 y122.以下各式中错误的选项是 ( )A. x y 3 2 x y 6B.( 2a 2)4 =16a81 m2n 3C. 1 m6n3D. ab3 3 - a3b63 273. 以下各式 (1) 3x 3 ?4 x2 7x 5; (2) 2x 3 ?3x3 6x 9 (3) ( x 5)2 x 7(4) (3xy) 3 =9x3y3 , 其上当算正确的有 ( )A.0 个个个个4. 以下各式 (1) b5 ? b5 2b5 (2) (-2a 2 ) 2 = 4 a4 (3) ( a n 1 ) 3 =a3n 14 x2y3 3(4) 64 x 6 y 9,其上当算错误的有( )5 125A.1 个个个个5. 以下 4 个算式 (1) c 4 c 2 c 2(2) y 6 y 4 y 2(3) z3 z0 z3(4) a 4m a m a 4此中,计算错误的有( )A.4 个个个个6. x k 1 2等于( )A. x 2k 1B. x 2k 2C. x2 k 2D. 2x k 17. 已知 n 是大于 1 的自然数 , 则 c n 1 ? c n 1等于 ( )A.n2 1B. 2ncC. c 2nD. c2 n c8. 计算 x4 3 ? x 7的结果是( )A. x12B. x14C. x 19D. x849. 以下等式正确的选项是( )A. x 2 3 x5B. x8 x 4 x2C. x3 x3 2x 3D.( xy )3 xy310.以下运算中与 a 4 ? a 4结果同样的是( )A. a2? a8B. a2 4C. a4 4D. a 2 4 ? a2 411. 以下计算正确的选项是( )A. a3? a2 a 5B. a3 a a 3C. a2 3 a 5D.( 3a ) 3 3a 312. 以下计算正确的 ( )A. x 2 x 3 2 x 5B. x 2 ? x 3 x 6C. ( x 3 ) 2 x 6D. x 6 x 3x 313.以下计算正确的选项是 ()A . 14 35 10 2 0121 B.1 C.2 5 2 102D.813 4914. 计算(﹣ 2)100 +(﹣ 2)99 所得的结果是()A 、﹣ 299B 、﹣ 2C 、299D 、215.a 与 b 互为相反数,且都不等于 0,n 为正整数,则以下各组中必定互为相反数 的是()A 、a n 与 b nB 、 a 2n 与 b 2nC 、a2n+1与 b 2n+1D 、a2n ﹣1与﹣ b 2n ﹣116、以下等式中正确的个数是()55106?(﹣ a )3104520556. ①a +a =a ;②(﹣ a ) ?a=a ;③﹣ a ?(﹣ a ) =a ;④2+2 =2 A 、0 个B 、1 个C 、2 个D 、3 个三. 解答题 1. 计算(每题 4 分)17 1111(1)9 ( 1) 11(2)x 2? xm3x 2 m916(3)( -3a) 3- ( -a) · ( -3a) 2(4) 2 x 3 4 x 4 x 4 2x 5 ? x 7 x 6 x 3 2432(6)2+3+2() 2(5)(p -q) ÷ (q - p) · (p - q)y ) x y? y xy x x y ( x(7) x m? ( x n)3x m 1 ? 2x n 1(8) b a b a 3 a b 52求值(9)已知 : 8 ·22m-1·23m=217. 求 m的值 .(10)、已知a x5, a x y25, 求 a x a y的值.(11)、若x m 2n16, x n2, 求 x m n的值.12.用简易方法计算:( m 1b n 2 )(a 2n 1 b 2 n ) 5 3,则求 m +n 的值.(4).若 aa b(5)已知2 x +5 y -3=0,求 4 x ?32 y 的值.(6)假如 a 2 a 0( a 0), 求 a 2005 a 200412的值(7)解对于 x 的方程 : 3 3x+1·53x+1=152x+4(8)、若1+2+3+⋯+n=a,求代数式(x n y)( x n 1y2)( x n 2y3)( x2 y n 1 )( xy n ) 的.(9)已知 9n+132n=72,求 n 的.(10)若 x=3a n,y=,当a=2,n=3,求a n x ay 的.(11)已知: 2x=4y+1,27y=3x﹣1,求 x y 的74、已知10a3,10 b5,10 c7, 试把105写成底数是10的幂的形式.5、比较以下一组数的大小.8131,2741,961。
幂的运算练习题及答案
幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299B。
-2C。
299D。
22.当m是正整数时,下列等式成立的有()1) a^(2m)=(a^m)^2;2) a^(2m)=(a^2)^m;3) a^(2m)=(-a^m)^2;4) a^(2m)=(-a^2)^m.A。
4个B。
3个C。
2个D。
1个3.下列运算正确的是()A。
2x+3y=5xyB。
(-3x^2y)^3=-9x^6y^3C。
(x-y)^3=x^3-y^3D。
无正确答案4.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXXB。
a^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1)D。
a^(2n-1)与(-b)^(2n-1)5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6*(-a)^3*a=a^10;③(-a)^4*(-a)^5=a^20;④25+25=26.A。
0个B。
1个C。
2个D。
3个二、填空题6.计算:x^2*x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^(n+1)+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))的值。
10.已知2x+5y=3,求4x*3^(2y)的值.11.已知25^m*2^10n=57*2^4,求m、n.12.已知ax=5,ax+y=25,求ax+ay的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.17.删除该题18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^(n-1),当a=2,n=3时,求a^n*x-a*y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)*(b-a)^2*(a-b)^m*(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)3]答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299D、2解答:根据负数的奇偶次幂性质,(-2)100为正数,(-2)99为负数,所以(-2)100+(-2)99=-299.因此,选A。
完整版)幂的运算经典习题
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
幂的运算经典难题
幂的运算经典难题幂的运算经典难题分类讨论:1.当$n$为正整数时,$1^n$都等于1,$(-1)^n$也等于1.你同意吗?2.求满足$(n-3)n=(n-3)2^{n-2}$的正整数$n$。
3.求满足$(n-3)n+3=(n-3)2^n$的正整数$n$。
4.若$n$为正整数,则$\frac{1}{n}\cdot 1-(-1)^{n^2-1}$的值是什么?(选项:A。
一定是0;B。
一定是偶数;C。
不一定是整数;D。
是整数但不一定是偶数)化归思想:1.计算$25m\div 5m$的结果是多少?2.如果$3=2.3=5$,那么……3.已知$am=2$,$an=3$,求$a^{2m-3n}$的值。
4.已知$8\cdot 2^{2m}$5.如果$2x+5y-3=0$,求$4x-\frac{1}{3}\cdot 2^{y}$的值。
6.解关于$x$的方程:$3\cdot 3^{x+1}=5\cdot3^{x+1}+2^{x+4}$。
7.已知$2^a\cdot 2^7b\cdot 3^7c=1998$,其中$a,b,c$是自然数,求$(a-b-c)^{2004}$的值。
8.已知$2^a\cdot 2^7b\cdot 3^7c\cdot 4^7d=1998$,其中$a,b,c,d$是自然数,求$(a-b-c+d)^{2004}$的值。
9.如果整数$a,b,c$满足$\frac{20}{3}\cdot \frac{8}{15}\cdot \frac{9}{16}=\frac{4}{5}$,求$a,b,c$的值。
10.已知$x^3=m$,$x^5=n$,用含有$m,n$的代数式表示$x^{14}$。
11.设$x=3^m$,$y=27\cdot 3^{2m}$,用$x$的代数式表示$y$。
12.已知$x=2m+1$,$y=3+4m$,用$x$的代数式表示$y$。
13.比较3108和2144的大小关系。
14.已知$a=2-\frac{5}{55}$,$b=3-\frac{4}{44}$,$c=6-\frac{2}{22}$,请用“$>$”把它们按从小到大的顺序连接起来。
(完整版)幂的运算压轴题(含答案)(可编辑修改word版)
8-32-2 幂的运算(含答案)1、在比较20132014 与20142013 时,为了解决问题,只要把问题一般化,比较n n+1 与(n+1)n的大小(n≥1 的整数),从分析n=1、2、3…这些简单的数入手,从中发现规律,归纳得出猜想.(1)通过计算比较下列各数大小:12<21;23<32;34>43;45>54;56>65;67>76.(2)根据(1)中结论你能猜想n n+1 与(n+1)n 的大小关系吗?(3)猜想大小关系:20132014>20142013(填“<”、“>”或“=”).解:(1)12<21;23<32;34>43;45>54;56>65;67>76.故答案为:<,<,>,>,>,>;(2)当n=1 或2 时,n n+1<(n+1)n;当n>2 的整数时,n n+1>(n+1)n;(3)20132014>20142013.故答案为:>.2、[提示:乘法运算规则(a+b)(c+d)=ac+ad+bc+bd,例如:(2+3)*(4+5)=2*4+2*5+3*4+3*5=8+10+12+15=45]解:第1 页(共4 页)3、解:4、求下列数和的最后一位数。
解:最后答案是 1.102325、比较176与174大小解:102/176=(10/173)2 32/174=(3/172)2比较10/173 和3/172 即可。
第2 页(共4 页)第 3 页(共 4 页)10 3/172=51/173 所以 32/174 大。
6、把(x 2 一 x+1)6 展开后得ax 12 + ax 11 + + ax 2 + a x + a , 则 a 12 + a 10 + a 8 + a 6 + a 4 + a 2 + a 0.解:(注意:偶数项相加)∵(x 2-x+1)6=a 12x 12+a 11x 11+…+a 2x 2+a 1x 1+a 0,∴ 当 x=1 时 ,(x 2-x+1)6=a 12+a 11+…+a 2+a 1+a 0=1,①; 当 x=-1 时,(x 2-x+1)6=a 12-a 11+…+a 2-a 1+a 0=36=729,② ∴①+②=2(a 12+a 10+a 8+a 6+a 4+a 2+a 0)=730, ∴a 12+a 10+a 8+a 6+a 4+a 2+a 0=365. 故此题答案为:365.7、已知25x = 2000 , 80 y = 2000 ,则 1 +1 等于()xy解:25x =2000,80y =2000, (25x )y =25xy =2000y 同 理 80XY =2000X 25XY 80XY =2000Y 2000X (25*80)XY =2000(X+Y)2000XY =2000(X+Y) 所 以 xy=x+y所以 1/X+1/Y=(X+Y)/XY=18、已知2a ⋅ 5b = 2c ⋅ 5d = 10 ,求证:(a 一 1)(d —1)=(b 一 1)(c 一 1).证明:∵2a •5b =10=2×5, ∴2a-1•5b-1=1,∴(2a-1•5b-1)d-1=1d-1,①同理可证:(2c-1•5d-1)b-1=1b-1,②由①②两式得 2(a-1)(d-1)•5(b-1)(d-1)=2(c-1)(b-1)•5(d-1)(b-1),即2(a-1)(d-1)=2(c-1)(b-1),∴(a-1)(d-1)=(b-1)(c-1).12 11 2第 4 页(共 4 页)9、a 、b 、c 、d 都是正数,且 a 2=2,b 3=3,c 4=4,d 5=5,则 a 、b 、c 、d 中,最大的一个是 b.解:∵a 2=2,c 4=4,∴c 2=2=a 2,a =c ,又∵a 6=(a 2)3=8,b 6=(b 3)2=9,∴b >a =c ,最后比较 b 与 d 的大小,∵b 15=(b 3)5=243,d 15=(d 5)3=125,∴b >d ,∴a 、b 、c 、d 中 b 最大. 故答案为 b .10、求220 + 321 + 720 的末位数字。